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Abstract. We apply the recent theory of evolution inclusions for set-valued pseudomonotone
maps, developed in Kuttler and Shillor [Commun. Contemp. Math., 1 (1999), pp. 87–123] to the
problem of dynamic frictional contact with normal compliance and wear. The friction coefficient is
assumed to be slip rate dependent, and may be continuous, or discontinuous in the form of a graph
with a vertical segment at the origin, representing the transition from the static to the dynamic
value. The wear of the contacting surfaces is modeled by the Archard law. We prove the existence of
a weak solution for the problem. We establish the uniqueness of the weak solution in the case when
the friction coefficient is continuous. We also show that the problem with prescribed wear depends
continuously on the wear.
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1. Introduction. We use the theory of set-valued pseudomonotone maps, which
we have developed in [18], to establish the existence of a weak solution of a dynamic
frictional contact problem with wear, when the friction coefficient depends discontin-
uously on the slip velocity. The problem describes frictional dynamic contact between
a deformable body, assumed to be viscoelastic, and a moving foundation and the re-
sulting wear of the contact surface. This paper is a continuation of our investigation
in [18], where the contact problem has been considered, however, with continuous
coefficient of friction and without wear. The new features in the model are the de-
scription of friction with a discontinuous coefficient and inclusion of the wear of the
contacting surfaces. We investigate the case when the friction coefficient jumps from
a static value, when the contacting surfaces stick together, to the lower dynamic value
at the onset of relative motion between them. Such a behavior is often assumed in
engineering applications. The contact between the body and a moving rigid founda-
tion is modeled with the normal compliance condition, and friction is modeled with
the pressure dependent condition. We use the Archard law to describe the evolution
of the wear. The problem is formulated as an abstract inclusion in a Banach space to
which the results of [18] apply.

Dynamic frictional contact problems have been considered recently in [5, 6, 9, 19,
21, 26, 31], while quasi-static problems can be found in [2, 4, 7, 27, 30] and references
to therein. See also [29] and the papers therein. It is a common assumption in
engineering literature that the friction coefficient depends on the slip speed. However,
there are only few and very recent mathematical publications which consider dynamic
contact with a friction coefficient which depends on the slip velocity of the contacting
surface [2, 10, 18, 19]. The last reference deals with a discontinuous slip-dependent
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coefficient, but in that problem the contact was assumed to be maintained and there
was no wear. A simple one-dimensional dynamic problem was analyzed in [10], where
a criterion for the appearance of dynamic instabilities was discovered. Analysis and
numerical simulations of thermoelastic frictional contact of a beam were performed
in [17]. The quasi-static problem with slip or total slip (over the contact history)
dependent coefficient of friction can be found in [2] and the dynamic thermoviscoelastic
problem in [3]. Frictional contact problems with wear can be found in [6] and [31].

In section 2, we present preliminary material which includes the abstract existence
theorem of [18] that underlies our results here. The classical model for the process, its
abstract formulation, the assumptions on the problem data, and the statement of our
main result, Theorem 3.2, are given in section 3. Section 4 is devoted to approximate
problems, with a known wear function, whose unique solvability, stated in Theorem
4.1, follows from the existence theorem in section 2. A solution of the contact problem
with known wear, when the friction coefficient µ is continuous, is obtained as a limit of
these approximate solutions in section 5. Under a mild additional assumption on the
problem data we show that the solution is unique. We investigate in section 6 the case
of a discontinuous friction coefficient. It is found that many of the necessary estimates
do not depend on the continuity of µ, and this fact is exploited in establishing the
existence of a weak solution in the case when µ has a jump discontinuity at the origin,
when slip motion is initiated. The result is stated in Theorem 3.2, in the case when
the wear is known. Uniqueness remains an unsolved problem in this case. In section
7, we prove the continuous dependence of the solutions of the problem on the wear
function w. The result is stated in Theorem 7.1, and it has some merit on its own. In
section 8, we deal with the problem with wear, which is assumed to evolve according
to a local version of the Archard law. We use the results up to this point to establish
the existence of the weak solution to the problem with wear; however, the questions
of uniqueness and stability of the solutions remain open.

2. Preliminaries. The existence results to be presented in this paper are based
on our recent theorems [18] for differential inclusions of the form

(B (t)u (t))
′
+Au � f (t) ,

where A is a set-valued pseudomonotone map. Here, the prime denotes the time
derivative which is understood in the sense of distributions. Let V be a reflexive
Banach space, over C, and let V ′ denote the space of conjugate linear maps. We start
with (see, e.g., [22]) the following definition.

Definition 2.1. A map A : V → P (V ′) is said to be pseudomonotone if
1. the set Au is nonempty, bounded, closed, and convex for all u ∈ V;
2. if F is a finite-dimensional subspace of V, u ∈ F, and if U is a weakly open

set in V ′ such that Au ⊆ U, then there exists δ > 0 such that if v ∈ Bδ(u)∩ F,
then Av ⊆ U ;

3. if ui → u weakly in V and u∗i ∈ Aui is such that

lim sup
i→∞

Re〈u∗i , ui − u〉V ≤ 0,(2.1)

then, for each v ∈ V, there exists u∗ (v) ∈ Au such that

lim inf
i→∞

Re〈u∗i , ui − v〉V ≥ Re〈u∗(v), u− v〉V .(2.2)

Here Bδ(u) denotes the ball of radius δ centered at u.
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Our theory of set-valued evolution equations was developed in general reflexive
Banach spaces. Here we restrict ourselves to the spaces which we now describe. Let
Ω ⊂ R

N (N = 2, 3) be a domain, occupied by the deformable body, with Lipschitz
boundary Γ. The surface is divided into three mutually disjoint parts ΓD,ΓN , and
ΓC such that ΓC �= ∅ is the potential contact surface. Next, we choose the space
W as follows: if the body is clamped over ΓD, with meas ΓD > 0, then we set
W = {u ∈ (H1(Ω))N : u = 0 on ΓD}; if the body is not held fixed (meas ΓD = 0),
then W = (H1(Ω))N . Now we let q, p ≥ 2, set D =W ∩ (C∞(Ω))N , and define

Ṽp = {u ∈W : γu ∈ (Lp(ΓC))
N},(2.3)

with norm ||u||
Ṽp
= ||u||W + ||γu||(Lp(ΓC))N , where γ : W → (L2(ΓC))

N is the trace

operator. Ṽp is a reflexive Banach space since it is isometric to a closed subspace of

W × (Lp(ΓC))
N . We denote by Vp the closure of D in Ṽp. Then Vp is a reflexive

Banach space, and for p < q

Vp ⊇ Vq, Vq is dense in Vp.(2.4)

Since Vp is dense in H = (L2(Ω))N , we identify H and H ′ and write Vp ⊆ H = H ′ ⊆
V ′p . Let

Vp = {u ∈ L2(0, T ;Vp) : ||u||Vp <∞},(2.5)

equipped with norm

||u||Vp = ||u||L2(0,T ;W ) + ||γu||Lp(0,T ;(Lp(ΓC))N ).(2.6)

Vp is a reflexive Banach space since it is isometric to a closed subspace of L2(0, T ;W )×
Lp(0, T ; (Lp(ΓC))

N ), and Vq is dense in Vp when p < q. Note that V ′p ⊆ Lp′(0, T ;V
′
p )

and the inclusion map is continuous.
Next, we define the Banach space X as follows:

X = {u ∈ Vp : u′ ∈ V ′p}, ||u||X = ||u||Vp + ||u′||V′
p
.(2.7)

We shall use the following two results.
Theorem 2.2 (see [20]). Let p ≥ 1, q > 1, W ⊆ U ⊆ Y with compact inclusion

map i :W → U and continuous inclusion map i : U → Y and let

SR = {u ∈ Lp(0, T ;W ) : u′ ∈ Lq(0, T ;Y ), ||u||Lp(0,T ;W ) + ||u′||Lq(0,T ;Y ) < R}.
Then SR is precompact in Lp(0, T ;U).

Theorem 2.3 (see [28]). Let W, U, and Y be as above and let

SRT = {u : ||u(t)||W + ||u′||Lq(0,T ;Y ) ≤ R, t ∈ [0, T ]}
for q > 1. Then SRT is precompact in C(0, T ;U).

We now describe the abstract setting we shall use. Let V and W be reflexive
Banach spaces over C and let I = [a, b]. We denote WI ≡ L2 (I;W ) and then
W ′I = L2 (I;W ′) . Also, when I = [0, T ] , we write V instead of VI .

We assume that the family of operators B (t) satisfies B (t) ∈ L (W,W ′) and

〈B (t)u, v〉 = 〈B (t) v, u〉,(2.8)

〈B (t)u, u〉 ≥ 0,(2.9)

B(t) = B(0) +

∫ t

0

B′(s) ds.(2.10)
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The operator L, associated with B, is defined as

D (L) ≡ {u ∈ V : (i∗Bu)′ ∈ V ′},(2.11)

Lu ≡ (i∗Bu)′ for u ∈ D(L),(2.12)

where i is the inclusion map of V into W . The following lemma results from the
definitions.

Lemma 2.4. L is a closed operator.
We define

X ≡ D (L) , ||u||X ≡ ||Lu||V′ + ||u||V .

By Lemma 2.4, X is isometric to a closed subspace of a product of reflexive Banach
spaces and thus X is also reflexive. Under these conditions the following theorem was
proved in [18].

Theorem 2.5 (see [18]). Let u, v ∈ X; then the following hold.
1. t → 〈B (t)u (t) , v (t)〉W ′,W equals an absolutely continuous function a.e. t,

denoted by 〈Bu, v〉 (·) .
2. Re〈Lu (t) , u (t)〉 = 1

2 [〈Bu, u〉′ (t) + 〈B′ (t)u (t) , u (t)〉] for a.e. t.
3. |〈Bu, v〉 (t)| ≤ C ||u||X ||v||X for some C > 0 and for all t ∈ [0, T ].
4. t→ B (t)u (t) equals a function in C (0, T ;W ′) , a.e. t, denoted by Bu (·) .
5. sup{||Bu (t)||W ′ , t ∈ [0, T ]} ≤ C||u||X for some C > 0.

If K : X → X ′ is given by

〈Ku, v〉X′,X ≡
∫ T

0

〈Lu (t) , v (t)〉dt+ 〈Bu, v〉 (0) ,

then
6. K is linear, continuous, and weakly continuous.

7. Re〈Ku, u〉 = 1
2 [〈Bu, u〉 (T ) + 〈Bu, u〉 (0)] + 1

2

∫ T
0
〈B′ (t)u (t) , u (t)〉dt.

The operator A in the theorem and below is assumed to satisfy

A : V → P(V ′) is bounded;(2.13)

lim inf
||u||V→∞

{2Re〈u∗, u〉+ 〈B′u, u〉+ 〈Bu, u〉 (T ) : u∗ ∈ Au}
||u||V =∞(2.14)

for u ∈ X; and

A+K : X → P(X ′) is pseudomonotone.(2.15)

The following abstract theorem is the basis for the results in this paper.
Theorem 2.6 (see [18]). Let the spaces V and W be as defined above and let the

operators A : V → P (V ′) and B (t) satisfy (2.13)–(2.15) and (2.10)–(2.12), respec-
tively. If f ∈ V ′ and u0 ∈ W, then there exists a solution u ∈ V to the initial value
problem

(i∗Bu)
′
+Au � f in V ′, Bu (0) = Bu0 in W ′.

Here, i is the inclusion map i : V → W . The proof of the theorem can be found
in [18].
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3. The model. We describe the classical problem and the assumptions on the
data, then we formulate it abstractly, and we state our main results in Theorems
3.2–3.3. We use the isothermal version of the problem in [6] (see also [21, 8]). We
refer the reader there for a more detailed description of the model. We use the normal
compliance contact condition (see, e.g., [6, 5, 15, 13, 21, 27] ) to describe the contact,
together with a condition for dry friction. Dynamic problems with this condition have
been investigated in [15, 5, 9, 6]. We use the Archard law, as has been done in [6], to
describe the wear of the contact surface (see also [27, 30, 31]).

A viscoelastic body occupies the reference configuration Ω ⊂ R
N , with boundary

surface Γ = ∂Ω, such that Γ = ΓC ∪ ΓD ∪ ΓN . It may come in contact with a
deformable moving foundation on the part ΓC . We set ΩT = Ω × (0, T ) for 0 < T
and denote the displacements vector by u = (u1, . . . , uN ) and the stress tensor by
σ = σ(u,u′) = (σij), where here and below i, j = 1, . . . , N , and a comma separates
the components of a vector or tensor from partial derivatives.

The equations of motion, in dimensionless form, are

u′′ −Div σ(u,u′) = fB in ΩT ,(3.1)

where fB represents the volume force acting on the body. Initially,

u(x, 0) = u0(x), u′(x, 0) = v0(x) in Ω,(3.2)

where u0 and v0 are the prescribed displacement and velocity fields, respectively.
The body is held fixed on ΓD (when meas ΓD �= 0) and tractions fN act on ΓN ,

thus

u = 0 on ΓD, σn = fN on ΓN ,(3.3)

where n is the unit outward normal to Ω on Γ.
Our interest lies in the process on the contact surface ΓC . We denote the normal

component of the displacements vector on Γ by un = u · n, the tangential components
by uT = u − (u · n)n, the normal component of the traction by σn = σijnjni, and
the tangential tractions by σTi = σijnj − σnni.

We model the contact between the body and the foundation by the normal com-
pliance condition. Let g = g(x) be a nonnegative function on ΓC , representing the
gap between the body’s surface (in the reference configuration) and the foundation,
measured along the normal n. We denote by w = w(x, t) the wear function which
measures the wear of ΓC at position x and time t. It describes the change in the
surface, in the (negative) direction of the normal, resulting from material removal
because of friction. We assume that the contact pressure is given by

σn = −p(un − w − g),(3.4)

where p(·) is a nonnegative monotone function which vanishes for negative argument
values. Thus, the pressure on the contact surface depends on the interpenetration
un − w − g, when positive. The choice p(r) = (r)mn

+ can be found in [13, 21].
We note that as the wear of the surface increases the normal displacement needed

for contact increases, too. In the tangential direction we employ a dry friction condi-
tion that is compatible with (3.4) and which has a slip dependent and discontinuous
friction coefficient. Let µ∗ denote the friction graph,

µ∗(r) =
{
[µd, µs] when r = 0,
µc(r) when r > 0,

(3.5)
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where r = |u′T −v∗| denotes the relative slip between the surface and the foundation.
Here, v∗ is the tangential velocity of the foundation, and generally it depends on
the location on the surface, thus it is assumed to lie in L∞(0, T ;L∞

(
R
N
)
). If the

contact surface is flat, a portion of a plane, we may choose v∗ to be a function of time
only, but when the contact surface is not flat, even if the velocity of the foundation is
constant, the tangential velocity is not constant and depends on the position and on
time.

In the slip state (0 < r) the coefficient µ is given by µc(r), and µd = lims→0 µc(s)
denotes the dynamic value at zero slip. In the absence of relative slip µ may have
any value in the interval [µd, µs]. Thus, we do not insist that it has the static value
µs, although it is likely when the body is in stick state for a while. We assume that
µc(r), for r ≥ 0, is a given positive Lipschitz function which satisfies the conditions
below.

Next, we consider the friction condition. As is well known in applications, and
explained well in [25, 32], when the contact pressure is low to moderate, the real
contact area is a small fraction of the nominal contact area, and the frictional tan-
gential traction is proportional to the contact pressure, given by µp. This is the usual
Coulomb’s condition which is often used both in engineering and mathematical pub-
lications. However, when the contact pressure is very high, such as in metal forming
processes, the fraction of the real contact area approaches unity, and the frictional
traction reaches saturation and the maximal frictional resistance becomes indepen-
dent of the contact pressure. Thus, there is a transition from the Coulomb law to the
so-called Tresca law; see, e.g., [32]. Such a transition is observed both in elastic and
plastic materials. A simple way to model such behavior is to introduce the truncated
contact pressure function

p
R
=

{
p if p ≤ R,

R if R ≤ p.

Here, R = const. is the pressure at which the friction traction levels off. We could
have used, instead, a more general, and less transparent, function F such that F = µp
for small p, and asymptotically F → µR as p→∞.

Then the friction bound is defined as µp
R
, and the friction law is

µ(|u′T − v∗|) ∈ µ∗(|u′T − v∗|) a.e. on ΓC ,(3.6)

|σT | ≤ µspR
(un − w − g),(3.7)

σT = − u
′
T − v∗
|u′T − v∗|

µc (|u′T − v∗|) pR
(un − w − g) if u′T − v∗ �= 0.(3.8)

Conditions (3.6)–(3.8) model friction as follows. The tangential part of the traction
is bounded by µspR

. Sliding commences when |σT | reaches the bound µspR
, and then

the tangential force has a direction opposite to the relative tangential velocity. The
actual value of µ is a selection out of the graph, (3.6).

The contact surface ΓC is divided, at each time instant, into the separation, slip,
and stick zones.

We assume that the wear of the surface is either a given function or else it is
proportional to the friction force and to the sliding speed, as in the Archard law,

∂w

∂t
= kwµc(|u′T − v∗|)pR

(un − w − g)sc(|u′T − v∗|).(3.9)
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Here, kw is a positive material constant, very small in practice. The function sc is a
regularization of | · | on R

N which is uniformly bounded and such that sc(r) = 0 for
r = 0. Note that we used µc in (3.9) since sc vanishes when there is no slip.

The new features in the model are the dependence, which often can be observed
experimentally, of the friction coefficient on the magnitude of the slip, |u′T −v∗|, with
a jump from a static to a dynamic value at the onset of sliding, and the wear of the
contact surface. The problem with Lipschitz µ and without wear was investigated in
[18].

Finally, we assume that the material is viscoelastic with constitutive law

σ = σ(u,u′) = Au+ Cu′,(3.10)

i.e., σij = Aijkluk,l+Cijklu
′
k,l, where the elasticity tensor A has the components Aijkl

and the viscosity tensor C has the components Cijkl.
The classical formulation of the problem of dynamic frictional contact with normal

compliance wear and discontinuous slip dependent friction coefficient is as follows:
Find {u, w} such that (3.1)–(3.10) hold.

We make the following assumptions on the problem data. The normal pressure
function p(·) is increasing and satisfies

|p(r1)− p(r2)| ≤ K(1 + rp−2
1 + rp−2

2 )|r1 − r2|,(3.11)

and either

0 ≤ p (r) ≤ K and p = 2; p(r) = 0, r < 0,(3.12)

or

δ2rp−1 −K ≤ p(r) ≤ K(1 + rp−1), r ≥ 0; p(r) = 0, r < 0,(3.13)

where p ≥ 2 is a fixed exponent here and everywhere below, and δ and K are positive
constants. Also, p is the exponent and p(·) is the normal compliance function. The
choice made in [21] and [13] of p(r) = rmn

+ , where 1 < mT ≤ mn, corresponds to
p− 1 = mn and clearly (3.13) holds for suitable constants K and δ. The function sc
satisfies

sc(r) ≤ s∗c , |sc(r1)− sc(r2)| ≤ δ∗c |r1 − r2|.(3.14)

We assume that the coefficient of friction is a graph composed of the vertical
segment [µd, µs] and the function µc is bounded, positive, and Lipschitz continuous,

|µc (r1)− µc (r2)| ≤ Lipµ |r1 − r2| , ||µc||L∞ ≤ cµ.(3.15)

We assume that the elasticity and viscosity coefficients A and C lie in L∞(Ω) and
satisfy the following symmetries for B = A or C:

Bijkl = Bijlk, Bjikl = Bijkl, Bijkl = Bklij ,(3.16)

and

Bijklζijζkl ≥ λζrsζrs,(3.17)

for all symmetric matrices ζ, where 0 < λ.
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We now obtain a weak formulation of problem (3.1)–(3.10) since, generally, the
friction law and the set inclusion (3.6) preclude the existence of classical solutions.

We begin by defining the viscosity and elasticity operators M,A : Vp → V ′p as

〈Mu,v〉 =
∫

Ω

Cijkluk,lvi,j dx,(3.18)

〈Au,v〉 =
∫

Ω

Aijkluk,lvi,j dx.(3.19)

It follows from our assumptions and Korn’s inequality [23] that bothM and A satisfy

〈Bu,u〉 ≥ δ2||u||2W − λ0|u|2H , 〈 Bu,u〉 ≥ 0, 〈Bu,v〉 = 〈Bv,u〉
for B =M or A, for some δ > 0, and for λ0 ≥ 0.

The normal compliance operator (v, w)→ P (u, w), which maps Vq × Lp (ΓC) to
V ′q (for each q ≥ p), is given by

〈P (u, w), z〉 =
∫ T

0

∫
ΓC

p(un − w − g)zn dΓdt,(3.20)

where u(t) = u0 +
∫ t
0
v(s)ds, for u0 ∈ Vq. Next, we define f ∈ W ′ as

〈f , z〉W′,W =

∫ T

0

∫
Ω

fBz dxdt+

∫ T

0

∫
∂Ω

fNγz dΓdt(3.21)

for all z ∈ W. Here fB represents a body force in L2(0, T ;H) and fN is a traction
force in L2(0, T ;L2(∂Ω)N ).

Let γ∗T : L
p′(0, T ;Lp′(ΓC)

N )→ V ′
p be defined as

〈γ∗T ξ,w〉 =
∫ T

0

∫
ΓC

ξ ·wT dΓdt.

The abstract form of the problem for the displacement u, the velocity v, and the
wear w, is the following.

Problem P. Find u,v ∈ Vp, w ∈ Lp (0, T ;Lp (ΓC)) such that

v′ +Mv +Au+ P (u, w) + γ∗T ξ = f in V ′p,(3.22)

w′ = kwµc (|vT − v∗|) pR
(un − w − g) sc (|vT − v∗|) ,(3.23)

w (0) = 0, v(0) = v0 ∈ H,(3.24)

u(t) = u0 +

∫ t

0

v(s) ds, u0 ∈ Vp,(3.25)

the inclusion (3.6) holds and for all w ∈Vp,

〈γ∗T ξ,w〉 ≤
∫ T

0

∫
ΓC

µcpR
(|vT − v∗ +wT | − |vT − v∗|) dΓdt,(3.26)
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where µc = µc(|vT − v∗|) and p
R
= p

R
(un − w − g).

When the triplet {u,v, w} solves the abstract problem (3.22)–(3.26), then u and
w are a weak solution of (3.1)–(3.10).

The main results in this paper are presented according to whether the wear is a
given function or is determined by the differential equation (3.23). To begin with, we
consider the following basic result, proved in section 5, in the case of a given wear
function. We note that it includes all the published versions of the problem, such as
[14, 21] or [15].

Theorem 3.1. Let p ≥ 2 and let w ∈ Lp (0, T ;Lp (ΓC)), w′ ∈ Lp(0, T ;Lp(ΓC)),
w′ ≥ 0, u0 ∈ Vp ,v0 ∈ H, f ∈ V ′p and assume µ∗ (r) = µc (r), where µc is bounded

and Lipschitz. Then there exists ξ ∈ Lp′(0, T ;Lp′(ΓC)
N ) and v ∈ L2(0, T ;W ) such

that

(un − w − g)+ ∈ L∞(0, T ;Lp(ΓC)),(3.27)

v′ +Mv +Au+ P (u, w) + γ∗T ξ = f in V ′p,(3.28)

v(0) = v0 , u(t) = u0 +

∫ t

0

v(s) ds,(3.29)

and

〈γ∗T ξ,w〉 ≤
∫ T

0

∫
ΓC

µcpR
(|vT − v∗ +wT | − |vT − v∗|) dΓ dt,(3.30)

where µc = µc(|vT − v∗|) and p
R
= p

R
(un − w − g).

If, in addition, p ≤ 4, then the solution {u,v} is unique.
Next, we consider the case of a set-valued friction coefficient and given wear

function. The proof can be found in section 6.
Theorem 3.2. Let p ≥ 2 and let u0 ∈ Vp, v0 ∈ H, f ∈ V ′p, and w,w′ ∈

Lp (0, T ;Lp (ΓC)) with w′ ≥ 0. Then there exists a pair {v, ξ} such that

v ∈ L2(0, T ;W ), (un − w − g)+ ∈ L∞(0, T ;Lp(ΓC)),(3.31)

v′ +Mv +Au+ P (u, w) + γ∗T ξ = f in V ′p,(3.32)

v(0) = v0, u(t) = u0 +

∫ t

0

v(s) ds,(3.33)

where ξ satisfies the inequality

〈γ∗T ξ,w〉 ≤
∫ T

0

∫
ΓC

µcpR
(|vT − v∗ +wT | − |vT − v∗|) dΓdt,(3.34)

and where µc = µc(|vT − v∗|) and p
R
= p

R
(un − w − g), for an element (|vT − v∗|,

µ(|vT − v∗|)) from the graph µ∗, a.e., and for all w ∈ Vp.
We note that this theorem guarantees only the existence of a solution. Indeed,

it seems unreasonable to expect uniqueness when we have a graph in the problem;
however, the question remains open.

Finally, we consider the case where the wear is a solution of the differential equa-
tion of Archard’s law and µ∗ = µc. This leads to the following theorem whose proof
is in section 8.
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Theorem 3.3. Assume (3.12) and that µ = µc = µ∗ and sc are bounded and
Lipschitz continuous. Let u0 ∈ V2,v0 ∈ H, and f ∈ V ′2. Then there exists a unique
solution {u,v, w} of problem (3.22)–(3.26), and it satisfies

v ∈ L2(0, T ;V2), v′ ∈ L2(0, T ;V ′2), w, w′ ∈ L∞(0, T ;L∞ (ΓC)).

If we wish to take into account the possible dependence of µ and p(·) on the po-
sition x on the contact surface, all we need to do is to assume that both functions are
measurable in x, in addition to the other assumptions above. This increase in gener-
ality is mainly technical and does not change any of the arguments and conclusions
that follow. Therefore, we have omitted an explicit reference to it in the models.

Existence of weak solutions for the problem with friction graph and a wear func-
tion that is an unknown of the problem remains an important unresolved problem.

4. Approximate problems with given wear. In this section we consider
regularized approximate problems in which w is a given function satisfying

w ∈ Lp (0, T ;Lp (ΓC)) , w′ ∈ Lp(0, T ;Lp(ΓC)), w′ ≥ 0,
and µ = µc = µ∗ is a given Lipschitz continuous function of |vT − v∗|.

First, let u0ε be a sequence in D satisfying limε→0 u0ε = u0 in Vp. We assume
that q = p2(p− 1)−1, thus

p− 1
q

+
1

p
+
1

q
= 1.

Next, let the operator J be defined by

〈Ju,v〉 =
∫

ΓC

||γu||q−2γu · γv dΓ.(4.1)

We use J to regularize problem (3.22)–(3.26) and for each ε > 0 the approximate
problem is the following.

Problem P(ε). Find vε ∈ Vq such that
v′ε +Mvε +Auε + εJvε + P (uε, w) +Q(vε, w) � f in V ′q,(4.2)

vε(0) = v0 ∈ H,(4.3)

uε(t) = u0ε +

∫ t

0

vε(s) ds.(4.4)

Here, by v∗ ∈ Q(v, w) ⊆ V ′p we mean that there exists z ∈ L∞(0, T ;L∞(ΓC)N ) such
that

〈v∗,w〉 =
∫ T

0

∫
ΓC

µ (|vT − v∗|) pR
(un − w − g) z ·wT dΓdt,(4.5)

and z satisfies∫ T

0

∫
ΓC

z ·wT dΓdt ≤
∫ T

0

∫
ΓC

(|vT − v∗ +wT | − |vT − v∗|) dΓdt,(4.6)

for all w ∈Vp.
Below we omit the subscript ε for the sake of simplicity. We have the following

result for the approximate problems.
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Theorem 4.1. Assume that p(·) satisfies (3.13). Then for each ε > 0 there exists
a solution vε ∈ Vq of P(ε).

The proof of the theorem is accomplished in a number of steps. We begin with
the following assertion which follows directly from the definitions.

Lemma 4.2. The operators J, Q, M, A, and P (·, w) are bounded maps from Vq
or Vq × Lp (0, T ;Lp (ΓC)) into V ′q or P(V ′q).

Next, we change the dependent variable and set yeλt = v. Then, in terms of y,
the problem P(ε) consists of finding y ∈ Vq such that

y′ + λy+My + e−λ(·)Au+ εe−λ(·)J(eλ(·)y)

+ e−λ(·)P (u, w) + e−λ(·)Q(eλ(·)y, w) � e−λ(·)f in V ′q,(4.7)

y(0) = v0 ∈ H.(4.8)

Let X be the space given in (2.7). The next lemma will be used to show the operator
Qλ given by

y→Qλ (y, w) ≡ e−λ(·)Q(eλ(·)y, w)(4.9)

is pseudomonotone.
Lemma 4.3. If vk ⇀ v in X, then γvk → γv in Lp(0, T ; (Lp(ΓC))

N ).
Proof. Since p ≥ 2, it is straightforward to verify that if v ∈ X, then v′ ∈

Lq′(0, T ;V ′q ) and v(t1) − v(t2) =
∫ t1
t2
v′(s) ds. Let W ⊆ U be such that the injection

W → U is compact and γ : U → (L2(ΓC))
N is continuous. Since Vq embeds continu-

ously into L2(0, T ;W ), Theorem 2.2 implies that vk → v in L2(0, T ;U). It follows that
γvk → γv in L2(0, T ; (L2(ΓC))

N ). Now if the lemma is not true, then there exists a
sequence {vk} ⊆ X such that vk ⇀ v in X but ||γvk − γv||Lp(0,T ;(Lp(ΓC))N ) ≥ η > 0

for some η. By taking a subsequence, we may assume γ̃v
k
(x, t) → γ̃v(x, t) a.e.

(x, t) ∈ ΓC × (0, T ), since γvk → γv in L2(0, T ; (L2(Γc))
N ). Here, “ ∼ ” means a

product measurable representative. Since γ̃v
k
is bounded in (Lq((0, T )× ΓC))N , the

Fatou lemma guarantees that γ̃v is also bounded in Lq((0, T ) × ΓC). Thus, the se-
quence {|γ̃vk− γ̃v|p} is uniformly integrable, so it follows from the Vitali convergence
theorem that

lim
k→∞

∫
(0,T )×ΓC

|γ̃vk − γ̃v|p dΓdt = 0.

This contradicts the assumption that ||γvk − γv||Lp(0,T ;(Lp(ΓC))N ) ≥ η > 0 and thus
proves the lemma.

Lemma 4.4. If yk ⇀ y in X, then

p(ukn − w − g)→ p(un − w − g) in Lp′(0, T ;Lp′(ΓC))(4.10)

and

µ
(|vkT − v∗|)→ µ (|vT − v∗|) in Lp (0, T ;Lp (ΓC)) .(4.11)

Proof. To simplify the notation we let F = p(un−w−g), F k = p(ukn−w−g), µ =
µ(|vT − v∗|), and µk = µ(|vkT − v∗|). Now it follows from (3.13) that∣∣F k − F

∣∣ ≤ K
(
1 +

∣∣ukn∣∣p−2
+ |un|p−2

) ∣∣ukn − un
∣∣ .



12 KENNETH L. KUTTLER AND MEIR SHILLOR

We will show that |ukn|p−2|ukn−un| → 0 in Lp′(0, T ;Lp′(ΓC)) and observe that simpler
arguments apply to the other two terms. We have

∫ T

0

∫
ΓC

∣∣ukn∣∣(p−2)p′ ∣∣ukn − un
∣∣p′ dΓdt

≤
(∫ T

0

∫
ΓC

∣∣ukn − un
∣∣p dΓdt)p′/p(∫ T

0

∫
ΓC

∣∣ukn∣∣p dΓdt

)(p−p′)/p

≤ c

(∫ T

0

∫
ΓC

∣∣ukn − un
∣∣p dΓdt)p′/p

,

which converges to zero by Lemma 4.3. Moreover,

∫ T

0

∫
ΓC

|µk − µ|p dΓdt ≤ C Lippµ

∫ T

0

∫
ΓC

∣∣γvk − γv
∣∣p dΓdt,

which also converges to zero by Lemma 4.3. The other terms behave similarly.

Lemma 4.5. Let yk ⇀ y in X and zk ⇀ z in L∞(0, T ;L∞(ΓC)N ). If w ∈
Lp(0, T ;Lp(ΓC)

N ), then

∫ T

0

∫
ΓC

F kµk zk ·wT dΓdt→
∫ T

0

∫
ΓC

Fµ z ·wT dΓdt.(4.12)

Proof. We argue by contradiction. If (4.12) does not hold, then there exist two
sequences yk ⇀ y inX and zk ⇀ z in L∞(0, T ;L∞(ΓC)N ) andw ∈Lp(0, T ;Lp(ΓC)

N )
such that ∣∣∣∣∣

∫ T

0

∫
ΓC

F kµk zk ·wT dΓdt−
∫ T

0

∫
ΓC

Fµ z ·wT dΓdt

∣∣∣∣∣ ≥ 2ε̂.
Since L∞(0, T ;L∞(ΓC)N ) is dense in Lp(0, T ;Lp(ΓC)

N ), we find that, for w ∈
L∞(0, T ;L∞(ΓC)N ),∣∣∣∣∣

∫ T

0

∫
ΓC

F kµk zk ·wT dΓdt−
∫ T

0

∫
ΓC

Fµ z ·wT dΓdt

∣∣∣∣∣ ≥ ε̂.(4.13)

However, by Lemma 4.4, µ(|vkT − v∗|)p(ukn −w− g) → µ(|vT − v∗|)p(un −w− g) in
L1(0, T ;L1(ΓC)). Therefore, (4.13) cannot hold for all k, which proves the lemma.

Lemma 4.6. Qλ is a bounded pseudomonotone operator.

Proof. We have already observed that Qλ is bounded, and it is straightforward
to show that Qλ(y) is convex. Suppose that Qλ(y) ⊆ U, where U is a weakly open
set in X ′, that y∗k ∈ Qλ (y) \ U, and that yk ⇀ y in X, where y∗k ∈ Qλ

(
yk
)
. Let

Uλ ≡ eλ(·)U ; then Uλ is weakly open in X ′ containing Q(v), vk ⇀ v in X, and v∗k ≡
eλ(·)y∗k ∈ Q(vk) \ Uλ. Next, let {zk} be a sequence in L∞(0, T ;L∞(ΓC)N ) as in the
definition of Q such that, possibly for a subsequence, zk ⇀ z in L∞(0, T ;L∞(ΓC)N ).
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From Lemma 4.3,∫ T

0

∫
ΓC

z ·wT dΓdt = lim
k→∞

∫ T

0

∫
ΓC

zk·wT dΓdt

≤ lim
k→∞

∫ T

0

∫
ΓC

(| vkT − v∗ +wT | − |vkT − v∗|
)
dΓdt

≤
∫ T

0

∫
ΓC

(|vT − v∗ +wT | − |vT − v∗|) dΓ dt.

Now, using the notation pk
R
= p

R
(ukn − w − g) and p

R
= p

R
(un − w − g), we have

〈v∗k,w〉 ≡
∫ T

0

∫
ΓC

µ
(∣∣vkT − v∗∣∣) pkR zk·wT dΓdt,

and so from Lemma 4.5 we know that v∗k ⇀ v∗, where

〈v∗,w〉 ≡
∫ T

0

∫
ΓC

µ (|vT − v∗|) pR
z ·wT dΓdt.(4.14)

Thus, v∗ ∈ Q (v) ⊆ Uλ by the definition of Q. This contradicts the assumption
that v∗k /∈ Uλ for all k, and hence Q(vk) ⊆ Uλ for all large k. This argument also
shows that Qλ(y) is closed. It remains to verify conditions (2.1) and (2.2).

To that end let yk ⇀ y and y∗k ∈ Qλ(y
k). We show that if w ∈ X, then

lim inf
k→∞

〈y∗k,yk −w〉 ≥ 〈y∗ (w) ,y −w〉, y∗ (w) ∈ Qλ (y) .

We choose a subsequence yk (depending on w) such that

lim
k→∞

〈y∗k,yk −w〉 = lim inf
k→∞

〈y∗k,yk −w〉.

For v∗k = eλ(·)y∗k ∈ Q
(
vk
)
we let zk ∈ L∞(0, T ;L∞(ΓC)N ) be as in the definition ofQ.

We take a further subsequence, if necessary, such that zk ⇀ z in L∞(0, T ;L∞(ΓC)N ).
Then z satisfies (4.6) by Lemma 4.3. It follows from Lemma 4.5 that if we define
y∗(w) by

〈y∗ (w) ,b〉 =
∫ T

0

∫
ΓC

e−λtp
R
(un − w − g)µ (|vT − v∗|) z · bT dΓdt,

then

lim inf
k→∞

〈y∗k,yk −w〉 = lim
k →∞

〈y∗k,yk −w〉

= lim
k→∞

∫ T

0

∫
ΓC

e−λtµk pk
R
zk· (ykT −wT

)
dΓdt

=

∫ T

0

∫
ΓC

e−λtµ p
R
z· (yT −wT ) dΓdt = 〈y∗ (w) ,y −w〉.

This proves the lemma.
Lemma 4.7. If vk ⇀ v in X, then P (uk, w)→ P (u, w) in V ′q.
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Proof. Let w ∈ Vq. Then we have from the definition of P and (3.13) that∣∣〈P (uk, w)− P (u, w),w
〉∣∣

≤ K

∫ T

0

∫
ΓC

(1 + |ukn|p−2 + |un|p−2)|ukn − un||wn| dΓdt

≤ K

∫ T

0

(∫
ΓC

(1 + |ukn|p + |un|p) dΓ
) p−2

p
(∫

ΓC

|ukn − un|p dΓ
) 1

p

×
(∫

ΓC

|wn|pdΓ
) 1

p

dt

≤ K||ukn − un||Lp(0,T ;(Lp(ΓC ))N )
|| w||Vq .

Thus, ||P (uk, w)−P (u, w)||V′
q
≤ K||γuk−γu||Lp(0,T ;(Lp(ΓC))N ), and the result follows

from Lemma 4.3.
Now for each λ ≥ 0 the map y→ e−λ(·)Au is monotone; in fact,〈

e−λ(·)A(u1 − u2),y1 − y2

〉
=
1

2

∫ T

0

e−2λt d

dt
〈A(u1 − u2),u1 − u2〉 dt(4.15)

=
1

2
e−2λT 〈A(u1(T )− u2(T )),u1(T )− u2(T )〉

+ λ

∫ T

0

〈A(u1 − u2),u1 − u2〉 e−2λtdt.

Also, the map y → εe−λ(·)J(eλ(·)y) is monotone. Next, yk ⇀ y in X if and only
if vk ⇀ v in X, and Lemma 4.7 implies that the operator y → e−λ(·)P (u, w) is
completely continuous; and if we let

Aλy = λy +My + e−λ(·)A(u) + εe−λ(·)J(eλ(·)y)
+ e−λ(·)Q(eλ(·)y) + e−λ(·)P (u, w),(4.16)

then Aλ is a sum of bounded pseudomonotone operators. Consequently, Aλ : X →
P (X ′) is pseudomonotone [22], verifying condition (2.15) for Aλ. We now check the
coercivity of Aλ (2.14). To this end, we consider the various terms of 〈Aλy,y〉. Let
y∗ ∈ Qλ(y), which implies that y

∗ ∈ e−λ(·)Q(eλ(·)v) and so y∗ = e−λ(·)v∗, where
v∗ ∈ Q

(
eλ(·)v

)
. Therefore,

〈y∗,y〉 = 〈e−λ(·)v∗, eλ(·)v〉 = 〈v∗,v〉 =
∫ T

0

∫
ΓC

µp
R
z · vT dΓdt,

where p
R
= p

R
(un − w − g) and z ∈L∞(0, T ;L∞(ΓC)N ) satisfies∫ T

0

∫
ΓC

z ·wT dΓdt ≤
∫ T

0

∫
ΓC

(
|eλ(·)vT − v∗ +wT | − |eλ(·)vT − v∗|

)
dΓdt,(4.17)

and u(t) = u0 +
∫ t
0
eλsv(s) ds. Thus,

〈y∗,y〉 =
∫ T

0

∫
ΓC

e−λtµp
R
z· (eλtvT − v∗) dΓdt

+

∫ T

0

∫
ΓC

e−λtµp
R
z · v∗ dΓdt.(4.18)
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Now the first integral is nonnegative by a routine argument involving (4.17), and since
v∗ ∈ L∞(0, T ;Lp(ΓC)

N ) we have that the second integral is bounded below by

−c− c

∫ T

0

(∫
ΓC

(un − w − g)
p
+ dΓ

)1/p

dt

≥ −cη − η

∫ T

0

∫ t

0

|vn (s)− wt (s)|pLp(ΓC) dsdt(4.19)

for η > 0. Next, we examine the term
〈
e−λ(·)P (u, w),y

〉
. Let h(r,x) =

∫ r
g(x)

p(s −
g(x)) ds and define H : L2(ΓC)→ [0,∞) by

H(u) =

∫
ΓC

h(u,x) dΓ.(4.20)

Then

d

dt
H(un − w) = 〈DH(un − w), vn − w′〉

=

∫
ΓC

p(un − w − g) (vn − w′) dΓ = 〈P (u, w),v〉 −
∫

ΓC

p(un − w − g)w′ dΓ.(4.21)

Therefore, 〈
e−λ(·)P (u, w),y

〉
=

∫ T

0

e−2λt 〈P (u, w),v〉 dt

=

∫ T

0

e−2λt d

dt
H(un − w) dt+

∫ T

0

∫
ΓC

p(un − w − g)w′ dΓ(4.22)

≥ H(un (T )− w (T ))e−2λT −H(u0εn) + 2λ

∫ T

0

H(u)e−2λt dt,

due to the assumptions that w′ ≥ 0 and p(·) ≥ 0. Similarly,〈
e−λ(·)Au,y

〉
=
1

2
〈Au(T ),u(T )〉 e−2λT

− 1

2
〈Au0ε,u0ε〉+ λ

∫ T

0

〈Au,u〉 e−2λt dt.(4.23)

It follows from (4.19), (4.22), and (4.23) that

〈Aλy,y〉 ≥ δ2||y||2L2(0,T ;W ) + εe−2λT ||γy||q
Lq(0,T ;(Lq(ΓC))N )

− cη − η

∫ T

0

∫ t

0

|vn (s)− w′(s)|pLp(ΓC) dsdt−H(u0εn).

We conclude that Aλ is coercive when η is sufficiently small and by Lemma 4.2
that Aλ : Vq → V ′q is bounded. All the assumptions of Theorem 2.6 are satisfied now,
and the proof of Theorem 4.1 is complete.

We use this result in the following section. However, we note that the theorem
has merit of its own.
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5. Existence and uniqueness. We obtain a solution for problem P, when w
is a known function, by deriving estimates on the solutions of P (ε) and passing to
the limit ε→ 0, thus proving Theorem 3.1. We are still assuming that µ is Lipschitz
continuous.

The proof of Theorem 3.1 is accomplished in a number of steps. We denote by c
a generic positive constant which is independent of ε. Multiplying both sides of (4.2)
by vχ[0,t] and using the above formulas along with the assumption that w

′ ≥ 0, and
performing routine manipulations, we obtain the following estimates for v∗ ∈ Qv:

1

2
|v(t)|2H −

1

2
|v0|2H + δ2

∫ t

0

||v||2W ds+
1

2
〈Au(t),u(t)〉

+ ε

∫ t

0

∫
ΓC

|γv|q dΓds+ 〈v∗,vχ[0,t]〉+H(un (t)− w (t))−H(u0εn)

≤
∫ t

0

〈f(s),v(s)〉 ds+ 1

2
〈Au0ε,u0ε〉.(5.1)

Now, when λ = 0 in (4.18), we obtain

〈v∗,vχ[0,t]〉 ≥ −c− c

∫ t

0

∫
ΓC

(un − w − g)p+ dΓ,

thus

1

2
|v(t)|2H + δ2

∫ t

0

||v||2W ds+
1

2
〈Au(t),u(t)〉+ ε

∫ t

0

∫
ΓC

|γv|q dΓds

+

∫
ΓC

h(un (t,x)− w (t,x) ,x) dΓ ≤ c+
1

2
| v0|2H +

1

2
〈Au0ε,u0ε〉+H(u0εn)

+
1

2δ2

∫ t

0

||f(s)||2W ′ ds+
δ2

2

∫ t

0

||v(s)||2W ds+ c

∫ t

0

∫
ΓC

(un − w − g)p+ dΓds.(5.2)

The assumptions on p(·) given in (3.13) imply that if r ≥ g(x), then

h(r,x) ≥
∫ r

g(x)

(δ2(s− g)p−1
+ − c) ds =

δ2

p
(r − g (x))p+ − c(r − g(x))+.(5.3)

Now, since p(r) = 0 for r ≤ 0, (5.3) holds also when r < g(x). Then (5.2) yields

|v(t)|2H + δ2

∫ t

0

||v||2W ds+ 〈Au(t),u(t)〉+ 2ε
∫ t

0

∫
ΓC

|γv|q dΓds

+
2δ2

p

∫
ΓC

(un(t)− w (t)− g)p+dΓ− 2c
∫

ΓC

(un(t)− w (t)− g)+ dΓ

≤ c+ |v0|2 + 〈Au0ε,u0ε〉+ 2H(u0εn) +
1

δ2

∫ t

0

||f(s)||2W ′ ds

+ c

∫ t

0

∫
ΓC

(un − w − g)p+ dΓds.(5.4)
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Applying the Hölder inequality to the sixth term on the right-hand side we obtain

|v(t)|2H + δ2

∫ t

0

||v||2W ds+ 〈Au(t),u(t)〉+ 2ε
∫ t

0

∫
ΓC

|γv|q dΓds

+
δ2

p

∫
ΓC

(un(t)− w − g)p+ dΓ ≤ c+ |v0|2 + 〈Au0ε,u0ε〉+ 2H(u0ε)

+
1

δ2

∫ t

0

||f(s)||2W ′ ds+ c

∫ t

0

∫
ΓC

(un − w − g)p+ dΓds.(5.5)

Now using the Gronwall inequality yields

|v(t)|2H +
∫ t

0

||v||2W ds+ 〈Au(t),u(t)〉+ ε

∫ t

0

∫
ΓC

|γv|q dΓds

+

∫
ΓC

(un(t)− w − g)p+ dΓ ≤ c,(5.6)

where c does not depend on ε, q (for q > p) or w. If w ∈ Vq, then (5.6) and the
definition of J imply

|〈εJv,w〉| ≤ ε〈Jv,v〉(1/q′)〈Jw,w〉(1/q)
≤ (ε〈Jv,v〉)(1/q′)ε(1/q)||w||Vq ≤ cε(1/q)||w||Vq .(5.7)

Thus, when vε is a solution of problem P(ε) we have

εJvε → 0 in V ′q.(5.8)

From (5.6) and the growth conditions for p(·) we find that Q(vε, w) and P (uε, w)
are bounded in V ′p ⊆ V ′q. Using Theorems 2.2 and 2.3 we find that there exists a
subsequence, still denoted by ε→ 0, such that

vε → v weakly in L2(0, T ;W ),(5.9)

v′ε → v′ in V ′q,(5.10)

uε → u in C(0, T ;U),(5.11)

vε → v in L2(0, T ;U),(5.12)

Mvε →Mv weakly in L2(0, T ;W ′),(5.13)

Auε → Au weakly in L2(0, T ;W ′).(5.14)

Here U denotes a space containing W with compact identity map and such that the
trace map γ : U → L2 (ΓC)

N
is continuous. Letting zε be as in (4.5) and (4.6), (5.11)

and (5.12) imply that, for a subsequence,

γ̃uε(x, t)→ γ̃u(x, t) a.e. in ΓC × (0, T ),(5.15)

γ̃vε(x, t)→ γ̃v(x, t) a.e. in ΓC × (0, T ),(5.16)

µ (|vεT − v∗|) pR
(uεn − w − g) zε ⇀ ξ

weakly in Lp′(0, T ;Lp′(ΓC)
N ).(5.17)

Lemma 5.1. P (uε, w)→ P (u, w) in V ′q and P (uε, w)⇀ P (u, w) weakly in V ′p.
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Proof. Let w ∈ Vq; then, by (3.13),

|〈P (uε, w) − P (u, w),w〉| ≤
∫ T

0

∫
ΓC

K(1 + (uεn − w − g)p−2
+ + (un − w − g)p−2

+ )

× |(uεn − w − g)+ − (un − w − g)+| |wn| dΓdt

≤ c

∫ T

0

(∫
ΓC

(1 + (uεn − w − g)p+ + (un − w − g)p+) dΓ

) p−2
p

×
(∫

ΓC

|(uεn − w − g)+ − (un − w − g)+|r dΓ
) 1

r

·
(∫

ΓC

|wn|qdΓ
) 1

q

dt,

where r = pq(2q − p)−1. It follows from (5.6) that

| 〈P (uε, w)− P (u, w) ,w〉 |

≤ c

(∫ T

0

∫
ΓC

|(uεn − w − g)+ − (un − w − g)+|r dΓdt
) 1

r

||w||Vq .(5.18)

Now note that r < p and so estimate (5.6) implies the functions |(uε−w−g)+−(un−
w − g)+|r are uniformly integrable. Then (5.15) and the Vitali convergence theorem
imply

lim
ε→0

∫ T

0

∫
ΓC

|(uεn − w − g)+ − (un − w − g)+|rdΓdt = 0.

Now

‖P (uε, w)− P (u, w) ‖V′
q

≤ c

(∫ T

0

∫
ΓC

|(uεn − w − g)+ − (un − w − g)+|r dΓ dt

) 1
r

,

and hence P (uε, w)→ P (u, w) in V ′q.
To obtain the other assertion, we note that P (uε, w) is bounded in V ′p, and

therefore it has a convergent subsequence such that P (uε, w) ⇀ ? weakly in V ′p.
However, Vq is dense in Vp and so ? = P (u, w) . Since this holds for every weakly
convergent subsequence, it follows that P (uε, w)⇀ P (u, w).

Lemma 5.2. For each w ∈Vp,

〈γ∗T ξ,w〉 ≤
∫ T

0

∫
ΓC

µp
R
(|vT − v∗ + wT | − |vT − v∗|) dΓ dt,(5.19)

where µ(|vT − v∗|) and p
R
= p

R
(un − w − g).

Proof. To simplify the notation we let F = p
R
(un−w−g), Fε = p

R
(uεn−w−g),

µ = µ(|vT −v∗|), and µε = µ(|vεT −v∗|). First suppose that w ∈ Vq. It follows from
the assumptions on zε that zε ·wT ≤ (|vεT − v∗ +wT | − |vεT − v∗|) for a.e. t and
a.e. x. Therefore,

〈γ∗T ξ,w〉 = lim
ε→0

∫ T

0

∫
ΓC

Fεµεzε ·wT dΓdt

≤ lim inf
ε→0

∫ T

0

∫
ΓC

Fεµε (|vεT − v∗ +wT | − |vεT − v∗|) dΓdt.(5.20)
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Now the integrand converges pointwise to Fµ (|vT − v∗ +wT | − |vT − v∗|) and is
bounded in absolute value by c(1+(uεn−w−g)p−1

+ )|wT |. These functions are bounded
in Lr((0, T )×ΓC), independently of ε, where r ≡ pq/(pq+p−q). Indeed, (p−1)rq/(q−
r) = p, and thus

(uεn − w − g)
(p−1)r
+ |wT |r ≤ (uεn − w − g)

(p−1)rq
q−r

+ + |wT |q
= (uεn − w − g)

p
+ + |wT |q ,

which is bounded in L1, independent of ε. Therefore, using the Vitali convergence
theorem in (5.20), we may pass to the limit and obtain (5.19) for all w ∈Vq, and since
Vq is dense in Vp this inequality holds for all w ∈Vp. This proves the lemma.

Next, from (4.2), (5.13), (5.14), (5.9), and Lemma 5.1 we obtain

v′ +Mv+Au+γ∗T ξ + P (u,w) = f in V ′q.
Since γ∗T ξ, Au, Mv and f are all in V ′p, so is v′. This proves the existence part of the
theorem.

Proof of uniqueness. Suppose v1 and v2 are two solutions of P. Let, for i =
1, 2, ui(t) = u0 +

∫ t
0
vi(s) ds. It follows that

1

2
|v1(t)− v2(t)|2H +

∫ t

0

〈Mv1 −Mv2,v1 − v2〉 ds

+

∫ t

0

〈A(u1 − u2),v1 − v2〉 ds+
∫ t

0

〈γ∗T ξ1 − γ∗T ξ2,v1 − v2〉 ds

+

∫ t

0

〈P (u1, w)− P (u2, w) ,v1 − v2〉 ds = 0.(5.21)

Thus, if we denote by c a positive generic constant, we have

1

2
|v1(t)− v2(t)|2H +

1

2
〈A(u1(t)− u2(t)),u1(t)− u2(t)〉

+

∫ t

0

〈P (u1, w)− P (u2, w) ,v1 − v2〉 ds+ δ2

∫ t

0

||v1 − v2||2W ds

+

∫ t

0

〈γ∗T ξ1 − γ∗T ξ2,v1 − v2〉 ds ≤ c

∫ t

0

|v1(s)− v2(s)|2H ds.(5.22)

Let F i = p
R
(uin−w− g), µi = µ(|viT −v∗|), for i = 1, 2; then using condition (5.20)

we observe ∫ t

0

〈γ∗T ξ1 − γ∗T ξ2,v1 − v2〉 ds

≥
∫ t

0

∫
ΓC

(F 1µ1 − F 2µ2) (|v1T − v∗| − |v2T − v∗|) dΓds.

Consequently, the last term on the left-hand side in (5.22) dominates

−c
∫ t

0

∫
ΓC

F 2 |v1T − v2T |2 dΓds− c

∫ t

0

∫
ΓC

|F 1 − F 2| |v1T − v2T | dΓds.(5.23)
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The third term in (5.22) is greater than or equal to

−
∫ t

0

∫
ΓC

|p(u1n − w − g)− p(u2n − w − g)| |v1n − v2n| dΓds.(5.24)

From the assumptions on p(·) and from (5.22) we obtain

|v1(t)− v2(t)|2H + 〈A(u1(t)− u2(t)),u1(t)− u2(t)〉+ δ2

∫ t

0

||v1 − v2||2W ds

≤ c

∫ t

0

∫
ΓC

(1 + |(u1n − w − g)+|2 + |(u2n − w − g)+|2)
× |u1n − u2n| |v1n − v2n| dΓds

+ c

∫ t

0

|v1(s)− v2(s)|2H ds+ c

∫ t

0

∫
ΓC

|v1T − v2T |2 dΓds.

Since (un − w − g)+ ∈ L∞(0, T ;Lp(ΓC)), we obtain, with another c which depends
on u1 and u2,

|v1(t)− v2(t)|2H + δ2

∫ t

0

||v1 − v2||2W ds ≤ c

∫ t

0

||v1 − v2||2U dt

+ c

∫ t

0

(∫
ΓC

|u1n − u2n|4dΓ
) 1

4
(∫

ΓC

|v1n − v2n|4dΓ
) 1

4

ds

+ c

∫ t

0

|v1(s)− v2(s)|2H ds

≤ c

∫ t

0

||u1 − u2||W ||v1 − v2||W ds+ c

∫ t

0

|v1(s)− v2(s)|2H ds

+K

∫ t

0

||v1 − v2||2U dt,

where we used the fact that the trace map W → L4(∂Ω) is continuous. It follows
from the compactness of the embedding U →W that

|v1(t)− v2(t)|2H +
δ2

2

∫ t

0

||v1 − v2||2W ds

≤ cδT

∫ t

0

∫ s

0

||v1 − v2||2W drds+Kε

∫ t

0

|v1(s)− v2(s)|2H ds

+ ε

∫ t

0

||v1 − v2||2W dt.

Choosing ε = δ2

4 and adjusting the constants yields

|v1(t)− v2(t)|2H +
δ2

4

∫ t

0

||v1 − v2||2W ds

≤ cδT

∫ t

0

(∫ s

0

||v1 − v2||2W dr + |v1(s)− v2(s)|2H
)

ds.

By the Gronwall inequality we obtain v1 = v2. This concludes the proof of Theorem
3.1 in the case that p satisfies (3.13).



DYNAMIC FRICTIONAL CONTACT 21

In the case when p(·) satisfies (3.12) the proof is much easier, not requiring the
consideration of the approximate problems where εJ was added in.

Theorem 5.3. Let p ≥ 2 and let w ∈ Lp (0, T ;Lp (ΓC)), w′ ∈ Lp(0, T ;Lp(ΓC)),
w′ ≥ 0, u0 ∈ Vp ,v0 ∈ H, f ∈ V ′p and assume µ∗ (r) = µc (r) , where µc is bounded

and Lipschitz. Then there exists ξ ∈ Lp′(0, T ;Lp′(ΓC)
N ) and v ∈ L2(0, T ;W ) such

that

(un − w − g)+ ∈ L∞(0, T ;Lp(ΓC)),(5.25)

v′ +Mv +Au+ P (u, w) + γ∗T ξ = f in V ′p,(5.26)

v(0) = v0 , u(t) = u0 +

∫ t

0

v(s) ds,(5.27)

and

〈γ∗T ξ,w〉 ≤
∫ T

0

∫
ΓC

µp
R
(|vT − v∗ +wT | − |vT − v∗|) dΓ dt,(5.28)

where µ = µ(|vT − v∗|) and p
R
= p

R
(un − w − g).

Moreover, if the function p(·) satisfies (3.12), the solution {u,v} is unique.
We note that (3.28) and the fact that v1 = v2 imply γ∗T ξ1 = γ∗T ξ2; however, we

do not know if ξ1 = ξ2.

6. Discontinuous friction coefficient. In this section we consider the case
when the coefficient of friction is a discontinuous function of the slip speed and es-
tablish Theorem 3.2. This is the case often described in elementary courses where it
is stated that the coefficient of sliding friction is smaller than the coefficient of static
friction. Therefore, we assume that the function µ has a jump discontinuity at zero,
becoming smaller when slip takes place, and is represented by the friction graph µ∗

(3.5).
To investigate this case when p satisfies (3.13), we regularize the graph µ∗ by

defining µc (r) = µd for all r ≤ 0 and

µε (r) = µc (r)− h′ε (r) + η,

where 2η = µs − µd and hε(r) ≡ (η2r2 + ε)1/2, for 0 < ε small. Thus, η is half the
size of the jump at 0 between µd and µs. From this definition, it follows that

lim
ε→0

µε (r) =


µc (r) if r > 0,
µc (r) + 2η = µs if r < 0,
µd + η if r = 0

which is a function whose graph has a jump of height 2η = µs − µd at r = 0.
Let vε be the solution of the approximate problem (4.2)–(4.6) in which µ is

replaced with µε. Then, estimate (5.6) holds for vε and, consequently, there exists a
subsequence such that (5.9)–(5.17) hold. Passing to a further subsequence if necessary,
we may assume there exists ψ ∈ L∞ (0, T ;L∞ (ΓC)) such that

h′ε (|vεT − v∗|)→ ψ weak ∗ in L∞ (0, T ;L∞ (ΓC)) .

We note that Lemma 5.1 still holds. As above, we let F = p
R
(un − w − g) and
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Fε = p
R
(uεn − w − g). Let w ∈ Vq,

〈γ∗T ξ,w〉 = lim
ε→0

∫ T

0

∫
ΓC

Fεµεzε ·wT dΓdt

≤ lim inf
ε→0

∫ T

0

∫
ΓC

Fεµε (|vεT − v∗ +wT | − |vεT − v∗|) dΓdt

= lim inf
ε→0

[∫ T

0

∫
ΓC

Fε (µc (|vεT − v∗|)− ψ + η)

× (|vεT − v∗ +wT | − |vεT − v∗|) dΓdt

+

∫ T

0

∫
ΓC

Fε (ψ − h′ε (|vεT − v∗|))

× (|vεT − v∗ +wT | − |vεT − v∗|) dΓdt
]
.

As in the proof of Lemma 5.2, the first integral on the right-hand side converges to∫ T

0

∫
ΓC

(µc (|vT − v∗|)− ψ + η) p
R
(|vT − v∗ +wT | − |vT − v∗|) dΓdt,

where p
R
= p

R
(un − w − g). We need to show that the second integral converges to

zero. This follows from the observation that, since p
R
is bounded,

|p
R
(uεn − w − g)(|vεT − v∗ +wT | − | vεT − v∗|)|

is bounded in L2((0, T ) × ΓC), independently of ε, and converges pointwise to
|F (|vT − v∗ +wT | − |vT − v∗|)|, which lies in L2((0, T )×ΓC). Thus, the sequence is
uniformly integrable, and by the Vitali convergence theorem it converges strongly in
L1((0, T )× ΓC). Since ψ− h′ε(|vεT − v∗|) converges weak∗ in L∞ to zero, the second
integral converges to zero as desired. Next, we consider ψ.

First, note that, from the convexity of hε,

h′ε (|vεT − v∗|) z ≤ hε (|vεT − v∗|+ z)− hε (|vεT − v∗|) ,

thus for arbitrary z ∈ L1
(
0, T ;L1 (ΓC)

)
∫ T

0

∫
ΓC

ψzdΓdt ≤
∫ T

0

∫
ΓC

|η (|vT − v∗|+ z)| − |η(|vT − v∗|)| dΓdt

which implies that, for a.e. t,

ψz ≤ |η (|vT − v∗|+ z)| − |η(|vT − v∗|)|

for a.e. x. Letting θ (r) ≡ |ηr|, it follows that, for a.e. x, t,

ψ (t,x) ∈ ∂θ (|vT − v∗| (t,x)) .

Therefore, for a.e. t,x,

ψ (t,x) ∈ [−η, η] .
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More particularly, if |vT − v∗| > 0, ψ = η, while if |vT − v∗| = 0, the above holds.
Therefore, the pair

(|vT − v∗| , µc (|vT − v∗|)− ψ + η)

is an element of the graph of µ∗, a.e. The proof of Theorem 3.2 is now complete in
the case where p (·) satisfies (3.13). Theorem 3.2 holds in the case where p (·) satisfies
(3.12) from arguments similar to the above but without the necessity of dealing with
the limit as ε → 0 in the solutions of the approximate problems in which εJvε was
added.

The uniqueness of the solution remains an open question.

7. Dependence on w. In this section we investigate the dependence of the
solution of (3.27)–(3.30) on w in the situation of (3.12) and µ∗ = µ = µc. Therefore,
in this section we do not need to employ the truncation p

R
. We need to identify the

dependence of γ∗T ξ on w and for this reason we write γ∗T ξw and rewrite (3.27)–(3.29)
as follows:

v′ +Mv +Au+ γ∗T ξw + P (u, w) = f in V ′2,(7.1)

v (0) = v0, u (t) = u0 +

∫ t

0

v (s) ds,(7.2)

and

〈γ∗T ξw,w〉 ≤
∫ T

0

∫
ΓC

µp (|vT − v∗ +wT | − |vT − v∗|) dΓdt,(7.3)

where µ = µ(|vT − v∗|) and p = p(un − w − g).
Now let wi, for i = 1, 2, be two wear functions as above and let vi denote

the corresponding solutions of problem (7.1)–(7.3). We need the following estimates.
From (7.3) we obtain∫ t

0

〈γ∗T ξw1 − γ∗T ξw2
,v1 − v2〉 ds

≥ −
∫ t

0

∫
ΓC

F 1µ1
(∣∣v2

T − v∗
∣∣− ∣∣v1

T − v∗
∣∣) dΓ ds

−
∫ t

0

∫
ΓC

F 2µ2
(∣∣v1

T − v∗
∣∣− ∣∣v2

T − v∗
∣∣) dΓ ds

=

∫ t

0

∫
ΓC

(
F 2µ2 − F 1µ1

) (|v2
T − v∗| − |v1

T − v∗|
)
dΓ ds,

where F i = p(uin − wi − g) and µi = µ(|viT − v∗|), for i = 1, 2. Let c be a positive
constant which depends on Lipµ, Lipp, p(·), and the bounds on µ and p(·); then∫ t

0

〈γ∗T ξw1 − γ∗T ξw2 ,v
1 − v2〉ds ≥ −c

∫ t

0

∫
ΓC

∣∣v1
T − v2

T

∣∣2 dΓds

− c

∫ t

0

∫
ΓC

∣∣v2
T − v1

T

∣∣ |w1 − w2| dΓd− c

∫ t

0

∫
ΓC

∣∣v1
T − v2

T

∣∣ ∣∣u1
n − u2

n

∣∣ dΓds.(7.4)
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Next, we consider the term
∫ t
0
〈P (u1, w1

)− P
(
u2, w2

)
,v1 − v2〉 ds. From (3.11) and

(3.20), the definition of P (u, w), we obtain that this expression is no smaller than

−
∫ t

0

∫
ΓC

(
p
(
u1
n − w1 − g

)− p
(
u2
n − w2 − g

)) (
v1
n − v2

n

)
dΓds

≥ −c
∫ t

0

∫
ΓC

(∣∣u1
n − u2

n

∣∣+ |w1 − w2|
) ∣∣v1

n − v2
n

∣∣ dΓds.(7.5)

Now let U be a space in which V2 embeds compactly and for which the trace map
from U to L2 (∂Ω) is continuous. Then, after adjusting the constant c and denoting
by HC the Hilbert space L2 (ΓC), we obtain from (7.4) and (7.5)∫ t

0

〈γ∗T ξw1 − γ∗T ξw2 ,v
1 − v2〉 ds+

∫ t

0

〈P (u1, w1

)− P
(
u2, w2

)
,v1 − v2〉 ds

≥ −c
∫ t

0

∣∣∣∣v1 − v2
∣∣∣∣2
U
ds− c

∫ t

0

|w1 − w2|2HC
ds.(7.6)

It follows from (7.6) and (7.1) that∣∣v1 (t)− v2 (t)
∣∣2
H
+ δ2

∫ t

0

∣∣∣∣v1 (s)− v2 (s)
∣∣∣∣2
V2

ds

+
1

2
〈A (u1 (t)− u2 (t)

)
,u1 (t)− u2 (t)〉

≤ c

∫ t

0

∣∣∣∣v1 − v2
∣∣∣∣2
U

ds+ c

∫ t

0

|w1 − w2|2HC
ds

+ δ2

∫ t

0

∣∣v1 (s)− v2 (s)
∣∣2
H

ds.

By the compactness of the embedding V2 → U we have ||z||2U ≤ δ2

2 ||z||2V2
+ cδ |z|2H ;

hence, ∣∣v1 (t)− v2 (t)
∣∣2
H
+

δ2

2

∫ t

0

∣∣∣∣v1 (s)− v2 (s)
∣∣∣∣2
V2

ds

≤ cδ

∫ t

0

∣∣v1 (s)− v2 (s)
∣∣2
H

ds+ c

∫ t

0

|w1 − w2|2HC
ds.

It follows from the Gronwall inequality that∣∣v1 (t)− v2 (t)
∣∣2
H
+

∫ t

0

∣∣∣∣v1 (s)− v2 (s)
∣∣∣∣2
V2

ds

≤ c (δ, T )

∫ t

0

|w1 − w2|2HC
ds,(7.7)

where the constant c depends on the indicated quantities and the bounds and Lipschitz
constants of p and µ but not on the choice of wi. We conclude with the following
theorem.

Theorem 7.1. The solutions v of problem (3.27)–(3.30) depend continuously on
w.
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8. Archard law. We now consider Theorem 3.3. We use a fixed point argument
to prove Theorem 3.3, which guarantees the existence and uniqueness of the weak so-
lution. Since p (·) is assumed to be bounded, we do not need to employ the truncation
pR.

The Archard law of wear, in its differential form (3.9), may be written as

w′ = Ψ(vT ) p (un − w − g) ,

where Ψ(vT ) ≡ kwµ(|vT − v∗|)sc(|vT − v∗|). It follows from our assumptions that Ψ
is bounded, nonnegative, and Lipschitz continuous. Let vi ∈ V2 and wi, for i = 1, 2,
be the solutions of the problem

wi, w
′
i ∈ L2 (0, T ;HC) ,(8.1)

w′i = Ψ
(
viT
)
p
(
uin − wi − g

)
,(8.2)

wi (·, 0) = 0.(8.3)

Since the function Ψ is bounded, we actually have

w,w′ ∈ L∞ (0, T ;L∞ (ΓC)) ,

and so these functions may be considered as known wear functions in the preceding
theory. Thus,

1

2
|w1 (t)− w2 (t)|2HC

≤ c(Ψ, R)

∫ t

0

(|u1
n − u2

n|HC
+ |w1 − w2|HC

)
(|w1 − w2|HC

) ds

+ c( LipΨ, R, p)

∫ t

0

∣∣v1
T − v2

T

∣∣
HN

C

|w1 − w2|HC
ds,

where HC = L2(ΓC). It follows that

|w1 (t)− w2 (t)|2HC

≤ c(Ψ, R, p, LipΨ, T )

(∫ t

0

|w1 − w2|2HC
ds+

∫ t

0

∣∣∣∣v2 − v1
∣∣∣∣2
U

ds

)
,

where U is an intermediate space. Thus, by the Gronwall inequality,

|w1 (t)− w2 (t)|2HC
≤ c(Ψ, R, p, LipΨ, T )

∫ t

0

∣∣∣∣v1 − v2
∣∣∣∣2
U

ds.(8.4)

Now we construct the following mapping. Starting with v ∈ V2, we denote by w(v)
the solution of problem (8.1)–(8.3), with i omitted. Then we use w(v) as the wear
function in the system (7.1)–(7.3). In this manner we define a mapping, Λ : V2 → V2,
where z = Λv, and z is the solution of (7.1)–(7.3) with the given wear function w(v).
Now, from (7.7) and (8.4) we obtain∫ t

0

∣∣∣∣Λv1 − Λv2
∣∣∣∣2
V2

ds ≤ c(δ, T,Ψ, R, p, LipΨ)

∫ t

0

∫ s

0

∣∣∣∣v1 − v2
∣∣∣∣2
V2

drds.

By iterating this inequality m times we find that every Λm is a contraction mapping
on V2 for all sufficiently large m. Consequently, Λ has a unique fixed point, which is
the unique solution of problem P. This establishes Theorem 3.3.
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Abstract. We consider the initial-boundary value problem for a strictly hyperbolic, genuinely
nonlinear, Temple class system of conservation laws

ut + f(u)x = 0, u ∈ R
n,

on the domain Ω = {(t, x) ∈ R2 : t ≥ 0, x ≥ 0}. For a class of initial data u ∈ L∞(R+) and
boundary data ũ ∈ L∞(R+) with possibly unbounded variation, we construct a flow of solutions
(u, ũ ) → u(t)

.
= Et(u, ũ ) that depend continuously, in the L1 distance, both on the initial data

and on the boundary data. Moreover, we show that each trajectory t �→ Et(u, ũ ) provides the
unique weak solution of the corresponding initial-boundary value problem that satisfies an entropy
condition of Oleinik type.

Next, we study the initial-boundary value problem for the above equation from the point of view
of control theory taking the initial data u fixed and considering, in connection with a prescribed set
U of boundary data regarded as admissible controls, the set of attainable profiles at a fixed time
T > 0, and at a fixed point x > 0:

A(T, U)
.
=
{
ET (u, ũ )(·) ; ũ ∈ U}, A(x, U)

.
=
{
E(·)(u, ũ )(x) ; ũ ∈ U} .

We establish closure and compactness of the sets A(T, U), A(x, U) in the L1
loc topology for a class

U of admissible controls satisfying convex constraints.

Key words. hyperbolic systems, conservation laws, Temple class systems, Lipschitz semigroup,
boundary control, attainable set
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PII. S0036141001383424

1. Introduction. Consider the initial-boundary value problem for a nonlinear,
strictly hyperbolic system of conservation laws in one space dimension,

ut + f(u)x = 0,(1.1)

u(0, x) = u(x),(1.2)

u(t, 0) = ũ(t),(1.3)

on the domain Ω = {(t, x) ∈ R
2 ; t ≥ 0, x ≥ 0}. Here, u = u(t, x) ∈ R

n is the vector
of the conserved quantities, and the flux function f : U �→ R

n is a smooth vector
field defined on some open set U ⊆ R

n. We recall that, for problems of this type,
classical solutions may develop discontinuities in finite time, no matter the regularity
of the initial and boundary data. Hence, it is natural to consider weak solutions in
the sense of distributions. Moreover, in general, the Dirichlet condition (1.3) cannot
be fulfilled pointwise a.e. (see [7, 17]), even when (1.1) is a linear system (cf. [23]).

∗Received by the editors January 9, 2001; accepted for publication (in revised form) March 25,
2002; published electronically August 15, 2002. This research was partially supported by the Euro-
pean TMR Network on Hyperbolic Conservation Laws ERBFMRXCT960033.

http://www.siam.org/journals/sima/34-1/38342.html
†Dipartimento di Matematica and C.I.R.A.M., Piazza Porta S. Donato, n. 5, 40123 Bologna, Italy

(ancona@ciram3.ing.unibo.it).
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For this reason, different weaker formulations of the boundary condition have been
considered in the literature, both for characteristic boundaries (where the eigenvalues
of the Jacobian matrix Df(u) may coincide with the slopes of the boundary profile)
and for noncharacteristic ones; see [1, 28] and the references therein.

In this paper we assume that the boundary is noncharacteristic, requiring that,
for each ith characteristic family, the ith eigenvalue λi(u) of Df(u) always has the
same sign, which implies that there is a fixed set of characteristic lines entering the
interior of the domain Ω at any point of the boundary x = 0. Then, following Dubois
and LeFloch [17] and Joseph and LeFloch [21], we reformulate (1.3) in the weak form

f
(
u(t, 0+)

) ∈ f
(V(ũ(t))), for a.e. t > 0,(1.4)

where V(ũ(t)) ⊂ U is a time-dependent set (the set of admissible boundary values)
that is defined from the boundary data ũ using the notion of Riemann problem, while
f(u(t, 0+)) represents the weak trace of the flux f(u(t, x)) at x = 0. We are concerned
with the well-posedness of (1.1)–(1.2), (1.4) within domains of L∞ functions with
possibly unbounded variations, having in mind to study the initial-boundary value
problem (1.1)–(1.2), (1.4) from the point of view of control theory where it is natural
to regard the boundary data as varying within a prescribed set of admissible L∞

controls.
We recall that, for initial and boundary data with small total variation, the ex-

istence of global weak solutions of the corresponding mixed problem for (1.1), with
various types of boundary conditions, was studied by Liu [25, 26], Goodman [19],
Dubroca and Gallice [18], and Sablé-Tougeron [28], using the Glimm scheme, and
by Amadori [1], developing a front tracking algorithm. More recently, the Lipschitz
continuous dependence on the initial and boundary data of entropy admissible BV
solutions was obtained in [2, 3], for systems of two equations, following the semigroup
approach developed by Bressan and his collaborators to prove the well-posedness of
the Cauchy problem for (1.1) (see [11]).

Notice that, while for scalar conservation laws the well-posedness theory for the
mixed problem had been established within domains of L∞ functions [23, 24, 29],
in the case of systems the available stability results apply only to solutions with
small total variation. In the present paper we extend these results to domains of L∞

functions for a class of systems introduced by Temple [30, 29] in which rarefaction
and Hugoniot curves coincide, under the assumption that all characteristic fields are
genuinely nonlinear in the sense of Lax. Namely, for such systems, and for a domain D
of pairs of L∞ functions with possibly unbounded variation, we construct a continuous
flow of solutions

(u, ũ ) �→ u(t, · ) .
= Et(u, ũ )(·), (u, ũ ) ∈ D(1.5)

of the mixed problem (1.1)–(1.2), (1.4), that, for every fixed δ > 0, satisfy the stability
estimate ∥∥Et(u, ũ ) − Et( v, ṽ )

∥∥
L1 ([δ,+∞[)

≤ Lt ·
{∥∥u− v

∥∥
L1 (R+)

+
∥∥f(ũ)− f(ṽ)

∥∥
L1 ([0, t])

}(1.6)

for all t ≥ δ, where the Lipschitz constant Lt takes the form Lt = C(1 + log(t/δ)),
for some constant C > 0 depending on the system (1.1). Moreover, relying on a
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stability estimate of the same type, established for the map (u, ũ ) �→ E(·)(u, ũ )(x),
x > 0, we prove that every solution u(t, x)

.
= Et(u, ũ )(x) actually admits a strong

L1 trace at the boundary x = 0. In the same spirit of [6, 14], the flow map Et
in (1.5) is constructed as the unique limit of a Cauchy sequence of flow maps Eνt
whose trajectories are front tracking approximate solutions of (1.1) in the region Ω
that satisfy a stability estimate of the same type as (1.6) (with a Lipschitz constant
independent of ν and on the total variation).

Concerning the existence of weak solutions of the initial-boundary value problem
(1.1)–(1.3) for Temple class systems with L∞ data, an earlier result can be found in
[16], where it was shown the convergence of the viscous approximate solutions using
a compensated compactness argument.

In order to obtain the well-posedness of the mixed problem (1.1)–(1.2), (1.4) with
initial and boundary data (u, ũ ) ∈ D, we next show that a distributional solution
u = u(t, x) of (1.1)–(1.2), (1.4) coincides with the corresponding trajectory of the flow
map Et if and only if, letting w = (w1, . . . , wn) denote a system of Riemann coordi-
nates for (1.1), and assuming that the characteristic speeds entering the domain Ω
are λi, i ∈ {n− p+ 1, . . . , n}, the following conditions hold:

(i) The map (t, x) → (
u(t, · ), u(· , x)) takes values within the domain D.

(ii) u satisfies suitable Oleinik-type conditions on the decay of positive waves in
time and in space.

(iii) u admits at t = 0 and at x = 0 the essential limits

ess sup
t→0+

∥∥u(t, · )− u
∥∥
L1 ([0,R])

= 0 ,

ess sup
x→0+

∥∥wi(u(· , x))− wi ◦ ũ
∥∥
L1 ([0, τ ])

= 0 ∀ i ∈ {n− p+ 1, . . . , n}

for any R > 0, τ > 0.
Relying on the formulation of the boundary condition in terms of boundary entropy
pairs, introduced by Otto [27] for scalar conservation laws, and then extended by
Chen and Frid [15, 16] to various classes of systems (including Temple systems), one
can recover the regularity conditions (iii) employing the corresponding distributional
entropy inequality. We thus prove, in particular, that any weak solution of the mixed
problem (1.1)–(1.2), (1.4) constructed by the Glimm scheme or by a front tracking
algorithm, which clearly satisfies the Oleinik-type conditions (ii) and any entropy
inequality, must coincide with the trajectory of the flow map Et in (1.5).

The proof of the L1 stability estimate (1.6) is based on the same homotopy and
linearization technique developed in [12, 6, 14]. In order to estimate how the distance
between two infinitesimally close solutions varies in time, the basic idea consists of
“differentiating” a family of front tracking approximate solutions w.r.t. a parameter
which determines the (space) locations of the jumps and in providing a priori bounds
on the norm of the resulting “shift differential”. In particular, given a piecewise
constant solution u = u(t, x) with an initial data u and a boundary data ũ, we may
consider a family of perturbed solutions θ �→ uθ(t, · ) obtained from u by shifting the

time position t0 of a single jump in ũ at constant rate ξ̃ (or the space location x0 of
a single jump in u at constant rate ξ0). Call σ̃

.
= f(ũ(t0+)) − f(ũ(t0−)) the size of

this jump in f(ũ) (or let σ
.
= u(x0+) − u(x0−) denote the size of the jump in u).

As long as the wave-front configuration of the perturbed and unperturbed solutions
is the same, for every fixed δ > 0, and any t ≥ δ, one can estimate the L1 distance
between u(t, · ) �[δ,+∞[ and uθ(t, · ) �[δ,+∞[ by showing that, if the perturbed solution
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uθ(t, · ) contains jumps of size σθ1 , . . . , σ
θ
M located at xθα ≥ δ, and shifted at shift rate

(in space) ξθ1 , . . . , ξ
θ
M , then there holds

M∑
α=1

∣∣σθα ξθα
∣∣ ≤ Lt ·

∣∣σ̃ ξ̃
∣∣(1.7)

for some constant Lt = Lt(δ) > 0 depending on t and on the distance δ from the
boundary x = 0. The key stability estimate (1.7) is obtained here as in [14], relying
on two remarkable properties of genuinely nonlinear systems of Temple class:

(a) By genuine nonlinearity and finite propagation speed, for every fixed δ > 0,
the total amount of waves in a solution u(t, ·) to the mixed problem (1.1)–
(1.2), (1.4), which can be influenced by shifting a single wave-front of the
initial data u or of the boundary data ũ, and are located at distance ≥ δ
from the boundary x = 0, remains uniformly bounded, for all t ≥ δ, by some
constant depending on t and δ.

(b) For solutions of Temple class systems, the support of perturbations satisfies
a special localization property related to the representation formula for the
solutions of the nonlinear equation Ut+ f(Ux) = 0 in terms of envelopes of n
families of hyperplanes [29].

Having in mind applications of Temple systems to problems of oil reservoir sim-
ulation, multicomponent chromatography, as well as in models for traffic flows, in
the last part of the paper we focus our attention on the mixed problem (1.1)–(1.2),
(1.4) from the point of view of control theory. Namely, following the same approach
adopted by Ancona and Marson [4, 5] for scalar conservation laws, we fix an initial
data u ∈ L∞(R+), and, in connection with an assigned set U ⊂ L∞(R+) of boundary
data regarded as admissible controls, we consider the sets of attainable profiles at a
fixed time T ,

A(T, U) .
=
{
ET (u, ũ )(·) ; ũ ∈ U},

and at a fixed point in space x > 0,

A(x, U) .
=
{
E(·)(u, ũ )(x) ; ũ ∈ U} .

Relying on the well-posedness theory provided by the previous results, we establish
here, as in the scalar case [4, 5], the compactness of these sets in the L1

loc topology
for a class U of admissible boundary controls that satisfy convex constraints.

The paper is organized as follows. Section 2 contains the basic definitions and
the statement of the main results. In section 3 we provide an outline of the proof of
Theorem 2.3 on the existence of a continuous flow of solutions depending continuously,
in the L1 distance, on the initial and on the boundary data. The basic a priori
estimates on shift differentials are contained in sections 4 and 5, while the proof of
Theorem 2.3 is given in section 6, which also contains the proof of Theorem 2.4. The
compactness property of the attainable sets stated in Theorem 2.6 is established in
section 7.

2. Preliminaries and statement of the main results.

2.1. Formulation of the problem. Let f : U �→ R
n be the flux function of

the strictly hyperbolic system (1.1) defined on a neighborhood of the origin U ⊆ R
n,

and denote by λ1(u) < · · · < λn(u) the eigenvalues of the Jacobian matrix Df(u).
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Choose right and left eigenvectors ri(u), li(u), i = 1, . . . , n, of Df(u) normalized so
that ∣∣ri(u)∣∣ = 1, li(u) · rj(u) =

{
1 if i = j,
0 if i �= j.

(2.1)

By possibly considering a sufficiently small restriction of the domain U , we may
assume that a uniform strict hyperbolicity condition holds:

(SH1) For every u, v ∈ U, the characteristic speeds at these points satisfy

λj(u) > λi(v) ∀ 1 ≤ i < j ≤ n .(2.2)

We also assume that each ith characteristic field ri is genuinely nonlinear in the sense
of Lax, i.e., that, by choosing a suitable orientation of the eigenvectors ri(u), at every
point u ∈ U one has Dλi · ri(u) > 0. Moreover, the system (1.1) is of Temple class in
accordance with the following.

Definition 2.1. A system of conservation laws is of Temple class if there exists
a system of coordinates w = (w1, . . . , wn) consisting of Riemann invariants and such
that the level sets

{
u ∈ U ; wi(u) = constant

}
are hyperplanes (see [29]).

It is not restrictive to assume that the Riemann coordinates are chosen so that
(w1, . . . , wn)(0) = (0, . . . , 0) and

∂

∂wi
λi(w) > 0 ∀ w = w(u), u ∈ U, i = 1, . . . , n.(2.3)

Throughout the paper, we will often write wi(t, x)
.
= wi

(
u(t, x)

)
to denote the ith

Riemann coordinate of a solution u = u(t, x) to (1.1). For a Temple class system, the
integral curve of the vector field ri through a point u0 is the straight line described
by the n− 1 linear equations

wj(u) = wj(u0) , j �= i.(2.4)

In particular, shock and rarefaction curves coincide. Let σ �→ Ri(u)[σ] denote the ith
rarefaction curve through u ∈ U. We fix a convex, compact set K ⊂ U having the
form

K =
{
u ∈ U ; wi(u) ∈ [ai, bi], i = 1, . . . , n

}
,(2.5)

and, concerning the boundary, we assume that there is a fixed set of characteristic
lines entering the interior of the domain Ω at every point of the boundary x = 0, i.e.,
that, for some index p ∈ {1, . . . , n}, there holds

λn−p(u) < 0 < λn−p+1(u) ∀ u ∈ K.(2.6)

We shall denote by λmin, λmax the minimum and maximum characteristic speed so
that there holds

0 < λmin ≤ |λi(u)| ≤ λmax ∀ u ∈ K, ∀ i ∈ {1, . . . , n}.(2.7)

Remark 2.1. Since the rarefaction curves are straight lines, the existence of
Riemann coordinates implies

rk
(
Ri(u)[σ]

) ∈ span
{
rk(u), ri(u)

} ∀ u ∈ U, ∀ σ, ∀ i, k = 1, . . . , n .(2.8)
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Relying on this property, one can easily verify that a strengthened version of the
strict hyperbolicity assumption on the linear independence of the eigenvectors
{r1(u), . . . , rn(u)}, u ∈ U, holds, namely:

(SH2) Given any n-tuple of states u1, . . . , un ∈ U , such that

ui+1 = Ri(u
i)[σi], 1 ≤ i < n ,

for some σ1, . . . , σn, the eigenvectors r1(u
1), . . . , rn(u

n) are linearly indepen-
dent.

Notice that the strict hyperbolicity condition (SH2) implies the invertibility of the
map f : U �→ f(U). Indeed, for any given pair of states u, v ∈ U, there will be some
values σ1, . . . , σn so that, setting

z1 .
= u, zi+1 .

= zi + σi ri(z
i), 1 ≤ i ≤ n,

we can write

v − u =

n∑
i=1

σi ri(z
i).(2.9)

In turn, (2.9) yields

f(v)− f(u) =

n∑
i=1

σi λi(z
i, zi+1) ri(z

i),(2.10)

where λi(z
i, zi+1) denotes the ith eigenvalue of the averaged matrix

A(zi, zi+1) =

∫ σi
0

Df(zi + θri(z
i)
)
dθ .(2.11)

Observing that, by the genuine nonlinearity of the characteristic speeds and because
of the assumption (2.6), one has

σi �= 0 =⇒ λi(z
i, zi+1) �= 0 ∀ i = 1, . . . , n ,

using (SH2) one clearly deduces from (2.9)–(2.10) the injectivity of the flux function f.
We next introduce a definition of weak solution to (1.1)–(1.3) which includes an

entropy admissibility condition of Oleinik type on the decay of positive waves. The
boundary condition is formulated in terms of the weak trace of f(u) at the boundary
x = 0 and is related to the notion of Riemann problem in the same spirit of [17].
To this purpose, letting u(t, x) = W (ξ = x/t; uL, uR), uL, uR ∈ K, denote the
self-similar solution of the Riemann problem for (1.1) with initial data

u(0, x) =

{
uL if x < 0,

uR if x > 0,

for any given boundary state ũ ∈ K, we define the set of admissible states at the
boundary

V(ũ) := {
W (0+; ũ, uR) ; uR ∈ K

}
.(2.12)

Definition 2.2. A function u : [0, T ]×R
+ �→ K is an entropy weak solution of

the initial-boundary value problem (1.1)–(1.3) on ΩT
.
= [0, T ]×R

+ if it is continuous
as a function from ]0, T ] into L1

loc and the following properties hold:
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(i) u is a distributional solution to the Cauchy problem (1.1)–(1.2) on ΩT in the
sense that, for every test function φ ∈ C1

c with compact support contained in
the set {(t, x) ∈ R

2; x > 0, t < T}, there holds∫ T
0

∫ +∞

0

(
u(t, x)·φt(t, x)+f(u(t, x))·φx(t, x)

)
dx dt+

∫ +∞

0

u(x)·φ(0, x)dx = 0.

(ii) The flux f(u) admits a weak∗ trace at the boundary x = 0; i.e., there exists a
measurable function Ψ : [0, T ] �→ R

n such that

f(u(·, x)) ∗−⇀
x→0+

Ψ in L∞([0, T ]),(2.13)

and the boundary condition (1.3) is satisfied in the following sense:

Ψ(t) ∈ f
(V(ũ(t))) for a.e. 0 ≤ t ≤ T .(2.14)

(iii) u satisfies the following entropy conditions on the decay of positive waves in
time and in space. There exists some constant C > 0, depending only on the
system (1.1), so that
(a) for any 0 < t ≤ T, and for a.e. 0 < x < y, there holds

wi(t, y)− wi(t, x) ≤ C · y − x

t
if i ∈ {1, . . . , n− p},

(2.15)

wi(t, y)− wi(t, x) ≤ C ·
{

y − x

t
+ log

y

x

}
if i ∈ {n− p+ 1, . . . , n};

(2.16)

(b) for a.e. x > 0, and for a.e. 0 < τ1 < τ2 ≤ T, there holds

wi(τ2, x)− wi(τ1, x) ≤ C · log τ2
τ1

if i ∈ {1, . . . , n− p},
(2.17)

wi(τ2, x)− wi(τ1, x) ≤ C ·
{

τ2 − τ1
x

+ log
τ2
τ1

}
if i ∈ {n− p+ 1, . . . , n}.

(2.18)

Remark 2.2. The set of admissible flux values at the boundary f
(V(ũ)) can be

expressed in Riemann coordinates as

f
(V(ũ)) = {

f(u) ; wj(u) = wj(ũ) ∀ j = n− p+ 1, . . . , n
}
.(2.19)

Hence, by the invertibility of the map f : U �→ f(U), the above boundary condi-
tion (2.14) is equivalent to the set of equalities

wj
(
f−1(Ψ(t))

)
= wj

(
ũ(t)

)
for a.e. 0 ≤ t ≤ T, j = n− p+ 1, . . . , n.(2.20)

This means that the boundary condition (2.14) guarantees that, at almost every
time t ∈ [0, T ], the solution to the Riemann problem for (1.1), having left and right
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initial states uL = ũ(t), uR = f−1(Ψ(t)), contains only waves with negative speeds
and, in particular, its restriction to the region [t, +∞]×]0,+∞[ takes constant value
f−1(Ψ(t)).

Remark 2.3. Several definitions of sets of admissible boundary values that can be
used for alternative formulations of the boundary condition (2.14) have been proposed
in the literature. (A systematic study of such formulations is contained in [21].) In
particular, following Dubois and LeFloch [17] one may consider an admissible set
VEntr whose definition is based on the boundary entropy inequalities associated with
the artificial vanishing viscosity limit

uεt + f(uε)x = εuεxx, ε → 0 .(2.21)

Namely, in accordance with [17], for any given boundary state ũ the set of admissible
boundary values VEntr(ũ) based on the vanishing viscosity limit (2.21) is defined as

VEntr(ũ) .
=
{
u ; for all convex entropy-entropy flux pairs (η, q)

q(u)− q(ũ)−Dη(ũ)
(
f(u)− f(ũ)

) ≤ 0
}
.

(2.22)

The resulting boundary condition (2.14), with f(V(ũ)) replaced by f(VEntr(ũ)), is
a generalization of the earlier one introduced by Bardos, Leroux, and Nedelec in [7]
for scalar (multidimensional) conservation laws, which used only the boundary en-
tropy inequalities associated with the Kruzkov entropies to define the set (2.22). By
reformulating the entropy inequalities in terms of Young measures (associated with
a sequence of viscous approximates solutions) it is shown in [21] that the boundary
condition (2.14) corresponding to the set of admissible boundary data (2.22) is satis-
fied by any (artificial) vanishing viscosity limit (2.21). Thus, this formulation of the
boundary condition is natural at least in the case that no boundary layer develops near
the boundary. Moreover, it is proved in [17, 21] that, for linear hyperbolic systems
and scalar conservation laws, the two sets of admissible boundary data (2.12), (2.22)
are the same, and hence the two formulations of the boundary condition are equiva-
lent. Indeed, as it was conjectured by Dubois and LeFloch [17], the two sets (2.12),
(2.22) also coincide in the case of Temple systems. The inclusion V(ũ) ⊆ VEntr(ũ) was
proved by Benabdallh and Serre [8], while the converse inclusion VEntr(ũ) ⊆ V(ũ) can
be established making use of the Kruzkov-type entropies associated with a Temple
system, as it is shown in the appendix.

An alternative formulation of the boundary condition (1.3) for L∞ boundary
data, which is not based on the existence of the trace of the solution (or of the flux
of the solution) at the boundary, was proposed by Otto [27], for scalar conservation
laws, following the vanishing viscosity approach, and then extended by Chen and Frid
[15, 16] to various classes of systems (including Temple systems). In this case, the
boundary condition is expressed, requiring that the solution satisfy a family of bound-
ary entropy admissibility integral inequalities that are associated with the boundary
entropy pairs for the system (1.1). Applying the theory of divergence measure fields,
it is shown in [15] that, for scalar conservation laws and for Temple class sytems, a
solution satisfying such an integral formulation of the boundary conditions assumes
the boundary data also in the sense of our Definition 2.2.

2.2. Stability and uniqueness of weak solutions. Due to the presence of
the boundary data, the flow map u(0, ·) �→ u(t, ·) induced by (1.1)–(1.3) is not time
homogeneous. To recast the problem in a semigroup framework, it is thus convenient
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to incorporate the boundary data ũ in the domain of the semigroup. More precisely,
in connection with a convex, compact set K ⊂ U of the form (2.5), we consider
the positively invariant domain of pairs of L∞ functions, with possibly unbounded
variations

D .
=
{
p = (u, ũ ) ; u, ũ ∈ L1(R+,K)

}
,(2.23)

where L1(R+,K) denotes the metric space of all L1 functions u : R
+ �→ K, equipped

with the usual L1 distance. Let Tt : L1(R+,K) �→ L1(R+,K) be the translation
operator, i.e., (Ttũ)(s) .

= ũ(t + s), and denote by E : R
+ × D �→ L1(R+,K) the

evolution operator Etp = u(t, ·), u being a solution to (1.1)–(1.3). With the above
notations, we shall construct a semigroup S acting on D, in the sense that

S : R
+ ×D �→ D,
(t , p) �→ Stp,

(2.24)

where, if p = (u, ũ ), Stp =
(
Etp, Ttũ

)
.

Our main result is concerned with the existence of an L1 continuous semigroup
of the form (2.24), generated by the system (1.1) on the domain D.

Theorem 2.3. Let (1.1) be a system of Temple class with all characteristic fields
genuinely nonlinear. Assume that (2.6) and the strict hyperbolicity condition (SH1)
are verified. Then there exist a continuous semigroup S of the form (2.24) and some
constant C > 0, depending only on the system (1.1) and on the domain K, so that, for
every fixed δ > 0, and for all (u, ũ ), ( v, ṽ ) ∈ D, letting Lt

.
= Lt(δ) = C(1+log(t/δ)),

one has ∥∥Et(u, ũ ) − Et( v, ṽ )
∥∥
L1 ([δ,+∞[)

≤ Lt ·
{∥∥u− v

∥∥
L1 (R+)

+
∥∥f(ũ)− f(ṽ)

∥∥
L1 ([0, t])

}(2.25)

for all t ≥ δ. Moreover, the map (t, x) �→ Et(u, ũ )(x) yields an entropy weak solution
(in the sense of Definition 2.2) to the initial-boundary value problem (1.1)–(1.3) on Ω
that admits a strong L1 trace at the boundary x = 0; i.e., there exists a measurable
map ψ : R

+ �→ U such that

lim
x→0+

∫ τ
0

∣∣Et(u, ũ )(x)− ψ(t)
∣∣ dt = 0 ∀ τ ≥ 0.(2.26)

Remark 2.4. With the same arguments used in section 6 to establish the existence
of a strong L1 trace at the boundary x = 0 for the map (t, x) �→ Et(u, ũ )(x) provided
by Theorem 2.3, one can show the continuity w.r.t. the L1

loc topology of t �→ Et(u, ũ )
at time t = 0. However, as in the case of the Cauchy problem [14], the map t �→
Et(u, ũ ) may not be Lipschitz continuous at t = 0 if the initial condition u has
unbounded total variation. Moreover, the evolution operator p �→ Etp is not, in
general, Lipschitz continuous w.r.t. the topology of L1(R+,K) on the range Et(D).

Remark 2.5. The trajectories of the flow map Et provided by Theorem 2.3 are ob-
tained as limits of front tracking approximate solutions whose values are independent
of the Riemann coordinates of the boundary data that leave the domain Ω. Thus, the
same property holds for the limit map Et, and hence, given any couple of initial data
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and boundary condition (u, ũ ) ∈ D, if we consider the auxiliary boundary condition
ũ′ defined in Riemann coordinates by

wj(ũ
′(t)) .

=


cj if j ≤ n− p,

∀ t ≥ 0 ,
wj(ũ(t)) if j > n− p,

(2.27)

for some constant values cj ∈ [ai, bi], j = 1, . . . , n− p, one has

Et(u, ũ ) = Et(u, ũ
′ ) ∀ t ≥ 0 .(2.28)

Therefore, given any (u, ũ ), ( v, ṽ ) ∈ D, by replacing ũ, ṽ in (2.25) with two auxiliary
boundary data ũ′, ṽ′ having the property

wj(ũ
′(t)) = wj(ṽ

′(t)) ∀ t ≥ 0, j = 1, . . . , n− p,

we deduce for the flow map Et the sharper estimate∥∥Et(u, ũ ) − Et( v, ṽ )
∥∥
L1 ([δ,+∞[)

≤ Lt ·
∥∥u− v

∥∥
L1(R+)

+

n∑
j=n−p+1

∥∥wj(ũ)− wj(ṽ)
∥∥
L1 ([0, t])

 .
(2.29)

The next result states that every entropy weak solution to (1.1)–(1.3), admitting
an essential limit in the L1 norm at time t = 0, and at the boundary x = 0, actu-
ally coincides with the corresponding trajectory t �→ Et(u, ũ ) of the flow map Et
constructed in Theorem 2.3. As a consequence, we deduce the uniqueness (up to the
domain) of a Lipschitz continuous map as Et having the property that each trajectory
provide an entropy weak solution to (1.1)–(1.3) that admits a strong L1 trace at the
boundary x = 0, and at the initial time t = 0. Notice that, in order to select a unique
solution to (1.1)–(1.3), it is crucial to require that such a solution satisfies the decay
estimates on positive waves stated in Definition 2.2(ii). For this reason, since in the
case of L∞ initial and boundary data the currently available results on the conver-
gence of the viscous approximate solutions uε do not provide a priori BV bounds on
uε, it remains an open problem whether or not the vanishing viscosity limit (2.21)
coincides with the trajectory of the flow map Et constructed in Theorem 2.3.

Theorem 2.4. Let (1.1) be a system of Temple class satisfying the same assump-
tions as in Theorem 2.3. Let u = u(t, x) be an entropy weak solution to the mixed
problem (1.1)–(1.3) on the region ΩT

.
= [0, T ] × R

+, in the sense of Definition 2.2.
Assume that the following conditions hold:

(i) The map (t, x) → (
u(t, ·), u(·, x)) takes values within the domain

DT .
=
{
p = (u, ũ ) ; u ∈ L1(R+,K), ũ ∈ L1([0, T ],K)

}
.(2.30)

(ii) For every fixed R > 0, there holds

ess sup
t→0+

∫ R
0

∣∣u(t, x)− u(x)
∣∣ dx = 0 .(2.31)

(iii) There holds

(2.32)

ess sup
x→0+

∫ T
0

∣∣wi(u(t, x))− wi(ũ(t))
∣∣ dt = 0 ∀ i ∈ {n− p+ 1, . . . , n} .
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Then u coincides with the corresponding trajectory of the flow map Et, namely,

u(t, ·) = Et(u, ũ )(·) ∀ 0 ≤ t ≤ T.(2.33)

A convenient way to prove that the regularity conditions (2.31)–(2.33) are verified is to
employ the distributional entropy inequalities associated with the “boundary entropy
pairs” for (1.1), as it is shown by Chen and Frid in [15, 16]. A pair of continuously
differentiable functions α : R

n × R
n �→ R, β : R

n × R
n �→ R is called a boundary

entropy pair for (1.1) if, for any fixed v ∈ R
n, u �→ (

α(u, v), β(u, v)
)
is an entropy

pair for (1.1) and there holds

α(v, v) = β(v, v) = ∂uα(v, v) = 0 ∀ v ∈ R
n .

An immediate application of [15, Theorem 4.1] (or of [16, Theorem 1.1]) and of [15,
Theorem 4.3] yields the following.

Lemma 2.5. Let u(t, x) be an entropy weak solution to the mixed problem (1.1)–
(1.3) on the region ΩT

.
= [0, T ] × R

+, in the sense of Definition 2.2. Assume that,
given any boundary entropy pair

(
α(u, v), β(u, v)

)
for (1.1), there is a constant M > 0

(depending only on (α, β) and on the domain K) such that, for every nonnegative test
function φ ∈ C1

c (]−∞, T [×R
+), and for any v ∈ R

n, there holds∫ T
0

∫ +∞

0

{
α(u(t, x), v) · φt(t, x) + β(u(t, x), v) · φx(t, x)

}
dx dt

+

∫ +∞

0

∣∣u(x)− v
∣∣ · φ(0, x) dx+M

∫ T
0

∣∣ũ(t)− v
∣∣ · φ(t, 0) dt ≥ 0 .(2.34)

Then the essential limits (2.31)–(2.33) are verified for any R > 0.

Remark 2.6. By [15, Theorem 4.1] it also follows that, if u(t, x) is an entropy
weak solution to the mixed problem (1.1)–(1.3) on ΩT in the sense of Definition 2.2,
and if we assume that

(a) given any (standard) entropy pair (η(u), q(u)), for every test function

φ ∈ C1
c (
◦
ΩT ), φ ≥ 0, one has the usual entropy inequality∫ T

0

∫ +∞

0

{
η(u(t, x)) · φt(t, x) + q(u(t, x)) · φx(t, x)

}
dx dt ≥ 0,(2.35)

(b) for every R > 0 there holds (2.31),

(c) given any boundary entropy pair
(
α(u, v), β(u, v)

)
, for every function

γ ∈ L1([0, T ]), γ ≥ 0 a.e., there holds

ess sup
x→0+

∫ T
0

β(u(t, x), ũ(t)) γ(t) dt ≤ 0,(2.36)

then the assumptions of Lemma 2.5 are verified, and hence the essential limits (2.33)
hold.

2.3. Properties of the attainable sets. Following [4, 5], we now turn to study
the mixed initial-boundary value problem (1.1)–(1.3) from the point of view of control
theory, taking a fixed initial data u ∈ L1(R+,K) and considering, in connection with
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a prescribed set U ⊆ L1(R+,K) of boundary data regarded as admissible controls,
the attainable sets for (1.1)–(1.3):

(2.37)

A(T, U) .
=
{
ET (u, ũ )(·) ; ũ ∈ U

}
, A(x, U) .

=
{
E(·)(u, ũ )(x) ; ũ ∈ U

}
,

i.e., the sets of all profiles that can be attained at a fixed time T > 0, or at a fixed
point in space x > 0, by entropy weak solutions of (1.1)-(1.3) with initial data u and
boundary data ũ that vary in U . Relying on the well-posedness theory provided by
the above results, we establish here the compactness of A(T, U), A(x, U) for a class
U of admissible boundary controls that satisfy convex constraints.

Theorem 2.6. Let K be a set of the form (2.5) and J ⊆ {1, . . . , n} a set of
indices such that J ⊇ {n− p, . . . , n}. Define
(2.38)

U .
=
{
ũ ∈ L1(R+,K) ; wj(ũ(t)) ∈ [cj , dj ], for a.e. t ≥ 0 , ∀ j ∈ J

}
for some −∞ < cj ≤ dj < +∞, j ∈ J. Then A(T, U), T > 0, and A(x,U), x > 0,
are compact subsets of L1

loc(R
+,K).

3. Outline of the proof of Theorem 2.3. We describe here the basic steps in
the proof of Theorem 2.3. All the technical estimates involved in the proof will then
be worked out in sections 4–6. As in [14] we shall first construct a sequence of flow
maps Eν whose trajectories are front tracking approximate solutions [6, 10] of (1.1)
in the region Ω that depend L1 continuously on the initial and boundary data. Next,
for any fixed M > 0, we shall prove the convergence of such a sequence of flow maps
to a continuous flow of solutions p �→ Et p, defined on the domain

DM .
=
{
p ∈ D; Tot.Var.{p} ≤ M

}
,(3.1)

where, if p = (u, ũ ),

Tot.Var.(p)
.
= Tot.Var.(u) + Tot.Var.(ũ).(3.2)

Finally, we will show that, for every fixed δ > 0, and for any t ≥ δ, the map

p �→ Et p�[δ,+∞[ , p ∈ DM(3.3)

is Lipschitz continuous with a Lipschitz constant depending on δ and t but indepen-
dent of the bound on the total variation M.

We now describe a front tracking algorithm which represents a natural extension
of [14]. Fix an integer ν ≥ 1 and consider the discrete set of points in K whose
coordinates are integer multiples of 2−ν :

Kν
.
=
{
u ∈ K ; wi(u) ∈ 2−νZ, i = 1, . . . , n

}
.

Moreover, consider the domain

(3.4)

Dν .
=
{
p = (u, u′) : R

+ �→ Kν ×Kν ; u, u′ ∈ L1, u, u′ are piecewise constant
}
.
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On Dν we now construct a flow map Eν whose trajectories are front tracking approxi-
mate solutions of (1.1). To this end, we first describe how to solve a Riemann problem
with left and right initial states uL, uR ∈ Kν . In Riemann coordinates, assume that

w(uL)
.
= wL = (wL1 , . . . , wLn ), w(uR)

.
= wR = (wR1 , . . . , wRn ).

Consider the intermediate states

z0 = uL, . . . , zi = u(wR1 , . . . , wRi , w
L
i+1, . . . , w

L
n ), . . . , zn = uR.(3.5)

If wRi < wLi , the solution will contain a single i shock connecting the states zi−1, zi,
and travelling with Rankine–Hugoniot speed λi(z

i−1, zi). Here and in what follows,
by λi(u, u

′) we denote the ith eigenvalue of the averaged matrix

A(u, u′) .
=

∫ 1

0

Df
(
θu+ (1− θ)u′

)
dθ.(3.6)

If wRi > wLi , the exact solution of the Riemann problem would contain a centered
rarefaction wave. This is approximated by a rarefaction fan as follows. If wRi =
wLi + pi 2

−ν we insert the states

zi,� = (wR1 , . . . , wLi + 9 2−ν , wLi+1, . . . , w
L
n ), 9 = 0, . . . , pi,(3.7)

so that zi,0 = zi−1, zi,pi = zi. Our front tracking solution will then contain pi fronts
of the ith family, each connecting a couple of states zi,�−1, zi,� and travelling with
speed λi

(
zi,�−1, zi,�

)
.

For a given pair of piecewise constant initial and boundary data p = (u, ũ ) ∈ Dν ,
the approximate solution u(t, ·) .

= Eνt p is now constructed as follows. At time t = 0,
for x > 0 we solve each of the Riemann problems determined by the jumps in u
according to the above procedure, while at x = 0 we construct the solution to the
Riemann problem with left and right initial states uL = ũ(0+), uR = u(0+) and
take its restriction to the interior of the domain Ω. This yields a piecewise constant
function with finitely many fronts travelling with constant speeds. The solution is
then prolonged up to the first time t1 at which one of the following events takes place:

(a) Two or more discontinuities interact in the interior of Ω.
(b) One or more discontinuities hit the boundary.
(c) The boundary data ũ has a jump.

If case (a) occurs, then we solve the resulting Riemann problems, again applying the
above procedure, while in cases (b)–(c) we construct the solution to the Riemann
problem with left and right initial states uL = ũ(t1+), uR = u(t1, 0+) and take its
restriction to the interior of the domain Ω. This determines the solution u(t, ·) until
the time t2 > t1 where one of the events (a)–(c) again takes place, etc. Notice that at
any time where case (b) occurs but (c) does not take place, no new wave is generated.
Therefore, wave-fronts entering the domain Ω at the boundary x = 0 are produced
only by the jumps of the boundary data ũ.

As in [6] and [14], one checks that these front tracking approximations are well
defined for all times t ≥ 0. Indeed, the following properties hold:

- The total variation of u(t, ·), measured w.r.t. the Riemann coordinates
w1(t, ·), . . . , wn(t, ·), is nonincreasing in time.

- The number of wave-fronts in u(t, ·) is nonincreasing at each interaction.
Hence, the total number of wave-fronts in u(t, ·) remains finite.
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It is now possible to define a ν-approximate semigroup Sν : R
+ × Dν �→ Dν as in

(2.24) by setting

Sνt p
.
=
(
Eνt p, Ttũ

)
, p = (u, ũ ) .(3.8)

The uniqueness of the definition of the approximate solution u(t, ·) = Eνt p guarantees
that Sνt satisfy the standard semigroup properties, i.e.,

Sν0 = Identity, Sνt ◦ Sνs = Sνt+s.

Each trajectory t �→ Eνt p is a weak solution of (1.1) (because all fronts satisfy the
Rankine–Hugoniot conditions) but may contain discontinuities that do not satisfy the
usual Lax stability conditions (because of the presence of rarefaction fronts).

We next proceed towards an estimate of the Lipschitz constant for p �→ Eνt p�[δ,+∞[,
δ > 0, following the same technique adopted in [14]. The basic idea to estimate the
distance between two approximate solutions u, v consists of constructing a continuous
path of solutions uθ connecting u, v and then studying how the length of the path
θ → uθ(t, ·) varies in time. In particular, given any two couples of initial and boundary
data p1 = (u1, ũ1 ), p2 = (u2, ũ2 ) in Dν , we introduce a suitable class of continuous
paths (pseudopolygonals) that connect fp1

.
= (u1, f(ũ1)) with fp2

.
= (u2, f(ũ2)) by

merely shifting the space and time positions of the jumps in u1, u2 and in f(ũ1), f(ũ2),
respectively. More precisely, we consider a pseudopolygonal with values in

FDν .
=
{
fp = (u, f(u′)); (u, u′) ∈ Dν},

that is, a finite concatenation of elementary paths γ : θ �→ (
uθ, f(ũθ)

)
of the form

uθ(x) =
∑N
α=1 ωα · χ]xθα−1, x

θ
α](x), xθα = xα + ξαθ, x ≥ 0,

θ ∈ [a, b],

f(ũθ(t)) =
∑Ñ
β=1 f(ω̃β) · χ]tθβ−1, t

θ
β ](t), tθβ = tβ + ξ̃βθ, t ≥ 0,

(3.9)

with xθα−1 < xθα, t
θ
α−1 < tθα, for all θ ∈ [a, b] and α = 1, . . . , N , β = 1, . . . , Ñ . Here, χI

is the characteristic function of the interval I, while ωα, ω̃β ∈ Kν are constant states

and ξα, ξ̃β are, respectively, the (space) shift rate of the jump in uθ at xα and the
(time) shift rate of the jump in f(ũθ) at tβ . A simple example of a pseudopolygonal
joining two couples of initial data and boundary flux fp1 = (u1, f(ũ1)), fp2 =
(u2, f(ũ2)) is given by

θ �→ (
u1 · χ[0,θ[ + u2 · χ]θ,+∞[ , f(ũ1) · χ[0,θ[ + f(ũ2) · χ]θ,+∞[

)
.

The L1 length of an elementary path γ of the form (3.9) is then computed by

‖γ‖L1 =

∫ b
a

{
N∑
α=1

∣∣∆uθ(xα)
∣∣∣∣∣∣∂xθα∂θ

∣∣∣∣+ Ñ∑
β=1

∣∣∆̃ũθ(tβ)
∣∣∣∣∣∣∂tθβ∂θ

∣∣∣∣
}

dθ

=

{
N∑
α=1

∣∣σα∣∣ |ξα|+ Ñ∑
β=1

∣∣σ̃β∣∣ |ξ̃β |
}
(b− a),(3.10)

where

σα
.
= ∆uθ(xα) = ωα+1 − ωα, σ̃β

.
= ∆̃ũθ(tβ) = f(ω̃β+1)− f(ω̃β).(3.11)
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If we consider a pseudopolygonal γν0 : θ �→ (
uθ, f(ũθ)

)
, θ ∈ [0, 1], with values in FDν ,

and let uθν(t, ·) = Eνt (u
θ, ũθ) be the corresponding solution, since the number of wave-

fronts in these solutions is a priori bounded and the locations of the interaction points
in the t-x plane are determined by a linear system of equations, it follows that, at any
time t > 0, the path

γνt : θ �→ (
uθν(t, ·), f(ũθ)

)
, θ ∈ [0, 1],(3.12)

is still a pseudopolygonal with values in FDν . Moreover, there exist finitely many
parameter values 0 = θ0 < θ1 < · · · < θm = 1 such that the wave-front configuration
of uθν remains the same as θ ranges on each of the open intervals Ij

.
= ]θj−1, θj [ . In

this case, the length of the path γνt is measured by an expression of the form

‖γνt ‖L1 =

m∑
j=1

∫ θj
θj−1

∑
α

∣∣∆uθν(t, x
θ
α)
∣∣∣∣∣∣∂xθα∂θ

∣∣∣∣ dθ
+
m∑
j=1

∫ θj
θj−1

∑
β

∣∣∆̃ũθ(tθβ)
∣∣∣∣∣∣∂tθβ∂θ

∣∣∣∣ dθ .

(3.13)

Let π1(u, f(ũ)) = u, π2(u, f(ũ)) = f(ũ), and denote the canonical projections for
any couple fp = (u, f(ũ)) ∈ FDν . In connection with any elementary path γ of the
form (3.9), define the paths

ρis1,s2(γ) : θ �−→ πi(γ(θ)) �[s1, s2], s1, s2 ≥ 0 ,(3.14)

and introduce the seminorms∥∥γ∥∥
δ,t1,t2

.
=
∥∥ρ1

δ,+∞

(
γ
)∥∥

L1 +
∥∥ρ2

t1,t2

(
γ
)∥∥

L1 , δ, ti ≥ 0.(3.15)

Since the second term of the sum in (3.13) is constant in time, we have∥∥γνt ∥∥δ,0,t = ∥∥ρ1
δ,+∞

(
γνt
)∥∥

L1 +
∥∥ρ2

0,t

(
γν0
)∥∥

L1 ∀ t ≥ 0 .(3.16)

Thus, to estimate the L1 distance between two approximate solutions Eνt p1, E
ν
t p2,

we will provide in Lemma 5.1 an a priori bound on the integrand of the first term in
(3.13), which represents the infinitesimal length of a generalized tangent vector to the
one-parameter family of pairs of solutions and boundary flux (3.12). Relying on this
result, we will show in section 6.1 that, for any fixed M > 0, δ > 0, and for any t ≥ δ,
there exists some constant LM,t

.
= c0(1 +M)(1 + log(t/δ)) > 0 such that there holds∥∥ρ1

δ,+∞

(
γνt
)∥∥

L1 ≤ LM,t ·
∥∥γν0∥∥0,0,t

∀ t ≥ δ(3.17)

for every pseudopolygonal γν0 : [0, 1] → FDν joining two couples of initial data and
boundary flux in {fp; p ∈ DM ∩ Dν}. Hence, defining the pseudometrics

dδ,t1,t2(p1,p2)
.
=
∥∥u1 − u2

∥∥
L1 ([δ,+∞[)

+
∥∥ ũ1 − ũ2

∥∥
L1 ([t1, t2])

,

pi = (ui, ũi ), δ, ti ≥ 0,
(3.18)

and observing that the L1 lengths of the paths γν0 , γνt satisfy

‖γν0 ‖0,0,t ≤ C0 · d0,0,t(fp1, fp2),(3.19) ∥∥Eνt p1 − Eνt p2

∥∥
L1 ([δ,+∞[)

≤ C0 · ‖γνt ‖δ,0,t ,(3.20)
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for some constant C0 > 0 (depending only on the domain D), we deduce from (3.16)–
(3.17) a uniform Lipschitz estimate for the flow maps p �→ Eνt p�[δ,+∞[ of the type∥∥Eνt p1 − Eνt p2

∥∥
L1 ([δ,+∞[)

≤ L′M,t · d0,0,t(fp1, fp2) ∀ t ≥ δ ,(3.21)

with L′M,t
.
= c′0(1 +M)(1 + log(t/δ)), for some other constant c′0 > 0 independent of

ν, and for any p1,p2 ∈ DM ∩ Dν . As ν → ∞, the domain DM ∩ Dν become dense
in DM. In the limit, a continuous flow map Et is obtained in (6.2), defined on the
domain DM and satisfying the estimate (2.25).

To extend the flow map Et to the whole domain D preserving the property (2.25),
by similar arguments as above we will prove in section 6.2 the estimate∥∥Etp1 − Etp2

∥∥
L1 ([δ,+∞[)

≤ L′′t · d0,0,t(fp1, fp2) ∀ t ≥ δ(3.22)

with L′′t
.
= c′′0(1 + log(t/δ)) for some other constant c′′0 > 0 independent of the total

variation, and for any p1,p2 ∈ Dµ, µ ≥ 1. Any trajectory t �→ Et(p) of such a map
Et (defined in (6.12)) is defined as the limit of front tracking approximations, and
hence provides a weak solution to problem (1.1)–(1.2).

In order to show that the map (t, x) �→ Et(u, ũ )(x) admits a strong L1 trace at

the boundary x = 0, we next derive a stability estimate for the map p �→ f
(
E(·)p(x)

)
following the same homotopy and linearization technique adopted above. Namely, we
first establish in Lemma 5.2 an a priori bound on a generalized tangent vector to the
one-parameter family of pairs of initial data and fluxes

γνx : θ �→ (
uθ, f

(
uθν(·, x)

))
, θ ∈ [0, 1],(3.23)

evaluated along the vertical segment of the domain Ω. Next, we show in section 6.3
that, for any p1,p2 ∈ Dµ, µ ≥ 1, and for every τ2 > τ1 > 0, there holds∥∥f(E(·)p1(x)

)− f
(
E(·)p2(x)

)∥∥
L1 ([τ1, τ2])

≤ L′′′ · d0,0,τ2(fp1, fp2)

∀ x ∈ [0, (λmin/2) τ1] ,

(3.24)

where λmin is the lower bound for the absolute value of all characteristic speeds
in (2.7), and L′′′ .

= c′′′0 (1 + log(τ2/τ1)), for some constant c′′′0 > 0 independent of µ.
By continuity, and relying on the density of the domains Dµ, µ ≥ 1 in D, we then
extend the estimate (3.24) to any pair p1, p2 in D. Relying on this property, and
thanks to the invertibility of the flux f (see Remark 2.1), we prove in section 6.5 the
existence of the strong L1 trace of Etp(x) at x = 0 for any p ∈ D. Finally, we show
in (6.24) that Etp fulfills the boundary condition (2.20), and we prove in section 6.4
that the Oleinik-type estimates (2.15)–(2.18) on the decay of the positive waves are
satisfied, thus completing the proof of Theorem 2.3.

4. Preliminary results. Fix ν ≥ 1 and consider a piecewise constant solution
u(t, · ) .

= Eνt (u, ũ ) of (1.1) in the region Ω constructed by the front tracking algorithm
described in section 3 for some (u, ũ ) ∈ Dν . We may perturb this solution by shifting
the (space) locations xα of the jumps in the initial data u at rates ξα and the (time)
locations tα of the jumps in the boundary data ũ entering the interior of the domain Ω
at rates ξ̃α (Figure 1). This means that, if we let xβ = xβ(t) denote the jumps in the
unperturbed solution u(t, ·), for θ suitably close to zero, the corresponding perturbed
solution uθ(t, ·) will be a function with jumps at the points xθβ = xβ+θξβ . In the same

way, uθ(·, x) will have jumps at times tθβ = tβ−θξ̃β with ξ̃β = ξβ/λkβ , where tβ = tβ(x)
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denote the locations of all jumps in u(·, x) having nonzero slope λkβ . As long as the

wave-front configuration of the functions u, uθ is the same, the space-shifts ξβ(t) and

the time-shifts ξ̃β(x) are uniquely determined as linear functions of the initial time

and space-shifts ξα, ξ̃α. In this section we collect some basic properties of these shift
differentials that depend on the special geometric features of Temple class systems
and on the fact that the front tracking algorithm described in section 3 guarantees
that wave-fronts entering the domain Ω at the boundary x = 0 are produced only by
the jumps of the boundary data. Such properties can be obtained with entirely similar
arguments as for the corresponding results in [14]. Hence, we refer to [14] for most
of the proofs of the results presented in this section, limiting ourself to discussing the
points that really involve the boundary conditions and to establish in detail the proof
of Lemma 4.4 which provides decay estimates on the positive waves of front tracking
solutions that are different from the corresponding ones (Lemmas 4 and 5) in [14].

Remark 4.1. We denote by σα(t) = u(t, xα+) − u(t, xα−) the size of a jump in
the solution u, occurring at (t, xα(t)), along the space direction (space-size) and by
σ̃α(x) = f(u(tα+, x))− f(u(tα−, x)) the size of a jump in the flux f(u) occurring at
(t, xα(t)) along the time direction (time-size). Since approximate solutions are indeed
weak solutions, by the Rankine–Hugoniot equations we have the identity

ξ̃ασ̃α =
ξα
λkα

λkασα = ξασα.(4.1)

In the following we will use both notations, depending on convenience.
Lemma 4.1. Consider a bounded, open region Γ in Ω. Call σα, α = 1, . . . ,M,

the fronts entering Γ and let ξα be their space-shifts. Assume that the fronts leaving
Γ, say σβ, β = 1, . . . ,M ′, are linearly independent. Then the space-shifts ξβ of the
outgoing fronts are uniquely determined by the linear relation

M∑
α=1

ξασα =

M ′∑
β=1

ξβσβ .(4.2)

A proof of Lemma 4.1, based on an application of the divergence theorem, can be
obtained by the same arguments in [14].

Remark 4.2. As observed in [14], according to Lemma 4.1 the shift rates of the
outgoing fronts from a given region Γ depend only on the shift rates of the incoming
ones and not on the order in which these wave-fronts interact inside Γ. In particular,
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one can perform the following two operations, without changing the shift rates of the
outgoing fronts:

(O1) Switch the order in which three fronts interact (Figure 2).
(O2) Invert the order of two fronts at t = 0 or at x = 0, provided that both

fronts have zero shift rate (Figure 3).

This property will be used repeatedly in our future estimates. Indeed, in the com-
putation of a shift rate, we can suitably alter the order of wave interactions and
thus reduce the problem to a case where the wave-front configuration is particularly
simple.

Lemma 4.2. Assume that a front tracking solution u(t, · ) = Eνt (u, ũ ) contains
two wave-fronts of the same characteristic family, say t �→ xα′(t), t �→ xα′′(t), orig-
inating at distinct points (τ ′, x′), (τ ′′, x′′), τ ′ ≥ τ ′′, x′ ≤ x′′, of the boundary of Ω,
and such that xα′(t) ≤ xα′′(t), t ∈ [τ ′, T ]. Then it is possible to assign space-shift
rates ξα to all fronts in the initial data u and in the boundary data ũ so that the
space-shift rate of the front at xα′(τ ′, x′) is ξα′ = 1, and, in the corresponding per-
turbed solution uθ, all fronts xβ(t) outside the strip Γ

.
=
{
(t, x); t ∈ [τ ′′, τ ′], 0 ≤ x ≤

xα′′(t)
} ∪ {(t, x); t ∈ [τ ′, T ], xα′(t) ≤ x ≤ xα′′(t)

}
have zero shift rate.

In other words, the perturbation of the initial and boundary data can be chosen so
that one particular front shifts at unit rate, but the corresponding solution remains
unaffected outside the region Γ (Figure 4). For a proof of the lemma, proceed as in
[14].

Lemma 4.3. Let u be a front tracking solution of (1.1) in the region Ω and con-
sider two wave-fronts, say t �→ x(t), t ∈ [τx, T ], and t �→ y(t), t ∈ [τy, T ], originating
at two points (τx, x), (τy, y) of the boundary of Ω. Then there exists a second front
tracking solution û with two fronts t �→ x̂(t), t ∈ [τx, T ], t �→ ŷ(t), t ∈ [τy, T ], having
the following properties:

(i) x̂(τx) = x, ŷ(τy) = y, x̂(T ) = x(T ), ŷ(T ) = y(T ).
(ii) û = u in a neighborhood of these points (τx, x), (τy, y), (T, x(T )), (T, y(T )).
(iii) Tot.Var.

{(
û(0, ·), û(·, 0))} ≤ C1 for some constant C1 depending only on the

system (1.1) and on the set K.
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Proof. To fix the ideas, assume x = 0, τx > 0, y > 0, τy = 0. Call J1, J2, J3 the
three connected components of the set

({0}×R
+∪ [0, T ]×{0})\{(0, y ), (τx, 0)} and,

similarly, let J ′1, J
′
2, J
′
3, J
′
4 denote the connected components of the set

(
[0, T ]× {0} ∪

{T} × R
+
) \ {(τx, 0), (T, x(T )), (T, y(T ))}. Assume that u contains two wave-fronts

t �→ z′(t), t �→ z′′(t), of the same kth family and with the same sign, starting at some
points ζ ′I , ζ

′′
I within the same set Ji, and ending at some other points ζ ′F , ζ

′′
F that

lie in the same set J ′j . Then, proceeding as in [14], we may apply Lemma 4.2 and

obtain a second front tracking solution uθ1 which has a smaller number of k-fronts
than u and coincides with u outside the region bounded by the fronts z′, z′′. We can
repeat this construction as long as the resulting solution contains fronts of the same
family and with the same sign, starting at points of the same set Ji and ending within
the same set J ′j . In a finite number of steps, we then obtain a new solution û which
has the property that, for each k = 1, . . . , n, and for any i = 1, 2, 3, j = 1, 2, 3, 4,
there exists at most one point ζ0 ∈ Ji where a positive k-wave originates, terminating
within J ′j , and similarly for negative k-waves. This implies that the total variation of
(û(0, ·), û(·, 0)�[0,T ]) is uniformly bounded by a constant C1 depending only on n and
on the diameter of the set K, which completes the proof of the lemma, since we may
clearly modify û(t, ·) for t > T so that also Tot.Var.

{
û(·, 0)�[T,+∞]

} ≤ C1.
Due to genuine nonlinearity, the amount of positive waves in u(t, ·) contained in

an interval [a, b], measured in Riemann coordinates, decays in time. We have the
following result.

Lemma 4.4. Consider a front tracking solution u(t, ·) = Eνt (u, ũ ), with u, ũ
containing together at most N shock fronts of the kth family. Then there exists some
constant C2 depending only on the system (1.1) such that, for each τ > 0, and for
every interval [a, b], a > 0, one has

Tot.Var.
{
wk(τ, ·); [a, b]

} ≤ 2C2
b− a

τ
+ ‖wk‖L∞ + (N + 1)21−ν(4.3)

for k = 1, . . . , n− p,

Tot.Var.
{
wk(τ, ·); [a, b]

}≤ 2C2

{
b− a

τ
+log

b

a

}
+‖wk‖L∞+(N + 1)21−ν

(4.4)

for k = n− p+ 1, . . . , n.
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Proof. We give the proof of the statement only for k ∈ {n − p + 1, . . . , n},
the other case being entirely similar. Relying on Lemma 4.3 and on the uniform
strict hyperbolicity assumption (SH1), with the same arguments used in the proof of
Lemma 4 in [14] one can show that any two adjacent k-rarefaction fronts x(t) ≤ y(t)
of u, starting from the boundary x = 0, are separated at time τ > 0 by a distance
≥ κ(τ − t0) · 2−ν , where t0 ≥ 0 is the beginning time of the rarefaction front x(t),
and κ > 0 denotes some constant depending only on the system. Hence, the distance
between rarefaction fronts entering the domain Ω from the boundary x = 0 grows at
least linearly with the distance from the t-axis. Therefore, the number of rarefaction
fronts emanating from the boundary and crossing any interval [a, b], a > 0, is bounded
by

1 +N +
C2

2−ν
log

b

a

for some constant C2 > 0 depending on the system (1.1). The positive variation of
wk(τ, ·) on [a, b], i.e., the total amount of upward jumps, thus satisfies

Pos.Var.
{
wk(τ, ·); [a, b]

} ≤ (1 +N)2−ν + C2 · log b

a
.(4.5)

On the other hand, the same decay estimates in [14, Lemma 5] hold for the waves
starting from t = 0:

Pos.Var.
{
wk(τ, ·); [a, b]

} ≤ (1 +N)2−ν + C2 · b− a

τ
.(4.6)

In turn, the total variation of wk(τ, ·) on [a, b] is bounded by ‖wk‖L∞ plus twice the
positive variation of wk. Hence (4.3)–(4.4) hold.

5. Estimates on shift differentials. In this section, relying on the results
presented in section 4, we recover the key estimates on shift differentials of paths of
approximate solutions. We will use the same technique developed in [14], since we are
dealing with front tracking solutions whose wave-fronts emanating from the boundary
are produced only by the jumps on the boundary data.

Lemma 5.1. Let u(t, ·) = Eνt (u, ũ ) be a front tracking solution, with u, ũ con-
taining together N shocks. Assume that the fronts of u located at xβ (respectively, the

fronts of f(ũ) starting at tβ) are shifted with shift rate ξβ (respectively, ξ̃β = ξβ/λkβ )
and have amplitude σβ (respectively, σ̃β = λkβ σβ). Then there exists a constant C3

depending only on the system (1.1) and on the domain K such that, for any δ > 0,
and for every τ ≥ δ, calling ξα(τ), σα(τ) the shift rates and the amplitudes of the
fronts in u(τ, ·), we have
(5.1)∑
xα(τ)>δ

∣∣ξα(τ)σα(τ)∣∣ ≤ C3(1 +N2−ν)(1 + log(τ/δ)) ·
∑
β

∣∣ξβ σβ∣∣+∑
β

∣∣ξ̃β σ̃β∣∣
 .

Proof. Assume first that only one single front σ0 is shifted, starting at time t = 0
in the position x = x (or leaving the boundary x = 0 at time t = t), say, of the kth
family, with shift rate ξ0. Consider one particular front, say, located at xα∗(·), of the
jth family, and call y

.
= xα∗(τ) its terminal point at time τ . We claim that there are
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constants C4, C5, depending only on the system (1.1) and on the domain K, such
that the following properties hold.

(P1) If xα∗ is precisely the k-front starting at x (t, respectively), then∣∣ξα∗(τ)σα∗(τ)
∣∣ ≤ C4|ξ0 σ0|.(5.2)

(P2) If xα∗ is a j-front, with j �= k, and the backward j-characteristics ending at y
include fronts starting from both sides of x (t, respectively), then (5.2) again
holds.

(P3) If xα∗ is a j-front, and the j-fronts ending at y start all at the same side of x
(t, respectively), one then has the sharper estimate∣∣ξα∗(τ)

∣∣ ≤ C5|ξ0 σ0|.(5.3)

Properties (P1)–(P2) can be established by the same arguments in [14], with minor
changes. Hence, we limit ourselves here to give a proof of (P3). To this end, observe
that, besides the fronts starting at x (or t) and the ones ending at y, one can single
out four groups of waves:

(1) the waves starting on the left of x (respectively, after t) and ending on the
left of y;

(2) the waves starting on the right of x (respectively, before t) and ending on the
right of y;

(3) the waves starting on the right of x (respectively, before t) and ending on the
left of y;

(4) the waves starting on the left of x (respectively, after t) and ending on the
right of y.

According to Remark 4.2, in our computation of the shift rate ξα∗(τ) of the front
reaching y, it is not restrictive to assume that the sets of waves in (1) and (2) are
empty. Indeed, we can otherwise shift the locations of all these fronts of type (1)
towards the left, until they all lie outside the domain influenced by the shift at x.
Similarly, fronts of type (2) can be shifted toward the right until they lie completely
outside this domain of influence.

Having achieved this simplification, we shall first establish (P3) in the case (Fig-
ure 5) where no j-wave ending at y crosses the k-wave starting at x (or t). Consider a
curve γ running slightly to the right of the minimal backward j-front ending at y. By

γ

t =

t = 0

τ y

x

Fig. 5.
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Lemmas 4.1 and 4.2, after performing the operations (O1)–(O2) a number of times,
we can consider an equivalent configuration with the following properties:

- No front crosses γ from left to right.
- There exists some index 9 ≤ j such that only fronts of families i < 9 can
cross γ from right to left, and we can assume that the waves of type (1) have
zero shift rate at every time in the interval [0, τ ].

Applying Remark 4.2 to the region on the right of γ we obtain∑
α∈C(γ)

ξα σα +
∑

xα(τ)>γ(τ)

ξα(τ)σα(τ) = ξ0 σ0.(5.4)

Here the first summation extends to all fronts crossing the curve γ with nonzero shift
rate. Call uL and uR the left and right states across the jump at y. Observing that
the two sums on the left-hand side of (5.4) are contained in

span
{
r1(u

R), . . . , r�−1(u
R)
}
, span

{
r�(u

R), . . . , rn(u
R)
}
,(5.5)

using the strict hyperbolicity condition (SH2), we conclude that∣∣∣∣∣ ∑
α∈C(γ)

ξασα

∣∣∣∣∣ ≤ C ′
∣∣ξ0 σ0

∣∣(5.6)

for some constant C ′, depending only on the system (1.1). We now again apply
Remark 4.2 to the region on the left of γ. Observing that the only incoming fronts
which carry a nonzero shift rate are those crossing γ from right to left, and that the
only outgoing shifted j-front is the one ending at y, we obtain∑

xα(τ)<y

ξασα + ξα∗(τ)σα∗(τ) =
∑
α∈C(γ)

ξασα.(5.7)

Recalling the normalization at (2.1), we observe that (5.7) implies∣∣ξα∗(τ)σα∗(τ)
∣∣ = lj(u

L) ·
∑
α∈C(γ)

ξασα.(5.8)

On the other hand, one has

lj(u
R) ·

∑
α∈C(γ)

ξασα = 0.(5.9)

Together, (5.6), (5.8) and (5.9) imply

∣∣ξα∗(τ)σα∗(τ)
∣∣ ≤ ∣∣lj(uR)− lj(u

L)
∣∣∣∣∣∣∣ ∑
α∈C(γ)

ξασα

∣∣∣∣∣ ≤ C5

∣∣σα∗(τ)
∣∣∣∣ξ0 σ0

∣∣(5.10)

for some other constant C5 depending only on the system (1.1), proving (5.3).
We next establish (P3) in the case where k > j and all j-waves running into y

cross the k-wave starting from t, as in Figure 6. In this case, we construct a curve γ
slightly to the left of the maximal backward j-front ending at y. Observe that every
wave-front crossing γ from left to right must be of a family i > j. Moreover, we can
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assume that no wave crosses γ from right to left. Applying Remark 4.2 to the region
on the left of γ we obtain∑

α∈C(γ)

ξα σα +
∑

xα(τ)<γ(τ)

ξα(τ)σα(τ) = ξ0 σ0.(5.11)

Since the waves crossing γ must belong to different families from the ones ending
inside the interval [0, γ(τ)] (recall that interacting waves of the same family produce
a single wave-front), (5.11) implies∣∣∣∣∣ ∑

α∈C(γ)

ξα σα

∣∣∣∣∣ ≤ C ′′ |ξ0 σ0|(5.12)

for some constant C ′′ depending only on the system (1.1). We now again apply
Remark 4.2 to the region on the right of γ, observing that the set of outgoing fronts,
crossing the line t = τ , contains the j-front at y plus other fronts on the right of y of
families i > j. This yields

ξα∗(τ)σα∗(τ) +
∑

xα(τ)>y

ξα(τ)σα(τ) =
∑
α∈C(γ)

ξα σα(5.13)

which, in turn, implies ∣∣ξα∗(τ)σα∗(τ)
∣∣ = lj(u

R) ·
∑
α∈C(γ)

ξα σα.(5.14)

Observing that

lj(u
L) ·

∑
α∈C(γ)

ξα σα = 0,

we again obtain an estimate of the form (5.10), and hence (P3) holds. The other
cases are similar or easier.

We now complete the proof of Lemma 5.1. If we assume that only one single front
is shifted leaving the boundary x = 0, say, starting at time t = t (or starting at time
t = 0 and located at x = x), it follows that at a fixed time τ > 0 the only fronts with
nonzero shift rate can be the ones located inside the interval [a0, b0]

.
= [0, λmax ·(τ−t)]



L∞ SOLUTIONS FOR TEMPLE SYSTEMS WITH BOUNDARY 51

(or inside the interval [a0, b0]
.
= [max{0, x−λmax ·τ}, x+λmax ·τ ]), where λmax denotes

the upper bound for the absolute value of all characteristic speeds in (2.7). Recalling
the estimate (4.3)–(4.4) on the total variation, and using the properties (P1)–(P3),
we thus have∑

xα(τ)>δ

∣∣ξα(τ)σα(τ)∣∣≤ nC4|ξ0 σ0|+ C5

∣∣ξ0 σ0
∣∣ · Tot.Var.{u(τ) ; [δ, b0]

}
≤ C3(1 +N2−ν)(1 + log(τ/δ))

∣∣ξ0 σ0
∣∣ ,(5.15)

for a suitable constant C3 depending only on the system (1.1), proving (5.2). Fi-
nally, we consider the case where all fronts in u, ũ are shifted. More precisely, let
ξα(0) be the shift rate of the front located at xα(0) (tα(0), respectively), having am-
plitude σα(0). Call ξβ(τ) the corresponding shift rate of the front of u(τ, ·) located
at xβ(τ). Observing that the shift differential(

ξ1(0), . . . ξM (0)
) �→ (

ξ1(τ), . . . ξM ′(τ)
)

is a linear mapping, the estimate (5.2) follows easily from (5.15).
In order to show that the trajectories of the flow map Et that we shall construct

in section 6 provide solutions with a strong L1 trace at the boundary x = 0, we
will make use of the following estimates on shift differentials of paths of approximate
solutions along vertical segments of the domain Ω.

Lemma 5.2. Let u(t, x) = Eνt (u, ũ )(x) be a front tracking solution containing at
most N shocks. Assume that the fronts of u located at xβ (respectively, the fronts of
f(ũ) entering the interior of the domain Ω and starting at tβ) are shifted with shift

rate ξβ (respectively, ξ̃β = ξβ/λkβ ) and have amplitude σβ (respectively, σ̃β = λkβ σβ).
Then there exists some constant C6 depending only on the system (1.1) and on the
domain K such that, for any τ2 > τ1 > 0, and for every 0 < ρ < (λmin/2) τ1,

denoting with ξ̃α(ρ), σ̃α(ρ) the time-shift rates and the time-sizes of the fronts in
f(u(·, ρ )) crossing the line {(t, ρ) ; t ≥ 0} at time tα(ρ), there holds

(5.16)∑
tα(ρ)∈[τ1, τ2]

∣∣ξ̃α(ρ) σ̃α(ρ)∣∣ ≤ C6(1 +N2−ν)(1 + log(τ2/τ1)) ·
∑
β

∣∣ξβ σβ∣∣+∑
β

∣∣ξ̃β σ̃β∣∣
 .

Proof. We give here only a sketch of the proof, since it is quite similar to the one
of Lemma 5.1. The estimates (P1)–(P3) can be recovered with minor modifications.
As an example, we establish the estimate (P3) for a front belonging to a family
j ∈ {1, . . . .n− p}, say, (time)-located at tα∗(·), that starts at time t = 0 and crosses
the segment {(t, ρ); t ∈ [τ1, τ2]} at s = tα∗(ρ). Assume that only a single front of
(time)-size σ̃0 is shifted, leaving the boundary x = 0 at time t = t, say, of the family

k ∈ {n−p+1, . . . , n}, with (time)-shift ξ̃0, and no other front of the boundary data ũ
or of the initial data u is shifted. After performing the usual simplifications, we reduce
to the situation illustrated in Figure 7. Consider the straight line t = s and a curve
γ running slightly to the left of the maximal backward j-front passing through ( s, ρ).
Applying the divergence theorem to the region on the left of γ, and using (4.1), we
obtain

ξ̃0 σ̃0 = ξ0 σ0 =
∑
α∈C(γ)

ξα σα +
∑

xα(s)<γ(s)

ξα(s)σα(s).(5.17)
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t = t 2

t = t 1
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γ

x

Fig. 7.

By linear independence of the vectors on the right-hand side of (5.17) we derive∣∣∣∣∣ ∑
α∈C(γ)

ξα σα

∣∣∣∣∣ ≤ C ′′′
∣∣ξ̃0 σ̃0

∣∣(5.18)

for some constant C ′′′ depending only on the system (1.1). Next, we consider the
region on the right of γ, where we compute∑

α∈C(γ)

ξα σα = ξ̃α∗(ρ) σ̃α∗(ρ) +
∑

xα(s)>ρ

ξα(s)σα(s).(5.19)

From (5.18)–(5.19), and because of (2.1), (2.7), letting uL, uR denote as usual the left
and right states across the jump at ( s, ρ), we obtain

∣∣ξ̃α∗(ρ) σ̃α∗(ρ)
∣∣ = ∣∣∣∣∣lj(uR) · ∑

α∈C(γ)

ξα σα

∣∣∣∣∣
≤ ∣∣lj(uR)− lj(u

L)
∣∣∣∣∣∣∣ ∑
α∈C(γ)

ξα σα

∣∣∣∣∣ ≤ C ′v

λmin

∣∣σ̃α∗(ρ)
∣∣∣∣ξ̃0 σ̃0

∣∣ ,
for some other constant C ′v depending only on the system (1.1), and we recover (P3).

Therefore, in the case where at the boundary x = 0 only a single front is shifted,
say, starting at time t = t, observing that the only fronts of the last p characteristic
families with nonzero shift rate along a fixed line {(t, ρ) ; t ≥ 0} can be the ones
located inside the (time)-interval [s0, t0]

.
= [ t+(ρ/λmax), t+(ρ/λmin)], one derives

(5.17) relying on the properties (P1)–(P3) and using similar estimates on the total
variation as the ones in (4.3)–(4.4). Namely, there will be some positive constant
depending only on the system (1.1) that we may call C2 as the one in (4.3)–(4.4) such
that, for every x > 0, and for any t > s > 0, there holds

Tot.Var.
{
wk(·, x); [s, t]

} ≤ 2C2 · log t

s
+ ‖wk‖L∞ + (N + 1)21−ν(5.20)
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for k = 1, . . . , n− p,

Tot.Var.
{
wk(·, x); [s, t]

}≤ 2C2

{
t− s

x
+ log

t

s

}
+‖wk‖L∞+(N+1)21−ν(5.21)

for k = n − p + 1, . . . , n. The proof of the estimates (5.20)–(5.21) is entirely similar
to the one of Lemma 4.4. With the same arguments we obtain (5.17) in the case
where we assume that a single front is shifted at time t = 0 and located at x = x,
observing that, if ρ > x, the fronts of the first p families with nonzero shift rate along
the line {(t, ρ) ; t ≥ 0} are located inside the (time)-interval [s0, t0]

.
= [0, ρ/λmin],

while if ρ < x, such fronts are the ones that interact on the left of x = ρ with the
front starting at x = x, and hence their total strength is at most

log
τ2

τ1 − ρ/λmin
≤ log

2 τ2
τ1

.

Finally, the general case where all fronts in u and in ũ are shifted is treated as in
Lemma 5.1.

Remark 5.1. If we perturb a front tracking solution u(t, · ) .
= Eνt (u, ũ ) by shift-

ing only the (time) locations of the jumps in the boundary data ũ, with the same
arguments of the proof of Lemma 5.2, one can show that the stability estimate (5.17)
holds with a Lipschitz constant that is independent of τ1, τ2. Namely, in the same
setting of Lemma 5.2, assuming that the fronts of f(ũ), with (time)-size σ̃β = λkβ σβ ,

are shifted with (time)-shift rate ξ̃β = ξβ/λkβ , the following holds. There exists some
constant (depending only on the system (1.1) and on the domain K) that we still
call C6 such that, for any fixed δ > 0, and for every 0 < ρ < λmin δ, τ > δ, let-
ting ξ̃α(ρ), σ̃α(ρ) be the time-shift rates and the time-sizes of the fronts in f(u(·, ρ ))
crossing the line {(t, ρ) ; t ≥ 0} at time tα(ρ), there holds∑

tα(ρ)∈[δ, τ ]

∣∣ξ̃α(ρ) σ̃α(ρ)∣∣ ≤ C6(1 +N2−ν) ·
∑
β

∣∣ξ̃β σ̃β∣∣.(5.22)

6. Proof of Theorems 2.3 and 2.4.

6.1. Existence of the semigroup on domains of BV functions. In order
to construct the semigroup described in Theorem 2.3, we shall first define an L1

continuous flow map Et on every domain

DM .
=
{
p ∈ D; Tot.Var.{p} ≤ M

}
, M > 0,

obtained as a limit of the approximate flow maps Eνt constructed in section 3 on
the domains Dν . To this end, consider any two piecewise constant couples of initial
and boundary data, say p1, p2 ∈ DM ∩ Dν , and construct a pseudopolygonal path
γν0 : θ �→ fpθ = (uθ, f(ũθ)) connecting fp1 with fp2 as described in section 3. All
functions (uθ, ũθ ) lie in DM ∩ Dν and have a uniformly bounded number of shocks,
say ≤ N . Call uθν(t, ·) = Eνt (u

θ, ũθ ) the corresponding solution and consider the
path γνt : θ �→ (

uθν(t, ·), f(ũθ)
)
. Writing the length of this path in the form (3.13),
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and using Lemma 5.1, for any fixed δ > 0, and for every t ≥ δ, we obtain the
estimate∥∥ρ1

δ,+∞

(
γνt
)∥∥

L1 =

m∑
j=1

∫ θj
θj−1

∑
{α : xθα>δ}

∣∣∆uθν(t, x
θ
α)
∣∣∣∣∣∣∂xθα(t)∂θ

∣∣∣∣ dθ
≤

m∑
j=1

∫ θj
θj−1

C3(1 +N2−ν)(1 + log(t/δ))

·

∑
β

∣∣∆uθν(0, x
θ
β)
∣∣∣∣∣∣∂xθβ(0)∂θ

∣∣∣∣+ ∑
{β′ : tθ

β′<t}

∣∣∆̃uθν(t
θ
β′ , 0)

∣∣∣∣∣∣∂tθβ′(0)∂θ

∣∣∣∣
 dθ

≤ C3(1 +N2−ν)(1 + log(t/δ)) · ∥∥γν0∥∥0.0,t
,(6.1)

where ρ1
δ,+∞ and ‖ · ‖0,0,t denote the restriction map and the seminorm introduced

at (3.14)–(3.15). Observing that any function in DM ∩ Dν has at most 2νM jumps,
from (6.1) we derive (3.17) with LM,t = C3(1 + M)(1 + log(t/δ)), which, in turn,
because of (3.19)–(3.20), clearly implies (3.21).

Once we have established the uniform Lipschitz continuity of the maps p �→
Eνt p �[δ,+∞[, on the domains DM ∩ Dν , since the union ∪ν≥1DM ∩ Dν is dense in
DM, we will define the map Et on DM as the limit

Et(p)
.
= L1− lim

ν→∞Eνt (p
ν), pν ∈ DM ∩ Dν , pν → p in L1 .(6.2)

In order to prove that the assignment (6.2) yields a well-defined map, since any
sequence Eνt p

ν is uniformly bounded in L∞, it is sufficient to show that, for every
given p ∈ DM, and for any δ > 0, if pν ∈ DM ∩Dν is any sequence that converges to
p in L1, then the sequence Eνt p

ν�[δ,+∞[ is Cauchy in L1. Indeed, for any µ > ν, using
(3.21) (possibly with a different constant L′M,t), we obtain∥∥Eµt pµ − Eνt p

ν
∥∥
L1 ([δ,+∞[)

≤ ∥∥Eµt pµ − Eµt p
ν
∥∥
L1 ([δ,+∞[)

+
∥∥Eµt pν − Eνt p

ν
∥∥
L1 ([δ,+∞[)

≤ L′M,t · d0,0,t(p
µ, pν) + dδ,0,∞

(
Sµt p

ν , Sνt p
ν
)
,(6.3)

where dδ,0,∞ denotes the pseudometric defined as in (3.18). To estimate the second
term in (6.3), we shall use the same type of error estimate established in [11, Theo-
rem 2.9] for the distance between a Lipschitz continuous map and the trajectory of a
Lipschitz continuous semigroup which can be restated as follows.

Lemma 6.1. Let (B, dB) be a metric space, let dB′ be a pseudometric on B, and
let D be a closed subset of B. Let S : D × [0, T ] �→ D be a continuous semigroup and
Γ : [0, T ] �→ D a continuous map that satisfy

dB′
(
Stp1, Ssp2

) ≤ L · {dB(p1, p2) + |t− s|},(6.4)

dB
(
Γ(t), Γ(s)

) ≤ L · |t− s|(6.5)

for some constant L > 0. Then, for any τ ∈ [0, T ], one has the estimate

dB′
(
Γ(τ), SτΓ(0)

) ≤ L ·
∫ τ

0

{
lim inf
h→0+

dB′
(
Γ(t+ h), ShΓ(t)

)
h

}
dt.(6.6)



L∞ SOLUTIONS FOR TEMPLE SYSTEMS WITH BOUNDARY 55

Let B be the metric space L1(R+,K) × L1(R+,K) equipped with the usual L1 dis-
tance, and set

dB′
.
= dδ,0,∞, D .

= DM ∩ Dµ .

Observe that, if we let S
.
= Sµ be the approximate semigroup defined in (3.8), and

Γ : [0, T ] → DM ∩ Dν ⊂ DM ∩ Dµ be the map Γ(t) = Sνt p
ν , then the Lipschitz

continuity (3.21) of p �→ Eνt p �[δ,+∞[, together with the uniform bound on the total
variation of t �→ Eνt p, p ∈ DM ∩ Dν , t �→ Eµt p, p ∈ DM ∩ Dµ, clearly implies
the estimates (6.4)–(6.5). Thus, we may apply Lemma 6.1 and, from (6.3), (6.6), we
derive∥∥Eµt pµ − Eνt p

ν
∥∥
L1 ([δ,+∞[)

≤ L′M,t · d0,0,t(p
µ, pν)

+L ·
∫ t

0

{
lim inf
h→0+

dδ,0,∞
(
Sνs+h p

ν , SµhS
ν
sp
ν
)

h

}
ds.(6.7)

With the same arguments in [6], letting q
.
= Sνsp

ν , we can now estimate the integrand
in (6.7) by

1

h
dδ,0,∞

(
Sνh q, Sµhq

)
=

1

h

∥∥Eνh q− Eµhq
∥∥
L1 ([δ,+∞[)

≤ C7 · 2−νM(6.8)

for some constant C7 > 0. Hence, (6.7) together with (6.8) yields∥∥Eµt pµ − Eνt p
ν
∥∥
L1 ([δ,+∞[)

≤ L′M,t · d0,0,t(p
µ, pν) + LC7M · 2−νt,(6.9)

which clearly shows that Eνt p
ν�[δ,+∞[ is a Cauchy sequence in the L1 norm and that

this limit does not depend on the choice of the sequence pν . Thus, the map in (6.2)
is well defined on every domain DM and, passing to the limit in (3.21), we obtain the
estimate (2.25) for any couples of initial and boundary data pi = (ui, ũi ) ∈ DM, i =
1, 2.

6.2. Extension of the semigroup to domains of L∞ functions. To ensure
the existence of the map Et on the whole domain D of functions of possibly unbounded
variation, we will now prove the estimate (3.22) for some constant L′′t > 0 independent
of the total variation. To this purpose, consider any two couples p1, p2 ∈ Dµ, and
construct as above a pseudopolygonal path γ0 : θ �→ fpθ = (uθ, f(ũθ)) taking values
in FDµ that connects fp1 with fp2 and has the following property. All functions
(uθ, ũθ ) have a uniformly bounded number of jumps and hence lie in some domain
DM, M > 0. Then, calling uθν(t, ·) = Eνt (u

θ, ũθ ) the corresponding ν-approximate
solution, since by (6.2) we have

Et(u
θ, ũθ ) = lim

ν→∞Eνt (u
θ, ũθ ) = lim

ν→∞uθν(t, ·),(6.10)

in order to establish (3.22) we will show that the length of the path γνt : θ �→(
uθν(t, ·), f(ũθ)

)
remains a bounded multiple of the length of γ0, independent of ν.

Indeed, for any fixed δ > 0, and for every ν ≥ µ, letting N be a uniform bound
on the number of shocks in (uθ, ũθ ), and using Lemma 5.1, we obtain by the same
arguments in (6.1) the estimate∥∥ρ1

δ,+∞

(
γνt
)∥∥

L1 ≤ C3(1 +N2−ν)(1 + log(t/δ)) · ‖γ0‖0,0,t ∀ t ≥ δ ,
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which, in turn, because of (3.16), (3.19)–(3.20), implies

(6.11)∥∥Eνt p1 − Eνt p2

∥∥
L1 ([δ,+∞[)

≤ C8(1 +N2−ν)(1 + log(t/δ)) · d0,0,t(fp1, fp2) ∀ t ≥ δ

for some other constant C8 > 0. Letting ν →∞ in (6.12), because of (6.10) we obtain
(3.22) for all p1, p2 ∈ Dµ. Since the domains Dµ, µ ≥ 1, are dense in D, relying on
(3.22) we can now extend the map Et by continuity to the whole domain D setting

Et(p)
.
= L1− lim

µ→∞Et(p
µ), pµ ∈ Dµ, pµ → p in L1 .(6.12)

Clearly, the map in (6.12) preserves the property (3.22), proving (2.25). Moreover,
any trajectory t �→ Et(p), being the limit of front tracking approximations, provides
by standard arguments [10, 11] a weak solution to problem (1.1)–(1.2).

6.3. Stability estimates in space. Towards a proof of the existence of a strong
L1 trace of f(u(t, x))

.
= f

(
Etp(x)

)
at the boundary x = 0, we shall first establish the

stability estimate (3.24) for the map p �→ f
(
E(·)p(x)

)
. Fix τ2 > τ1 > 0, and observe

that, because of (6.2), for every given p ∈ DM, the sequence Eν(·)p(·) converges to

E(·)p(·) in L1
(
[0, τ2] × R

+; K
)
. Hence, relying also on the continuity of the maps

x �→ Eν(·)p(x), x �→ E(·)p(x), we deduce that

(6.13)

f
(
E(·)(p)(x)

)
�[τ1, τ2]= L1 − lim

ν→∞ f
(
Eν(·)(p)(x)

)
�[τ1, τ2] ∀ x ∈ [0, (λmin/2) τ1].

Therefore we may proceed as in the proof of (3.22) to establish the estimate (3.24).
Given any pair of couples p1, p2 ∈ Dµ, we construct a pseudopolygonal path γ0 :
θ �→ fpθ = (uθ, f(ũθ)) taking values in FDµ, and connecting fp1 with fp2, so that all
functions (uθ, ũθ) have a uniformly bounded number of shocks ≤ N and lie in some
domain DM, M > 0. Then, for every ν ≥ µ, calling uθν(t, ·) .

= Eνt (u
θ, ũθ )(·) the

corresponding ν-approximate solution, we consider the pseudopolygonal path

γνx : θ �→ (
uθ, f

(
uθν(·, x)

))
(6.14)

with values in FDν . Let ρi
τ1,τ2

and ‖ · ‖0,0,τ2 denote the restriction map and the

seminorm defined as in (3.14)–(3.15). Then, using Lemma 5.2, we compute as in (6.1)∥∥ρ2
τ1,τ2

(
γνx
)∥∥

L1=

m∑
j=1

∫ θj
θj−1

∑
{α : tθα∈[τ1,τ2]}

∣∣∆̃uθν(t
θ
α, x)

∣∣∣∣∣∣∂tθα(x)∂θ

∣∣∣∣ dθ
≤

m∑
j=1

∫ θj
θj−1

C6(1 +N2−ν)(1 + log(τ2/τ1))

·

∑
β

∣∣∆uθν(0, x
θ
β)
∣∣∣∣∣∣∂xθβ(0)∂θ

∣∣∣∣+ ∑
{β′ : tθ

β′<τ2}

∣∣∆̃uθν(t
θ
β′ , 0)

∣∣∣∣∣∣∂tθβ′(0)∂θ

∣∣∣∣
 dθ

≤ C6(1 +N2−ν)(1 + log(τ2/τ1)) · ‖γ0‖0,0.τ2(6.15)

for every x ∈ [0, (λmin/2) τ1]. Observe that the L1 length of the path γνx satisfies∥∥γνx∥∥0,τ1,τ2
=
∥∥ρ1

0,+∞

(
γν0
)∥∥

L1 +
∥∥ρ2

τ1,τ2

(
γνx
)∥∥

L1 ,(6.16) ∥∥f(Eν(·)p1(x)
)− f

(
Eν(·)p2(x)

)∥∥
L1 ([τ1, τ1])

≤ C9 · ‖γνx‖0,τ1,τ2 ,(6.17)
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for every x ∈ [0, (λmin/2) τ1], and for some constant C9 > 0. Hence, recalling also
(3.19), we deduce from (6.15) the estimate∥∥f(Eν(·)p1(x)

)−f
(
Eν(·)p2(x)

)∥∥
L1 ([τ1, τ1])

≤ C10(1 +N2−ν)(1 + log(τ2/τ1)) · d0,0,τ2(fp1, fp2)
(6.18)

for some other constant C10 > 0. Letting ν →∞ in (6.18), thanks to (6.14) we obtain
(3.24) with L′′′ = C10(1 + log(τ2/τ1)). By continuity, and relying on the density of
the domains Dµ, µ ≥ 1 in D, we then extend the estimate (3.24) to any pair p1, p2

in D.
Remark 6.1. If we fix a piecewise constant initial data u ∈ L1(R+,Kµ), and for

any given pair of piecewise constant boundary data ũ, ṽ ∈ L1(R+,Kν), ν ≥ µ, we
construct a pseudopolygonal path γ0 : θ �→ fpθ = (u, f(ũθ)), taking values in FDµ,
and connecting fp1

.
= (u, f(ũ)) with fp2

.
= (u, f(ṽ)), with the same arguments

above, and relying on Remark 5.1, we derive the same type of estimate as (3.24)
with a Lipschitz constant that is independent on τ1, τ2. Thus, by continuity, and
by the density of the domains Dµ, µ ≥ 1 in D, we deduce that there exists some
constant C ′, depending only on the system (1.1), so that for any fixed τ > δ > 0, and
for all (u, ũ ), (u, ṽ ) ∈ D, there holds∥∥E(·)

(
u, ũ

)
(x)− E(·)

(
u, ṽ

)
(x)
∥∥
L1 ([δ, τ ])

≤ C ′ · ∥∥ũ− ṽ
∥∥
L1 ([0, τ ])

∀ x ∈ [0, λmin δ] .

(6.19)

6.4. Oleinik-type estimates. Concerning the entropy admissibility conditions
(2.15)–(2.16) on the decay of the positive waves, consider a couple of initial data and
boundary conditions (u, ũ ) ∈ D and fix any interval [a, b]. Thanks to (3.21)–(3.22),
we can now approximate the weak solution constructed as above, u(t, ·) = Et(u, ũ ),
with a sequence of front tracking solutions uν(t, ·) = Eνt (u

ν , ũν ), choosing initial and
boundary data (uν , ũν ) ∈ Dν having a number of shocks Nν ≤ ν. By (4.5)–(4.6),
the total number of positive wave-fronts in uν(τ, ·) = Eντ (u

ν , ũν ) on [a, b] satisfies

Pos.Var.
{
wνk(τ, ·); [a, b]

} ≤ C2 · b− a

τ
+ (Nν + 1)21−ν(6.20)

for k = 1, . . . , n− p,

Pos.Var.
{
wνk(τ, ·); [a, b]

} ≤ C2 ·
{

b− a

τ
+ log

(
b

a

)}
+ (Nν + 1)21−ν ,(6.21)

for k = n − p + 1, . . . , n, where wνk
.
= wk(u

ν) denotes as usual the kth Riemann
coordinate of uν . Letting ν →∞ in (6.20)–(6.21), by the lower semicontinuity of the
total variation we obtain (2.15)–(2.16). The estimates (2.17)–(2.18) on the decay of
the positive variation of wk(· , x) can be established in the entirely similar way relying
on the corresponding estimates for wνk(·, x) which, in turn, are obtained with the same
type of arguments used to prove the ones in (5.20)–(5.21).

6.5. Boundary conditions. Let u(t, x)
.
= Etp(x), p = (u, ũ ) ∈ D, be the

weak solution defined at (6.12), and consider a sequence pν = (uν , ũν ) ∈ Dν con-
verging to p in L1 as ν → ∞. Call uν(t, x)

.
= Etp

ν(x) the corresponding solution.
Since every pν is piecewise constant and lies in some domain DMν

, one can easily
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verify that any function uν(t, x), ν ≥ 1, has bounded total variation and pointwise
satisfies the boundary condition (2.20); i.e., there holds

lim
x→0+

wj
(
uν(t, x)

)
= wj

(
ũν(t)

)
for a.e. t ≥ 0, j = n− p+ 1, . . . , n.(6.22)

Now, fix τ2 > τ1 > 0. By (3.24) and because of the invertibility property of the flux
function, f , there will be some constant C11 = C11(τ1, τ2) > 0 (depending only on
τ1, τ2) such that∥∥wj(uν(·, x))− wj

(
u(·, x))∥∥

L1 ([τ1, τ2])
≤ C11 · d0,0,τ2(p

ν , p)(6.23)

for all x ∈ [0, (λmin/2) τ1], ν ≥ 1. Then, (6.22), (6.23) together imply that, for any
j = n − p + 1, . . . , n, the functions wj

(
u(·, x)), wj(f(u(·, x))) have a strong limit as

x → 0 and

lim
x→0+

∫ τ2
τ1

∣∣wj(u(t, x))− wj
(
ũ(t)

)∣∣dt = 0 ,(6.24)

thus showing that u(t, x) fulfills the boundary condition (2.20). On the other hand,
because of the Oleinik-type conditions (2.15) on the decay of the positive waves, also
wj
(
u(·, x)), j = 1, . . . , n− p, have a strong limit as x → 0, which completes the proof

of the existence of the strong L1 trace of u(t, x) at x = 0, and hence concludes the
proof of Theorem 2.3.

6.6. Uniqueness. Let u be an entropy weak solution to (1.1)–(1.3) on the region
ΩT

.
= [0, T ]× R

+ in accordance with Definition 2.2, and assume that conditions (i)–
(iii) stated in Theorem 2.4 hold. Let λmax be the upper bound for the absolute value
of all characteristic speeds at (2.7), and fix R > λmax · T , 0 < δ < (R − λmax · T )/2.
Observe that, because of the entropy conditions (2.15)–(2.16) on the decay of the
positive waves, for every fixed 0 < s ≤ δ, the restrictions of u(t, ·) to the intervals
Jδ,R(t)

.
= [2δ, R− λmax · t], s ≤ t ≤ T, have uniformly bounded total variation. Thus,

the same type of uniqueness results in [13] yield

u(t, ·) = Et−s
(
u(s, s+ · ), u(s+ · , s))(−s+ · ) restricted to Jδ,R(t)(6.25)

for every 0 < s ≤ δ ≤ t ≤ T. Moreover, by the definition of Jδ,R(t), the domain
of dependence of a solution to (1.1)–(1.3) along the segment {(t, x) ; x ∈ Jδ,R(t)}
is contained in the set {(s, x) ∈ R

2 ; 0 ≤ s ≤ t, 0 ≤ x ≤ R}. Hence, recalling
Remark 2.5, we can restate the Lipschitz estimate (2.25) provided by Theorem 2.3 as∫ R−(λmax·t+s)

2δ−s

∣∣∣Et−s(u(s, s+ ·), u(s+ ·, s))(x)
−Et−s

(
Es(u, ũ)(s+ ·), E(s+·)(u, ũ)(s)

)
(x)
∣∣∣dx

≤ C(1 + log(t/δ)) ·
{∫ R

δ

∣∣∣u(s, x)− Es(u, ũ)(x)
∣∣∣dx

+
n∑

j=n−p+1

∫ t
s

∣∣∣wj(u(σ, s))− wj
(
Eσ(u, ũ )(s)

)∣∣∣dσ},

(6.26)
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which, because of (6.25), yields∫
Jδ,R(t)

∣∣∣u(t, x)− Et(u, ũ )(x)
∣∣∣dx

≤ C(1 + log(t/δ)) ·
{∫ R

0

∣∣∣u(s, x)− Es(u, ũ)(x)
∣∣∣dx

+

n∑
j=n−p+1

∫ t
0

∣∣∣wj(u(σ, s)− wj
(
Eσ(u, ũ )(s)

)∣∣∣dσ}
(6.27)

for every 0 < s ≤ δ ≤ t ≤ T. On the other hand, the continuity in L1
loc of the

map t �→ Et(u, ũ ) at t = 0 (see Remark 2.4), and the existence of a strong L1 trace
of Et(u, ũ )(x) at the boundary x = 0 (guaranteed by Theorem 2.3), together with
(2.19), imply

lim
s→0+

∫ R
0

∣∣∣Es(u, ũ)(x)− u(x)
∣∣∣dx = 0 ,

lim
s→0+

∫ t
0

∣∣∣wj(Eσ(u, ũ )(s)− wj
(
ũ(σ)

)∣∣∣ dσ = 0 .

(6.28)

Thus, taking the essential limit of the right-hand side of (6.27) as s → 0+, using
(6.28), and relying on (2.31)–(2.33), we obtain∫ R−λmax·t

2δ

∣∣u(t, x)− Et(u, ũ )(x)
∣∣dx = 0 ∀ t ∈ [0, T ] .(6.29)

Since δ ∈ ]0, R − λmax · T )/2[ , and R > λmax · T were arbitrary, this concludes the
proof of Theorem 2.4.

7. Proof of Theorem 2.6. We give here only the proof of the compactness
of the attainable sets A(T, U), T > 0, in connection with the sets of admissible
boundary controls U defined in (2.39), the procedure to establish the compactness of
A(x, U), x > 0, being entirely similar.

Fix T > 0.Given u ∈ L1(R+,K), consider a sequence of boundary data {ũν}ν≥0 ⊂
U , and let uν(t, x)

.
= Et(u, ũ

ν )(x) be the corresponding solutions. Observe that all
solutions uν(t, x), ν ≥ 0, are uniformly bounded since they take values in the com-
pact set K. Moreover, thanks to the Oleinik-type estimates (2.15)–(2.16) on the time
decay of the positive waves, for every fixed 0 < a < b, and 0 < τ ≤ T, there exist
constants C ′ = C ′(a, b, τ) > 0, C ′′ = C ′′(a, b, τ) > 0 such that

Tot.Var.
{
uν(t, · ) ; [a, b]

} ≤ C ′ ∀ t ∈ [τ, T ], ∀ ν ≥ 0 ,(7.1) ∫ b
a

|uν(t, x)− uν(s, x)| dx ≤ C ′′|t− s| ∀ t, s ∈ [τ, T ], ∀ ν ≥ 0 .(7.2)

Hence, applying Helly’s theorem, we deduce that there exists a subsequence {uνj}j≥0

so that {uνj (t, · )�[a, b]}j≥0 converges in L1([a, b], K) to some function ua,b,τ (t, ·) for
any t ∈ [τ, T ]. Therefore, by considering sequences of real number ak → 0+,
bk → ∞, τk → 0+, and by using a diagonal procedure, we construct a subse-
quence {uν′(t, · )}ν′≥0 that converges in L1

loc(R
+,K) to some function u(t, ·) for any

t ∈ [0, T ]. We claim that there exists a boundary data ũ ∈ U such that

u(t, · ) = Et(u, ũ ) ∀ t ∈ [0, T ] .(7.3)
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Notice that, by construction, the map (t, x) → (
u(t, ·), u(·, x)) takes values within

the domain DT defined in (2.30). Moreover, the estimate (7.2) implies the continuity
of u : [0, T ] × R

+ �→ U as a function from ]0, T ] into L1
loc(R

+). Hence, thanks to
Theorem 2.4 and Lemma 2.5, in order to prove the claim it will be sufficient to show
the following:

(1) There exists a boundary data ũ ∈ U so that u(t, x) is an entropy weak solution
to (1.1)–(1.3) on the region [0, T ]× R

+, in the sense of Definition 2.2.
(2) Given any boundary entropy pair

(
α(u, v), β(u, v)

)
for (1.1), there is a con-

stant M > 0 (depending only on (α, β) and on the domain K) for which
u(t, x) satisfies the corresponding distributional entropy inequality (2.34).

Towards a proof of (1) observe that, because of (2.26), all fluxes f(uν), ν ≥ 0,
admit a strong L1 trace Ψν at x = 0, whose essential range is contained in the compact
set f(K). Hence, the sequence {Ψν}ν≥0 is weak∗ relatively compact in L∞(R+) and,
by possibly taking a subsequence, we have

Ψν
∗
⇀Ψ in L∞(R+)(7.4)

for some function Ψ ∈ L∞(R+,Rn). Moreover, by Theorem 2.3, every uν is a distri-
butional solution of the corresponding initial-boundary value problem on [0, T ]×R

+;
i.e., there holds∫ T

0

∫ +∞

0

{
uν(t, x) · φt(t, x) + f(uν(t, x)) · φx(t, x)

}
dx dt

+

∫ +∞

0

u(x) · φ(0, x) dx+

∫ T
0

Ψν(t) · φ(t, 0) dt = 0(7.5)

for any test function φ ∈ C1
c with compact support contained in the set ]−∞, T [×R.

Therefore, passing to the limit as ν →∞ in (7.5), we get∫ T
0

∫ +∞

0

{
u(t, x) · φt(t, x) + f(u(t, x)) · φx(t, x)

}
dx dt

+

∫ +∞

0

u(x) · φ(0, x) dx+

∫ T
0

Ψ(t) · φ(t, 0) dt = 0 .(7.6)

By considering, in particular, test functions φ ∈ C1
c with compact support contained

in the set ] − ∞, T [×]0, ∞[, from (7.6) we deduce that u(t, x) is a distributional
solution of the Cauchy problem (1.1)–(1.2) on the region [0, T ]× R

+, as required by
Definition 2.2(i). On the other hand, given any C1 function α = α(t), writing (7.6)
for test functions φε(t, x) = α(t) · βε(t, x), βε ∈ C1

c , supported on the semistrips
]0, T [×]−∞, ε[, ε > 0, shrinking to the region ]0, T [×]−∞, 0] around the boundary
]0, T [×{0}, and such that φε(t, 0) = α(t), we obtain

lim
x→0+

∫ T
0

f(u(t, x)) · α(t) dt =

∫ T
0

Ψ(t) · α(t) dt ,(7.7)

thus proving (2.13).

Now observe that, by Remark 2.2, the definition (2.39) of the set U of admissible
boundary data implies

wj
(
f−1(Ψν(t))

) ∈ [cj , dj ] for a.e. t ≥ 0, j = n− p+ 1, . . . , n.(7.8)
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Hence, for every flux trace Ψν , ν ≥ 0, one has

(7.9)

Ψν(t) ∈ G .
=
{
f(u) ; wj(u) ∈ [cj , dj ] ∀ j = n− p+ 1, . . . , n

}
for a.e. t ≥ 0.

Since, by the properties of the Riemann invariants, the set G is closed and convex, it
follows that the weak limit of Ψν satisfies

Ψ(t) ∈ G for a.e. t ≥ 0.(7.10)

Therefore, if we consider the boundary data ũ defined in Riemann coordinates by

wj(ũ(t))
.
=


γj if j ≤ n− p,

∀ t ≥ 0 ,
wj
(
f−1(Ψ(t))

)
if j > n− p,

(7.11)

for some constant values

γj ∈


[cj , dj ] if j ∈ J,
j ≤ n− p ,

[aj , bj ] otherwise
(7.12)

(J denoting the set of indices in the definition (2.39) of U , and aj , bj being the con-
stants in the definition (2.5) of the set K), we clearly have ũ ∈ U , and, by Remark 2.2,
u(t, x) satisfies the boundary condition (2.14) of Definition 2.2(ii). To complete the
proof of (1) observe that the Oleinik-type conditions of Definition 2.2(iii) can be re-
covered by the lower semicontinuity of the total variation, since the map u(t, x) is
obtained as the L1

loc limit of a sequence of maps satisfying (2.15)–(2.18).
Finally, regarding (2) observe that every solution t �→ uν(t, ·), being a trajectory of

the flow map Et, is obtained as the limit of front tracking approximations, and hence
by standard arguments satisfies the distributional entropy inequality (2.34) associated
with any boundary entropy pair for (1.1). Clearly, this property is preserved by the
L1
loc limit u of the sequence uν . This concludes the proof of Theorem 2.6.

8. Appendix. We show here that, if the system (1.1) is of Temple class, the two
sets of admissible boundary values VEntr(ũ), V(ũ) defined in (2.12), (2.22) coincide.
Indeed, it was already shown in [8] that, if u ∈ VEntr(ũ), and η is an entropy for the
system (1.1) that is differentiable in ũ, with Dη(ũ) = 0, while q is the corresponding
flux associated with η, then u satisfies the entropy inequality that appears in the
definition (2.22), since q(u) ≤ q(ũ). Therefore, we deduce that u satisfies all the
inequalities in (2.22) associated with entropies η that are differentiable in ũ, since in
this case one can write η = η1 + η2, with

η1(u)
.
= η(ũ) +Dη(ũ) · (u− ũ), η2(u)

.
= η(u)− η1(u) ,(8.1)

where Dη2(ũ) = 0, while η1 is an affine entropy which trivially verifies the inequality
in (2.22). By density it follows that u satisfies all the inequalities in (2.22) associated
with any (continuous) convex entropy η, proving

V(ũ) ⊆ VEntr(ũ) .(8.2)

We will show below that the converse inclusion also holds.
Lemma 8.1. Let (1.1) be a system of Temple class, and let K be a set as in

(2.5). Assume that the strict hyperbolicity condition (SH1) is verified and that, for
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some index p ∈ {1, . . . , n}, there holds (2.6). Then, letting V(ũ), VEntr(ũ) be the sets
of admissible boundary values defined, respectively, in (2.12), and in (2.22), one has

VEntr(ũ) ⊆ V(ũ) ∀ ũ ∈ K .(8.3)

Proof. First observe that, by Remark 2.2, if w = (w1, . . . , wn) is a system of
Riemann coordinates for (1.1), then the inclusion (8.3) is verified if and only if, for
every ũ ∈ K, there holds

u ∈ VEntr(ũ) =⇒ wj(u) = wj(ũ) ∀ j = n− p+ 1, . . . , n .(8.4)

Next, fix ũ ∈ K, and, for every j > n − p, consider the following Kruzkow-type
entropy-entropy flux pair (see, e.g., [29, Chapter 13]):

ηj(u) =
∣∣lj(ũ) · (u− ũ)

∣∣ ,
qj(u) = lj(ũ) · (f(u)− f(ũ)) sgn

(
lj(ũ) · (u− ũ)

)
,

(8.5)

where lj(u) denotes the left eigenvector of the Jacobian matrix DF (u), normalized as
in (2.1). We will show that, if we set

E(η, q; ζ, u)
.
= q(u)− q(ũ)− ζ · (f(u)− f(ũ)

)
, ζ ∈ ∂η(ũ)(8.6)

(∂η(ũ) denoting the subdifferential of η at ũ), then, for any j > n− p, there holds

E(ηj , qj ; ζ, u) ≤ 0 ∀ ζ ∈ ∂η(ũ) =⇒ lj(ũ) · (u− ũ) = 0 ,(8.7)

which proves (8.4) since lj(ũ) · (u − ũ) = 0 is the equation of the hyperplane {u ∈
U ; wj(u) = wj(ũ)}. Observe that ∂η(ũ) = {γ lj(ũ) ; γ ∈ ∂| · | = [−1, 1]}, and
recall that for Temple class systems there exists a smooth, matrix-valued map M :
R
n × R

n → Mn×n(R) with the following properties (see [20]):
(i) There holds

f(u)− f(v) = M(u, v) · (u− v) ∀ u, v ,

M(u, u) = Df(u) ∀ u.
(8.8)

(ii) M(u, v) and Df(v) have the same (left and right) eigenvectors.
Multipling both terms of the first equality in (8.8) on the left by lj(v), we obtain

lj(v) · (f(u)− f(v)) = λj(u, v) lj(v) · (u− v) ∀ u, v ,(8.9)

where λj(u, v) denotes the ith eigenvalue of M(u, v). Then, using (8.9), by a direct
computation we find

E(ηj , qj ; ζ, u
)

= lj(ũ) · (f(u)− f(ũ)) sgn
(
lj(ũ) · (u− ũ)

)− γ lj(ũ) · (f(u)− f(ũ))

= λj(u, ũ)
(∣∣lj(ũ) · (u− ũ)

∣∣− γ lj(ũ) · (u− ũ)
)

∀ γ ∈ [−1, 1] .

(8.10)

Since, by (2.6), one has λj(u, ũ) > 0 for any j > n − p, from (8.10) we deduce (8.7),
thus concluding the proof.
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Abstract. In this paper we prove that the one-dimensional Schrödinger equation with derivative
in the nonlinear term is globally well-posed in Hs for s > 1

2
for data small in L2. To understand the

strength of this result one should recall that for s < 1
2

the Cauchy problem is ill-posed, in the sense
that uniform continuity with respect to the initial data fails. The result follows from the method
of almost conserved energies, an evolution of the “I-method” used by the same authors to obtain
global well-posedness for s > 2

3
. The same argument can be used to prove that any quintic nonlinear

defocusing Schrödinger equation on the line is globally well-posed for large data in Hs for s > 1
2
.

Key words. almost conserved energies, global well-posedness, Schrödinger equation with deriva-
tive
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1. Introduction. In this paper, using the method of almost conserved ener-
gies, we establish a sharp result on global well-posedness for the derivative nonlinear
Schrödinger IVP {

i∂tu+ ∂2
xu = iλ∂x(|u|2u),

u(x, 0) = u0(x), x ∈ R, t ∈ R,
(1)

where λ ∈ R.

The first result of this kind was obtained in the context of the KdV and the
modified KdV (mKdV) IVPs [11], also using almost conserved energies. Below we
will discuss in more detail the “almost conservation method” and its relationship
with the “I-method” which was applied to (1) in [9] (see also [10, 11, 20, 21]).

From the point of view of physics the equation in (1) is a model for the propagation
of circularly polarized Alfvén waves in magnetized plasma with a constant magnetic
field [25, 26, 29].
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It is natural to impose the smallness condition

‖u0‖L2 <

√
2π

|λ|(2)

on the initial data, as this will force the energy to be positive via the sharp Gagliardo–
Nirenberg inequality [36]. Note that the L2 norm is conserved by the evolution. In
this paper, we prove the following global well-posedness result.

Theorem 1.1. The Cauchy problem (1) is globally well-posed in Hs for s > 1
2 ,

assuming the smallness condition (2).
We present here once again [9] a summary of the well-posedness story for (1).

Scattering and well-posedness for this Cauchy problem has been studied by many
authors [14, 15, 16, 17, 18, 19, 27, 28, 30, 34, 35]. The best local well-posedness
result is due to Takaoka [30], where a gauge transformation and the Fourier restriction
method are used to obtain local well-posedness in Hs, s ≥ 1

2 . In [31], Takaoka showed
this result is sharp in the sense that, when s < 1

2 , the nonlinear evolution u(0) �→ u(t),
thought of as a map from Hs to Hs for some fixed t, fails to be C3 or even uniformly
C0 in this topology, even when t is arbitrarily close to zero and the Hs norm of the
data is small (see also Bourgain [5] and Biagioni–Linares [2]). Therefore, we see that
Theorem 1.1 is sharp, in the sense described above, except for the endpoint.

In [27], global well-posedness is obtained for (1) in H1 assuming the smallness
condition (2). The argument there is based on two gauge transformations performed
in order to remove the derivative in the nonlinear term and the conservation of the
Hamiltonian. This was improved by Takaoka [31], who proved global well-posedness in
Hs for s > 32

33 assuming (2). His method of proof is based on the idea of Bourgain [4, 6]
of estimating separately the evolution of low frequencies and of high frequencies of
the initial data. In [9], we used the “I-method” to further push the Sobolev exponent
for global well-posedness down to s > 2

3 . The main idea of the “I-method” consists
of defining a modified Hs norm permitting us to capture some nonlinear cancella-
tions in frequency space during the evolution (1). These cancellations allow us to
prove that the modified Hs(R) norm is nearly conserved in time, and an iteration
of the local result proves global well-posedness provided s > 2

3 . In this paper, an
algorithmic procedure, first developed in the KdV context [11], is applied to better
capture the cancellations in frequency space. Successive applications of the algorithm
generate higher-order-in-u but lower-order-in-scaling corrections to the modified Hs

norm. After one application of our algorithm, we show that the modified Hs norm
with the generated correction terms changes less in time than the modifed Hs norm
itself, so the first application of the algorithm produces an almost conserved energy.
The improvement obtained allows us to iterate the local result and prove global well-
posedness in Hs(R) provided s > 1

2 . In principle, the algorithm may itself be iterated
to generate a sequence of almost conserved energies giving further insight into the
dynamical properties of (1). The endpoint s = 1

2 is not obtained here. We speculate,
however, that a further refinement of the “almost conservation method” could be a
possible way to approach this question.

We conclude this section with the following remark.
Remark 1.2. Consider the one-dimensional quintic nonlinear Schrödinger

i∂tu = ∂xxu+ iauū∂xu+ ibu2∂xū+ cu3ū2,(3)

where a, b, and c are fixed real numbers. If (a+b)(3a−5b)/48+c/3 < 0 the equation in
(3) is defocusing and, as was remarked in [9], the techniques used to prove Theorem 1.1
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apply here too, and one can prove global well-posedness for initial data in Hs, s > 1
2 .

Moreover, if a = b = 0, we expect our method to give global well-posedness1 even
below s = 1/2.

We should point out that Clarkson and Cosgrove [8] (see also [1]) proved that (3)
fails the Painlevé test for complete integrability when

c �= 1

4
b(2b− a).

In particular, this shows that our techniques, which do not depend on a, b, c, do not
rely on complete integrability.

2. Notation and known facts. To prove Theorem 1.1 we may assume 1
2 < s ≤

2
3 , since for s > 2

3 the result is contained in [27, 31] and [9]. Henceforth 1
2 < s ≤ 2

3
shall be fixed. Also, by rescaling u, we may assume λ = 1.

We use C to denote various constants depending on s; if C depends on other
quantities as well, this will be indicated by explicit subscripting; e.g., C‖u0‖2 will
depend on both s and ‖u0‖2. We use A � B to denote an estimate of the form
A ≤ CB, and A ∼ B for cB ≤ A ≤ CB, where c and C are absolute constants. We
also use A� B if A ≤ εB, where ε is a very small absolute constant. We use a+ and
a− to denote expressions of the form a+ ε and a− ε, where 0 < ε� 1 depends only
on s.

We use ‖f‖p to denote the Lp(R) norm and Lq
tL

r
x to denote the mixed norm

‖f‖Lq
tL

r
x
:=

(∫
‖f(t)‖qr dt

)1/q

with the usual modifications when q =∞.
We define the spatial Fourier transform of f(x) by

F(f)(ξ) := f̂(ξ) :=

∫
R

e−ixξf(x) dx

and the spacetime Fourier transform u(t, x) by

F̃(u)(τ, ξ) := ũ(τ, ξ) :=

∫
R

∫
R

e−i(xξ+tτ)u(t, x) dtdx.

Note that the derivative ∂x is conjugated to multiplication by iξ by the Fourier trans-
form.

We shall also define Dx to be the Fourier multiplier with symbol 〈ξ〉 := 1 + |ξ|.
We can then define the Sobolev norms Hs by

‖f‖Hs := ‖Ds
xf‖2 = ‖〈ξ〉sf̂‖L2

ξ
.

We also define the spacesXs,b(R×R) (first introduced in the context of the Schrödinger
equation in [3]; see also [22, 23]) on R× R by

‖u‖Xs,b(R×R) := ‖〈ξ〉s〈τ − |ξ|2〉bû(ξ, τ)‖L2
τL

2
ξ
.

1Recall that in this case the initial value problem is locally well-posed in Hs for s ≥ 0; see [7]
and [33].
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We often abbreviate ‖u‖s,b for ‖u‖Xs,b(R×R). For any time interval I, we define the

restricted spaces Xs,b(I × R) by

‖u‖Xs,b(I×R) := inf{‖U‖s,b : U |I×R = u}.
We shall take advantage of the Strichartz estimate (see, e.g., [3])

‖u‖L6
tL

6
x

� ‖u‖0, 12+,(4)

which interpolates with the trivial estimate

‖u‖L2
tL

2
x

� ‖u‖0,0,(5)

to give

‖u‖Lp
tL

p
x

� ‖u‖0,α(p)(6)

for any p ∈ [2, 6] and α(p) = (3+)(p−2)
4p . We also use

‖u‖L∞
t L2

x
� ‖u‖0, 12+,(7)

which together with Sobolev embedding gives

‖u‖L∞
t L∞

x
� ‖u‖ 1

2+, 12+.(8)

The next lemma introduces two more estimates that are probably less known than
the standard Strichartz estimates.

Lemma 2.1. For any b > 1
2 and any function u for which the right-hand side is

well defined, we have

‖D 1
2
x u‖L∞

x L2
t

� ‖u‖X0,b(9)

(smoothing effect estimate).
For any s > 1

2 and ρ ≥ 1
4 we have

‖u‖L2
xL

∞
t

� ‖u‖Xs,b ,(10)

‖u‖L4
xL

∞
t

� ‖u‖Xρ,b(11)

(maximal function estimates).
Proof. The estimates (9), (10), and (11) come from estimating the solution S(t)u0

of the linear one-dimensional Schrödinger IVP in the norm appearing in the left-hand
side and from a standard argument of summation along parabolic curves; see, for
example, the expository paper [13]. The smoothing effect and maximal function
estimates for S(t)u0 can be found, for example, in [24].

We also have the following improved Strichartz estimate (cf. Lemma 7.1 in [9];
see also [4, 28, 32]).

Lemma 2.2. For any Schwartz functions u, v with Fourier support in |ξ| ∼ R,
|ξ| � R, respectively, we have that

‖uv‖L2
tL

2
x
= ‖uv̄‖L2

tL
2
x

� R−1/2‖u‖0,1/2+‖v‖0,1/2+.

In our arguments we shall be using the trivial embedding

‖u‖s1,b1 � ‖u‖s2,b2 whenever s1 ≤ s2, b1 ≤ b2
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so frequently that we will not mention this embedding explicitly.
We now give some useful notation for multilinear expressions. If n ≥ 2 is an even

integer, we define a (spatial) n-multiplier to be any function Mn(ξ1, . . . , ξn) on the
hyperplane

Γn := {(ξ1, . . . , ξn) ∈ R
n : ξ1 + · · ·+ ξn = 0},

which we endow with the standard measure δ(ξ1 + · · · + ξn), where δ is the Dirac
delta.

If Mn is an n-multiplier and f1, . . . , fn are functions on R, we define the n-linear
functional Λn(Mn; f1, . . . , fn) by

Λn(Mn; f1, . . . , fn) :=

∫
Γn

Mn(ξ1, . . . , ξn)

n∏
j=1

f̂j(ξj).

We adopt the notation

Λn(Mn; f) := Λn(Mn; f, f̄ , f, f̄ , . . . , f, f̄).

Observe that Λn(Mn; f) is invariant under permutations of the even ξj indices or of
the odd ξj indices.

If Mn is a multiplier of order n, 1 ≤ j ≤ n is an index, and k ≥ 1 is an even
integer, we define the elongation Xk

j (Mn) of Mn to be the multiplier of order n + k
given by

Xk
j (Mn)(ξ1, . . . , ξn+k) := Mn(ξ1, . . . , ξj−1, ξj + . . .+ ξj+k, ξj+k+1, . . . , ξn+k).

In other words, Xk
j is the multiplier obtained by replacing ξj by ξj + · · · + ξj+k and

advancing all the indices after ξj accordingly.
We shall often write ξij for ξi+ ξj , ξijk for ξi+ ξj + ξk, etc. We also write ξi−j for

ξi− ξj , ξij−klm for ξij − ξklm, etc. Also, if m(ξ) is a function defined in the frequency
space, we use the notation m(ξi) = mi, m(ξij−k) = mij−k, etc.

In this paper we often use two very elementary tools: the mean value theorem
(MVT) and the double mean value theorem (DMVT). While recalling the statement
of the MVT will be an embarrassment, we think that doing so for the DMVT is a
necessity to avoid later confusion.

Lemma 2.3 (DMVT). Assume f ∈ C2(R) and that max(|η|, |λ|)� |ξ|; then

|f(ξ + η + λ)− f(ξ + η)− f(ξ + λ) + f(ξ)| � |f ′′(θ)||η||λ|,

where |θ| ∼ |ξ|.
3. The gauge transformation, energy, and the almost conservation laws.

In this section we summarize the main results presented in section 3 and 4 of [9].
Whatever is here simply stated and recalled is fully explained or proved in those
sections.

We start by applying the gauge transform used in [27] in order to improve the
derivative nonlinearity present in (1).

Definition 3.1. We define the nonlinear map G : L2(R)→ L2(R) by

Gf(x) := e
−i
∫ x

−∞ |f(y)|2dy
f(x).
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The inverse transform G−1f is then given by

G−1f(x) := e
i
∫ x

−∞ |f(y)|2dy
f(x).

This transform is a bicontinuous map from Hs to itself for any s ∈ [0, 1].
Set w0 := Gu0, and w(t) := Gu(t) for all times t. A straightforward calculation

shows that the IVP (1) transforms into{
i∂tw + ∂2

xw = −iw2∂xw̄ − 1
2 |w|4w,

w(x, 0) = w0(x), x ∈ R, t ∈ R.
(12)

Also, the smallness condition (2) becomes

‖w0‖L2 <
√
2π.(13)

By the bicontinuity we thus see that global well-posedness of (1) in Hs is equivalent
to that of (12). From [27, 30, 31], we know that both Cauchy problems are locally
well-posed in Hs, s ≥ 1

2 , and globally well-posed in H1 assuming (13). By standard
limiting arguments, we thus see that Theorem 1.1 will follow if we can show the
following.

Proposition 3.2. Let w be a global H1 solution to (12) obeying (13). Then for
any T > 0 and s > 1

2 we have

sup
0≤t≤T

‖w(t)‖Hs � C(‖w0‖Hs ,T ),

where the right-hand side does not depend on the H1 norm of w.
We now pass to the considerations on the energy associated with solutions of (12).
Definition 3.3. If f ∈ H1(R), we define the energy E(f) by

E(f) :=

∫
∂xf∂xf dx− 1

2
Im

∫
fff∂xf dx.

By the Gagliardo–Nirenberg inequality we have

‖∂xf‖2 ≤ C‖f‖2E(f)1/2(14)

for any f ∈ H1 such that ‖f‖2 <
√
2π.

By Plancherel, we write E(f) using the Λ notation and Fourier transform prop-
erties as

E(f) = −Λ2(ξ1ξ2; f)− 1

2
ImΛ4(iξ4; f).(15)

Expanding out the second term using Im(z) = (z − z̄)/2i, and using symmetry, we
may rewrite this as

E(f) = −Λ2(ξ1ξ2; f) +
1

8
Λ4(ξ13−24; f).(16)

One can use the same notation to rewrite the L2 norm as

‖w(t)‖22 = Λ2(1;w(t)).

Lemma 3.4 (see [27]). If w is an H1 solution to (12) for t ∈ [0, T ], then we have

‖w(t)‖2 = ‖w0‖2
and

E(w(t)) = E(w0)

for all t ∈ [0, T ].
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In [9] this lemma was proved using the following general proposition (cf. [9]).
Proposition 3.5. Let n ≥ 2 be an even integer, let Mn be a multiplier of order

n, and let w be a solution of (12). Then

∂tΛn(Mn;w(t)) = iΛn

Mn

n∑
j=1

(−1)jξ2
j ;w(t)


− iΛn+2

 n∑
j=1

X2
j (Mn)ξj+1;w(t)


+

i

2
Λn+4

 n∑
j=1

(−1)j−1X4
j (Mn);w(t)

 .

(17)

We summarize below the idea we used to prove Proposition 3.2 for s > 2
3 in [9].

Because we do not want to use the H1 norm of w, we cannot directly use the energy
E(w(t)) defined above. So we introduced a substitute notion of “energy” that could
be defined for a less regular solution and that had a very slow increment in time. In
frequency space consider an even C∞ monotone multiplier m(ξ) taking values in [0, 1]
such that

m(ξ) :=

{
1 if |ξ| < N,(
|ξ|
N

)s−1

if |ξ| > 2N.
(18)

Define the multiplier operator I : Hs −→ H1 such that Îw(ξ) := m(ξ)ŵ(ξ). This
operator is smoothing of order 1− s; indeed one has

‖u‖s0,b0 � ‖Iu‖s0+1−s,b0 � N1−s‖u‖s0,b0(19)

for any s0, b0 ∈ R. Our substitute energy was defined by

EN (w) := E(Iw).

Note that this energy makes sense even if w is only in Hs. In general, the energy
EN (w(t)) is not conserved in time, but we showed that the increment was very small
in terms of N .

To proceed with the improvement of the “I-method,” let us consider a symmetric
multiplier m(ξ)2 and let I be the multiplier operator associated with it. Then we
write

E1(w) := E(Iw).

Clearly, if m is the multiplier in (18), then

E1(w) = EN (w),

so we can think about E1(w) as the first generation of a family of modified energies.
In this paper we introduce the second generation in detail, but formally the method
can be used to define an infinite family of modified energies. We write

E2(w) = −Λ2(m1ξ1m2ξ2, w) +
1

2
Λ4 (M4(ξ1, ξ2, ξ3, ξ4), w) ,(20)

2This eventually will be taken to be exactly the multiplier in (18).
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where M4 will be determined later. Assume now that w is a solution of (12). Because
w is fixed we drop it from the definition of E2. We are interested in the increment
of this second generation of energies, and hence we compute d

dtE
2. Differentiating

Λ2(m1ξ1m2ξ2) using Proposition 3.5, using the identity ξ1 + · · · + ξn = 0 and sym-
metrizing, we have

d

dt
Λ2(m1ξ1m2ξ2) = − iΛ2(m1ξ1m2ξ2(ξ

2
1 − ξ2

2))− iΛ4(m123ξ123m4ξ4ξ2 +m1ξ1m234ξ234ξ3)

+
i

2
Λ6(m12345ξ12345m6ξ6 −m1ξ1m23456ξ23456)

=
i

2
Λ4(σ4(ξ1, ξ2, ξ3, ξ4)) +

i

6
Λ6(σ6(ξ1, ξ2, ξ3, ξ4, ξ5, ξ6)),

where

σ4(ξ1, ξ2, ξ3, ξ4) = m2
1ξ

2
1ξ3 +m2

2ξ
2
2ξ4 +m2

3ξ
2
3ξ1 +m2

4ξ
2
4ξ2(21)

and

σ6(ξ1, ξ2, ξ3, ξ4, ξ5, ξ6) =

6∑
j=1

(−1)j−1m2
jξ

2
j .(22)

Notice that the contribution of Λ2 is zero because the factor (ξ2
1 − ξ2

2) is zero over the
set of integration ξ1 + ξ2 = 0.

Differentiating Λ4(M4), we have

d

dt
Λ4(M4(ξ1, ξ2, ξ3, ξ4))

= iΛ4

M4

4∑
j=1

(−1)jξ2
j


− iΛ6(M4(ξ123, ξ4, ξ5, ξ6)ξ2 +M4(ξ1, ξ234, ξ5, ξ6)ξ3

+M4(ξ1, ξ2, ξ345, ξ6)ξ4 +M4(ξ1, ξ2, ξ3, ξ456)ξ5)

+
i

2
Λ8(M4(ξ12345, ξ6, ξ7, ξ8)−M4(ξ1, ξ23456, ξ7, ξ8)

+M4(ξ1, ξ2, ξ34567, ξ8)−M4(ξ1, ξ2, ξ3, ξ45678))

= iΛ4

M4

4∑
j=1

(−1)jξ2
j


− i

36

∑
{a,c,e}={1,3,5}
{b,d,f}={2,4,6}

Λ6(M4(ξabc, ξd, ξe, ξf )ξb +M4(ξa, ξbcd, ξe, ξf )ξc

+M4(ξa, ξb, ξcde, ξf )ξd +M4(ξa, ξb, ξc, ξdef )ξe)

+ C
∑

{a,c,e,g}={1,3,5,7}
{b,d,f,h}={2,4,6,8}

Λ8(M4(ξabcde, ξf , ξg, ξh) +M4(ξa, ξb, ξcdefg, ξh)

−M4(ξa, ξbcdef , ξg, ξh)−M4(ξa, ξb, ξc, ξdefgh)).
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Then

d

dt
E2(w) = − i

2
Λ4(σ4(ξ1, ξ2, ξ3, ξ4)) +

i

2
Λ4

M4

4∑
j=1

(−1)jξ2
j


− i

6
Λ6(σ6(ξ1, ξ2, ξ3, ξ4, ξ5, ξ6))

− i

72

∑
{a,c,e}={1,3,5}
{b,d,f}={2,4,6}

Λ6(M4(ξabc, ξd, ξe, ξf )ξb +M4(ξa, ξbcd, ξe, ξf )ξc

+M4(ξa, ξb, ξcde, ξf )ξd +M4(ξa, ξb, ξc, ξdef )ξe)

+ C1

∑
{a,c,e,g}={1,3,5,7}
{b,d,f,h}={2,4,6,8}

Λ8(M4(ξabcde, ξf , ξg, ξh) +M4(ξa, ξb, ξcdefg, ξh)

−M4(ξa, ξbcdef , ξg, ξh)−M4(ξa, ξb, ξc, ξdefgh)).

We abbreviate the 6-linear and the 8-linear expressions as Λ6(M6(ξ1, ξ2, . . . , ξ6)) and
Λ8(M8(ξ1, ξ2, . . . , ξ8)). We are now ready to make our choice for M4. From our cal-
culations in [9], we realized that the estimates for the different pieces of Λn appearing
in the right-hand side of d

dtEN (w) are easier for n larger.3 We decided to use the
freedom of choosing M4 to cancel the Λ4 contribution obtained above. Hence, using
(21), we set

M4(ξ1, ξ2, ξ3, ξ4) = −m2
1ξ

2
1ξ3 +m2

2ξ
2
2ξ4 +m2

3ξ
2
3ξ1 +m2

4ξ
2
4ξ2

ξ2
1 − ξ2

2 + ξ2
3 − ξ2

4

,(23)

which in the set of integration ξ1 + ξ2 + ξ3 + ξ4 = 0 can also be written as

M4(ξ1, ξ2, ξ3, ξ4) = −m2
1ξ

2
1ξ3 +m2

2ξ
2
2ξ4 +m2

3ξ
2
3ξ1 +m2

4ξ
2
4ξ2

2ξ12ξ14
.

Remark 3.6. If we assume that m(ξ) = 1, then E2(w) = E(w). In fact, on the
set ξ1 + ξ2 + ξ3 + ξ4 = 0 we have

m2
1ξ

2
1ξ3 +m2

2ξ
2
2ξ4 +m2

3ξ
2
3ξ1 +m2

4ξ
2
4ξ2

= ξ2
1ξ3 + ξ2

2ξ4 + ξ2
3ξ1 + ξ2

4ξ2

= (ξ1 + ξ3)(ξ1ξ3 − ξ2ξ4)

= (ξ1 + ξ3)(ξ1ξ3 + (ξ1 + ξ3 + ξ4)ξ4)

= −(ξ1 + ξ3)(ξ1 + ξ4)(ξ1 + ξ2);

hence

M4(ξ1, ξ2, ξ3, ξ4) =
1

2
(ξ1 + ξ3)(24)

and

E2(w) = −Λ2(ξ1ξ2) +
1

4
Λ4(ξ13),

3Compare, for example, sections 8, 9, and 10 in [9].
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which is exactly the value of E(w) in (15).
Once again we recall that we assume throughout the paper that s ∈ ( 1

2 ,
2
3 ] and

that the multiplier m is defined as in (18). To stress the fact that with this choice
the energy E2(w) depends on the parameter N , we write E2(w) = E2

N . We now
summarize some of the above observations in the following.

Proposition 3.7. Let w be an H1 global solution to (12). Then for any T ∈ R

and δ > 0 we have

E2
N (w(T + δ))− E2

N (w(T )) =

∫ T+δ

T

[Λ6(M6;w(t)) + Λ8(M8;w(t))] dt,

where the multipliers M6 and M8 are given by

M6 := − i

6
σ6(ξ1, ξ2, ξ3, ξ4, ξ5, ξ6)

− i

72

∑
{a,c,e}={1,3,5}
{b,d,f}={2,4,6}

(M4(ξabc, ξd, ξe, ξf )ξb +M4(ξa, ξbcd, ξe, ξf )ξc

+ M4(ξa, ξb, ξcde, ξf )ξd +M4(ξa, ξb, ξc, ξdef )ξe),

M8 := C2

∑
{a,c,e,g}={1,3,5,7}
{b,d,f,h}={2,4,6,8}

(M4(ξabcde, ξf , ξg, ξh) +M4(ξa, ξb, ξcdefg, ξh)

−M4(ξa, ξbcdef , ξg, ξh)−M4(ξa, ξb, ξc, ξdefgh)),

where C2 is an absolute constant. Furthermore, if |ξj | � N for all j, then the
multipliers M6 and M8 vanish.

We end this section with a lemma that shows the energy E2
N (w) has the same

strength as ‖Iw‖H1 .
Lemma 3.8. Assume that w satisfies ‖w‖L2 <

√
2π, ‖Iw‖H1 = O(1). Then, for

N � 1,

‖∂xIw‖2L2 � E2
N (w).(25)

The proof of this lemma relies strongly on the estimate of the multiplier M4, and
it can be found in the next section.

4. Estimates for M4 and proof of Lemma 3.8. Before we start with our
estimates we recall some notation that we used in [9]. Let n = 4, 6, or 8 and let
ξ1, . . . , ξn be frequencies such that ξ1+· · ·+ξn = 0. Define Ni := |ξi|, and Nij := |ξij |.
We adopt the notation that

1 ≤ soprano, alto, tenor, baritone ≤ n

are the distinct indices such that

Nsoprano ≥ Nalto ≥ Ntenor ≥ Nbaritone

are the highest, second highest, third highest, and fourth highest values of the fre-
quencies N1, . . . , Nn, respectively. (If there is a tie in frequencies, we break the tie
arbitrarily.) Since ξ1 + · · · + ξn = 0, we must have Nsoprano ∼ Nalto. Also, from
Proposition 3.7 we see that Mn vanishes unless Nsoprano � N .
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In this section whenever we write max |f(θ)| for a function f we understand that
the maximum is taken for |θ| ∼ Nsoprano.

Lemma 4.1. Assume M4 is the multiplier defined in (23) and m(ξ) is as in (18).
Then

|M4(ξ1, . . . , ξ4)| � m2(Nsoprano)Nsoprano.(26)

Proof. We observe that to prove (26) it suffices to prove

|σ4(ξ1, . . . , ξ4)| � |ξ12||ξ12|m2(Nsoprano)Nsoprano.

Without loss of generality we may assume that Nsoprano = N1. By symmetry we
can assume that |ξ12| ≤ |ξ14|. We divide the analysis into two cases: Case (a) when
N1 � |ξ14| and Case (b) when |ξ14| � N1.

Case (a). We write

|σ4(ξ1, . . . , ξ4)| = |m2
1ξ

2
1ξ3 +m2

2ξ
2
2(−ξ12 − ξ3) +m2

3ξ
2
3ξ1 +m2

12+3ξ
2
12+3ξ2|

= |ξ3(m2
1ξ

2
1 −m2

1−12ξ
2
1−12) + ξ1(m

2
3ξ3 −m2

3+12ξ
2
3+12)(27)

− ξ12(m
2
2ξ

2
2 −m2

12+3ξ
2
12+3)|.

Then the MVT shows that

|σ4(ξ1, ξ2, ξ3, ξ4)| � |ξ12|N1 max |(m(ξ)2ξ2)′|,(28)

where |ξ| � N1. Now it is easy to see that for m defined in (18)

(m2(ξ)ξ2)′ ∼ m2(ξ)ξ

and that the function m2(ξ)ξ is nondecreasing. Then (28) immediately gives (26).
Case (b). We first write σ4 so that the DMVT in Lemma 2.3 can be applied. For

simplicity we write m2(ξ)ξ2 = f(ξ). Then in the set ξ1 + · · ·+ ξ4 = 0 we have

σ4(ξ1, . . . , ξ4) = f(ξ1)ξ3 + f(ξ2)ξ4 + f(ξ3)ξ1f(ξ4)ξ2

= ξ3[f(ξ1)− f(ξ2)] + ξ1[f(ξ3)− f(−ξ4)]− ξ12[f(ξ2)− f(−ξ4)]
= ξ3[f(ξ1)− f(ξ2) + f(ξ3)− f(−ξ4)]

+ (ξ1 − ξ3)[f(ξ3)− f(ξ3 − ξ12)]− ξ12[f(ξ2)− f(−ξ4)]
= ξ3[f(ξ1 − ξ12 − ξ14)− f(ξ1 − ξ12)− f(ξ1 − ξ14) + f(ξ1)]

+ (−ξ3 + ξ1)[f(ξ3)− f(ξ3 − ξ12)]− ξ12[f(ξ2)− f(ξ2 + ξ14 − ξ12)],

where we often used the fact that f(ξ) is an even function. Using the DMVT in the
first term of the right-hand side of the inequality and the MVT in the remaining two
terms we obtain

σ4(ξ1, . . . , ξ4) � |ξ1||f ′′(θ)||ξ12||ξ14|+ |ξ12|max |f ′|(|ξ3−1|+ |ξ14|+ |ξ12|),(29)

where |θ| ∼ N1. Now observe that

|ξ3−1| = |ξ12 + ξ14| � |ξ14|

and that |f ′′(θ)| � m(N1)
2, so inserting (29) in the definition of M4 we obtain

(26).
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We need two more local estimates for M4.
Lemma 4.2.
• Assume that |ξ1| ∼ |ξ3| � N � |ξ2|, |ξ4|; then

|M4(ξ1, ξ2, ξ3, ξ4)| � m(Nsoprano)
2Ntenor.(30)

• Assume that |ξ1| ∼ |ξ2| � N � |ξ3|, |ξ4|; then

M4(ξ1, ξ2, ξ3, ξ4) =
m2

1ξ
2
2

2ξ1
+R(ξ1, . . . , ξ4),(31)

where

|R(ξ1, . . . , ξ4)| � Ntenor.

Proof. The first part of the lemma follows from the MVT. In fact,∣∣∣∣m2
1ξ

2
1ξ3 + ξ2

2ξ4 +m2
3ξ

2
3ξ1 + ξ2

4ξ2
ξ12ξ14

∣∣∣∣ � |ξ1ξ3ξ13|max |(m(ξ)2ξ)′|+ |ξ24ξ2ξ4|
|ξ1|2

� m(Nsoprano)
2Ntenor,

where again we used that |(m(ξ)2ξ)′| ∼ |m(ξ)ξ|.
To prove the second part of the lemma we use the identity

1

ξ14
=

1

ξ1
− ξ4

ξ14

1

ξ1
,

and we write

−2M4(ξ1, ξ2, ξ3, ξ4) +
m2

1ξ
2
2

ξ1
= R1(ξ1, . . . , ξ4) +R2(ξ1, . . . , ξ4),

where

R1(ξ1, . . . , ξ4) =
m2

1ξ
2
1ξ3 +m2

2ξ
2
2ξ4 + ξ2

3ξ1 + ξ2
4ξ2 +m2

1ξ
2
2ξ12

ξ12ξ1
,

R2(ξ1, . . . , ξ4) = − ξ4
ξ14

m2
1ξ

2
1ξ3 +m2

2ξ
2
2ξ4 + ξ2

3ξ1 + ξ2
4ξ2

ξ12ξ1
.

We first estimate R1:

R1(ξ1, . . . , ξ4) =
m2

1ξ
2
1ξ3 +m2

2ξ
2
2ξ4 + ξ2

3ξ1 + ξ2
4ξ2 −m2

1ξ
2
2ξ34

ξ12ξ1

=
m2

1ξ3(ξ
2
1 − ξ2

2) + ξ2
2ξ4(m

2
2 −m2

1) + ξ2
3(ξ1 + ξ2) + ξ2(ξ

2
4 − ξ2

3)

ξ12ξ1
, and

hence, by the MVT,

|R1(ξ1, . . . , ξ4)| � Ntenor.

On the other hand,

R2(ξ1, . . . , ξ4) = − ξ4
ξ14

m2
1ξ

2
1(ξ3 + ξ4) + (m2

2ξ
2
2 −m2

1ξ
2
1)ξ4 + ξ2

3ξ12 + ξ2ξ34ξ3−4

ξ12ξ1
, and

hence, again by the MVT,

|R2(ξ1, . . . , ξ4)| � Ntenor.
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Proof of Lemma 3.8.
Proof. We rewrite E2

N (w) as

E2
N (w) = − Λ2(m1ξ1m2ξ2) +

1

8
Λ4(ξ13−24m1m2m3m4)

+
1

8
Λ4(4M4(ξ1, ξ2, ξ3, ξ4)− ξ13−24m1m2m3m4).

In Lemma 3.6 of [9] we proved the estimate

‖∂xIw‖2L2 � −Λ2(m1ξ1m2ξ2) +
1

8
Λ4(ξ13−24m1m2m3m4)

for ‖Iw‖L2 <
√
2π. Hence we have only to show that

|Λ4(4M4(ξ1, ξ2, ξ3, ξ4)− ξ13−24m1m2m3m4)| � O

(
1

Nα

)
‖Iw‖4H1(32)

for some α > 0.
We first perform a Littlewood–Paley decomposition of the four factors w so that

the ξi are essentially the constants Ni, i = 1, . . . , 4. To recover the sum at the end
we borrow a N−εsoprano from the large denominator Nsoprano and often this will not be
mentioned.

If all |ξj | are less than N
100 , the left-hand side of (32) vanishes thanks to (23).

Therefore, we may assume Nsoprano � N . Also note Nalto � N on the set ξ1 + ξ2 +
ξ3 + ξ4 = 0. Then it is obvious that

|Λ4(ξ13−24m1m2m3m4)| � 1

N
‖Iw‖2H1‖Iw‖2L∞ � 1

N
‖Iw‖4H1 .

Next we control the contribution of Λ4(M4) in (32). By (26), we have

|Λ4(M4(ξ1, ξ2, ξ3, ξ4))| � 1

N1−
sopranom(Nbaritone)2Nbaritone

‖Iw‖4H1 � 1

N1− ‖Iw‖4H1 ,

where again we used the fact that m2(ξ)ξ is nondecreasing.

5. Local estimates. This section contains a refinement of the results presented
in section 5 of [9]. We start with the main result.

Theorem 5.1. Let w be a H1 global solution to (12) and let T ∈ R be such that

‖Iw(T )‖H1 ≤ C0

for some C0 > 0. Then we have

‖Iw‖X1,b([T,T+δ]×R) � 1

for any 1
2 < b < 3

4 and for some δ > 0 depending on C0.
Remark 5.2. This theorem is stronger than the corresponding Theorem 5.1 in [9]

because b can be arbitrarily close to 3
4 , and this is essential to obtain our sharp global

well-posedness result.
As explained in [9] the proof of Theorem 5.1 is a consequence of the following

multilinear estimates.
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Lemma 5.3. For the Schwartz function w and 1
2 < b < 3

4 , b′ < 3
4 , we have

‖I(w∂xww)‖1,b′−1 � ‖Iw‖21, 12+‖Iw‖1,b,(33)

‖I(wwwww)‖1,b′−1 � ‖Iw‖51, 12+.(34)

Proof. The proof of (34) follows from the same arguments used to prove (17) in
[9], and we do not present it here again. The proof of (33) on the other hand is more
delicate than the one given in [9] for (16), so we decided to give all the details. By
standard duality arguments in L2 and renormalization, it is easy to see that (33) is
equivalent to

(35)∫
∗

m4〈ξ4〉|ξ2|〈τ4 + ξ2
4〉b

′−1∑3
i=1〈τi + (−1)iξ2

i 〉b−
1
2−
∏3

j=1 mj〈ξj〉〈τj + (−1)jξ2
j 〉

1
2+

4∏
j=1

Fj(τj , ξj) �
4∏

j=1

‖Fj‖L2 ,

where all functions Fj are real-valued and nonnegative. If

m4〈ξ4〉|ξ2|∏3
j=1 mj〈ξj〉

� 1,(36)

then the L2 estimate (5) for F4 and the Strichartz estimate (6) with p = 6 for F1, F2, F3

automatically shows (35) for b > 1
2 , b′ ≤ 1. Then we may assume

m4〈ξ4〉|ξ2|∏3
j=1 mj〈ξj〉

� 1,

which, one can easily check, can happen only when

|ξ2| � 1, |ξ12| � 1, |ξ14| � 1.

We recall (cf. [3] and [9]) the fundamental inequality

|ξ12ξ14| � max
j=1,2,3,4

{〈τj + (−1)jξ2
j 〉}.(37)

Then we proceed with a case by case analysis: Case (a) if maxj=1,2,3{〈τ4 + ξ2
4〉, 〈τj +

(−1)jξ2
j 〉} = 〈τ4 + ξ2

4〉 and Case (b) if maxj=1,2,3{〈τ4 + ξ2
4〉, 〈τj + (−1)jξ2

j 〉} = 〈τi +
(−1)jξ2

i 〉 for some i = 1, 2, 3.

• Case (a). In this case we replace in the denominator 〈τ4 + ξ2
4〉1−b

′
with

(〈ξ12〉〈ξ14〉)1−b′ . Then, using the same argument that in [9] led us from (16)
to (18), we can show that (35) is equivalent to

(38)∫
∗

〈ξ4〉s〈ξ2〉1−s
(〈ξ12〉〈ξ14〉)1−b′〈ξ1〉s〈ξ3〉s

∏3
j=1〈τj + (−1)jξ2

j 〉
1
2+

4∏
j=1

Fj(τj , ξj) �
4∏

j=1

‖Fj‖L2 .
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To have an idea of the “numerics” involved while proceeding with the proof,
the reader should keep in mind that the interesting case is when s = 1

2+ and
1− b′ = 1

4+. Since ξ14 = −ξ32, by symmetry, we may assume that |ξ1| ≥ |ξ3|.
Then, using the fact that ξ4 = −ξ3 − ξ12, we can write

〈ξ4〉s〈ξ2〉1−s
(〈ξ12〉〈ξ14〉)1−b′〈ξ1〉s〈ξ3〉s = A1 +A2,(39)

where

A1 � 〈ξ2〉1−s
(〈ξ12〉〈ξ14〉)1−b′〈ξ1〉s ,

A2 � 〈ξ12〉
s−1+b′〈ξ2〉1−s

〈ξ14〉1−b′〈ξ1〉s〈ξ3〉s .

We now write ξ12 = −ξ14 − ξ3 + ξ1, and we write

A2 = A1
2 +A2

2 +A3
2,

where

A1
2 � 〈ξ2〉1−s
〈ξ14〉2(1−b′)−s〈ξ1〉s〈ξ3〉s ,

A2
2 � 〈ξ2〉1−s
〈ξ14〉1−b′〈ξ3〉1−b′〈ξ1〉s ,

A3
2 � 〈ξ2〉1−s
〈ξ14〉1−b′〈ξ1〉1−b′〈ξ3〉s .

It is now easy to see that, for 1− b′ ≥ s
2 ,

A1, A
i
2(ξ1, ξ2, ξ3) � 〈ξ2〉 12

〈ξ1〉 s2 〈ξ3〉 s2
for all i = 1, 2, 3.

Then by (9) and (11) we obtain

∫
∗

〈ξ4〉s〈ξ2〉1−s
(〈ξ12〉〈ξ14〉)1−b′〈ξ1〉s〈ξ3〉s

∏3
j=1〈τj + (−1)jξ2

j 〉
1
2+

4∏
j=1

Fj(τj , ξj)

� ‖F̃−1(F4)‖L2
xt

∥∥∥∥∥F̃−1

(
〈ξ〉 12

〈τ + ξ2〉 12+
F2

)∥∥∥∥∥
L∞

x L2
t

‖F̃−1

( 〈ξ〉− s
2

〈τ − ξ2〉 12+
F3

)
‖L4

xL
∞
t

× ‖F̃−1

( 〈ξ〉− s
2

〈τ − ξ2〉 12+
F1

)
‖L4

xL
∞
t

�
4∏

j=1

‖Fj‖L2 .

• Case (b). In this case we borrow a power α = b′− 1
2+ from the large denom-

inator, and we reduce our estimate to∫
∗

〈ξ4〉s〈ξ2〉1−s
〈ξ1〉s〈ξ3〉s

∏4
j=1〈τj + (−1)jξ2

j 〉
1
2+

4∏
j=1

Fj(τj , ξj) �
4∏

j=1

‖Fj‖L2 .
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Again by symmetry we can assume that |ξ1| ≥ |ξ3|. We first observe that if
the exponent of 〈ξ4〉 were 1

2 , then we could simply use (9) for the function F2

and (10) for the function F4 to obtain the estimate as we did above. However,
in our case s > 1

2 , so we have to do a bit more work. We subdivide the analysis
into subcases.

– Subcase (1). |ξ4| � |ξ2|. In this case we can write

〈ξ4〉s〈ξ2〉1−s � 〈ξ4〉 12 〈ξ2〉 12 ,

and we can indeed use (9) and (10).
– Subcase (2). |ξ2| � |ξ4|. Because we assumed that |ξ3| ≤ |ξ1| and we are

on the set ξ1 + · · ·+ ξ4 = 0, it follows that |ξ4| � |ξ1|. Then the estimate
becomes ∫

∗

〈ξ2〉1−s
〈ξ3〉s

∏4
j=1〈τj + (−1)jξ2

j 〉
1
2+

4∏
j=1

Fj(τj , ξj)

�
∥∥∥∥F̃−1

(
1

〈τ + ξ2〉 12+
F4

)∥∥∥∥
L4

xt

∥∥∥∥F̃−1

(
1

〈τ − ξ2〉 12+
F1

)∥∥∥∥
L4

xt

×
∥∥∥∥F̃−1

( 〈ξ〉1−s
〈τ + ξ2〉 12+

F2

)∥∥∥∥
L∞

x L2
t

×
∥∥∥∥F̃−1

( 〈ξ〉−s
〈τ − ξ2〉 12+

F3

)∥∥∥∥
L2

xL
∞
t

�
4∏

j=1

‖Fj‖L2 ,

thanks to (6) for p = 2, (9), and (10).

6. Proof of Proposition 3.2. Based on Lemma 3.8, Theorem 5.1, and the
arguments presented in [9, section 6] (see also the comments in [9, section 7]), the
only result that one needs to obtain is the following.

Lemma 6.1. For any Schwartz function w, we have∣∣∣∣∣
∫ T+δ

T

Λn(Mn;w(t)) dt

∣∣∣∣∣ � 1

N2− ‖Iw‖nX1,3/4−([T,T+δ]×R)(40)

for n = 6, 8, where M6, M8 are defined in Proposition 3.7.
In [9] we were only able to obtain a decay of N−1+, which is why we could only

prove global well-posedness for s > 2
3 .

The proof of this lemma is a corollary of the four lemmas that follow in this
section.

Lemma 6.2 (n = 8).

|M8(ξ1, ξ2, . . . , ξ8)| � Nsopranom
2(Nsoprano).

This is a simple consequence of Lemma 4.1. We now turn to the estimate of
d
dtE

2(Iw) involving Λ8.
Lemma 6.3.∣∣∣∣∣

∫ T+δ

T

∫
Λ8(M8(ξ1, ξ2, . . . , ξ8)) dt

∣∣∣∣∣ � 1

N2− ‖Iw‖81, 12+.
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Proof. As in the proof of Lemma 3.8, also in this case we first perform a
Littlewood–Paley decomposition of the eight factors w so that the ξi essentially are
the constants Ni, i = 1, . . . , 8. To recover the sum at the end we borrow a N−εsoprano

from the large denominator Nsoprano. Often this will not be mentioned, and it will
only be recorded at the end by paying a price equivalent to N0+. Below we often use
the set of indices R = {soprano, alto, tenor}. Again we proceed by analyzing different
cases.

• Case (a). Nsoprano ∼ Ntenor. By Lemma 6.2 and the fact that m(ξ)〈ξ〉 12 is
increasing, we have∣∣∣∣∣

∫ T+δ

T

∫
Λ8(M8(ξ1, ξ2, . . . , ξ8)) dt

∣∣∣∣∣
�
∑
R,j

Nsoprano

m(Ntenor)
‖DxIwsoprano‖L6‖DxIwalto‖L6‖DxIwtenor‖L6

∏
j,k/∈R

‖DxIwj‖L6‖D1/2−
x Iwk‖2L∞ � 1

N2− ‖Iw‖81, 12+.

• Case (b). Nsoprano � Ntenor. By Lemma 2.2, and again the monotonicity of
m(ξ)〈ξ〉1/2, we have∣∣∣∣∣

∫ T+δ

T

∫
Λ8(M8(ξ1, ξ2, . . . , ξ8)) dt

∣∣∣∣∣
� Nsoprano‖Iwsopranowtenor‖L2‖Iwaltowbaritone‖L2

× ‖w‖4L∞ � 1

N2− ‖Iw‖81, 12+.

Lemma 6.4 (n = 6).

• If Ntenor � N , we have

|M6(ξ1, ξ2, . . . , ξ6)| � m(Nsoprano)
2N2

soprano.(41)

• If Ntenor � N , we have

|M6(ξ1, ξ2, . . . , ξ6)| � NsopranoNtenor.(42)

Proof. If Nsoprano � N , M6 vanishes. Then we may assume Nsoprano � N . Also
in the set ξ1 + · · ·+ ξ6 = 0 we have Nalto ∼ Nsoprano.

The proof of (41) follows from (26). The proof of (42) is more delicate. By
symmetry we assume soprano = 1, N1 ≥ N3 ≥ N5, N2 ≥ N4 ≥ N6. Again we
analyze different cases.

• Case (a). alto = 2. The MVT shows

|σ6(ξ1, ξ2, . . . , ξ6)| � m(N1)
2N1N12 +m(Ntenor)

2N2
tenor

� m(Nsoprano)
2NsopranoNtenor.
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Next we estimate the second term in M6:∑
(M4(ξabc, ξd, ξe, ξf )ξb +M4(ξa, ξbcd, ξe, ξf )ξc +M4(ξa, ξb, ξcde, ξf )ξd

+M4(ξa, ξb, ξc, ξdef )ξe).

Again by (26) one has that

|M4(ξabc, ξd, ξe, ξf )ξg| � m(Nsoprano)
2NsopranoNtenor(43)

for every a, . . . , g ∈ {1, . . . , 6} and g �= soprano, alto. Thus we have only to
consider the contributions∣∣∣∣∣∣

∑
(a,e)∈{3,5}

∑
(d,f)∈{4,6}

M4(ξa21, ξd, ξe, ξf )ξ2 +M4(ξa, ξ21d, ξe, ξf )ξ1

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑

(a,c)∈{3,5}

∑
(d,f)∈{4,6}

M4(ξa, ξ12b, ξe, ξf )ξ1 +M4(ξa, ξb, ξ12e, ξf )ξ2

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑

(a,c)∈{3,5}

∑
(d,f)∈{4,6}

M4(ξa, ξb, ξ12c, ξf )ξ2 +M4(ξa, ξb, ξc, ξ12f )ξ1

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑

(a,e)∈{3,5}

∑
(d,f)∈{4,6}

M4(ξa2c, ξd, ξ1, ξf )ξ2 +M4(ξa, ξ2, ξc, ξd1f )ξ1

∣∣∣∣∣∣ =
4∑

i=1

Ii.

Observe first that all the variables appearing in the function M4 in
∑3

i=1 Ii
are strictly smaller that N

2 , and hence by (24) it follows that

3∑
i=1

Ii � NsopranoNtenor.

To estimate I4 we use (30) and the symmetry of M4. Then also in this case
we obtain

I4 � NsopranoNtenor.

• Case (b). alto = 3. In this case we need some cancellation between the large
terms coming from σ6(ξ1, . . . , ξ6) and the large terms of the sum of the M4.
From (43) it is easy to see that one needs to estimate only

M̃6(ξ1, . . . , ξ6) = − 1

6
(m2

1ξ
2
1 +m2

3ξ
2
3)

− ξ1
36

 ∑
(b,d,f)∈{2,4,6}

M4(ξa, ξb1d, ξ3, ξf ) +M4(ξa, ξb, ξ3, ξd1f )


− ξ3

36

 ∑
(b,d,f)∈{2,4,6}

M4(ξa, ξb, ξ1, ξd3f ) +M4(ξa, ξb3d, ξ1, ξf )

 .
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We now use (31) and the symmetries of M4 to write

M̃6(ξ1, . . . , ξ6) = − 1

6
(m2

1ξ
2
1 +m2

3ξ
2
3)

− ξ1
72

 ∑
(b,d,f)∈{2,4,6}

m2
3(ξ

2
b1d + ξ2

b1f )

ξ3

+O(NsopranoNtenor)

− ξ3
72

 ∑
(b,d,f)∈{2,4,6}

m2
1(ξ

2
d3f + ξ2

b3d)

ξ1

+O(NsopranoNtenor)

= − 1

6
(m2

1ξ
2
1 +m2

3ξ
2
3)

+
1

72

 ∑
(b,d,f)∈{2,4,6}

m2
3(ξ

2
b1d + ξ2

b1f )

+O(NsopranoNtenor)

+
1

72

 ∑
(b,d,f)∈{2,4,6}

m2
1(ξ

2
d3f + ξ2

b3d)

+O(NsopranoNtenor)

= − 1

72
m2

3

∑
(b,d,f)∈{2,4,6}

(ξ2
3 − ξ2

1bd) + (ξ2
3 − ξ2

1fb)

− 1

72
m2

1

∑
(b,d,f)∈{2,4,6}

(ξ2
1 − ξ2

3bf ) + (ξ2
1 − ξ2

b3d)

+O(NsopranoNtenor),

and now it is clear that also in this case

|M̃6(ξ1, . . . , ξ6)| � NsopranoNtenor.

Lemma 6.5.∣∣∣∣∣
∫ T+δ

T

∫
Λ6(M6(ξ1, ξ2, . . . , ξ6)) dt

∣∣∣∣∣ � 1

N2− ‖Iw‖61, 34−.(44)

Proof. Also in this case one uses a Littlewood–Paley decomposition to start. We
divide the proof into three different cases: Case (a) when Nbaritone � N , Case (b)
when Nsoprano ≥ Ntenor � N � Nbaritone, and Case (c) when Nsoprano ∼ Nalto �
N � Ntenor. Below we often use the two sets of indices S = {soprano, alto, tenor,
baritone} and R = {soprano, alto, tenor}. We also recall that thanks to the fact that

m(ξ)|ξ| 12 is not decreasing,

m(ξ)(1 + |ξ|) �
{

N if |ξ| > N
2 ,

1 if |ξ| ≤ N
2 .

(45)
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• Case (a). Nbaritone � N . By Lemma 6.4, (45), and the Strichartz estimate
(4), we have ∣∣∣∣∣

∫ T+δ

T

∫
Λ6(M6(ξ1, ξ2, . . . , ξ6)) dt

∣∣∣∣∣
�
∑
S,j

1

NsopranoN
m(Nsoprano)Nsoprano‖wsoprano‖L6

× m(Nalto)Nalto‖walto‖L6m(Ntenor)Ntenor‖wtenor‖L6

× m(Nbaritone)Nbaritone‖wbaritone‖L6

×
∏
j /∈S
‖Iwj‖L6 � 1

N2− ‖Iw‖61, 12+.

• Case (b). Nsoprano ≥ Ntenor � N � Nbaritone. This is the only part in which
we need to use the space X1,b with b ∼ 3

4−. By Lemma 6.4 and (45) we have∣∣∣∣∣
∫ T+δ

T

∫
Λ6(M6(ξ1, ξ2, . . . , ξ6)) dt

∣∣∣∣∣
�
∑
R,j

1

Nsoprano
m(Nsoprano)Nsoprano‖wsopranowbaritone‖L2

×m(Nalto)Nalto‖walto‖L6m(Ntenor)Ntenor‖wtenor‖L6

∏
j /∈R
‖D 1

2
x Iwj‖L12 .

Using Lemma 2.2 and (45), it is easy to see that

m(Nsoprano)Nsoprano‖wsopranowbaritone‖L2

� N−1/2‖Iwsoprano‖
X1, 1

2
+‖Iwbaritone‖

X1, 1
2
+ .

Also by the Sobolev inequalities and again (45)∏
j /∈R
‖D 1

2
x Iwj‖L12 �

∏
j /∈R
‖Iwj‖

X1, 1
2
+ .

Collecting the above estimates one obtains∣∣∣∣∣
∫ T+δ

T

∫
Λ6(M6(ξ1, ξ2, . . . , ξ6)) dt

∣∣∣∣∣ � 1

N
3
2−
‖Iw‖61, 12+.

Unfortunately, the decay N−
3
2+ is not enough for our purposes. Because the

local estimate allow us to handle terms of type ‖Iw‖1, 34− (see section 5), we
take advantage of the extra denominators. To see this we use the identity

ξ1 + · · ·+ ξ4 = 0 =⇒ ξ2
1 − ξ2

2 + ξ2
3 − ξ2

4 = 2ξ12ξ14,
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proved in [9]. We consider only the case N1 = Nsoprano, N2 = Nalto, and
N3 = Ntenor. Indeed if N5 = Ntenor the argument is easier. Then in the set
ξ1 + · · ·+ ξ6 = 0 we write

6∑
i=1

(−1)i−1ξ2
i = ξ2

1 − ξ2
2 + ξ2

3 − (ξ4 + ξ5 + ξ6)
2

+(ξ4 + ξ5 + ξ6)
2 − ξ2

4 + ξ2
5 − ξ2

6

= 2ξ12ξ1456 + (ξ4 + ξ5 + ξ6)
2 − ξ2

4 + ξ2
5 − ξ2

6 ,

which implies that ∣∣∣∣∣
6∑

i=1

(−1)i−1ξ2
i

∣∣∣∣∣ � N2,

and for λ1 + · · ·+ λ6 = 0

N2 � max
i=1,... ,6

|λi + (−1)iξ2
i |.(46)

If the integral in time were performed on the whole real line instead of [T, T +

δ], then, after paying the price of the extra factor maxi=1,... ,6 |λi+(−1)iξ2
i |

1
4 ,

one would obtain∣∣∣∣∣
∫ T+δ

T

∫
Λ6(M6(ξ1, ξ2, . . . , ξ6)) dt

∣∣∣∣∣ � 1

N2− ‖Iw‖61, 34−.

This argument has to be modified when the time integral is performed on
a finite interval [T, T + δ], due to the fact that χ[T,T+δ], the characteristic
function of the interval [T, T + δ], is not smooth enough. A similar difficulty
was encountered also in [9]. We split

χ[T,T+δ](t) = a(t) + b(t),

where

â(τ) = ̂χ[T,T+δ](τ)η(τ/N
2),

and η is supported on a small interval of 0 and equals 1 near 0, so a is smooth-
ing out χ[T,T+δ] at scale N−2. If one replaces χ[T,T+δ](t) with a(t), then the
argument above works because the Fourier transform of a(t) is supported on
|τ | � N2, and one can still obtain the crucial inequality (46). We now have
to deal with b(t). It is easy to check that

‖b(t)‖L1
t

� N−2.

So we just have to show that

sup
t
|Λ6(M6;w1(t), . . . , w6(t))| �

6∏
j=1

‖Iwj‖
X1, 3

4
− .(47)
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We can crudely use Lemma 6.4 and obtain

|Λ6(M6;w1(t), . . . , w6(t))| � m2
sopranoN

2
soprano‖wsoprano‖L∞

t L2
x
‖walto‖L∞

t L2
x

× ‖wtenor‖L∞
t L∞

x
‖wbaritone‖L∞

t L∞
x

∏
j /∈S
‖Iwj‖L∞

t L∞
x
,

which gives (47) by the Sobolev embedding theorem.
• Case (c). Nsoprano ∼ Nalto � N � Ntenor. By Lemma 6.4, Lemma 2.2,
Sobolev inequality, and (45), we have∣∣∣∣∫ ∫ Λ6(M6(ξ1, ξ2, . . . , ξ6))

∣∣∣∣ �∑
S,j

1

m2
altoNalto

NsopranoNtenor

× ‖IwsopranoIwtenor‖L2

× Nalto‖IwaltoIwbaritone‖L2

∏
j /∈S
‖wj‖L∞

� 1

N2− ‖Iw‖1, 12+.

This concludes the proof of the lemma.
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Abstract. We study the system curl (a(x) curlu) = 0, divu = 0 with a bounded measurable
coefficient a(x). The main result of this paper is the Hölder continuity of weak solutions of the system
above. As an application, we prove the Cα regularity of weak solutions of the Maxwell’s equations
in a quasi-stationary electromagnetic field.
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1. Introduction. Let Ω be a domain in R
3 and a ∈ L∞(Ω) be a scalar function

bounded by two positive numbersm,M . In this paper we study the regularity problem
of the following system:

∇× [a(x)∇× u] = f +∇× g
∇ · u = 0

}
in Ω.(1.1)

Here we denote ∇× u = curlu and ∇ · u = div u. The question about the regularity
of the solution of such a system was raised by Professor M. Giaquinta. The main
result of this paper is the Hölder continuity of weak solutions of system (1.1) under
appropriate assumptions on the inhomogeneous terms f, g.

The above system arises from Maxwell’s equations in a quasi-stationary electro-
magnetic field where the displacement of electrical current is assumed to be time
independent. We are grateful to Professor M. Hong for valuable discussions elucidat-
ing the connection between the system (1.1) and Maxwell’s equations. In the study
of the penetration of a magnetic field in materials, the electrical resistance strongly
depends on the temperature, and, by taking the temperature effect into consideration,
the classical Maxwell system in a quasi-stationary electromagnetic field reduces to the
following mathematical model: find H(x, t) and u(x, t) such that

Ht +∇× [σ(u)∇×H] = 0,
∇ ·H = 0,

ut −∆u = σ(u) |∇ ×H|2,
(1.2)

where H and u represent, respectively, the strength of the magnetic field and temper-
ature, while σ(u) denotes the electrical resistivity of the material (see, e.g., [9], [10]).
In particular, in the steady state we have the following steady-state system:

∇× [σ(u)∇×H] = 0,
∇ ·H = 0,

−∆u = σ(u) |∇ ×H|2.
(1.3)
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Global existence of a pair of weak solutions (H,u) of the system (1.2) was established
by Yin [9]. However, the continuity of weak solutions of the system (1.2) as well as
the system (1.3) was unknown. In section 3, we will show that, by using our result
on the linear system (1.1), weak solutions of the coupled nonlinear system (1.3) are
locally Hölder continuous.

As we mentioned earlier, the motivation for studying the system (1.1) is an in-
teresting question which has been raised by Giaquinta and Hong [4]. The original
formulation of the question appears in terms of differential forms. However, in the
case when n = 3, it can be rephrased as follows: Are weak solutions to the following
system locally Hölder continuous?

∇× [a(x)∇× u] = 0
∇ · u = 0

}
in Ω.(1.4)

Indeed, the above system (1.4) is a special case of (1.1), and, as we mentioned at the
beginning, the answer is positive when n = 3. We don’t know the answer for higher
dimensions n ≥ 4. In section 4 we will formulate their original question by using
differential forms and discuss some related problems. Very recently, we received a
preprint by Yin [11], in which a similar result to ours is obtained. It seems [11] used
an idea similar to ours, although technical details are different.

2. Main results: Hölder estimates. In this section we shall always assume
n = 3. First, we will introduce notations.

• For x ∈ R
n and ρ > 0, we define Bρ(x) = {y ∈ R

n : |x− y| < ρ}.
• For a measurable set S ⊂ R

n, we define �

∫
S
f = 1

|S|
∫
S
f dx.

• We denote (f)x,ρ = fx,ρ = �

∫
Bρ(x)

f dx.

• We denote Bρ = Bρ(x) and fρ = fx,ρ if x is clear from the context.
• Let D(Ω) = D(Ω;Rn) = {f ∈ C∞(Ω;Rn) : ∇ · f = 0}. We denote by Hq(Ω),
q ∈ [1,∞), the completion of D(Ω) in the norm of Lq(Ω).

• Ω′ � Ω means Ω′ is a precompact subset of Ω.
• For u = (u1, . . . , un), we denote by ∇u the gradient matrix: (∇u)ij = Dju

i.

Now we will state our main results. Consider the following linear system:

∇× [a(x)∇× u] = f
∇ · u = 0

}
in Ω,(2.1)

where f ∈ Hq(Ω;Rn) and a ∈ L∞(Ω;R) such that m ≤ a ≤ M for some constants
m,M > 0. The restriction f ∈ Hq(Ω;Rn) arises from the consistency condition

0 = ∇ · ∇ × [a(x)∇× u] = ∇ · f

in the sense of distribution.

Theorem 2.1. Let u ∈ W 1,2
loc (Ω;R

n) be a weak solution of the system (2.1)
with f ∈ Hqloc(Ω), q > n/2. Let B := BR(x0) � Ω. Then there exist constants
α = α(m,M, q) > 0 and C = C(m,M, q,R) such that u is Hölder continuous in
BR/16(x0) and

‖u‖C0,α(BR/16)
≤ C

[
‖u‖L2(B) + ‖f‖Lq(B)

]
.(2.2)
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Next we consider the quasi-linear system

∇× [σ(x, u)∇× u] = f
∇ · u = 0

}
in Ω.(2.3)

Here we assume f ∈ Hqloc(Ω) and σ : Ω× R
n → R satisfies the following conditions:

(a) m ≤ σ ≤M for positive constants m,M .
(b) σ is Hölder continuous in Ω × R

n: [σ]µ = [σ]C0,µ(Ω×Rn) < ∞ for some µ ∈
(0, 1).

Theorem 2.2. Let u ∈ W 1,2
loc (Ω;R

n) be a weak solution of (2.3) and assume
f ∈ Hploc(Ω), p > n. Let B := BR(x0) � Ω. Then, under the above assumptions on
σ, ∇u is locally Hölder continuous with exponent α = min(µ, 1− n/p) and

‖u‖C1,α(BR/4)
≤ C, C = C(m,M, p, [σ]µ, ‖u‖W 1,2(B) , ‖f‖Lp(B) , R).

The following technical lemmas will be used in the proof of theorems.
Lemma 2.3 (uniqueness). Let u ∈W 1,2

0 (Ω) be a weak solution of

∇× [a(x)∇× u] = 0
∇ · u = 0

}
in Ω.

Then u ≡ 0 in Ω.
Proof. Since ∇ · u = 0, integration by parts yields∫

Ω

|∇ × u|2 =
∫

Ω

|∇ × u|2 + |∇ · u|2 =
∫

Ω

|∇u|2.

On the other hand, by using u itself as a test function we have

m

∫
Ω

|∇ × u|2 ≤
∫

Ω

a(x) |∇ × u|2 =
∫

Ω

∇× [a(x)∇× u] · u = 0.

Hence, ∇u = 0 in Ω. This completes the proof.
Lemma 2.4. Let B ⊂ R

n be a open ball and let f ∈ D(B). Then there exists
g ∈ C∞(B;Rn) ∩ D(B) such that ∇ × g = f in B and g = 0 on ∂B. Moreover, if
f ∈ Hp(B), 1 < p <∞, then ‖∇g‖Lp(B) ≤ C(p) ‖f‖Lp(B).

Proof. Let g be the unique solution of{ −∆g = ∇× f in B,
g = 0 on ∂B.

From the following vector identity,

∇× (∇× f) = ∇(∇ · f)−∆f,(2.4)

and the representation formula of g in terms of the Green’s function, it is easy to see
∇ × g = f and ∇ · g = 0 in B. The second part of the lemma follows from the Lp

theory of the Laplace operator.
Lemma 2.5. Suppose F ∈ C∞(B;Rn) satisfies ∇×F = 0 in B. Then there exists

ϕ ∈ C∞(B;R) such that ∇ϕ = F in B and ϕ = 0 on ∂B. Moreover, if F ∈ L2(B),
then ‖ϕ‖L2 ≤ C ‖F‖L2 .

Proof. Let ϕ be the unique solution of{
∆ϕ = ∇ · F in B,

ϕ = 0 on ∂B.



90 KYUNGKEUN KANG AND SEICK KIM

Then ∇ϕ = F will follow immediately from Lemma 2.3. Also, ‖∇ϕ‖L2 ≤ C ‖F‖L2 .
Since ϕ = 0 on ∂B, we can use Poincaré inequality to get ‖ϕ‖L2(B) ≤ C ‖F‖L2 .

Lemma 2.6. Let w ∈W 1,2
0 (BR;R

n) be a weak solution of

∇× (∇× w) = ∇× (F +G+H)
∇ · w = 0

}
in BR,

where F ∈ C0,µ(BR), µ > 0, G ∈ L2(BR), and H ∈ Lq(BR), q > n. Then∫
BR

|∇w|2 ≤ C
(
[F ]2µR

n+2µ + ‖G‖2L2 + ‖H‖2Lq R
n−2+2γ

)
, γ = 1− n/q > 0.

Proof. From the identity (2.4), w ∈W 1,2
0 is a weak solution of

−∆w = ∇× (F +G+H) in BR.

By using w itself as a test function we get∫
BR

∇w · ∇w =
∫
BR

(F − FR) · ∇ × w +
∫
BR

(G+H) · ∇ × w.

Hence, Schwarz inequality yields∫
BR

|∇w|2 ≤
∫
BR

|F − FR|2 +
∫
BR

|G|2 +
∫
BR

|H|2 + 3
4

∫
BR

|∇ × w|2.

Since ∇ · w = 0, integration by parts yields∫
BR

|∇ × w|2 =
∫
BR

|∇ × w|2 + |∇ · w|2 =
∫
BR

|∇w|2.

The lemma follows from obvious inequalities
∫
BR
|F − FR|2 ≤ C(n)[F ]2µR

n+2µ and

‖H‖2L2 ≤ ‖H‖2Lq |BR|1−2/q
.

Lemma 2.7. Let u ∈W 1,2(B2;R
n) be a weak solution of

∇× [a(x)∇× u] = ∇× g in Ω.

Then ‖∇ × u‖L2(B1)
≤ C(‖u‖L2(B2)

+ ‖g‖L2(B2)
).

Proof. This is a Caccioppoli-type inequality. The proof is straightforward.
Lemma 2.8. Let φ(t) be a nonnegative and nondecreasing function. Suppose that

φ(ρ) ≤ A
[(ρ
r

)α
+ ε
]
φ(r) +Brβ

for all ρ < r ≤ R0, with A,α, β nonnegative constants, β < α. Then there exists a
constant ε0 = ε0(A,α, β) such that, if ε < ε0 for all ρ < r ≤ R0, we have

φ(ρ) ≤ c

[(ρ
r

)β
φ(r) +Bρβ

]
,

where c is a constant depending on α, β,A.
Proof. See [3, Lemma 2.1, p. 86].
Now we are ready to prove our main theorems.
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Proof of Theorem 2.1. First, we shall assume that a ∈ L∞(Ω) ∩ C∞(Ω) and
f ∈ Hqloc(Ω) ∩ C∞(Ω). The constant C which appears in (2.2) will not depend on
extra smoothness of data. Since (2.1) is a linear system, the full result will then
follow from Lemma 2.3 and standard approximation argument. Also, we will assume
without loss of generality that B = B16(x0). Moreover, we may assume n/2 < q < n.
The case q ≥ n will be recovered by Hölder’s inequality.

Since ∇ · f = 0, we conclude from Lemma 2.4 that there exists g ∈ C∞(B8;R
n)

such that f = ∇× g and g = 0 on ∂B8. Then Sobolev–Poincaré inequality implies

‖g‖Lq∗ (B8)
≤ C ‖∇g‖Lq(B8)

≤ C ‖f‖Lq(B8)
, q∗ = nq/(n− q) > n.(2.5)

Then by Lemma 2.5 there exists ϕ ∈ C∞(B8;R) such that

∇ϕ = a(x)∇× u− g(2.6)

and

‖ϕ‖L2(B8)
≤ C

(
‖∇ × u‖L2(B8)

+ ‖g‖L2(B8)

)
.(2.7)

From Lemma 2.7 and (2.5), we can estimate ‖ϕ‖L2(B8)
in (2.7):

‖ϕ‖L2(B8)
≤ C

(
‖u‖L2(B) + ‖f‖Lq(B)

)
.(2.8)

By rewriting (2.6) as ∇× u = a−1∇ϕ+ a−1g we conclude

0 = ∇ · (∇× u) = ∇ · [a−1∇ϕ] +∇ · (a−1g).

Now we have a single elliptic equation

−∇ · [a−1∇ϕ] = ∇ · (a−1g).(2.9)

It is well known that the following estimate holds:

‖ϕ‖C0,β(B4)
≤ C

(
‖ϕ‖L2(B8)

+ ‖g‖Lq∗ (B8)

)
,(2.10)

where C = C(M/m, q) and β = β(M/m) > 0 (see, e.g., [5, Theorem 8.24]).
Also, from (2.9) we have the following Caccioppoli inequality: for all r ≤ 4∫

Br/2

|∇ϕ|2 ≤ C

(
1

r2

∫
Br

|ϕ− (ϕ)r|2 +
∫
Br

|g|2
)

(2.11)

≤ C
(
[ϕ]2C0,β(B4)

rn−2+2β + ‖g‖2Lq∗ (B8)
rn−2+2γ

)
,

where C = C(M/m) and γ = (2− n
q ) > 0.

Since ∇ · u = 0, (2.4) implies
−∆u = ∇× (∇× u) = ∇× (a−1∇ϕ) +∇× (a−1g).

Fix r ≤ 2 and decompose u into two functions v and w := u − v such that v is the
unique solution of { −∆v = 0 in Br,

v = u on ∂Br.
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Then w = 0 on ∂Br and solves

−∆w = ∇× (a−1∇ϕ) +∇× (a−1g) in Br.

Hence, from (2.11) and Lemma 2.6 (with G = a−1∇ϕ and H = a−1g), together with
Poincaré inequality, we get∫

Br

|w − wr|2 ≤ C
(
[ϕ]2C0,β(B4)

rn+2β + ‖g‖2Lq∗ (B8)
rn+2γ

)
.

Then, since v is harmonic, the following estimates hold for all ρ < r ≤ 2:∫
Bρ

|u− uρ|2 ≤ C
(ρ
r

)n+2
∫
Br

|u− ur|2 + C

∫
Br

|w − wr|2(2.12)

≤ C
(ρ
r

)n+2
∫
Br

|u− ur|2

+ C
(
[ϕ]2C0,β(B4)

rn+2β + ‖g‖2Lq∗ (B8)
rn+2γ

)
,

where C = C(m,M).

Let φ(ρ) :=
∫
Bρ
|u− uρ|2 and α = min(β, γ). Combining (2.5), (2.8), and (2.10),

φ(ρ) ≤ C

[(ρ
r

)n+2

φ(r) + rn+2α
(
‖u‖2L2(B) + ‖f‖Lq(B)

)]
.(2.13)

Since (2.13) holds for any ρ < r ≤ 2, by Campanato’s integral characterization of
Hölder continuous function, together with Lemma 2.8, we conclude that

[u]C0,α(B2) ≤ C(m,M, q)
(
‖u‖L2(B) + ‖f‖Lq(B)

)
.(2.14)

Fix x ∈ B1 and consider a ball B1(x) ⊂ B2. Then

|u(x)| ≤ |u(y)|+ |u(x)− u(y)| ≤ |u(y)|+ [u]C0,α(B2) ∀y ∈ B1(x).(2.15)

Integrating (2.15) with respect to y over B1(x) we get

|u(x)| ≤ C
(
‖u‖L2(B2)

+ [u]C0,α(B2)

)
∀x ∈ B1.(2.16)

Combining (2.14) and (2.16) we finally obtain

‖u‖C0,α(B1)
≤ C(m,M, q)

(
‖u‖L2(B) + ‖f‖Lq(B)

)
.

This completes the proof.
For the proof of Theorem 2.2, we need C1,α estimates of the linear system (2.1)

under the assumption that a is Hölder continuous.
Lemma 2.9. Let u ∈ W 1,2

loc (Ω;R
n) be a weak solution of (2.1) where f ∈ Hploc(Ω)

for some p > n. Assume further that a ∈ C0,µ(Ω;R). Then, if B := BR(x0) � Ω, ∇u
is Hölder continuous in BR/4(x0) and

[∇u]C0,α(BR/4) ≤ C
(
‖∇u‖L2(B) + ‖f‖Lq(B)

)
.(2.17)
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Here, α = min(1− n/p, µ) and C = C(n,m,M, p, [a]µ, R).
Proof. The proof relies on the standard perturbation method. As in Theorem 2.1,

we may assume that f is smooth and B = B4(x0). Then, by Lemma 2.4 there exists
g such that f = ∇× g and [g]C0,ν(B) ≤ C ‖∇g‖Lp(B) ≤ C ‖f‖Lp(B), ν = 1− n/p > 0.
Let y ∈ B2(0) and let R0 ≤ 2 be a fixed number which will be specified later. Then

a(y)[∇× (∇× u)] = ∇× ( [a(y)− a(x)] ∇× u) +∇× g in BR0
(y) ⊂ B.

Fix an r ≤ R0 and split u into v and w := u− v such that{ −∆v = 0 in Br(y),
v = u on ∂Br(y).

Then w ∈W 1,2
0 (Br(y)) and satisfies

−a(y)∆w = ∇× ( [a(y)− a(x)]∇× u+ g) in Br(y).

Hence, from Lemma 2.6 with F = g and G = [a(y)− a(x)]∇× u, we obtain∫
Br(y)

|∇w|2 ≤ C
(
[a]2µr

2µ ‖∇ × u‖2L2(Br(y)) + [g]
2
ν r

n+2ν
)

≤ C

(
r2µ
∫
Br(y)

|∇u|2 + ‖f‖2Lp(B) r
n+2ν

)
.

Since ∇v is harmonic in Br(y), the following estimate holds for ρ < r ≤ R0:∫
Bρ(y)

|∇u|2 ≤ C

[(ρ
r

)n ∫
Br(y)

|∇u|2 +
∫
Br(y)

|∇w|2
]

≤ C
[(ρ
r

)n
+ r2µ

] ∫
Br(y)

|∇u|2 + C ‖f‖2Lp(B) r
n+2ν .

We will apply Lemma 2.8 to the quantity φ(ρ) :=
∫
Bρ(y)

|∇u|2. Choose R0 small

enough so that R2µ
0 < ε0. Then Lemma 2.8 implies∫

Bρ(y)

|∇u|2 ≤ cρn−µ
[
‖∇u‖2L2(B) + ‖f‖2Lp(B)

]
∀y ∈ B2, ∀ρ ≤ R0.

Now set y = x0 and R0 = 2. In the rest of the proof we will denote Br := Br(x0).
By using standard covering argument, if necessary, we obtain∫

Br

|∇u|2 ≤ Crn−µ
[
‖∇u‖2L2(B) + ‖f‖2Lp(B)

]
∀r ≤ 2.(2.18)

On the other hand, for all ρ < r ≤ 2,∫
Bρ

|∇u− (∇u)ρ|2 ≤ C

[(ρ
r

)n+2
∫
Br

|∇u− (∇u)r|2 +
∫
Br

|∇w|2
]

(2.19)

≤ C

[(ρ
r

)n+2
∫
Br

|∇u− (∇u)r|2
]

+C
(
‖∇u‖2L2(Br) r

2µ + ‖f‖2Lp(B) r
n+2ν

)
.
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Combining (2.18) and (2.19) we conclude that ∇u ∈ C0,γ(B1), γ = min(ν, µ/2). In
particular, as in (2.16) in the proof of Theorem 2.1,

sup
B1

|∇u| ≤ C
(
‖∇u‖L2(B2)

+ ‖f‖Lp(B)

)
.(2.20)

We may then use inequality (2.19) again for ρ < r ≤ 1, getting

[∇u]C0,α(B1) ≤ C
(
‖∇u‖L2(B) + ‖f‖Lp(B)

)
, α = min(µ, ν).

This completes the proof.
Proof of Theorem 2.2. First, by Theorem 2.1 we know u ∈ C0,β

loc (Ω) for some
β > 0. Then a(x) := σ(x, u(x)) is locally Hölder continuous with some exponent
γ > 0. Hence, from Lemma 2.9 we conclude ∇u is locally Hölder continuous. In
particular, ∇u is bounded in B. As in (2.20) we have an estimate

sup
BR/2

|∇u| ≤ C
(
‖∇u‖L2(B) + ‖f‖Lp(B)

)
.

Thus a(x) is Hölder continuous in BR/2 with exponent µ and [a]C0,µ(BR/2) ≤ K, where
K is a constant that depends on ‖∇u‖L2(B), ‖f‖Lp(B), [σ]µ, and other prescribed
quantities independent of u, f . Now the theorem follows from Lemma 2.9.

Remark 2.10. In the proof of Theorem 2.1 we actually proved that if f ∈
Hq/2loc (Ω;R

n) and g ∈ Lqloc(Ω;Rn), q > n, then any weak solution of the system

∇× [a(x)∇× u] = f +∇× g
∇ · u = 0

}
in Ω(2.21)

satisfies the following estimate in B := BR(x0) � Ω:

‖u‖C0,α(BR/2)
≤ C

[
‖u‖L2(B) + ‖f‖Lq/2(B) + ‖g‖Lq(B)

]
.(2.22)

Also, the proof of Lemma 2.9 implies that a weak solution of

∇× [σ(x, u)∇× u] = f +∇× g
∇ · u = 0

}
in Ω,(2.23)

where f ∈ Hploc(Ω), p > n, and g ∈ C0,β
loc (Ω), β > 0, is locally Hölder continuous with

exponent α = min(µ, 1− n/p, β).
Remark 2.11. In the two-dimensional case, the Hölder continuity of weak solu-

tions of (2.1) may follow from Sobolev imbedding. In fact, if f ≡ 0, then a weak solu-
tion u belongs to W 1,p

loc (Ω) for all p ∈ (1,∞). However, when n = 3, C0,α regularity is
the optimal result. To see this, consider a solution of the form u = (0, 0, u3) : Ω→ R

3.
Let us assume for simplicity that f ≡ 0. Then the system (2.1) becomes

D3(a(x)D1u3) = 0,
D3(a(x)D2u3) = 0,
D1(a(x)D1u3) +D2(a(x)D2u3) = 0,
D3u3 = 0.

(2.24)

From the last equation of (2.24), we can set v(x1, x2) := u3(x1, x2, x3). It also fol-
lows that a(x) depends only on x1 and x2. Then v solves the following equation of
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divergence form in two variables:

Lv :=
2∑
i=1

Di(a(x)Div) = 0 in Ω.

The operator L is called an isotropic operator. Piccinini and Spagnolo showed that v
is locally Hölder continuous with exponent α = 4

π arctan
√
m/M (see [7, Theorem 2,

p. 396]). To see that it is an optimal result, consult Example 2 of [7] on page 400.

3. Application to a Maxwell system. As mentioned in the introduction, the
problem we have analyzed so far arises from the Maxwell’s system in a quasi-stationary
electromagnetic field. Especially if the electric conductivity strongly depends on the
temperature, then by taking the temperature effect into consideration the classical
Maxwell system in a quasi-stationary electromagnetic field reduces to the following
mathematical model (see [9, pp. 1029–1032]):

Ht +∇× (σ(u)∇×H) = 0,
∇ ·H = 0,

ut −∆u = σ(u) |∇ ×H|2,
(3.1)

where H and u are unknowns representing, respectively, the strength of magnetic field
and temperature, while σ(u) denotes the electric resistivity of the material which is
assumed to be strictly positive and bounded; i.e., there exist positive numbers m,M
such that

0 < m ≤ σ(s) ≤M ∀s ∈ R.(3.2)

In [9], Yin proved, under appropriate assumptions on boundary and initial conditions,
the existence of a pair of global weak solutions (H,u):

H ∈ L∞ (0, T ;L2(Ω;R3)
) ∩ L2

(
0, T ;W 1,2(Ω;R3)

)
,

u ∈ L∞ (0, T ;L1(Ω;R)
) ∩ Lq (0, T ;W 1,q(Ω;R)

)
, q ∈ [1, 5/4).

In addition, he showed that if a pair of weak solutions (H,u) are continuous, then
they are classical provided that σ is smooth enough. However, as pointed out by him,
the continuity of weak solutions is unknown even if σ is smooth. Continuity of weak
solutions of (3.1) heavily relies on the regularity theory of the following system with
bounded measurable coefficient a(x, t):

vt +∇× [a(x, t)∇× v] = 0
∇ · v = 0

}
in Q,(3.3)

where Q is the space-time cylinder Ω× (0, T ) for some T > 0. We don’t know at this
time whether or not weak solutions of the system (3.3) are Hölder continuous.

In this section, we consider instead the following fully steady-state systems intro-
duced by Yin (see [9, p. 1031]):

∇× (σ(u)∇×H) = 0
∇ ·H = 0

−∆u = σ(u) |∇ ×H|2

 in Ω.(3.4)

Using the results we obtained in previous section, we will show the C0,α regularity of
weak solutions of (3.4).
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Theorem 3.1. Let (H,u) be a pair of weak solutions of (3.4). Then (H,u) ∈
C0,α
loc (Ω) for some α > 0. Moreover, the following estimates hold in Ω′ � Ω:

[H]C0,α(Ω′) + [u]C0,α(Ω′) ≤ C(m,M,Ω′,Ω, ‖H‖L2 , ‖u‖L2).(3.5)

Proof. Let B := B4R = B4R(x0) � Ω. We will show (u,H) is Hölder continuous
in BR = BR(x0). Indeed, from the proof of Theorem 2.1 we have

‖H‖C0,α(B2R) ≤ C(m,M,R) ‖H‖L2(B) , α = α(m/M) > 0.(3.6)

It remains to show that u is also Hölder continuous in BR. Using a vector identity,

∇ · (F ×G) = (∇× F ) ·G− F · (∇×G),(3.7)

together with the first equation ∇× (σ(u)∇×H) = 0 of (3.4), we obtain

∇ · [H × (σ(u)∇×H)] = σ(u) |∇ ×H|2.(3.8)

We rewrite the last equation of (3.4) as follows:

−∆u = ∇ · [H × (σ(u)∇×H)].(3.9)

As before, fix r ≤ R and split u into two parts v and w := u− v such that{ −∆v = 0 in Br,
v = u on ∂Br.

Then, as in (2.12), the following estimate holds for ρ < r ≤ R:∫
Bρ

|u− uρ|2 ≤ C
(ρ
r

)n+2
∫
Br

|u− ur|2 + Cr2
∫
Br

|∇w|2.(3.10)

We need to estimate ‖∇w‖2L2(Br). Since w ∈W 1,2
0 (Br) and satisfies

−∆w = ∇ · [H × (σ(u)∇×H)] in Br,

integration by parts and Schwarz inequality yields∫
Br

|∇w|2 ≤ 2
∫
Br

σ(u)2 |H|2 |∇ ×H|2 ≤ 2M2

∫
Br

|H|2 |∇ ×H|2.(3.11)

Since H is continuous, it is bounded in Br and thus from (3.11)∫
Br

|∇w|2 ≤ C sup
B2R

|H|2
∫
Br

|∇ ×H|2.(3.12)

On the other hand, from the fact that H solves the first equation of (3.4) it follows
that ∫

Br

|∇ ×H|2 ≤ C

r2

∫
B2r

|H −H2r|2 ≤ C[H]2C0,α(B2R) r
n−2+2α.(3.13)

Combining (3.12) and (3.13) together with (3.6) we obtain the required estimate

‖∇w‖2L2(Br) ≤ C(m,M,R) ‖H‖4L2(B) r
n−2+2α.(3.14)
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Finally, by inserting (3.14) into (3.10) we conclude from Lemma 2.8

[u]C0,α(BR) ≤ C(m,M,R)
(
‖u‖L2(B) + ‖H‖2L2(B)

)
.(3.15)

Theorem 3.1 follows from (3.6), (3.15), and standard covering argument.
Theorem 3.2. Let (H,u) be a pair of weak solutions of (3.4). Assume further that

σ is Hölder continuous with exponent µ ∈ (0, 1). Then H ∈ C1,µ
loc (Ω) and u ∈ C2,µ

loc (Ω).

Proof. First, by Theorem 2.1 we have (u,H) ∈ C0,α
loc (Ω), which in turn implies

σ(u) is Hölder continuous with exponent β = αµ. Then H ∈ C1,β
loc (Ω) by Lemma 2.9

and thus σ(u) |∇ ×H|2 ∈ C0,β
loc (Ω). Since u solves

−∆u = σ(u) |∇ ×H|2 in Ω,(3.16)

it follows from the theory of the Laplace operator that u ∈ C2,β
loc (Ω). In particular,

∇u is locally bounded and thus σ(u) ∈ C0,µ
loc (Ω). By Lemma 2.9 again, H ∈ C1,µ

loc (Ω).

Therefore σ(u) |∇ ×H|2 ∈ C0,µ
loc (Ω) and u ∈ C2,µ

loc (Ω) by (3.16). This completes the
proof.

Remark 3.3. Let (H,u) be a pair of weak solutions of (3.4). Suppose that
σ ∈ Ck,α, where k is a nonnegative integer and 0 < α < 1. Then

H ∈ Ck+1,α
loc (Ω), u ∈ Ck+2,α

loc (Ω).(3.17)

In particular, if σ ∈ C1,α, then (H,u) is a pair of classical solutions.

4. Remarks on the case n ≥ 4. First, we introduce some notations. Let Ω
be a domain in R

n, n ≥ 3. Denote by Λk := Λk(Ω) the class of k-forms in Ω. Let
∗ : Λk → Λn−k be the Hodge star linear operator, defined by setting

∗(dxi1 ∧ · · · ∧ dxik) = (dxj1 ∧ · · · ∧ dxjn−k)

and extending it linearly, where (i1, . . . , ik, j1, . . . , jn−k) is an even permutation of
(1, 2, . . . , n) so that dxi1 ∧ · · · ∧ dxik ∧ dxj1 ∧ · · · ∧ dxjn−k = dvol. Let d∗ : Λk → Λk−1

be the adjoint of the exterior differential operator d : Λk−1 → Λk with respect to the
Hodge inner product :

〈α, β〉 :=
∫

Ω

α ∧ ∗β, where α, β ∈ L2(Ω; Λk).(4.1)

More precisely, it is defined by 〈dα, β〉 = 〈α, d∗β〉 for smooth forms α ∈ Λk−1(Ω),
β ∈ Λk(Ω), one of which with compact support in Ω. From the Stokes theorem, it
follows that d∗ = (−1)nk+n+1 ∗ d∗.

Let u = (u1, . . . , un) ∈ W 1,2(Ω;Rn). For the sake of simplicity, we will use the
same notation u for the corresponding 1-form

∑n
i=1 u

i(x)dxi. In this context, we
denote its exterior differential du by

du :=
∑
i<j

(Diu
j −Dju

i)dxi ∧ dxj.

A celebrated result by De Giorgi [1] states that weak solutions to linear elliptic
equations with L∞ coefficients are Hölder continuous. In contrast to this, as it is
well known, weak solutions of linear elliptic systems with L∞ coefficients may have
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singularities. For example, De Giorgi [2] constructed a weak solution to an elliptic
system with L∞ coefficients which belongs to W 1,2(B1(0);R

n), n ≥ 3, but is not
bounded.

Related to those results, Giaquinta and Hong [4] raised an interesting question:
Are weak solutions of the following system locally Hölder continuous?

d∗[a(x)du] = 0
d∗u = 0

}
in Ω.(4.2)

Here a(x) ∈ L∞(Ω) is assumed to be bounded by two positive numbers m,M . More
generally, consider the following inhomogeneous system:

d∗[a(x)du] = f + d∗g
d∗u = 0

}
in Ω,(4.3)

where f ∈ Hploc(Ω;Rn) and g ∈ Lqloc(Ω; Λ2) ∼= Lqloc(Ω;R
n(n−1)/2).

When n = 3 the above system (4.3) is identical to the system (2.1), and Theorem
2.1 states the answer to their question is positive when n = 3. However, our method
used in the proof of Theorem 2.1 cannot be applied to the case when n ≥ 4, and we
don’t know the answer in that case.

Let us briefly mention why the case n = 3 is special. In the proof of Theorem
2.1, we made use of the fact that de Rham cohomology of a ball B ∈ R

n is trivial in
the sense that if α ∈ Λ2(B) satisfies d∗α = 0, then there exists a β ∈ Λn−3(B) such
that dβ = ∗α. In the case when n = 3, β is a scalar function so that we may apply
the well-known result of De Giorgi [1] to get the C0,α estimate.

The aim of this section is to compile known results from general theory of elliptic
systems which can be applied to the system (4.3). We have the following identity
similar to (2.4) (see, e.g., [8, p. 33]):

−∆α = d∗(dα) + d(d∗α) ∀α ∈ Λ1(Ω).(4.4)

Hence, if a(x) is continuous, then the perturbation method used in Lemma 2.9 can
be applied here without any change. Also, if the ratio M/m is sufficiently close to 1,
then it can be shown that weak solutions u of the system (4.3) satisfy u ∈ W 1,p

loc for
some p > n. Hölder continuity of u will then follow from Sobolev imbedding.

We again emphasize that most of results in this section can be inferred from the
general theories of elliptic systems, so we will provide proofs only when the situation
is not quite obvious.

Proposition 4.1. Let u ∈ W 1,2
loc (Ω;R

n) be a weak solution of (4.3). Suppose
f ∈ Hploc(Ω;Rn), p > n/2, and g ∈ Lqloc(Ω; Λ2), q > n. If a(x) is continuous, then u
is locally Hölder continuous with exponent α = α(n,m,M, p, q) > 0.

Proof. See Theorem 3.1 in [3] and the following remark on page 87.
Proposition 4.2. Let u ∈ W 1,2

loc (Ω;R
n) be a weak solution of (4.3). Suppose

f ∈ Hq/2loc (Ω;R
n) and g ∈ Lqloc(Ω; Λ2), q > n. Then there exists a number ε0 > 1 such

that if M/m < ε0, then ∇u ∈ Lploc(Ω;Rn
2

) for some p > n. In particular, u is locally
Hölder continuous in Ω.

Proof. The proof relies on the Lp theory for the Laplace operator and a pertur-
bation argument (see, e.g., [6] and Theorem 2.5 (page 154) in [3]).

Proposition 4.3. Let u ∈ W 1,2
loc (Ω;R

n) be a weak solution of (4.3). Assume

f ∈ Hploc(Ω;Rn), p > n, and g ∈ C0,β
loc (Ω; Λ

2), β > 0. If a(x) is C0,µ-continuous, then
∇u is locally Hölder continuous with exponent α = min(µ, 1− n/p, β).
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Proof. See Theorem 3.2 (page 88) in [3] and also Lemma 2.9 in section 2.
Lemma 4.4 (Caccioppoli inequality). Let u ∈W 1,2

loc (Ω;R
n) be a weak solution of

the system (4.3) with f ∈ H2n/(n+2)
loc (Ω;Rn) and g ∈ L2

loc(Ω; Λ
2). Let BR := BR(x0) �

Ω. Then, for any λ ∈ R
n,∫

BR/2

|∇u|2 ≤ C

(
1

R2

∫
BR

|u− λ|2 + ‖f‖2L2n/(n+2)(BR) + ‖g‖2L2(BR)

)
,(4.5)

where C = C(n,m,M).
Sketch of proof. As in Lemma 2.4, there exists h ∈W 1,2

0 (BR; Λ
2) such that

f = d∗h in BR; ‖h‖L2(BR) ≤ C ‖f‖L2n/(n+2)(BR).(4.6)

Let η ∈ C∞0 (BR;R) be a cut-off function such that 0 ≤ η ≤ 1, η ≡ 1, in BR/2 and
|∇η| ≤ 4/R. By choosing (u− λ)η2 as a test function it is easy to see that∫

BR

η2 |du|2 ≤ C

(
1

R2

∫
BR

|u− λ|2 +
∫
BR

|h|2 +
∫
BR

|g|2
)
.(4.7)

Since d∗u = 0 in Ω, (4.4) implies〈−∆u, η2(u− λ)〉 = 〈du, d (η2(u− λ))〉
= 〈du, 2η dη ∧ (u− λ)〉+ 〈du, η2du

〉
.

On the other hand, integration by parts yields〈−∆u, η2(u− λ)〉 = ∫
Ω

∇u · ∇ (η2(u− λ))
=

∫
Ω

2η Dju
iDjη(u

i − λi) +
∫

Ω

η2 |∇u|2.

Therefore ∫
BR

η2 |∇u|2 ≤ C

(
1

R2

∫
BR

|u− λ|2 +
∫
BR

η2 |du|2
)
.(4.8)

Combining (4.6), (4.7), and (4.8) we obtain (4.5).
Lemma 4.5 (Lp estimates). Suppose f ∈ Hqloc(Ω;Rn), q > 2n/(n + 2), and

g ∈ Lrloc(Ω; Λ2), r > 2. Let u ∈W 1,2
loc (Ω) be a weak solution of the system (4.3). Then

∇u ∈ Lploc(Ω;Rn
2

) for some p > 2. More precisely, let B := BR(x0) � Ω; then

‖∇u‖Lp(BR/2)
≤ C

(
‖∇u‖L2(B) + ‖f‖Lnp/(n+p)(B) + ‖g‖Lp(B)

)
.(4.9)

Sketch of proof. Let h be as in (4.6). Setting λ = (u)R and then using
Sobolev–Poincaré inequality, we obtain from (4.7) and (4.8)

�

∫
BR/2

|∇u|2 ≤ C

[(
�

∫
B

|∇u|s
)2/s

+�

∫
B

|h|2 +�

∫
B

|g|2
]
, s =

2n

n+ 2
.(4.10)

It is so-called reverse Hölder inequality. It is well known that higher integrability of
∇u follows from (4.10) (see, e.g., Proposition 1.1 (page 122) of [3]). Also, as mentioned
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in Proposition 4.2, (4.9) can be derived by a perturbation argument based on the Lp

theory of the Laplace operator.
With the preceding lemmas at hand, let us consider the quasi-linear system

d∗[σ(x, u)du] = f + d∗g
d∗u = 0

}
in Ω,(4.11)

where f ∈ Hploc(Ω) and g ∈ Lqloc(Ω; Λ2).
By using general theory of elliptic systems, it is again more or less straightforward

to show partial C0,α (or C1,α) regularity for weak solutions of the system (4.11)
under appropriate continuity assumptions on σ. We denote k-dimensional Hausdorff
measure of Σ ⊂ R

n by Hk(Σ).

Proposition 4.6 (C0,α-partial regularity). Suppose f ∈ Hq/2loc (Ω) and g ∈
Lqloc(Ω), for some q > n, and let u ∈W 1,2

loc (Ω) be a weak solution of the system (4.11).
Assume that σ is continuous. Then there exists an open set Ω0 ⊂ Ω such that u is
locally Hölder continuous with exponent 1− n/q in Ω0. Moreover, Hn−s(Ω \Ω0) = 0
for some s > 2.

Proof. See Theorem 1.1 (page 166) in [3].
Proposition 4.7 (C1,α-partial regularity). Suppose σ is locally C0,α-continuous

for some α ∈ (0, 1). Let u ∈ W 1,2
loc (Ω) be a weak solution of the system (4.11) and

let f ∈ Hploc(Ω;Rn), p = n/(1 − α), g ∈ C0,α
loc (Ω;R

n). Then there exists an open set

Ω0 ⊂ Ω such that u ∈ C1,α
loc (Ω0) and H

n−s(Ω \ Ω0) = 0 for some s > 2.
Proof. The proof follows from Proposition 4.6 and Lemma 2.9.
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Abstract. We are looking for the domains Ω ⊂ R2 tiling the plane and for functions u : Ω → R

satisfying the simple impact assumption introduced by G. Buttazzo, V. Ferone, and B. Kawohl
[Math. Nach., 173 (1993), pp. 71–89.] about Newton’s problem of the body of minimal resistance,
which minimizes functionals F (u; Ω) = 1

|Ω|
∫
Ω f(|∇u|), with f decreasing.

We prove that only some convex polygons are minimizers, and we give explicitly the corresponding
functions u. In the case of the Newton’s functional f(t) = 1/(1+ t2), all optimal domains are squares
or regular hexagons.

Key words. body of minimal resistance, Newton’s problem, single-impact, calculus of variations
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1. Introduction. Newton’s problem of the body of minimal resistance, first
stated in [6], has been widely studied, and new interest has recently been raised,
particularly since the minimizer has been proven to not have the symmetry of the
domain. This problem can be mathematically stated as follows: minimize

G(u) =

∫
Ω

dx

1 + |∇u(x)|2

in an appropriate class of functions u : Ω → R. Here Ω ⊂ R
2 is a bounded domain,

and the functional expresses the resistance of the body in {(x, z) ∈ Ω×R; z ≤ u(x)}
to a uniform stream of particles coming downward in the vertical direction. It is
assumed that each particle’s shock on the body is perfectly elastic and that each
particle hits the body at most once. The elastic assumption leads on the given value
of the functional [2]. Since the infimum of G is clearly zero, if we can consider very
long and thin bodies, it is necessary to restrict the class of admissible functions u by
fixing the surface area, or fixing the maximal height as a number M > 0, a given
parameter. This last requirement was first proposed by Newton and is the most
frequently considered one.

The single impact assumption is classically enforced by considering only concave
functions u. On the other hand, it was shown in [2] that this requirement is not
necessary. More precisely, it is sufficient to consider the unknown function u in the
class of maps u : Ω→ [−M, 0] satisfying the geometrical condition

(1) ∀x ∈ dom(∇u), ∀τ > 0, such that x− τ∇u(x) ∈ Ω,

u(x− τ∇u(x))− u(x)

τ
≤ 1

2

(
1− |∇u(x)|2

)
.

Here dom(∇u) is merely the dense subset of Ω where u is differentiable; we will define
it more precisely later.
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This constraint has been studied in [4] and [3], where it is shown that a radial
minimizer exists (but there is generally no uniqueness), but in the general class the
minimum is not attained. This comes from the presence of a boundary, which induces
special effects, and, in particular, allows oscillations near it. This leads us to the idea
that without a boundary, the problem would be more “stable,” and a global minimizer
could exist with no radial symmetry assumption.

In this paper we investigate this problem. In order to make sense, we consider an
infinite body with periodicity; that is, let Ω be a domain tiling the plane (meaning
that there exists a finitely generated subgroup GΩ ⊂ O2 such that

⋃
g∈GΩ g(Ω) = R

2,

and g1(Ω) ∩ g2(Ω) = ∅ if g1 �= g2); let ū : R
2 → R be a function with the same

periodicity (ū ◦ g = ū for all g ∈ GΩ); and let u be the restriction of ū to Ω. We are
looking to the body {(x, z) ∈ R

3; z ≤ ū(x)} minimizing the mean value of G, that is,
we minimize

F (u; Ω) :=
1

|Ω|
∫
Ω

dx

1 + |∇u(x)|2(2)

with respect to all domains Ω tiling the plane and to all functions u : Ω → [−M, 0]
having periodicity Ω.

Note that Ω is not well defined in general if only ū is given. In order to fix the
notations, we choose Ω such that u(x) = 0 for all x ∈ ∂Ω and u < 0 in Ω.

The natural topology associated with (1) is W 1,∞(Ω). However it has been shown
in [3] that the set of admissible functions must be restricted to a strict subset of
W 1,∞(Ω). Moreover, the minimizing functions must be regular in the following sense:
these are continuous, C2 by parts, functions; that is, they are obtained by a finite
number of min or max operations on C2 functions. In this paper, we do not enter
these technicalities, and we restrain ourselves to this smaller class of regular functions.
Since u = 0 on ∂Ω, this implies also some regularity on Ω itself.

Our main result reads as follows.
Theorem 1. Among all regular functions and regular domains tiling the plane,

the minimum of F is attained in only two cases, up to a similitude (with the same
minimal value):

1. Ω is a square, Ω = (−a, a)× (−a, a) with a ≤ 4M/3, and u is the function

u(x1, x2) := max[φa(|x1|), φa(|x2|)],(3)

where φa(x) := (x+a)2

4a − a.

2. Ω is a regular convex hexagon with diameter 4a/
√

3, with center O = (0, 0),
and two vertices A = (a, a/

√
3), B = (a,−a/√3); then u is the function

invariant by rotation of π/3 whose restriction to the triangle OAB is φa(x1).
In both cases, the optimal value for F is given by

Fopt := π + 12 ln 2− 4 ln 5− 4 arctan 2 � 0.5930123.

Hence the resistance of the infinite tiling is less than 60% of the resistance of the
plane (which has maximal resistance).

The proof of this theorem constitutes the rest of the paper. It relies on the
following properties: first of all, any minimizing domain Ω is convex. This is proved
in Theorem 2 hereafter, even for a more general functional 1

|Ω|
∫
Ω
f(|∇u|), with f

decreasing. Section 2 states this theorem and gives the proof.
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Since Ω should also tile the plane, it is a polygon. In section 3, we restrict
ourselves to the functional of (2), give additional properties of optimal polygons, and
characterize the corresponding function u. This allows us to restrict ourselves to a
small set of admissible polygons. We end by using some explicit computations to
distinguish the minimizers.

2. Convexity of the optimal domains. The first fact of interest is that any
minimizer u of (2) saturates everywhere in dom(∇u); that is, for all x ∈ dom(∇u)
there exists τx > 0 such that

u(x− τx∇u(x))− u(x)

τx
=

1

2

(
1− |∇u(x)|2

)
,(4)

and for all τ ∈ (0, τx) inequality (1) is strict. This has been proved in [4], using a
small variation with a fast oscillating function. Since the proof is quite lengthy and
technical and works similarly here, we don’t repeat it.

Note that (4) implies that

|∇u| ≤ 1(5)

and x− τx∇u ∈ Ω if x ∈ Ω. Indeed, x is an interior point of the bounded set Ω; hence
there exists τ1 > 0 such that x− τ1∇u(x) belongs to ∂Ω. Since we assume u = 0 on
∂Ω, we get u(x− τ1∇u(x)) = 0 ≥ u(x). Putting this inequality into (1) yields (5) as
claimed. Now if τ > τ1,

u(x) +
τ

2

(
1− |∇u(x)|2

)
> u(x) +

τ1
2

(
1− |∇u(x)|2

)
≥ u(x− τ1∇u(x)) = 0.

This implies τx ≤ τ1 since u takes values in [−M, 0]; hence x− τx∇u(x) ∈ Ω.
Also this implies that

|∇u(x)| = 1 ∀x ∈ ∂Ω ∩ dom(∇u).(6)

Indeed, for x ∈ ∂Ω, u(x) = 0, so the left-hand side of (4) is nonpositive. Hence
|∇u(x)| ≥ 1 and (6) follows since |∇u| ≤ 1.

Remark 2.A. First we have that if x ∈ ∂Ω ∩ dom(∇u), then u(x) = 0 and
u(x− τx∇u(x)) = 0, and from the definition of Ω, x− τx∇u(x) ∈ ∂Ω.

We also obtain that (5) implies

1 ≥ F (u; Ω) ≥ 1

2
(7)

for all admissible (u; Ω).
The main theorem relies primarily on the following result, which can be stated

for a more general functional.
Theorem 2. Let (u; Ω) be a local minimizer pair for a functional in the form

Υ(u; Ω) := 1
|Ω|
∫
Ω
f(|∇u|), where f ∈ C1(R+) is decreasing. Then Ω is convex.

Proof. Assume that Ω is not convex. Then there exists x0 ∈ ∂Ω, a straight line
∆ containing x0, and a neighborhood V of x0 such that, if P1, P2 are the two open
half-planes limited by ∆,

V ∩ P1 ⊂ Ω and V ∩ P2 ∩ Ω �= ∅.(8)
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Choosing the appropriate center of coordinates, we can assume that x0 = 0; also we
can assume that 0 is an exposed point on the boundary of R

2 \Ω, that 0 ∈ dom(∇u),
and that

∆ ∩ V ∩ ∂Ω = {0}.(9)

We recall that u(0) = 0 and, since |∇u(0)| = 1, we can assume ∇u(0) = −e1 again by
choosing the appropriate coordinate system, which is the unit outward normal vector
to Ω at 0. Let τ0 be the value of τx corresponding to x = 0.

Step 1. Let us first assume that u is not differentiable near 0. More precisely,
V can be divided in two zones V1, V2, and there exists two functions u1, u2 of class
C2(V ) such that u = ui on Vi, i = 1, 2. Since u is continuous, u1 = u2 on the
common boundary of V1, V2. We have (u1− u2)(0) = 0, but the assumption that u is
not differentiable at 0 implies in particular that ∇u1(0) �= ∇u2(0). Since u1 − u2 is
C2, the line u1 = u2 is a differentiable curve containing 0. Let us choose a coordinate
system such that e1 is tangent to this curve, pointing inside Ω at 0.

Since |∇u| = 1 on ∂Ω, we can write that

u1(x) = − cosα x1 − sinα x2 + o(|x1|+ |x2|)

in V . Also

u2(x) = − cosα x1 + sinα x2 + o(|x1|+ |x2|)

in V , taking into account that u1 = u2 on the line x2 = 0. Moreover, cosα > 0 since
e1 points inside Ω. Hence, if the direction of the axis x2 is chosen appropriately, we
have u(x) = − cosα x1 − sinα |x2|+ o(|x1|+ |x2|) near 0.

Let us now define θ0(x) = − cosβ x1−sinβ |x2|, where β satisfies cosβ ∈ (0, cosα)
and cos(α − β) > 0. For any ε > 0, we define θε(x) := (1 − δε)θ0(x1 + ε, x2), where
δε > 0 satisfies limε→0 δε = 0 and lim ε

δε
= 0.

We extend u outside Ω by zero, and define Vε as the connected part of {x; θε(x) <
u(x)} containing 0. Note that Vε is approximately equal to the set

Tε :=
{
x ∈ R

2;

max(0,− cosα x1 − sinα |x2|) > −(1− δε)(cosβ (x1 + ε) + sinβ |x2|)
}
,

which is a triangle symmetric with respect to {x2 = 0}. Note that the edges of Tε
have length of order ε, so that |Vε| ∼ |Tε| ∼ cε2 for some constant c. Also we can
assume that there exists C1 > 0 such that Vε ⊂ B(0, C1ε) for ε small enough. In
particular there exists C2 > 0

∀x ∈ Vε, |θε(x)| < C2ε.(10)

We now define Ωε := Ω ∪ Vε, and

uε =

{
θε in Vε,

u in Ω \ Vε.
(11)

Let us prove that uε satisfies the constraint (1) if ε is small enough and if δε is
chosen appropriately.
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If x and y belong to Ω \ V ε, then uε ≡ u near x and y, so the constraint for uε
follows from (1). If x and y belong to Vε, then uε is affine near x and y; hence it
satisfies (1).

If x ∈ Ω \ V ε, y ∈ Vε, then uε(y) = θε(y) ≤ u(y), and uε ≡ u near x, so the
constraint follows from (1) again.

The last case to consider is x ∈ Vε, y ∈ Ω \ Vε. We have ∇θ0(x) = − cosβ e1 −
sinβ sgn(x2)e2; hence

d

dt
u(x− t∇θ0(x))

∣∣∣
t=0

= −∇u(x) · ∇θ0(x) = − cos(α− β) < 0

by assumption. Hence, reducing V if necessary, we can assume that for all x ∈ V the
map t �→ u(x− t∇θ0(x)) is decreasing for t > 0 satisfying x− t∇θ0(x) ∈ V .

Now if x ∈ Vε, y = x−τ∇θε(x) = x−t∇θ0(x), where t = τ(1−δε), we distinguish
two cases: if τ > C2ε/δε(1− δε), we have, using (10), that

θε(x) + τ(1− |∇θε|2) > −C2ε+ τ

(
δε − 1

2
δ2ε

)
> 0 ≥ uε(y);

hence the constraint is satisfied.
In the other case, using Vε ⊂ B(0, C1ε),

|y| ≤ |x|+ |x− y| ≤ C1ε+ τ(1− δε) = εC1 + C2
ε

δε
−→ 0 as ε→ 0.

Therefore, if ε is small enough, that will imply y ∈ V . We recall that this implies that
the map t �→ u(x − t∇θ0(x)) is decreasing. Since y /∈ Vε, there exists t′ ∈ (0, t) such
that z := x− t′∇θ0(x) belongs to the boundary of Vε; then

uε(y) = u(y) ≤ u(z) = θε(z) ≤ θε(x).

Hence uε satisfies the constraint since 1
2 (1− |∇uε(x)|2) > 0.

We now compute δΥ := Υ(uε; Ωε) − Υ(u; Ω). In the following, we note Wε :=
Vε ∩ Ω, and Xε := Vε \Wε. Then |Ωε| = |Ω|+ |Xε|. We have |Vε| ∼ cε2 as ε→ 0, as
explained before, and also |Xε| ∼ c1ε

2, |Wε| ∼ (c− c1)ε
2 for some constant c1.

We have

δΥ =
1

|Ωε|

(∫
Vε

f(|∇θε|) +

∫
Ω\Vε

f(|∇u|)
)
− 1

|Ω|
∫
Ω

f(|∇u|)

=
1

|Ωε|
[∫

Xε

f(|∇θε|) +

∫
Wε

f(|∇θε|)− f(|∇u|)
]
+

[
1

|Ωε| −
1

|Ω|
] ∫

Ω

f(|∇u|)

=
|Xε|
|Ωε|

[
1

|Xε|
∫
Xε

f(|∇θε|)− 1

|Ω|
∫
Ω

f(|∇u|) +Rε

]
=
|Xε|
|Ωε| [Υ(θε;Xε)−Υ(u; Ω) +Rε] ,

where

Rε :=
1

|Xε|
∫
Wε

f(|∇θε|)− f(|∇u|).
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We deduce that limε→0Rε = 0. Indeed, |Wε| / |Xε| is bounded, and, since ∇θε =
−(1− δε)e1 and ∇u = −e1 + o(1) on Vε, the result follows directly.

Going back to δΥ, we note that

lim
ε→0

Υ(θε;Xε) = f(1)

since |∇θε| = 1 + o(1) in Vε. We conclude that there exists a constant C > 0 such
that

δΥ = C[f(1)−Υ(u; Ω)] ε2 + o(ε2).

Since u is a minimizer, δΥ ≥ 0; hence Υ(u; Ω) ≤ f(1). On the other hand, |∇u| ≤ 1 in
Ω and f is decreasing, so f(|∇u|) ≥ f(1). We deduce that |∇u| = 1 almost everywhere
in Ω. This implies u ≥ 0 in Ω from (1) and the fact that u = 0 on ∂Ω (consider a τ > 0
such that x− τ∇u(x) ∈ ∂Ω). We already know that u ≤ 0, so u ≡ 0, a contradiction.

This ends the proof of the theorem in the case where u is not differentiable at 0.
Step 2. Let us now assume that u is C2 near 0. Then we can write it in the form

u(x1, x2) = −x1 +
1

2
α1x

2
1 +

1

2
α2x

2
2 + o(x21 + x22).(12)

We have taken into account that 0 is an exposed point, that we have (8), (9), and the
fact that u = 0 on ∂Ω and u < 0 in Ω. Moreover, ∆ is the tangent line to ∂Ω at 0,
and from (8) we have α2 < 0. Since |∇u(x1, 0)| = |1− α1x1 + o(x1)| < 1 for x1 > 0,
we also have α1 > 0.

Let θ0 be the function defined by

θ0(x1, x2) =

{
−x1 + 1

2βx
2
1 if x1 <

2
β ,

0 otherwise,

where β is a number to be chosen later satisfying β > α1. As this is the negative
part of a parabola whose focus point is at ( 1β , 0), θ0 satisfies the constraint for every

x ∈ R
2 with x1 ≥ 0 and for every τ > 0.

For any ε > 0, let θε(x1, x2) := θ0(x1+ ε2, x2). We claim that there exists ε0 > 0,
and, for any ε ∈ (0, ε0), a neighborhood Vε ⊂ V of 0 such that

lim sup
ε→0

diamVε
ε

<∞, u > θε in Vε ∩ Ω, and u = θε on ∂Vε ∩ Ω.(13)

Let us extend u by the constant value 0 outside Ω and consider Vε the connected
component of {u > θε} containing 0. Notice first that

Vε ∩ (R2 \ Ω) ⊂ {x1 > −ε2}

since u was extended by zero.
We now consider Wε := Vε ∩ Ω. Using the Taylor expansion of u, we have

u(x1, x2)− θε(x1, x2) = ε2(1− βx1)− 1

2
(β − α1)x

2
1

+
1

2
α2x

2
2 −

1

2
βε4 + o(x21 + x22).

(14)
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Hence this vanishes for x1, x2 of order ε, and the set u > θε is described by the
equation

ε2 + o(ε2) >
1

2
(β − α1)

(
x1 +

β

β − α1
ε2
)2

− 1

2
α2x

2
2.

Except for the o(ε2) term, this is the interior of an ellipse with center (− β
β−α1

ε2, 0)
and diameter of order ε. That proves that diamWε is of order ε. Moreover, Vε is
included in the intersection of the ellipse and {x1 > −ε2}. This ends the proof of (13).
Notice also that (14) implies that |u− θε| ≤ cε2 on Vε for some c > 0.

Step 3. We now define Ωε := Ω ∪ Vε, and

uε =

{
θε in Vε,

u in Ω \ Vε.
(15)

We claim that

Υ(uε; Ωε) < Υ(u; Ω)(16)

for ε small enough: this will contradict the minimality of (u; Ω) and ends the proof of
the theorem.

Let us first prove that uε satisfies the constraints in Ωε. Let x ∈ Ωε ∩ dom(∇uε),
and τ > 0 such that y := x− τ∇uε(x) ∈ Ωε. We have to prove that

uε(y)− uε(x)

τ
≤ 1

2
(1− |∇uε(x)|2).(17)

If x and y belong to Ω\V ε, then uε ≡ u near x and y, and so (17) follows from (1).
If x and y belong to Vε, then uε ≡ θε near x and y, and so (17) is obvious.

If x ∈ Ω \ V ε, y ∈ Vε, then uε(y) = θε(y) ≤ u(y), and uε ≡ u near x, and so (17)
follows from (1) again.

The last case to consider is x ∈ Vε, y ∈ Ω \ Vε.
Let us define, for all x ∈ V and any ε > 0,

Σε(x) :=

{
y ∈ x− R+(∇u(x) +

√
εB1);

u(y)− u(x)

|y − x| ≥ 1− |∇u(x)|2
2 |∇u(x)| −

√
ε

}
,

where B1 is the unit ball of R
2. This is nonempty since it contains x− τx∇u(x). We

now define Qε := Σε(Vε). We claim that there exist ε0 > 0 and k > 0 such that for
all ε ∈ (0, ε0), Qε ⊂ {x1 > k}. Indeed, if not, we can find sequences (εn)n going to 0,
(kn)n going to zero, and xn ∈ Vεn , y

n ∈ Σ(xn) such that yn1 ≤ kn. This implies that
xn converges to 0; hence ∇u(xn)→ −e1. Since yn ∈ xn − R+(∇u(xn) +

√
εnB1), we

deduce (yn2 −xn2 )/(yn1 −xn1 )→ 0 and yn1 ∈ [xn1 , k
n] goes to zero for n large. So xn and

yn are in V for n large, and using (12), we get

u(yn)− u(xn) = xn1 − yn1 + o(εn) and |yn − xn| = yn1 − xn1 + o(εn).

Since yn ∈ Σεn(xn), we get

−1 + o(1) =
u(yn)− u(xn)

|yn − xn| ≥ 1− |∇u(xn)|2
2 |∇u(xn)| −

√
εn = o(1)
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since |∇u(xn)| → 1. This is a contradiction.
The parameters β and k and linked together in our construction, but we can

increase β without changing k. This is permitted by the monotonicity properties
associated with these parameters: if β is increased (to a new value β̃ > β, say), the
corresponding function θ̃0 satisfies θ̃0 ≥ θ0. This implies Ṽε ⊂ Vε and Q̃ε ⊂ Qε ⊂
{x1 > k}.

In the following, we will assume that β > 2/k.
Let us now assume that we can find xε ∈ Vε, τε > 0 such that the constraint is

not satisfied for uε at xε, yε := xε − τε∇uε(xε) = xε − τε∇θε(xε); that is,

u(yε)− θε(xε)

τε
>

1

2
(1− |∇θε(xε)|2).(18)

Note that yε1 = xε1 + τε(1− β(xε1 + ε2)), yε2 = xε2.
Extracting a subsequence, we can assume that τε → τ0. We have τ0 > 0 since if

not, yε goes to 0 as xε does; hence yε belongs to V for ε small enough. Using a Taylor
expansion of u near 0 in (18) and the particular form of the coordinates of yε, we get

βxε1 − 1 + o(|xε|) =
1

τε
(−yε1 + o(|yε|)− xε1 + o(|xε|)) > βxε1 + o(|xε|),

which is a contradiction. This proves τ0 > 0.
Using (18), we get

u(yε)− u(xε)

τε
− 1

2
(1− |∇u(xε)|2)

>− u(xε)− θε(xε)

τε
+

1

2
(|∇u(xε)|2 − |∇θε(xε)|2).

Note that both terms in the right are O(ε), so yε ∈ Σε(xε) for ε small enough. In
particular, this implies yε1 > k > 2/β. Hence θε(y

ε) ≥ 0 ≥ u(yε). From (18) we
deduce that

θε(yε)− θε(xε)

τε
>

1

2
(1− |∇θε(xε)|2).

Hence the pair (xε, yε) violates the constraint for θε, which is impossible from its
definition. This ends the proof that uε satisfies the constraint.

We now compute δΥ := Υ(uε; Ωε) − Υ(u; Ω). In the following, we note Wε :=
Vε ∩ Ω and Xε := Vε \Wε. Then |Ωε| = |Ω| + |Xε|. From the definition of Vε, the
boundary of Xε has two parts, one included in {x1 = −ε2}, the other one in ∂Ω.
Note that the boundary of Ω can be defined by the equation u(x1, x2) = 0; that is,
using (12),

x1 =
1

2
α2x

2
2 + o(x22).

We deduce that

|Xε| ∼
∫ 0

−ε2
2

∫ √2x1/α2

0

dx2 dx1 =
4

3

√−2

α2
ε3 + o(ε3).

Note that |Vε| = O(ε2) from (13).
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We have

δΥ =
1

|Ωε|

(∫
Vε

f(|∇θε|) +

∫
Ω\Vε

f(|∇u|)
)
− 1

|Ω|
∫
Ω

f(|∇u|)

=
1

|Ωε|
[∫

Xε

f(|∇θε|) +

∫
Wε

f(|∇θε|)− f(|∇u|)
]
+

[
1

|Ωε| −
1

|Ω|
] ∫

Ω

f(|∇u|)

=
|Xε|
|Ωε|

[
1

|Xε|
∫
Xε

f(|∇θε|)− 1

|Ω|
∫
Ω

f(|∇u|) +Rε

]
=
|Xε|
|Ωε| [Υ(θε;Xε)−Υ(u; Ω) +Rε] ,

where

Rε :=
1

|Xε|
∫
Wε

f(|∇θε|)− f(|∇u|).

We claim that limε→0Rε = 0. Indeed, since∇θε = −e1+o(1) and∇u = −e1+o(1)
on Vε, we have limRε = lim R̄ε, where

R̄ε :=
1

|Xε|
∫
Vε

f(|∇θε|)− f(|∇u|) = Rε +
1

|Xε|
∫
Xε

f(|∇θε|)− f(|∇u|).

Let us define U(x) := ∇u(x) + e1, Θε(x) := ∇θε(x) + e1. We note that there exists
c > 0 such that |U(x)|+ |Θε(x)| < cε for all x ∈ Vε. Hence using a Taylor expansion
of f near −e1 in the form

f(|−e1 + U |) = f(1) + Φ · U +O(|U |2),

we get

R̄ε =
1

|Xε|
[∫

Vε

Φ · (Θε(x)− U(x)) +O(ε2) |Vε|
]
.

The integral vanishes since it is equal to
∫

Φ · ∇(θε − u), which is zero from the
Green formula and the fact that u = θε on ∂Vε. Hence R̄ε = O(ε) from our previous
estimates and goes to zero as claimed.

Going back to δΥ, we note that

lim
ε→0

Υ(θε;Xε) = f(1)

since |∇θε| = 1 + o(1) in Vε. We conclude that there exists a constant C > 0 such
that

δΥ = C[f(1)−Υ(u; Ω)] ε3 + o(ε3).

Using the same argument as used in the end of Step 1, we are led again to a contra-
diction.

This ends the proof of Theorem 2.
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3. Newton’s functional. The remaining part of the proof of the main theorem
relies more precisely on the exact value of the functional in (2). We divide it into a
few lemmas.

Lemma 3.1. If (u,Ω) satisfies the constraint, with Ω convex and u saturating the
constraints everywhere, then Ω is a convex polygon having at most six vertices and
satisfying the following properties:

1. For every side [A,B] of the polygon, and for any vertex C, the orthogonal
projection of C on the line (AB) does not lie on the open segment (A,B).

2. All inner angles of the polygon are ≥ π/2.
Proof. We already know that Ω is convex from Theorem 2. Since Ω tiles the

plane with a locally finite tiling, Ω is the interior of a convex polygon with at most
six vertices (cf. [1]). Of course this gives us that u is C2 on ∂Ω except at the vertices.
We note that A0, . . . , Ap−1 are the vertices of ∂Ω, p ≤ 6.

Step 4. Since u is constant (= 0) on ∂Ω, ∇u(x) is orthogonal to ∂Ω at x; in
particular, since x− y(x) ∈ R∇u(x), we have

∀x ∈ ∂Ω ∩ dom(∇u), x− y(x) is orthogonal to ∂Ω at x.(19)

We recall that we assumed u to be C2 by parts; the map x �→ y(x) := x−τx∇u(x)
is defined almost everywhere. Let x0 ∈ ∂Ω\{A0, . . . , Ap−1} and V be a neighborhood
of x0 such that u is C2(Ω ∩ V ). We assume by contradiction that y(x0) /∈ dom(∇u),
that is, y(x0) ∈ {A0, . . . , Ap−1}, say y(x0) = A0, for instance.

We note that the map y is C1(V ∩ Ω). Indeed, since u(x − τx∇u(x)) = 0, we
have, using (4),

−2u(x) = τx(1− |∇u(x)|2).

For any x ∈ Ω ∩ dom(∇u), we have u(x) < 0; since there exists t ∈ R such that
x− t∇u(x) ∈ ∂Ω, so that u(x − t∇u(x)) = 0, we get from (4) that |∇u(x)| < 1.
Consequently τ is C1(V ∩ Ω), and so is y.

For ε > 0 small enough, the equation u(x) = −ε defines a C1-line Lε in V ∩ Ω
with a parametric representation s ∈ Iε ⊂ R→ ξε(s). The map

y(ξε(s)) = ξε(s)− τ(ξε(s))∇u(ξε(s))

takes values in ∂Ω near A0. On the other hand, it is a C1 map; hence it takes images
in [Ap−1, A0] or [A0, A1].

Moreover, Lε is continuous with respect to ε and converges to L0 := V ∩∂Ω � x0.
From (19) and the convexity of Ω, y(L0) ∩ (Ap−1, A0) �= ∅ and y(L0) ∩ (A0, A1) �= ∅.
This is a contradiction, and this proves the first assertion of the lemma.

Step 5. We now prove that every interior angle at the vertices A0, . . . , Ap−1 is
≥ π/2. Since Ω is a convex polygon tiling the plane, that implies also that p > 3.

Indeed, let us assume by contradiction that the angle at, say, A1 is < π/2. Let us
consider x ∈ (A0, A1) near A1; from the previous step, y(x) belongs to the orthogonal
line to [A0, A1] at x and to ∂Ω, that is, y(x) ∈ (A1, A2). As x varies continuously
from A1 to A0, y(x) still belongs to the same segment as proved before. Let B0 be
the limit of y(x) as x → A0, so that B0 ∈ [A1, A2]. Then the triangle [A0, A1, B0] is
rectangular in A0 and not flat. This implies

|A1 −A0| < |A1 −B0| ≤ |A1 −A2| .
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Fig. 1. Tiling the plane with an irregular hexagon.

On the other hand, A2 obeys the same rule on the other side, and so |A1 −A2| <
|A1 −A0|, which is a contradiction.

This ends the proof of the lemma.
Lemma 3.2. The polygons obeying the properties of Lemma 3.1 and tiling the

plane are
1. all the rectangles;
2. the regular hexagon;
3. all convex hexagons such that A1A2A4A5 is a rectangle, Â0 ≥ π/2, Â3 ≥ π/2,
and A1A2 > AiAi+1 for i = 2, 3, 5, 0 (see Figure 1).

Proof. Let us number the vertices such that A1A2 is one of the largest sides of
the polygon. We shall write the indices modulo p, that is, Ap = A0, etc. We call Âi
the inner angle at Ai.

Step 6. We claim that there exists k > 1 such that A1A2AkAk+1 is a rectangle.
Indeed, for any i, the orthogonal projection Pi of Ai on the line ∆ = (A1A2)

does not belong to (A1, A2), that is, belong to ∆1 := {A1 + t(A1 − A2); t ∈ R+}
or ∆2 := {A2 + t(A2 − A1); t ∈ R+}. Moreover, P0 ∈ ∆1 since the inner angle at
A1 is ≥ π/2; similarly, P3 ∈ ∆2. Therefore, there exists k such that Pk ∈ ∆2 and
Pk+1 ∈ ∆1. Since the projection is 1-Lipschitz,

|Ak −Ak+1| ≥ |Pk − Pk+1| ≥ |A1 −A2| .

Since A1A2 is one of largest sides, there is equality here, and Pk = A2, Pk+1 = A1.

Step 7. If Â1 = π/2, then the polygon is a rectangle. Indeed, Â1 = π/2 implies

Ak+1 = A0, that is, k = p−1. If we suppose Â2 > π/2, then k > 3, and the projection
of A3 on (A0, A1) belongs to the interior of (A0, A1) from the convexity of the polygon
and the fact that A0A1A2Ap−1 is a rectangle. This contradicts Lemma 3.1.

Step 8. Let us now assume that the polygon is not a rectangle. From the previous
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step, Âi > π/2 for i = 1, 2, k, k+1 since all four vertices of the rectangle A1A2AkAk+1

are equivalent. Consequently k > 3 and k+1 < p; since p ≤ 6, this implies p = 6 and
k = 4.

Let us first assume that |A2 −A3| = |A1 −A2|. Then using the same argument
as in the first step, we get that A2A3A5A0 is a rectangle. Since this rectangle has a
common diagonal (A2A5) with A1A2A4A5, both have the same center O. Therefore,
Ai and Ai+3 are symmetrical with respect to O for i = 0, 1, 2. The polygon is a
regular hexagon.

Step 9. The last case to consider is |A1 −A2| = |A4 −A5| > |Ai −Ai+1| for
i = 0, 2, 3, 5.

Since Ω tiles the plane, there is a deplacement R such that A1A2 is a side of
R(Ω); hence it must be R(A1A2) or R(A4A5). That implies that R is a translation
or a rotation with angle π or a symmetry with respect to a line parallel to (A1, A2).
Moreover, R(A1A2A4A5) is a rectangle with parallel sides, the longest side being
parallel to A1A2. More generally, this property is true for any R′ ∈ G, where G is the
group of deplacements generating the tiling.

The additional requirements stated in the lemma come from Lemma 3.1.
Lemma 3.3. Let Ω be a convex polygon with vertices {A0, . . . , Ap−1}. Then if u

is optimal, u = max(u0, . . . , up−1), where uk has the form

uk(x1, x2) =
1

2γ
(X2

2 − γ2) or uk(x1, x2) = coshβ X1 + sinhβ
√
X2

1 +X2
2

with X := Rx+X0, where R ∈ SO2, X0 ∈ R
2, and γ, β ∈ R are constant.

Proof. Let AkAk+1 be one of the sides of the polygon. There exists uk of class
C2 such that u ≡ uk in a neighborhood V of this side. Also there exists another side
AiAi+1 such that for all x, y(x) ∈ [Ai, Ai+1].

There exists R ∈ SO2, X0 ∈ R
2 such that, in the new coordinates system X =

Rx + X0, (AiAi+1) is included in the line {X2 = 0} and either AkAk+1 is parallel
to AiAi+1 or the line AkAk+1 contains X = 0. Since u(Y (x)) = 0, where Y (x) =
Ry(x) +X0 and

y(x) = x− τx∇u(x) = x+ 2
u(x)

1− |∇u(x)|2 ∇u(x),(20)

the fact that Y2(x) = 0 is equivalent to the equation

X2 (|∇u(X)|2 − 1) = 2u(X) ∂2u(X).(21)

Therefore uk must be a regular solution of this equation, satisfying uk ≡ 0 on the
segment AkAk+1; that is, either u(X1, γ) = 0 for some γ or u(δX2, X2) = 0 for some
δ. Since (21) is a Hamilton–Jacobi equation, there is uniqueness of the solution near
this line. In the first case, one can check that the solution is 1

2γ (X
2
2 − γ2), and in the

other case, it is

coshβ X1 + sinhβ
√
X2

1 + xX2
2 ,

where β is defined by sinhβ = −δ. These solutions can be found using the methods
described in [5].

Since all these functions are convex, u coincides with them near the sides and
satisfies the constraints only if u ≥ U := max(uk). Moreover, if u > U , then |∇u| <
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|∇U | in the zone {u > U}; hence F (u; Ω) > F (U ; Ω), contradicting the optimality of
u.

In order to conclude the proof of the main theorem, we have to compute ex-
plicitly the value of the functional for the polygons given in Lemma 3.2, using the
explicit functions given in Lemma 3.3. It turns out that the case of the nonregular
hexagons leads to a larger value of the functional. This is shown, with complicated
computations, in the appendix.

Let us first present the computation for the rectangle [−1, 1] × [−k, k], where
k ≥ 1 is a given number. We will prove that the value of the functional attains a
strict minimum for k = 1, that is, for a square.

From Lemma 3.3, since reflection occurs on parallel lines, we have u in the form
max(u1, u2, u3, u4) with each ui in the form ui(x1, x2) = (±xj + γ)

2
/4γ − γ, where

j = 1 or j = 2 and γ = 1 or γ = k in an appropriate coordinate system. If we restrict
ourselves to the positive quadrant x1 > 0, x2 > 0, we have

u(x1, x2) = max(u1(x1), u2(x2))

with u1(x1) :=
(1 + x1)

2

4
− 1, u2(x2) :=

(k + x2)
2

4k
− k.

For any value of x1 ∈ [0, 1], there exists a unique positive root x2 = h(x1) of the
equation u1(x1) = u2(x2), given by

h(x1) =
√
k(4(k − 1) + (x1 + 1)2)− k.

Moreover, if x2 > h(x1), then u2(x2) > u1(x1), and hence u = u2; conversely, u = u1
if x2 < h(x1). Therefore the value of the functional is given by

F (u) =
1

k

∫ 1

0

(∫ h(x1)

0

f(u′1(x1)) dx2 +

∫ k

h(x1)

f(u′2(x2)) dx2

)
dx1

= 4

∫ 1

0

√
k(4(k − 1) + (x1 + 1)2)− k

k((x1 + 1)2 + 4)
dx1

+
π

2
− 2

∫ 1

0

arctan

[√
4(k − 1) + (x1 + 1)2

2
√
k

]
dx1.

Differentiating with respect to k, using the change of variable x = (1 + x1)/2, and
writing k = 1 + β2, we get

dF (u)

dk
=

β2
√

1 + β2

2

∫ 1

1
2

(x2 − 1)2 dx

(1 + x2)(1 + 2β2 + x2)
√
β2 + x2

> 0

for β �= 0; hence F (u) is increasing as claimed.
This proves that the minimum among all rectangles is achieved for a square. The

minimal value is given by k = 1; that is,

Fsquare := π + 12 ln 2− 4 ln 5− 4 arctan 2 � 0.5930123.

For the regular hexagon, we put the vertices as indicated in Theorem 1. Using
symmetries, we have to compute the value of the functional for the triangle OAI,
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where I = (a, 0), whose area is a2/2
√

3. The restriction of u in this triangle is equal
to φa(x1) (defined in Theorem 1); hence the corresponding value of the functional is

Fhexagon =
2
√

3

a2

∫ a

0

∫ x1/
√
3

0

f(φ′a(x1)) dx2 dx1

= π + 12 ln 2− 4 ln 5− 4 arctan 2 = Fsquare.

This ends the proof of Theorem 1.

Appendix. Nonregular hexagons. We consider here a hexagon with vertices
A,B,C,A′, B′, C ′. We assume that C ′A is the longest side of the hexagon; then
C ′ACA′ is a rectangle from Lemma 3.2. We choose a coordinate system where A =
(a,−1), C = (a, 1), B = (a+α, β) with α > 0, and A′ = −A, C ′ = −C (see Figure 2).
In the following, we consider only the part in Ω+ := {x ∈ Ω; x1 > 0}. Indeed, it
suffices to minimize the functional on each half part of the hexagon.

We use the auxiliary functions φa(t) = (t+ a)2/(4a)− a,

ψb(x) = x1
√

1 + b2 + b
√
x21 + x22,

and the parameters p := α/(1 + β), q := α/(1 − β). Hence α = 2pq/(p + q), β =
(q − p)/(q + p). Then the line (AB) crosses {x2 = 1} at L := (a + 2p, 1), and (BC)
crosses {x2 = −1} at K := (a+ 2q,−1).

Here u = max(u1, u2, u3, u4), where

u1(x) = φ1(x2) =
1

4
(1 + x2)

2 − 1,

u2(x) = φ1(−x2) =
1

4
(1− x2)

2 − 1,

u3(x) = ψq(x1 − a− 2q, 1 + x2),
u4(x) = ψp(x1 − a− 2p, 1− x2).

We note that Ωi := interior{x ∈ Ω+, u(x) = ui(x)}.
Theorem 3. Assume that there exists an irregular hexagon H such that F (uH , H)

< Fsquare. Then there exists a symmetrical hexagon H ′ such that F (uH′ , H ′) ≤
F (uH , H).

Proof. For a symmetrical hexagon, we have β = 0 or, equivalently, q = p. In the
following, we assume that q > p, and we will prove that the value of F is increasing
with respect to q; we note it shortly as F (q):

F (q) :=
G(q)∑
i |Ωi|

, where G(q) :=
4∑
i=1

∫
Ωi

f(∇ui).

Let us assume that F (q) is optimal and, in particular, is not greater than Fsquare.
Then we have a smaller value if q = 1/a. Indeed, we must in general have qa ≥ 1 since
the angle OCB must be not smaller than π/2 from Lemma 3.1. This implies that the
scalar product OC.CB ≥ 0, that is, qa ≥ 1, or equivalently the line perpendicular to
CB at C must cross the x1-axis at some point D having a nonnegative first coordinate
d. Let U1 = {x ∈ Ω+; |x1| < d}, U2 = Ω+ \ U1. If qa > 1, then U1 is nonempty; then

F (u; Ω+) = tF (u;U1) + (1− t)F (u;U2), where t :=
|U1|

|U1|+ |U2| ∈ (0, 1).
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Ω1

Ω2

Ω3

Ω4

A

B

C

O x1

x2

S J

L

K

a

a + α

a + 2p

1

−1

a + 2q

Γ13

Γ34

Γ12

A′

B′

C ′

Γ14

Γ24

Fig. 2. Nonsymmetrical hexagon.

On the other hand, F (u;U1) > Fsquare as shown from an explicit computation, using
u = φ1(|x2|) in U1. Therefore, if the optimal value for F is not greater than Fsquare,
then F (u;U2) ≤ Fsquare; hence F is minimal when we have U1 = ∅; that is, qa = 1 as
claimed.

We are now going to study the variation of F (q) with respect to q, assuming that
qa ≡ 1. We recall that F (q) = G(q)/A(q), where A(q) := |Ω| /2 = 2a + β. We will
prove that

∂A

∂q
< 0 and

∂G

∂q
> 0(22)

under the assumption that q > p. (The partial derivatives are understood with p
constant.) This implies that F is minimal for q = p, that is, for a symmetrical
hexagon as claimed.

We note that the angle ABC must be not smaller than π/2 from Lemma 3.1,
that is, α2 + β2 ≤ 1 or, equivalently, pq ≤ 1. Under the assumption that p < q, this
implies p < 1; since we have A(q) = 2a+ β = 2

q + q−p
q+p , we get

∂A

∂q
= − 2

q2
+

2p

(q + p)2
< − 2

q2
+

2

(q + p)2
< 0.

This proves the first inequality in (22).
Let us turn to the proof of the second one. We note that only u3 depends on q.

Therefore, if we define gij = ui − uj , Γij = g−1ij (0) for i, j ∈ {1, . . . , 4}, we have

∂G

∂q
=

∫
Ω3

∂

∂q
f(∇u3) +R43 +R13,

where

Rij :=

∫
Γij

∂gij
∂q

1

|∇gij | [f(∇ui)− f(∇uj)] .

We prove that all three terms in ∂G
∂q are positive. Let us begin with R43.
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Let x ∈ Ω3 be given, and y := x− τx∇u(x) = x− τx∇u3(x). From the definition
of u3, we have y ∈ C ′A and u(y) = 0. From (4), we have

u3(x) = −τx
2

(1− |∇u3(x)|2).

A similar relation holds if x ∈ Ω4, and y ∈ A′C. For x ∈ Γ43 ⊂ Ω3 ∩ Ω4, there exists
τ3, τ4 such that

−τ3
2

(1− |∇u3(x)|2) = u3(x) = u4(x) = −τ4
2

(1− |∇u4(x)|2),

and y3 := x − τ3∇u3(x) ∈ C ′A, y4 := x − τ4∇u4(x) ∈ A′C. Since Γ43 ⊂ {x2 > 0},
we have t3 := |x− y3| > t4 := |x− y4|; notice also that ti = τi |∇ui(x)|, and, in
particular,

t3

(
1

|∇u3(x)| − |∇u3(x)|
)

= t4

(
1

|∇u4(x)| − |∇u4(x)|
)
.

Since t3 > t4, this implies that |∇u3(x)| > |∇u4(x)|; hence

∀x ∈ Γ43, f(∇u3(x)) < f(∇u4(x)).(23)

Similarly, if x ∈ Γ13, y1 is the orthogonal projection of x on C ′A; hence t1 < t3. This
implies that

∀x ∈ Γ13, f(∇u3(x)) < f(∇u1(x)).(24)

Moreover, ∂
∂q g43(x) = − ∂

∂qu3(x) = ∂
∂q g13(x) since u4(x) and u1(x) do not

depend on q. In what follows, we will use the following coordinates:

X1 := a+ 2q − x1, X2 = 1 + x2, R :=
√
X2

1 +X2
2 .

We recall that x ∈ Ω3 in the expression of ∂G/∂q. We need to describe the domain
of variation of (X1, R) for x ∈ Ω3.

We have

Ω3 ⊂ {x; u3(x) ≥ u1(x) and u3(x) ≤ 0 and x1 ≤ a+ α and x2 ≥ −1};
that is, Ω3 is included in the gray zone SJBC indicated on Figure 2. This yields first
R ≥ X1. Then x1 ≤ a+ α implies X1 ≥ 2q2/(q + p) ≥ q since we assume q > p. The

condition u3 ≤ 0 implies qR ≤ X1

√
1 + q2. And u3 ≥ u1 leads to (X1−2

√
1 + q2)2 ≥

(R−2q)2; taking into account that X1 ≤ R, this yields R+X1 ≤ 2(q+
√

1 + q2), and,

in particular, X1 ≤ q+
√

1 + q2. Therefore, in (X1, R) coordinates, Ω3 is included in

the polygon B̃C̃S̃J̃ pictured in Figure 3.
We have

− ∂

∂q
u3(x) = − ∂

∂q
ψq(a+ 2q − x1, 1 + x2)

= −∂ψq
∂q

(a+ 2q − x1, 1 + x2)− 2
∂ψq
∂x1

(a+ 2q − x1, 1 + x2)

=
−R2 +R (X1q + 2(1 + q2))− 2qX1

√
1 + q2

R
√

1 + q2
.
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B̃

C̃

J̃

S̃

0

R

X1

R
=

X 1

q 2q q +
√

1 + q2

R
+

X
1 =

2(q + √
1
+

q 2
)

qR
=

X
1
√ 1

+
q
2

Fig. 3. Zone including Ω3 in (X1, R) coordinates..

Hence the sign of ∂
∂qu3(x) is the same as the sign of

n3(X1, R) := −R2 +R (X1q + 2(1 + q2))− 2qX1

√
1 + q2.

This is a concave expression in R, and so it is minimal for the extremal values of R,
when X1 is given. That is, we have to check that n3 ≥ 0 on [J̃ S̃], [C̃S̃], [B̃C̃].

On [J̃ S̃], we have R = X1; using m := q +
√

1 + q2, we get

n3(X1, X1) = X1(X1(q − 1) + 2(1 + q2)− 2q
√

1 + q2)

= X1m
−2(−X1m+m2 + 1) ≥ 0,

since X1 ≤ m.
On [C̃S̃], we have R = 2m−X1, and

n3(X1, 2m−X1) = −m4 + 2X1m
3 −X2

1m
2 + 1.

This is again a concave expression on X1, so it is minimal for X = m or X = 2q =
m− 1/m; since n3(m,m) = 1 and n3(m,m+ 1/m) = 0, we conclude that n3 ≥ 0 on

[C̃S̃].

On [B̃C̃], q ≤ X1 ≤ 2q, R = X1

√
1 + q2/q; hence

n3(X1, X1

√
1 + q2/q) = −2mX1(1 +m2)

X1m−m2 + 1

(m2 − 1)2
≥ 0.

This proves that n3 ≥ 0; hence ∂
∂q g43(x) = ∂

∂q g13(x) ≥ 0. This proves that

R43 > 0 and R13 > 0, taking (23) and (24) into account.
To conclude the proof that ∂G/∂q > 0, we prove that ∂

∂qf(∇u3) > 0 or, equiva-

lently, that ∂
∂q |∇u3|2 < 0. We have

|∇u3|2 =

[
q(a+ 2q − x1)√

(a+ 2q − x1)2 + (1 + x2)2
−
√

1 + q2

]2
+

q2(1 + x2)
2

(a+ 2q − x1)2 + (1 + x2)2
.
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Hence, using the notations X1, X2, R,

∂

∂q
|∇u3|2 =

2N(X1, R)

R3
√

1 + q2
,

where

N(X1, R) := 2qX2
1 (1 + q2)− (2q2 + 1)R2X1 − 2q(1 + q2)R2 + 2q

√
1 + q2R3.

We have to prove that N ≤ 0; since this is a convex function of X1, it is enough to
prove that for the extremal values of X1.

Let us first examine the value on [S̃J̃ ], where X1 = R. We have

N(R,R) = R3(2q
√

1 + q2 − 2q2 − 1) < 0

since 2q
√

1 + q2 < 2q2 + 1 for any q > 0.

On [B̃J̃ ], we have X1 = q, and

N(q,R) := 2q
√

1 + q2R3 − (4q2 + 3)qR2 + 2q3(1 + q2).

Since d
dRN(q,R) has the form R(c1R − c2), with c1, c2 > 0, N(q,R) is decreasing,

then increasing on R+. Hence, to prove N(q,R) < 0, it is enough to check on the

boundary values for R, that is, R = q (for J̃) and R =
√

1 + q2 (for B̃). We already
know that N(q, q) < 0 and

N(q,
√

1 + q2) = −q(1 + q2) < 0.

On [B̃C̃], we have R = X1

√
1 + q2/q and then

N(X1, X1

√
1 + q2/q) :=

X2
1

q2
(1 + q2)[X1 − 2q] ≤ 0,

since X1 ≤ 2q on [B̃C̃].

On [C̃S̃], we have R = 2m − X1, where m := q +
√

1 + q2 and X1 ∈ [2q,m].
Using t := m(X − 2q), we have t ∈ [0, 1]; thus,

N(X1, 2m−X1) = N

(
2q +

t

m
, 2m− 2q − t

m

)
=

t

m3
Ñ(t),

where

Ñ(t) = −m2t2 + (2m4 + 3m2 − 1)t− 3m4 − 2m2 + 1.

We have Ñ ′(t) = −2tm2 + 2m4 + 3m2 − 1 > 0 since m ≥ 1 and t ∈ [0, 1]. Hence

Ñ(t) ≤ Ñ(1) = −m4 < 0.

This concludes the proof of (22) and the proof of Theorem 3.
We now consider the case of a symmetrical hexagon, that is, β = 0, p = q = α.

For the reason given in the beginning of the proof of Theorem 3, it is sufficient to
consider the case a = 1/α, with a ≥ 1.
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Theorem 4. Let F (a) be the value of F (uHa
;Ha), where Ha is the symmetrical

hexagon (β = 0) with parameters a ≥ 1, α = 1/a. Then F (a) is increasing with
respect to a ≥ 1, and its minimal value F (1) is greater than Fsquare.

Proof. We prove the theorem by an explicit computation of F (a) and then by a
differentiation with respect to a.

Since β = 0, the point B in Figure 2 lies on the x1-axis, and Ha and uHa are
symmetrical with respect to x1 and x2. Therefore, if we define Ωa := Ha ∩ {x1 >
0, x2 > 0} and ua as the restriction of uHa to Ωa, we have F (a) = F (ua,Ωa). In Ωa, we
have ua = max(u1, u3), where u1(x) = φ1(x2) and u3(x) = ψ1/a(x1− a− 2/a, 1+x2).

We have Ωa = Ω1 ∪ Ω3 with ua = ui in Ωi, i = 1, 3. We still note by Γ13 the
common boundary of Ω1 and Ω3. It is defined by the equation

1

4
(1 + x2)

2 − 1 = u1(x) = u3(x)

=
√

1 + a−2
(
x1 − a− 2

a

)
+

√
(x1 − a− 2/a)2 + (1 + x2)2

a
,

which can be solved in the form

x1 = w(x2) =
(s− 1)(2s2 + 2 + (x2 + 1)2s)

4s(s+ 1)
,

where s := exp(asinh a) = a+
√

1 + a2.
We have

F (a) =
G1(a) +G3(a)

|Ωa| , where Gi(a) :=

∫
Ωi

f(∇ui).(25)

Now

G3(a) =

∫ 1

0

∫ a+
1−x2

a

w(x2)

f3(x1, x2) dx1 dx2

with f3(x1, x2) := f(∇u3(x)) =
1

2

a2
√
X2 + Y 2

√
1 + a2X + (1 + a2)

√
X2 + Y 2

,

where X := x1 − a− 2/a, Y := x2 + 1.
Using the change of variable X = Y sinh t, we have that

J3 :=

∫ a+
1−x2

a

w(x2)

f3(x1, x2) dx1 =
a2Y

2

∫ − asinh 1
a

W

cosh2 t dt

(a2 + 1) cosh t+
√

1 + a2 sinh t
,

where sinhW = (aw(Y − 1)− 2− a2)/(aY ), that is,

W = log

(
Y (s− 1)

2(s+ 1)

)
,

taking into account the value of w and using s = a+
√

1 + a2. We explicitly get

8(s4 − 1)J3 = (1 + s4 + 6s2)(4− Y 2) + 4s(s2 + 1)(Y − 2)2

+ 32s2Y arctan

(
Y − 2

2 + Y

)
.
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Integrating for Y ∈ [1, 2], we get

G3(a) =
5s4 + 4s3 + (144 arctan 3 + 384 arctan 2− 66− 168π)s2 + 4s+ 5

24(s4 − 1)
.

Since u1 does not depend on x1, we have

G1(a) =

∫ 1

0

w(x2)f(∇u1(x2)) dx2

=
(s− 1)((4 arctan 2− π)(s− 1)2 + 4s)

4(s+ 1)s
.

Finally, |Ωa| = a+ 1/(2a) = (1 + s4)/(2s(s2 − 1)), so

F (a) =
2s(s2 − 1)

1 + s4
[G1(a) +G3(a)] .

Hence,

F ′(a) =
ds

da

(s2 − 1)2N(s)

12(1 + s4)2(s2 + 1)2

has the sign of

N(s) := 96
(
1− 9s5 − 6s4 − 9s3 − 6s6 − 6s2 − 3s− 3s7 + s8

)
arctan 2

− 144s2(3 + 4s2 + 3s4) arctan 3

− 24(1− 18s4 − 9s5 − 9s3 − 15s2 − 3s7 + s8 − 3s− 15s6)π

− 29 + 88s+ 54s2 + 264s3 + 88s7 + 14s4 + 264s5 − 29s8 + 54s6.

Since a ≥ 1, s ≥ 1 +
√

2. Computing the coefficients explicitly, we get for t > 0,

N(1 +
√

2 + t) � 1.88805320 t8 + 31.8011496 t7 + 236.968636 t6

+ 1013.948295 t5 + 2708.11097 t4 + 4589.26377 t3

+ 4768.4986 t2 + 2727.7799 t+ 634.0078 > 0.

Hence F (a) is increasing as claimed. The minimal value of F (a) is

F (1) = ((528
√

2 + 768) arctan 2 + (180
√

2 + 252) arctan 3

− (222
√

2 + 318)π + 53 + 41
√

2)
/

(36(10 + 7
√

2))

� 0.60771279 > Fsquare.

This concludes the proof of the theorem.

REFERENCES
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1. Introduction. In this paper we study the stochastic Stokes equation. Specif-
ically, we are considering in Rd the system of equations for u =(ul)1≤l≤d and scalar
functions p, p̃:

∂tu
l = ∂i(a

ij(t, x)∂ju
l)+Dl(u, t, x) + ∂lp

+ [σk(t, x)∂ku
l +Ql(u, t, x) + ∂lp̃] · Ẇ ,(1.1)

ul(0, x) = ul0(x), l = 1, . . . , d, x ∈ Rd,

divu = 0,

where W is a cylindrical Wiener process in a Hilbert space. Here and everywhere
below, the summation with respect to the repeated indices is assumed.

Our interest was motivated by stochastic fluid mechanics (see, e.g., [3], [4]). While
the assumptions imposed below exclude the “typical” nonlinearity uk∂ku, they allow
us to construct suitable approximations to the solution of stochastic Navier–Stokes
equations.

In [1], [2], Krylov developed a comprehensive theory of second order quasi-linear
parabolic stochastic differential equations in Bessel classes Hs

p(R
d). In [7], Krylov’s

results were extended to parabolic systems of quasi-linear stochastic PDEs on Rd for
u =(ul)1≤l≤d:

∂tu
l = ∂i(a

ij(t, x)∂ju
l)+Dl(u, t, x)

+ [σk(t, x)∂ku
l +Ql(u, t, x)] · Ẇ ,

ul(0, x) = ul0(x), l = 1, . . . , d, x ∈ Rd.

We prove the existence and uniqueness of solutions to (1.1) in the spaces of Bessel
potentials.

The structure of the paper is as follows. In section 2 we introduce the notation
and state the main result about the existence and uniqueness of solutions to (1.1). In
section 3 we present some auxiliary results needed for the investigation of the Stokes
equation in R

d. They regard pointwise multipliers in Rd and solenoidal and potential
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projections of vector fields. In section 4, following Krylov’s ideas and [7], we prove
the main results about the existence and uniqueness of solutions to (1.1). Also, some
additional integrability and regularity properties of solutions are investigated.

2. Notation and the main results. Let Y be a separable Hilbert space with
a norm | · |Y . The scalar product of x, y ∈ Y will be denoted by x · y.

Let Rd be a d-dimensional Euclidean space with elements x = (x1, . . . , xd); if
x, y ∈ Rd, we write

(x, y) =

d∑
i=1

xiyi, |x| =
√
(x, x).

If u is a function on Rd, the following notational conventions will be used for
its partial derivatives: ∂iu = ∂u/∂xi, ∂

2
ij = ∂

2u/∂xi∂xj , ∂tu = ∂u/∂t, ∇u = ∂u =
(∂1u, . . . , ∂du), and ∂

2u = (∂2
iju) denotes the Hessian matrix of second derivatives.

Let α = (α1, . . . , αd) be a multi-index; then ∂
α
x = Π

d
i=1∂

αi
xi
.

Let C∞0 = C∞0 (R
d) be the set of all infinitely differentiable functions on Rd with

compact support.

For s ∈ (−∞,∞), write Λs = Λsx = (1−
∑d
i=1 ∂

2/∂x2
i )
s/2.

For p ∈ [1,∞] and s ∈ (−∞,∞), we define the space Hs
p = H

s
p(R

d) as the space
of generalized functions u with the finite norm

|u|s,p = |Λsu|p,

where | · |p is the Lp norm. Obviously, H0
p = Lp. Note that if s ≥ 0 is an integer, the

space Hs
p coincides with the Sobolev space W

s
p =W

s
p (R

d).

If p ∈ [1,∞] and s ∈ (−∞,∞), Hs
p(Y ) = Hs

p(R
d, Y ) denotes the space of Y -

valued functions on Rd so that the norm ||g||s,p = | |Λsg|Y |p < ∞. We also write
Lp(Y ) = Lp(R

d, Y ) = H0
p (Y ) = H0

p (R
d, Y ). Let C∞0 (Y ) be the space of Y -valued

infinitely differentiable functions on Rd with compact support.

Obviously, the spaces C∞0 , C
∞
0 (Y ), H

s
p(R

d), and Hs
p(R

d, Y ) can be extended to
vector functions (denoted with boldfaced letters). For example, the space of all vector
functions u = (u1, . . . , ud) such that Λsul ∈ Lp, l = 1, . . . , d, with the finite norm

|u|s,p =
(∑

l

|ul|ps,p
)1/p

,

we denote by H
s
p = H

s
p(R

d). Similarly, we denote by H
s
p(Y ) = H

s
p(R

d, Y ) the space

of all vector functions g = (gl)1≤l≤d, with Y -valued components gl, 1 ≤ l ≤ d, so that
||g||s,p = (

∑
l |gl|ps,p)1/p < ∞. The set of all infinitely differentiable vector functions

u = (u1, . . . , ud) on Rd with compact support will be denoted by C
∞
0 . We denote by

C
∞
0 (Y ) the set of all infinitely differentiable vector functions u = (u

1, . . . , ud) on Rd

with compact support. (All ul are Y -valued.)

When s = 0, H
s
p(Y ) = Lp(Y ) = Lp(R

d, Y ). Also, in this case, the norm ||g||0,p
is denoted more briefly by ||g||p. To forcefully distinguish Lp norms in spaces of
Y -valued functions, we write || · ||p, while in all other cases a norm is denoted by | · |.

The duality 〈·, ·〉s between H
s
p(R

d, Y ) and H
−s
q (R

d, Y ), p ≥ 2, s ∈ (−∞,∞), and
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q = p/(p− 1), is defined by

〈φ, ψ〉
Hs

p(Y ),H−s
q (Y ) =

d∑
i=1

∫
Rd

[
Λsφi

]
(x) · Λ−sψi (x) dx

=

d∑
i=1

∫
Rd

[
Λ̃sφ

i
]
(x) · Λ̃−sψi (x) dx, φ ∈ H

s
p(Y ), ψ ∈ H

−s
q (Y ).

If Y = R, i.e., H
s
p(Y ) = H

s
p, we denote 〈φ, ψ〉Hs

p(Y ),H−s
q (Y ) = 〈φ, ψ〉s = 〈φ, ψ〉s,p. If

f ∈ H
s
q(R

d, Y ) and φ ∈ H
−s
p (R

d), p ≥ 2, s ∈ (−∞,∞), and q = p/(p− 1), we write

〈f ,φ〉s,Y = 〈f ,φ〉s,p,Y =
d∑
l=1

∫
Rd

[
Λsf l (x)

]
Λ−sφl (x) dx

=

d∑
l=1

∫
Rd

[
Λ̃sf

l (x)
]
Λ̃−sφl (x) dx.

Obviously, the function φ −→ 〈f ,φ〉s,Y is a linear mapping from H−sp into Y , and
|〈f ,φ〉s|Y ≤ ||f ||s,q|φ|−s,p. Similar notation, 〈φ,ψ〉s and 〈f, φ〉s,Y , will be used for
scalar functions.

We define the subspace of the divergence free vector fields S(Hs
p(Y )) = {v ∈

H
s
p(Y ) : divv = 0} ⊆ H

s
p(Y ) and the subspace of gradient vector fields

G(Hs
p(Y )) = {v ∈H

s
p(Y ) : 〈v,g〉Hs

p(Y ),H−s
q (Y ) = 0 ∀ g ∈ S(H−sq (Y ))},

where p ≥ 2, q = p/(p− 1), s ∈ (−∞,∞).
Also, we will need some spaces of Y -valued continuous functions. For m =

1, 2, 3, . . . , we define

Cm(Y ) = {u : ∂αu is uniformly continuous on Rd ∀ |α| ≤ m},
with the norm ||u||Cm =

∑
|α|≤m ||∂αu||∞. For a noninteger s > 0, we define

Cs(Y ) =
{
u ∈ C [s] : ||u||Cs = ||u||C[s] +

∑
|α|=[s]

sup
x�=y

|∂αu(x)− ∂αu(y)|Y
|x− y|{s} <∞

}
,

where s = [s] + {s}, s is an integer, and 0 ≤ {s} < 1. For an integer s > 0, we denote

Cs(Y ) =
{
u ∈ Cs−1 : ||u||Cs = ||u||Cs−1 +

∑
|α|=[s]−

sup
x�=y

|∂αu(x)− ∂αu(y)|Y
|x− y| <∞

}
,

where s = [s]− + 1. If Y = Rd, we write simply Cm, Cs.
Remark 2.1 (see, for example, Lemma 6 in [7]). Let s > 0. Then
(a) Hs

∞(Y ) ⊆ Cs(Y ), if s is not an integer;
(b) Cs+ε(Y ) ⊆ Hs

∞(Y ) for each ε > 0.
Let

Bs(Y ) =


Hs
∞(Y ) if s > 0 is not an integer,
Cs(Y ) if s > 0 is an integer,
L∞(Y ) if s = 0,
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and denote the corresponding norms by | · |Bs . If Y = Rd, we write simply Bs.
It is shown (see Lemma 7 in [7]) that for b ∈ B|s|(Y ), s ∈ (−∞,∞), p ∈ (1,∞),

there is a constant N so that

||bv||s,p ≤ N ||b||B|s| |v|s,p(2.1)

for all v ∈ H
s
p, where bv = (bv

1, . . . , bvd).
Let (Ω,F ,P) be a probability space with a filtration F of right continuous σ-

algebras (Ft)t≥0. All the σ-algebras are assumed to be P-completed. Let W (t) be
an F-adapted cylindrical Brownian motion in Y ; i.e., we have a family of continuous
martingales Wt(v), v ∈ Y , with the quadratic variation

〈W (v),W (v′)〉t = t v · v′ ∀ v, v′ ∈ Y .
Let p ≥ 2, s ∈ (−∞,∞). Denote by Is,p the set of all measurable F-adapted

H
s
p(Y )-valued functions such that for every t,∫ t

0

||g(r)||ps,p dr <∞, P a.s.

It is shown (see Theorem 2.1 in [7]) that for each g ∈ Is,p there is a unique H
s
p (Y )-

valued continuous martingale M(t) =
∫ t
0
g(r) · dW (r) such that for all φ ∈ H

−s
q ,〈∫ t

0

g (r) · dW (r) ,φ

〉
s

=

∫ t

0

〈g(r),φ〉s,Y · dW (r) ∀t > 0,P a.s.

Moreover, for each T > 0 there exists a constant C not depending on g so that for
any stopping time τ ≤ T ,

E sup
r≤τ
|M(r)|ps,p ≤ CE

∫ τ

0

||g(r)||ps,p dr.(2.2)

Consider the Stokes system (1.1) in vector form:

∂tu(t, x) = ∂i(a
ij(t, x)∂ju) +D(u, t, x)−∇p(t, x)

[σk(t, x)∂ku(t, x) +Q(u, t, x)−∇p̃(t, x)] · Ẇ ,(2.3)

u(0, x) = u0(x), divu = 0.

Let s ∈ (−∞,∞), p ≥ 2. For v ∈H
s+1
p , let Q(v, t) = Q(v, t, x) be a predictable

H
s
p(Y )-valued function and D(v, t) = D(v, t, x) a predictable H

s−1
p -valued func-

tion. Let a = a(t) = (aij(t, x))1≤i,j≤d be a symmetric F-adapted matrix. Let
σ = σ(t) = (σk(t, x))1≤k≤d be an F-adapted vector function with Y -valued com-

ponents σk, and let u0 = (u
l
0)1≤l≤d be an F0-measurable H

s+1−2/p
p -valued function

so that E||u0||ps+1−2/p,p <∞, divu0 = 0.

The following assumptions will be made:
A. For all t ≥ 0, x, λ ∈ Rd,

K|λ|2 ≥
[
aij(t, x)− 1

2
σi(t, x) · σj(t, x)

]
λiλj ≥ δ|λ|2,

where K, δ are fixed strictly positive constants.
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A1(s, p). For all t, x, y,P a.s.,

|aij(t, x)− aij(t, y)|+ |σi(t, x)− σi(t, y)|Y ≤ K|x− y|

and 
|aij(t)|Bs ≤ K if s ≥ 1,
|a(t, x)| ≤ K if − 1 < s < 1,
|aij(t)|B−s+ε ≤ K if s ≤ −1,

where ε ∈ (0, 1).
For all i, t, x, 

||σi(t)||Bs ≤ K if s ≥ 1,
|σi(t, x)|Y ≤ K if s ∈ (−1, 1),
||σi(t)||B−s+ε ≤ K if s ≤ −1,

where ε ∈ (0, 1).
A2(s, p). For v ∈ H

s+1
p , Q(v, t) = Q(v, t, x) is a predictable H

s
p(Y )-valued func-

tion and D(v, t) = D(v, t, x) is a predictable H
s−1
p -valued function, and P a.s. for

each t ∫ t

0

(|D(0, r)|ps−1,p + ||Q(0, r)||ps,p) dr <∞ ∀t > 0,P a.s.,

where 0 = (0, . . . , 0).
A3(s, p). For every ε > 0, there exists a constantKε such that for any u,v ∈ H

s+1
p ,

|D(u, t, x)−D(v, t, x)|s−1,p + ||Q(u, t, x)−Q(v, t, x)||s,p

≤ ε|u− v|s+1,p +Kε|u− v|s−1,p, P a.s.

Given a stopping time τ , we consider a stochastic interval

[[0, τ ]] =

{
[0, τ(ω)] if τ(ω) <∞,
[0,∞) otherwise.

Definition 2.2. Given a stopping time τ , an H
s
p(R

d)-valued F-adapted function
u(t) on [0,∞) is called an H

s
p-solution of (2.3) in [[0, τ ]] if it is strongly continuous

in t with probability 1,

u(t ∧ τ) = u(t), divu(t) = 0,

∫ t∧τ

0

|u(r)|ps+1,p dr <∞ ∀t > 0,P a.s.,(2.4)

and there exist two gradient vector fields, an F-adapted G(Hs−1
p (Rd))-valued process

G(t) and an F-adapted G(Hs−1
p (Rd, Y ))-valued process G̃(t), such that

G = 1[[0,τ ]]G, G̃ =1[[0,τ ]]G̃, dtdP a.e.,

∫ t∧τ

0

[|G(r)|ps−1,p + ||G̃(r)||ps−1,p] dr <∞ ∀t > 0, P a.s.,
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and the equality

u(t ∧ τ) = u0 +

∫ t∧τ

0

[∂i(a
ij(r)∂ju) +D(u, r)−G(r)] dr

(2.5)

+

∫ t∧τ

0

[σk(r)∂ku (r) +Q(u, r)− G̃(r)] · dW (r)

holds in H
s−1
p (Rd) for every t > 0, P a.s.

If τ =∞, we simply say u is an H
s
p-solution of (2.3).

The main result of the paper is the following statement.

Theorem 2.3. Let s ∈ (−∞,∞), p ≥ 2. Assume A, A1(s, p)–A3(s, p) are
satisfied and E|u0|ps+1−2/p,p <∞. Then for each stopping time τ , the Cauchy problem

(1.1) has a unique H
s
p-solution in [[0, τ ]]. Moreover, the gradient processes in (2.5)

are uniquely determined, and for each T > 0 there is a constant C such that for each
stopping time τ̄ ≤ T ∧ τ

E

[
sup
r≤τ̄
|u(r)|ps,p +

∫ τ̄

0

(|∂2u(r)|ps−1,p + |G(r)|ps−1,p + ||G̃(r)||ps,p) dr
]

≤ CE
[
|u0|ps+1−2/p,p +

∫ τ̄

0

(|D(0, r)|ps−1,p + |Q(0, r)|ps,p) dr
]
.

3. Some properties of function spaces.

3.1. Pointwise multipliers in HHH
s
p. We will need the following statement about

Hilbert space valued multipliers in H
s
p, proved in [7].

Lemma 3.1 (see Lemma 7 in [7]). (a) Let a ∈ B|s|(Y ), s ∈ (−∞,∞), p ∈ (1,∞).
Then there is a constant N so that

||au||s,p ≤ N ||a||B|s| |u|s,p

for all u ∈ H
s
p, where au = (au1, . . . , aud).

(b) Assume, p ∈ (1,∞), κ > 0, and

a ∈
{

Bs(Y ) if s ≥ 0,
B|s|+κ(Y ) if s < 0.

Let ās = |a|Bs if s ≥ 0, and ās = |a|B|s|+κ if s < 0.

Then for every s there exist constants s0 < s and N such that

||au||s,p ≤ N(||a||∞|u|s,p + ās|u|s0,p)

for all u ∈ H
s
p.

3.2. Solenoidal and potential projections of vector fields. First of all we
decompose square integrable vector fields v ∈ L2(Y ) = L2(R

d, Y ) (Y is a separable
Hilbert space). Let

S(L2(Y )) = {g ∈ L2(Y ) : divg = 0},
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where divg = ∂lg
l. (All the component functions gl are Y -valued.) Obviously,

S(L2(Y )) is a Hilbert subspace of L2(Y ), and

L2(Y ) = G(L2(Y ))⊕ S(L2(Y )),(3.1)

where G(L2(Y )) is the orthogonal complement of S(L2(Y )). Vector fields from
S(L2(Y )) are usually referred to as solenoidal or divergence free.

We will use a Riesz transform for the definition of solenoidal and gradient projec-
tions of a vector field. We set for f ∈ Lp(Rd, Y ), 1 ≤ p <∞,

Rj(f)(x) = lim
ε→0

c∗
∫
|y|≥ε

yj
|y|d+1

f(x− y) dy, j = 1, . . . , d,

with c∗ = G(n+1
2 )/π(n+1)/2 (G is the Gamma function). Rj is called a Riesz trans-

form. According to [6, Chapter III, formula (8), p. 58],

(Rj f̂)(x) = −i ξj|ξ| .f̂ ,(3.2)

where

f̂(ξ) = F(f) = (2π)−d/2
∫
e−i(ξ,x)f(x) dx.

Given a function f ∈ Lp(Rd, Y ), we define a vector Riesz transform Rf = (R1f, . . . ,
Rdf).

The following identity (see [6, Chapter III, Proposition 3, p. 59]) holds for each
u ∈ C∞0 (Rd):

∂2
jlu(x) = −RlRj∆u(x).(3.3)

(The identity follows easily if we take the Fourier transform of (3.3) and use (3.2).)
Lemma 3.2. Let G be a projection of L2(Y ) onto G(L2(Y )), and S be a projection

of L2(Y ) onto S(L2(Y )). Then

G(v) = −RRjvj , S(v) = v − G(v), v ∈ L2(Y ).

Proof. By the Calderon–Zygmund theorem (see [6, Chapter II, Theorem 5, p. 46])
the Riesz transform is a bounded linear operator on L2. Obviously, for each v ∈
L2(Y ),

v =−RRjvj + (v +RRjvj).
Let us assume that v,g,∂g ∈ L2(Y ), div g = 0. Then

F(div (v +RRjvj)) = iξkF(vk)− iξk ξk|ξ|
ξj
|ξ|F(v

j) = 0,

and (by Parseval’s equality)∫
G(v) · g dx =

∫
F(G(v)) · F̄(g) dξ

=

∫ (
ξ

|ξ|
ξk
|ξ|F(v

k), F̄(g)
)
dξ = 0.
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So, the statement follows.
Remark 3.3. If f ∈ C∞0 (Rd), it is known (see, e.g., [8]) that the classical solution

to

∆u(x) = f(x), x ∈ Rd,(3.4)

is given by the formula

u(x) =

∫
Γ(x− y)f(y) dy,(3.5)

where

Γ (x− y) =
{
|x− y|2−d /d(2− d)ωd, d > 2,
1
2π ln |x− y| , d = 2,

and ωd is the volume of the unit ball in R
d. If f ∈ C

∞
0 (Y ), it is rather straightforward

to show that

G(f) = ∇
∫
Γxi(x− y)f i(y) dy = −RRjf j .(3.6)

The functions G(v) and S(v) are usually referred to as the potential and the
solenoidal, respectively, projections, of the vector field v.

Corollary 3.4. For any v,u ∈ L2(Y ),∫
G(u) · v dx =

∫
u·G(v) dx.(3.7)

Proof. Indeed, because of orthogonality, both integrals are equal to
∫ G(u) ·

G(v) dx.
Remark 3.5. Let p ∈ (1,∞). Note that, by Calderón–Zygmund’s inequality [6,

Chapter II, Theorem 5, p. 46], the Riesz transform is bounded on Lp(Y ). Therefore,
the function G(f) = ∇ ∫ Γxi(x − y)f i(y) dy = −RRif i is defined for all f ∈ Lp(Y ),
and there is a constant C such that

||G(f)||p ≤ C||f ||p, f ∈ Lp(Y ).(3.8)

Lemma 3.6. Let 1 < p < ∞. Then for each v ∈ C
∞
0 (Y ) we have G(v),S(v) ∈

∩sHs
p(Y ) and

(1−∆)s/2G(v) = G((1−∆)s/2v),(3.9)

(1−∆)s/2S(v) = S((1−∆)s/2v).
Moreover, there is a constant C so that for all v ∈ C

∞
0 (Y )

||G(v)||s,p ≤ C||v||s,p, ||S(v)||s,p ≤ C||v||s,p
for any s ∈ (−∞,∞) and G,S can be extended by continuity to all H

s
p(Y ), s ∈

(−∞,∞).
Also, for each v ∈ H

s
p(Y ),

G(v) = (1−∆)−s/2G((1−∆)s/2v).



STOCHASTIC STOKES EQUATIONS 129

Proof. For v ∈ C
∞
0 (Y ), we have

F((1−∆)s/2G(v)) = (1 + |ξ|2)s/2 ξ|ξ|
ξk
|ξ|F(v

k) ∈ L2(Y )

for each s, and F((1 − ∆)s/2G(v)) = F(G((1 − ∆)s/2v)). Therefore, (3.9) holds.
According to Remark 3.5 and (3.8),

||G(v)||s,p = ||G((1−∆)s/2v)||p ≤ C||(1−∆)s/2v||p = C||v||s,p.

Since S(v) = v − G(v), we can immediately obtain the extensions to H
s
p(Y ).

The following statement is the direct consequence of Lemma 3.6.
Lemma 3.7. Suppose p ∈ (1,∞) and s ∈ (−∞,∞). Then the space H

s
p(Y ) can

be decomposed into the direct sum

H
s
p (Y ) = G(Hs

p (Y ))⊕ S(Hs
p (Y )).

Moreover, if 1/q + 1/p = 1, f ∈ G(Hs
p (Y )), g ∈ S(H−sq (Y )), then

〈f ,g〉
Hs

p(Y ),H−s
q (Y ) = 0.(3.10)

Also,

S(Hs
p (Y )) = {v ∈H

s
p (Y ) : divv = 0},(3.11)

G(Hs
p (Y )) = {v ∈H

s
p (Y ) : 〈v,g〉Hs

p(Y ),H−s
q (Y ) = 0 ∀g ∈ S(H−s

q (Y))}.(3.12)

Proof. Let 1/q + 1/p = 1, f̃ ∈ H
s
p(Y ), g̃ ∈ H

−s
q (Y ) and f = G(f̃), g = S(g̃). By

Lemma 3.6, there are some sequences fn ∈ C
∞
0 and gn ∈ C

∞
0 such that

|fn − f̃ |s,p + |gn − g̃|−s,q → 0.

Then

|G(fn)− G(f̃)|s,p + |S(gn)− S(g̃)|−s,q → 0,

and, by Lemmas 3.6 and 3.2,

〈f ,g〉
Hs

p(Y ),H−s
q (Y ) =

∫
(1−∆)s/2G(f̃)(1−∆)−s/2S(g̃) dx

= lim
n

∫
(1−∆)s/2G(fn)(1−∆)−s/2S(gn) dx

= lim
n

∫
G((1−∆)s/2fn)S((1−∆)−s/2gn) dx = 0.

So (3.10) holds.
If f ∈ H

s
p(Y ), we have, obviously, f = G(f) + [f − G(f)] = G(f) + S(f). Now we

prove that

G(Hs
p(Y )) ∩ S(Hs

p(Y )) = {0}.
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Suppose f ∈G(Hs
p(Y )) ∩ S(Hs

p(Y )). Then for each v ∈C
∞
0 (Y ) we have by Lemma 3.6

and (3.10) that∫
(1−∆)s/2f ·(1−∆)−s/2S(v) dx =

∫
(1−∆)s/2f ·S((1−∆)−s/2v) dx

= 〈f ,S(v)〉
Hs

p(Y ),H−s
q (Y ) = 0.

Also, ∫
(1−∆)s/2f ·(1−∆)−s/2G(v) dx =

∫
(1−∆)s/2f ·G((1−∆)−s/2v) dx

= 〈f ,G(v)〉
Hs

p(Y ),H−s
q (Y ) = 0.

Therefore, 〈f ,v〉
Hs

p(Y ),H−s
q (Y ) = 〈f ,G(v) + S(v)〉Hs

p(Y ),H−s
q (Y ) = 0. Thus, f = 0.

Now, we prove (3.11). Let v ∈ H
s
p(Y ), divv = 0. Let ϕ ∈ C∞0 (Rd) be a scalar

nonnegative function so that
∫
ϕdx = 1. For ε > 0, write ϕε(x) = ε

−dϕ(x/ε). Set

vk(x) = (1−∆)−s/2
∫
ϕ1/k(x− y)(1−∆)s/2v(y)

=

∫
(1−∆)−s/2ϕ1/k(x− y)(1−∆)s/2v(y) dy

=

∫
(1−∆)−s/2ϕ1/k(y)(1−∆)s/2v(x− y) dy.

Obviously, vk ∈ H
s+1
p (Y ), div vk = 0, and |vk − v|n,p → 0 as k → ∞. By Corollary

3.4, G(vk) = 0. Therefore, G(v) = 0 and v = S(v).
Let v ∈ H

s
p(Y ) and 〈v,g〉Hs

p(Y ),H−s
q (Y ) = 0 for all g ∈ S(H−s

q (Y)). Then for any

h ∈ H
−s
q (Y)

0 = 〈v,S(h)〉
Hs

p(Y ),H−s
q (Y ) = 〈S(v),h〉Hs

p(Y ),H−s
q (Y ).

Therefore, S(v) = 0, i.e., v = G(v), and equality (3.12) follows.
Lemma 3.8. Assume v ∈ H

s+1
p (Y ), p ∈ (1,∞). Then

G(∂lv) = ∂lG(v) = −(1−∆)−s/2RRl((1−∆)s/2divv).(3.13)

There is a constant C such that for all v ∈ H
s+1
p (Y )

||∂G(v)||s,p ≤ C||divv||s,p,
and for all v ∈ H

s
p(Y )

||G(v)||s,p ≤ C||divv||s−1,p + ||v||s−1,p.

Proof. By Lemma 3.6 and Remark 3.5, we have for ṽ = ∂lv that

G(ṽ) = −(1−∆)−s/2RRk((1−∆)s/2ṽk)
= −(1−∆)−s/2RRk((1−∆)s/2∂lvk).
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Notice that

−(1−∆)−s/2RRk((1−∆)s/2∂lvk)
= −(1−∆)−s/2RRl((1−∆)s/2divv)(3.14)

= −∂l(1−∆)−s/2RRk((1−∆)s/2vk).
Indeed, if v ∈ C

∞
0 (Y ), taking the Fourier transform of each term in (3.14), we have

ξ

|ξ|
ξk
|ξ| iξlF(v

k) =
ξ

|ξ|
ξl
|ξ| iξkF(v

k) = iξl
ξ

|ξ|
ξk

|ξ|F(v
k).

So, the first part of the statement follows, and we have, obviously, the first inequality.
Since s is arbitrary, we have

||G(v)||s,p ≤ C
(∑

l

||∂lG(v)||s−1,p + ||v||s−1,p

)
≤ C(||divv||s−1,p + ||v||s−1,p)

by (3.13) and Remark 3.5.
Later we will need Lp-estimates of the function G(h), where h = cj∂jv.
Lemma 3.9. Let h = cj(x)∂jv(x), where c = (cj) is a measurable d-vector of

Hilbert space Y -valued functions, v ∈ H
s+1
p , divv = 0, ε ∈ (0, 1). Assume

||c||B|s| <∞ if s ≥ 1,
||c||B1 <∞ if s ∈ (−1, 1),

||c||B−s+ε <∞ if s ≤ −1.
Then

||G(h)||s,p ≤
{
C(||∂lcj∂jv||s−1,p + ||cj∂jv||s−1,p) if s > 0,

C(||∂lcjvl||s,p + ||div cv||s,p] if s ≤ 0.

Proof. Let s > 0. Then, by inequality (3.13) of Lemma 3.8,

||G(h)||s,p ≤ C(||divh||s−1,p + ||h||s−1,p)

and divh =∂lc
j∂jv

l. Let s ≤ 0. Since
cj∂jv = ∂j(c

jv)− ∂j cjv,
it follows by Lemma 3.8 and Remark 3.5 that

||G(h)||s,p ≤ ||∂jG(cjv)||s,p + ||G(∂jcjv)||s,p
≤ C(||∂lcjvl||s,p + ||∂jcj v||s,p),

and the second inequality follows.
Also we will need Lp-estimates of the function G(h), where h = ∂i(cij(x)∂jv).
Corollary 3.10. Let h = ∂i(c

ij(x)∂jv), where c = (cij) is a measurable func-
tion, v ∈ H

s+1
p , divv = 0, ε ∈ (0, 1). Assume

|c|B|s| <∞ if s ≥ 1,
|c|B1 <∞ if s ∈ (−1, 1),

|c|B−s+ε <∞ if s ≤ −1.
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Then

|G(h)|s−1,p ≤
{
C(|∂lcij∂jvl|s−1,p + |cij∂jvl|s−1,p) if s > 0,

C(|∂lcijvj |s,p + |∂jcij v|s,p] if s ≤ 0.
Proof. Indeed,

|G(h)|s−1,p ≤ C
∑
i

|G (cij(x)∂jv)|s,p,

and the inequality follows by Lemma 3.9.

4. Stochastic Stokes equation. We rewrite (2.3) in an equivalent form:

∂tu(t, x) = S(∂i(aij(t, x)∂ju) +D(u, t, x))

S(σk(t, x)∂ku(t, x) +Q(u, t, x)) · Ẇ ,(4.1)

u(0, x) = u0(x).

We use the following equivalent definition of an H
s
p-solution of (2.3) (or (4.1)).

Definition 4.1. Given a stopping time τ , an H
s
p(R

d)-valued F-adapted function
u(t) on [0,∞) is called an H

s
p-solution of (2.3) (or (4.1)) in [[0, τ ]] if it is strongly

continuous in t with probability 1,

u(t ∧ τ) = u(t),

∫ t∧τ

0

|u(r)|ps+1,p dr <∞ ∀t > 0,P a.s.,(4.2)

and the equality

u(t ∧ τ) = u0 +
∫ t∧τ
0
S(∂i(aij(r)∂ju) +D(u, r))dr

+
∫ t∧τ
0
S(σk(r)∂ku (r) +Q(u, r)) · dW (r)

(4.3)

holds in H
s−1
p (Rd) for every t > 0, P a.s.

If τ =∞, we simply say u is an H
s
p-solution of (2.3).

It is readily checked that all the integrals in (4.3) are well defined. For example,
let us consider the stochastic integral. By (4.2),∫ t∧τ

0

|u(r)|ps+1,p dr <∞ ∀t > 0,P a.s.(4.4)

Since ∂i is a bounded operator from H
m
p into H

m−1
p (see [5]), by Lemma 5.2 in [2] and

assumption A1(s, p), we have ||S(σk(r)∂ku(r))||s,p ≤ C||u(r)||s+1,p. By assumptions
A2(s, p) and A3(s, p),∫ t∧τ

0

||S(Q(u, r))||ps,p dr ≤ C
∫ t∧τ

0

(||Q(0, r)||ps,p + |u (r) |ps+1,p)dr.

Thus, the integral is defined according to (2.2).
Remark 4.2. It is not difficult to show that (4.3) can be replaced by the equality〈

ul(t ∧ τ), φl〉
s
=
〈
ul0, φ

l
〉
s
+
∫ t∧τ
0
− 〈S(aij(r)∂iul), ∂jφl〉s

+ 〈Λ−1Dl(u, r),Λφl〉sdr +
∫ t∧τ
0
〈S(σk(r)∂kul +Ql(u, r)), φl〉s,Y · dW (r)

∀t > 0,P a.s.,

(4.5)
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which holds for all φ = (φl)1≤l≤d such that φl ∈ C∞0 , l = 1, . . . , d.
Indeed, owing to (2.5), we have

〈
ul(t ∧ τ), φl〉

s−1
=
〈
ul0, φ

l
〉
s−1

+
∫ t∧τ
0

〈S(∂j(aij(r)∂iul) +Dl(u, r)), φl
〉
s−1

dr

+
∫ t∧τ
0

〈S(σk(r)∂kul +Ql(u, r)), φl〉s−1,Y
· dW (r) ∀t > 0,P a.s.

(4.6)

On the other hand, since u ∈ H
s
p,u0∈H

s+1−2/p
p , and for almost all r, σk(r)∂ku(r)+

Ql(u, r) ∈ H
s
p, P a.s., we have that〈
ul(t), φl

〉
s−1

=
〈
ul(t), φl

〉
s
,
〈
ul0, φ

l
〉
s−1

=
〈
ul0, φ

l
〉
s+1−2/p

,

and for almost all s,〈
σk(r)∂ku

l(r) +Ql(u, r), φl
〉
s−1,Y

=
〈
σk(r)∂ku

l(r) +Ql(u, r), φl
〉
s,Y

P a.s. It is readily checked that dr × dP a.e.〈
∂j(a

ij(r)∂iu
l), φl

〉
s−1

=
〈
∂j(a

ij(r)∂iu
l), φl

〉
s−1

= − 〈Λs(aij(r)∂iul),Λ−s∂jφl〉0 = − 〈(aij(r)∂iul), ∂jφl〉s .
Note that to prove the first equality, one should first establish it for smooth functions
and then prove it in the general case by approximations. Thus, (4.6) implies (4.5).
Now by reversing the order of our arguments, one could easily show that (4.3) follows
from (4.5).

The main existence theorem will be proved in several steps. We begin with a
simple particular case.

Theorem 4.3 (cf. Theorem 4.10 in [2]). Assume A, A1(s, p)–A3(s, p). Suppose
that D and Q are independent of u, aij and σk are independent of x, u0 = 0, and
divD(t) = divQ(t) = 0.

Then for each stopping time τ there is a unique H
s
p-solution u of (4.1) in [[0, τ ]].

Moreover,
(i) for each stopping time τ̄ ≤ τ ,

E

∫ τ̄

0

|∂2u(r)|ps−1,p dr ≤ NE
∫ τ̄

0

(|D(r)|ps−1,p + ||Q(r)||ps,p) dr,(4.7)

where N = N(d, p, δ,K) does not depend on τ ;
(ii) for each finite T and each stopping time τ̄ ≤ T ∧ τ ,

E sup
r≤τ̄
|u(r)|ps,p ≤ eTCE

∫ τ̄

0

(|D(r)|ps−1,p + ||Q(r)||ps,p) dr,(4.8)

where C = C(d, p, δ,K) does not depend on T and τ̄ , τ .
Proof. Consider the system

∂tv(t, x) = ∂i(a
ij(t)∂jv) +D(t, x)(4.9)

+ [σk(t)∂kv(t, x) +Q(t, x)] · Ẇ ,
v(0, x) = 0.
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According to [7], there is a unique H
s
p-valued continuous F-adapted solution to (4.9)

in [[0, τ ]] such that the estimates (4.7) and (4.8) hold. Then u(t) = S(v(t)) is H
s
p-

valued continuous F-adapted and (4.7) holds. According to our assumptions, u(t)
satisfies the same equation (4.9). Therefore, u(t) = S(v(t)) = v(t), and the statement
follows.

To prove the general Theorem 2.3 we will rely on the two fundamental techniques:
partition of unity and the method of continuity. The same technique was used in [2]
for scalar equations.

The next step is to derive a priori Lp-estimates for a solution of (4.1).
Lemma 4.4. Assume A, A1(s, p)–A3(s, p). Suppose that u is an H

s
p-solution of

(2.3) in [[0, τ ]] with u0 = 0.
Then for each T there is a constant C = C(d, p, δ,K, T ) such that for each stop-

ping time τ̄ ≤ T ∧ τ ,
E[supr≤τ̄ |u(r)|ps,p +

∫ τ̄
0
|∂2u(r)|ps−1,p dr]

≤ CE ∫ τ̄
0
(|D(0, r)|ps−1,p + |Q(0, r)|ps,p) dr.

(4.10)

Proof. In order to use Theorem 4.3 we start with a standard partition of unity.
Let ψ ∈ C∞0 (R) be [0, 1]-valued and such that ψ(s) = 1, if |s| ≤ 5/8, and ψ(s) = 0,
if |s| > 6/8. For an arbitrary but fixed κ > 0 there we choose m such that κ < 2−m.
Consider a grid in Rd consisting of xk = k2

−m, k = (k1, . . . , kd) ∈ Zd, where Z is the
set of all integers. Given k ∈ Zd, we define a function on Rd as

η̄k(x) =

d∏
l=1

ψ((xl − xlk)2m).

Notice that 0 ≤ η̄k ≤ 1, η̄k = 1 in the cube vk = {x : |xl − xlk| ≤ (5/8)2−m, l =
1, . . . , d}, and η̄k = 0 outside the cube Vk = {x : |xl − xlk| ≤ (6/8)2−m, l = 1, . . . , d}.
Obviously,

1. ∪kvk = Rd and

1 ≤
∑
k

1Vk
≤ 2d;

2. for all multi-indices γ

|∂γ η̄k| ≤ N(d, |γ|)2m|γ| < N(d)κ−|γ|.
Denote

ηk(x) = η̄k(x)

(∑
k

η̄k(x)

)−1

, k = 1, . . . .

Obviously,
∑
k ηk = 1 in R

d, and for all k and multi-indices µ,

|∂µηk| ≤ N(d, |µ|)κ−|µ|,
and for each p ≥ 1, µ,∑

k

ηk(x)
p ≤ N(p, d),

∑
k

|∂µηk|p ≤ N(p, d, |µ|)κ−p|µ|.(4.11)
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So, by Lemma 6.7 in [2], for any n there exist constants c = c(d, p, κ), C =
C(d, p, κ) such that for all f ∈ H

n
p ,g ∈ H

n
p (Y )

c|f |pn,p ≤
∑
k

|ηkf |pn,p ≤ C|f |pn,p,(4.12)

c||g||pn,p ≤
∑
k

||ηkg||pn,p ≤ C||g||pn,p.

Multiplying (4.1) by ηk and taking a solenoidal projection, we have

∂tS(ηku) = ∂i(aij(t, xk)∂jS(ηku))+S(Dk(u, t, x))(4.13)

+ [σi(t, xk)∂iS(ηku) + S(Qk(u, t, x))] · Ẇ ,
where

Dk(u, t, x) = ηk[S(D(u, t)) + S(∂i(aij(t)− aij(t, xk))∂ju(t))]
− ∂i(aij(t, xk)∂jηku)−aij(t, xk)∂iηk∂ju,

Qk(u, t, x) = ηk[S(Q(u, t)) + S((σi(t)− σi(t, xk))∂iu(t))]
−σi(t, xk)∂iηku.

We have ∑
k

|ηkG(∂i[(aij(t)− aij(t, xk))∂ju(t)])|ps−1,p

≤ C|G(∂i[(aij(t)− aij(t, xk))∂ju(t)])|ps−1,p,

and ∑
k

|ηkG((σi(t)− σi(t, xk))∂iu(t))|ps,p

≤ C|G((σi(t)− σi(t, xk))∂iu(t))|ps,p.
Also, ∑

k

|ηk∂i(aij(t)− aij(t, xk)∂ju(t))|ps−1,p

≤ 2p−1
∑
k

|∂iηk(aij(t)− aij(t, xk))∂ju(t)|ps−1,p

+ 2p−1
∑
k

|∂i[ηk(aij(t)− aij(t, xk))η̃k∂ju(t)]|ps−1,p,

where η̃k(x) = η̄k(5x/6). (Notice that η̃k(x) = 1 in Vk and η̃k(x) = 0 if there is l such
that |xl−xlk| > 0.9 ·2−m.) According to Lemma 3.1, there is a constant C and s0 < s
such that ∑

k

|∂i[ηk(aij(t)− aij(t, xk))η̃k∂ju(t)]|ps−1,p

≤
∑
k

|ηk(aij(t)− aij(t, xk))η̃k∂ju(t)|ps,p

≤ C
∑
k

[sup
x,k
|η̃k(aij(t)− aij(t, xk))|p|∂u(t)|ps,p + |ηk∂ju(t)|ps0,p].
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Similarly, by Lemma 3.1 there is s0 < s so that∑
k

||ηk(σi(t)− σi(t, xk))∂iu(t)||ps,p

=
∑
k

||η̃k(σi(t)− σi(t, xk))ηk∂iu(t)||ps,p

≤ C
∑
k

[sup
x
|η̃k(σi(t)− σi(t, xk))|pY |ηk∂iu(t)|ps,p + |ηk∂iu(t)|ps0,p].

It follows by the assumptions, equation (4.12), Lemma 3.9, Corollary 3.10, and the
interpolation theorem (see Lemma 6.7 in [2]) that for each ε there is κ > 0 and a
constant C = C(ε, κ, d, p, δ,K) such that∑

k

|S(Dk(u, t))|ps−1,p ≤ ε|∂2u(t)|ps−1,p + C(|u(t, ·)|ps−1,p + |D(0, t)|ps−1,p),

∑
k

||S(Qk(u, t, ·))||ps,p ≤ ε|∂2u(t)|ps−1,p + C(|u(t)|ps−1,p + ||Q(0, t)||ps,p).

Choosing ε sufficiently small and applying (4.12) and Theorem 4.3 to ηku (it is a
solution to (4.13)), we obtain that

(i) for each stopping time τ

E

∫ τ

0

|∂2u(t)|ps−1,p dt ≤ NE
∫ τ

0

(|u(t)|ps−1,p + |D(0, t)|ps−1,p + ||Q(0, t)||ps,p) dt,

where N = N(p, d, δ,K) does not depend on τ ;
(ii) for each T > 0 and each stopping time τ ≤ T

E sup
t≤τ
|u(t)|ps,p ≤ NeTE

∫ τ

0

(|u(t)|ps−1,p + |D(0, t)|ps−1,p + ||Q(0, t)||ps,p) dt.(4.14)

Fix an arbitrary τ ≤ T such that

E

[
sup
t≤τ
|u(t)|ps,p +

∫ τ

0

(|u(t)|ps−1,p + |D(0, t)|ps−1,p + ||Q(0, t)||ps,p) dt
]
<∞.

Then for each t ≤ T

E sup
r≤t∧τ

|u(r)|ps,p ≤ NeTE
∫ t

0

sup
r̄≤r∧τ

|u(r̄)|ps,p dr

+E

∫ τ

0

|D(0, t)|ps−1,p + ||Q(0, t)||ps,p dt,

and the statement follows by Gronwall’s inequality.
Now we can prove the uniqueness of solutions of (4.1).
Corollary 4.5. Let A, A1(s, p)–A3(s, p) hold, p ≥ 2. Then there is at most

one H
s
p(R

d)-solution to (4.1) in [[0, τ ]].

Proof. Assume that u1,u2 are H
s
p(R

d)-valued continuous solutions to (2.3) such
that P a.s. for all t, ∫ t∧τ

0

|∂2ul(r)|ps−1,p dr <∞, l = 1, 2.
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Then v = u2 − u1 satisfies the equation

∂tv(t, x) = ∂i(a
ij(t, x)∂jv) +D(v + u1, t, x)−D(u1, t, x)

+ [σk(t, x)∂kv(t, x) +Q(v + u1, t, x)−Q(u1, t, x)] · Ẇ ,
v(0, x) = 0.

Applying Lemma 4.4 to this equation and v, we have v = 0 by (4.10).

To complete the proof of Theorem 2.3 we apply the standard method of continuity
(see Theorem 5.1 in [2], Theorem 2 in [7]).

Proof of Theorem 2.3. The uniqueness follows by Corollary 4.5. So, we prove
the existence of a solution to (4.1). Without any loss of generality we can assume
u0 = 0 (see the proof of Theorem 5.1 in [2]), τ =∞. Then we introduce a parameter
λ ∈ [0, 1] and consider the equation

∂tu(t, x) = S{∂i[λδij + (1− λ)aij∂ju] +D(u, t, x)}(4.15)

+S[(1− λ)σk∂ku+Q(u, t, x)] · Ẇ ,
divu = 0,

with zero initial condition. By Lemma 4.4 the a priori estimate (4.10) holds with the
same constant C. Assume that for λ = λ0 equation (4.15) for any D,Q satisfying
A3(s, p) has a unique continuous in t H

s
p-valued solution such that P a.s. for all t,∫ t

0

|∂2u(r)|ps−1,p dr <∞.

For other λ ∈ [0, 1] we rewrite (4.15) as

∂tu(t, x) = S{∂i[(λ0δij + (1− λ0)a
ij)∂ju] +D(u, t, x)

+ (λ− λ0)∂i[(δij + a
ij)∂ju]}

+S[(1− λ0)σ
i∂iu+ (λ− λ0)σ

i∂iu+Q(u, t, x)] · Ẇ ,
divu = 0

and solve it by iterations. Define u0 = 0 and

∂tuk+1(t, x) = S{∂i[(λ0δij + (1− λ0)a
ij)∂juk+1] +D(uk+1, t, x)

+ (λ− λ0)∂i[(δij + a
ij)∂juk]}(4.16)

+S[(1− λ0)σ
k∂kuk+1 + (λ− λ0)σ

i∂iuk +Q(uk+1, t, x)] · Ẇ ,
divu = 0.

So ūk+1 = uk+1 − uk is a solution of the equation

∂tūk+1(t, x) = S{∂i[λ0δij + (1− λ0)a
ij∂jūk+1] +D(uk + ūk+1, t, x)−D(uk, t, x)}

+S{(λ− λ0)∂i[(δij + a
ij)∂jūk]}+ S{(λ− λ0)σ

i∂iūk} · Ẇ
+S[(1− λ0)σ

k∂kūk+1 +Q(uk + ūk+1, t, x)−Q(uk, t, x)] · Ẇ ,

divu = 0. By our assumptions for each T > 0, there is a constant C = C(d, p, δ,K, T )



138 R. MIKULEVICIUS

such that for all stopping times τ ≤ T

E

[
sup
r≤τ
|ūk+1(r)|ps,p +

∫ τ

0

|∂2ūk+1(r)|ps−1,p dr

]
≤ C ′|λ− λ0|pE

∫ τ

0

(|∂ūk(r)|s,p + |∂2ūk(r)|ps−1,p) dr

≤ C|λ− λ0|pE
[
sup
r≤τ
|ūk(r)|ps,p +

∫ τ

0

|∂2ūk(r)|ps−1,p dr

]
.

Fix an arbitrary stopping time τ ≤ T such that

I(τ) = E

[
sup
r≤τ
|u1(r)|ps,p +

∫ τ

0

|∂2u1(r)|ps−1,p dr

]
<∞.

Notice that u1 and τ do not depend on λ (only on λ0). Let |λ−λ0| < C−1/p/2. Then

E

[
sup
r≤τ
|ūk+1(r)|ps,p +

∫ τ

0

|∂2ūk+1(r)|ps−1,p dr

]1/p
≤ (1/2)kI(τ)1/p,

and (uk) is a Cauchy sequence on [0, τ ]. Therefore, there is a continuous in t H
s
p-valued

process u such that

E

[
sup
r≤τ
|uk(r)− u(r)|ps,p +

∫ τ

0

|∂2(uk(r)− u(r))|ps−1,p dr

]
→ 0

as k →∞. Obviously u is a solution to (4.15) on [0, τ ]. Since τ is any stopping time
such that I(τ) is finite, it follows that we have a solution for any |λ− λ0| < C−1/p/2
(assuming we have one for λ0). For λ = 1 it exists by Theorem 4.3. So, in a finite
number of steps starting with λ = 1, we get to λ = 0. This proves Theorem 2.3.

Corollary 4.6 (cf. Corollary 5.11 in [2]). Let A, A1(s, p)–A3(s, p), A1(s, q)–
A3(s, q) hold, p, q ≥ 2, and let |u0|s+1−2/p,p + |u0|s+1−2/q,q < ∞ P a.s. Then the
H
s
p-solution u from Theorem 2.3 is also an H

s
q-solution, i.e., for each T > 0, there is

a constant C such that for each stopping time τ ≤ T,A ∈ F0,

E1A

[
sup
r≤τ
|u(r)|lr,l +

∫ τ

0

|∂2u(r)|ls−1,l dr

]
≤ CE1A

[
|u0|ls+1,l +

∫ τ

0

(|D(0, r)|ls−1,l + ||Q(0, r)||ls,l) dr
]
,

l = p, q.

Proof. We follow the lines of the proof of Theorem 2.3 by introducing the param-
eter λ ∈ [0, 1] and by considering (4.15). We can assume that u0 = 0. The statement
holds for λ = 1 by Lemma 5.11 in [2] applied to each component of u. If it is true
for λ0, then (4.16) defines a sequence uk of H

s
p-valued continuous processes that are

H
s
q-valued and continuous as well, and P a.s. for all t,∫ t

0

|∂2u(r)|ls−1,l dr <∞, l = p, q.
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For each T > 0 there are constants Cl = C(d, l, δ,K, T ), l = p, q, such that for all
stopping times τ ≤ T

E

[
sup
r≤τ
|ūk+1(r)|ls,l +

∫ τ

0

|∂2ūk+1(r)|ls−1,l dr

]

≤ C ′|λ− λ0|pE
∫ τ

0

(|∂ūk(r)|s,p + |∂2ūk(r)|ps−1,p) dr

≤ Cl|λ− λ0|pE
[
sup
r≤τ
|ūk(r)|ls,l +

∫ τ

0

|∂2ūk(r)|ls−1,l dr

]
,

l = p, q. Fix an arbitrary stopping time τ ≤ T such that

I(τ) = E

[
sup
r≤τ
(|u1(r)|ps,p + |u1(r)|qs,q) +

∫ τ

0

(|∂2u1(r)|ps−1,p + |∂2u1(r)|qs−1,q) dr

]
<∞.

Let C = max{Cp, Cq}, |λ− λ0| < C−1/p/2. Then

E

[
sup
r≤τ
|ūk+1(r)|ls,l +

∫ τ

0

|∂2ūk+1(r)|ln−1,l dr

]1/p
≤ (1/2)kI(τ)1/p,

l = p, q. Therefore, there is a continuous in t H
s
p ∩H

s
q-valued process u such that

E

[
sup
r≤τ
|uk(r)− u(r)|ls,l +

∫ τ

0

|∂2(uk(r)− u(r))|ls−1,l dr

]
→ 0,

l = p, q, and the statement follows.
If s is large positive, assumption A3(s, p) is rarely satisfied even in the scalar case

(see the example below). The following proposition helps to circumvent this problem
in many important cases.

Proposition 4.7. Assume that for each v ∈ H
s+1
p , Q(v, t) is a predictable

H
s+1
p -valued process and D(v, t) is a predictable H

s
p-valued process. Let A, A1(s, p)–

A3(s, p), A1(s + 1, p), A2(s + 1, p) be satisfied, E(|u0|ps+2−2/p,p) < ∞, and for all

t > 0,v ∈ H
s+1
p ,

||Q(v, t)||s+1,p ≤ ||Q(0, t)||s+1,p + C|v|s+1,p,

|D(v, t)|s,p ≤ |D(0, t)|s,p + C|v|s+1,p.

Suppose also that ∫ t

0

(||Q(0, r)||ps+1,p + |D(0, r)|ps,p) dr <∞

P a.s. for all t. Then (2.3) has a unique continuous H
s+1
p -solution.

Moreover, for each T > 0 there is a constant C such that for each stopping time
τ ≤ T ,

E

[
sup
r≤τ
|u(r)|ps+1,p +

∫ τ

0

|∂2u(r)|ps,p dr
]

≤ CE
[
|u0|ps+2,p +

∫ τ

0

(|D(0, r)|ps,p + ||Q(0, r)||ps+1,p) dr

]
.



140 R. MIKULEVICIUS

Proof. Since the assumptions A, A1(s, p)–A3(s, p) are satisfied, the existence and
uniqueness of H

s
p-solution u is guaranteed by Theorem 2.3. By the same theorem, the

linear equation

∂tξ(t, x) = ∂i(a
ij(t, x)∂jξ(t, x)) +D(u, t, x)

+ [σk(t, x)∂kξ(t, x) +Q(u, t, x)] · Ẇ ,
ξ(0, x) = u0(x),

has a unique H
s+1
p -solution. Thus, ξ = u P a.s. Moreover, for each T there is a

constant C such that for all stopping times τ ≤ T ,

E

[
sup
r≤t∧τ

|u(r)|ps+1,p +

∫ t∧τ

0

|∂2u(r)|ps,p dr
]

≤ CE
[
|u0|ps+2,p +

∫ t∧τ

0

(|u(r)|ps+1,p + |D(0, r)|ps,p + ||Q (0,r) ||ps+1,p) dr

]
.

Now the estimate of the statement follows by Gronwall’s inequality.
Example. Let us consider the following scalar equation:

∂tu = S[∆u+D(u)] + S(u) · Ẇ ,
u(0, x) = 0,

whereW (t) is a one-dimensional Wiener process,D(u) = ∂[f(u(x))] = ∂f(u(x))∂u(x),
and f is a scalar Lipschitz function on R1. Then A3(1,p) would require the following
estimate:

|D(u)−D(v)|p = |∇f(u(x))∂u(x)−∇f(v(x))∂v(x)|p
≤ ε|u− v|2,p +Kε|u− v|p,

which is false in general even if ∇f is Lipschitz.
On the other hand, the assumptions of the proposition are satisfied for s = 0.

Indeed,

|D(u)|p = |∇f(u)∂u|p ≤ C|∂u|p,
where C is the Lipschitz constant of f .

Now, since ∂ is a bounded operator from H
s
p into H

s+1
p , we have

|D(u)−D(v)|−1,p = |∂[f(u)]− ∂[f(v)]|−1,p

≤ C|f(u)− f(v)|p ≤ C ′|u− v|p
≤ ε|u− v|1,p +Kε|u− v|−1,p.

(The latter inequality follows from Remark 5.5 in [2].) Thus assumption A3(0,p) is
verified.
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Abstract. The aim of this paper is to investigate the linear stability of multidimensional shock
waves that violate the uniform stability condition derived by Majda [Mem. Amer. Math. Soc., 41
(1983)]. Two examples of such shock waves are studied: (1) planar Lax shocks in isentropic gas
dynamics and (2) phase transitions in an isothermal van der Waals fluid. In both cases we prove
an energy estimate on the resulting linearized system. Special attention is paid to the losses of
derivatives arising from the failure of the uniform stability condition.
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1. Introduction. The stability of multidimensional shock waves in gas dynamics
has been an active field of mathematical research since the late 1940’s; see, e.g.,
[10, 12, 13, 19, 33]. The first results proved on this subject were giving some necessary
conditions of stability by means of a normal modes analysis. In [21] (see also the
review [22]), Lax formulated the definition of a shock wave for an arbitrary system of
conservation laws in space dimension one: the definition was also dictated by some
kind of “stability” argument. More precisely, the number of characteristics impinging
on the shock front curve is imposed by the size of the system in order to avoid
under- (or over-) determinacy of the resulting free boundary problem. Regarding
ideal gas dynamics, this definition is known to be equivalent to the requirement that
the physical entropy increases upon crossing the shock front curve; see [10].

Using the extensive study of initial boundary value problems for linear hyper-
bolic systems (see, e.g., [16, 17, 20]), Majda succeeded in the early 1980’s in deriving
a necessary and sufficient strong stability condition for multidimensional shock waves
[25]. The resulting estimates on the linearized problem enabled him to prove a non-
linear existence theorem [24]. We also refer to [26, 37] for a general overview of the
method and its application to isentropic gas dynamics. It is worth noting that a
different approach developed at the same time by Blokhin [6, 7] gave rise to similar
results. However, Majda’s approach, which has been slightly improved in [27, 30] by
using the new ideas of paradifferential calculus introduced by Bony and Meyer, seems
appropriate to our purpose, and we shall adopt it for our analysis.

In the study of initial boundary value problems for linear hyperbolic systems,
many physically relevant boundary data are found to violate the uniform stability
condition, namely the so-called Kreiss–Lopatinskii condition. A list of such boundary
conditions for physical systems can be found in [11]. Nevertheless, many authors
have overcome this difficulty in various cases by using particular properties of the
involved (linear or nonlinear) system; see, e.g., [3, 15, 35] for results on fluid dynamics
and [29, 34] for results on elastodynamics. In a more general setting, Ohkubo and
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Shirota derived in [31] a sufficient condition for linear initial boundary value problems
to ensure L2 well-posedness with respect to the “interior source term.” (Initial and
boundary data are homogeneous.)

Although Majda’s result has the great advantage of dealing with any system
of conservation laws, examples of multidimensional shocks are not that numerous,
and the verification of the uniform stability condition often gives rise to very tedious
computations. However, such verification can be carried out for the system of gas
dynamics. Two cases of nonuniformly stable shocks arise and motivate the present
study. The first example, which is briefly addressed in [25], is the one of planar Lax
shocks in isentropic gas dynamics that violate Majda’s inequality (see [25, p. 10]).
This inequality is recalled in section 2. The second example comes from the theory
of phase transitions in isothermal van der Waals fluids. These planar discontinuities
are undercompressive shocks. They require an additional jump relation to select the
relevant ones. Various admissibility criteria have been proposed over the last two
decades; see [39] for phase transitions in the context of gas dynamics or [38, 40] and
references therein for phase transitions in the context of elastodynamics. We base our
analysis on the viscosity-capillarity criterion proposed in [39] under the assumption
that the viscosity coefficient is neglected and taken to be zero. In other words, the
additional jump relation is written as a generalized equal area rule. It has been shown
in [4] that the uniform stability condition is violated because of surface waves. (Taking
viscosity into account would yield uniform stability; see [5].) It is worth noting that
the failure of the uniform stability condition in isentropic gas dynamics can rise only
from the appearance of boundary waves (but we shall get back to this in the next
sections); for a precise statement of the distinction between these two types of waves,
we refer the reader to the very nice survey [11].

The purpose of the paper is the derivation of a complete energy estimate on the
linearized system resulting from the study of these two problems. Since the classical
energy estimate is known to be equivalent to the uniform stability condition, as proved
in [25], losses of derivatives are to be expected. As shown in Theorems 3.5 and 4.5,
and this is no real surprise, losses of derivatives are more severe when boundary waves
occur than when surface waves occur. We point out that this kind of phenomenon
had already been mentioned in previous works [11, 34]. Despite the impossibility of
using some “dissipativeness” arguments on the boundary conditions in our context,
we shall see that the derivation of an energy estimate can be carried out by a suitable
modification in the ordinary construction of a Kreiss symmetrizer. This point will be
emphasized in both problems we shall detail.

This paper is divided as follows. In section 2, we recall Majda’s method for
multidimensional shock waves and introduce some notations. Note that Lax shocks
for isentropic Euler equations are uniformly stable in one space dimension, and we shall
therefore deal with two- or three-dimensional problems. (The one-dimensional case
is treated in [23].) We warn the reader that many calculations cannot be reproduced
here to avoid overloading the paper, and we shall often refer to previous works on
this subject where some details are available. However, special attention will be paid
to detailing the normal modes analysis on which relies the entire construction of the
symbolic symmetrizer. In section 3, we treat the first example, i.e., nonuniformly
stable Lax shocks for isentropic Euler equations. We show in section 4 how the
method developed in section 3 applies in the study of phase transitions in a van der
Waals fluid and even gives slightly better results. Once again, we shall focus on two-
or three-dimensional problems, since phase transitions are known to be uniformly
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stable in one space dimension, and their existence has already been studied in [14].
Section 5 is devoted to the proof of several technical lemmas used in the construction
of Kreiss symmetrizers. Eventually, we make in section 6 some general remarks on
the possible advances for these two problems.

2. General considerations. We study the Euler equations governing the mo-
tion of an inviscid isentropic fluid in R

d:{
∂t ρ + ∇ · (ρu) = 0 ,

∂t (ρu) + ∇ · (ρu⊗ u) + ∇ p = 0 .
(2.1)

We have adopted the following standard notations that will be used throughout this
paper: ρ denotes the density, u the velocity field, and c the sound speed given by the
pressure law p(ρ) that the fluid is assumed to obey,

c(ρ) =
√

p′(ρ) .

Since smooth solutions generally develop singularities in finite time, we look for par-
ticular weak solutions of the form of functions which are smooth on both sides of
a (variable) hypersurface of R

d. A first step in the proof of the existence of such
solutions is the study of the linear stability of piecewise constant solutions defined by
a relation of the form

U =

{
Ul = (ρl,ul) if x · ν < σt,

Ur = (ρr,ur) if x · ν > σt.

Such a function U is a weak solution of the Euler equations (2.1) if and only if it
satisfies the Rankine–Hugoniot jump relations which can be written in the following
way: {

ρr(ur · ν − σ) = ρl(ul · ν − σ) =: j ,

j[u] + [p]ν = 0 .
(2.2)

We consider dynamical discontinuities and thus assume that the mass transfer j across
the hyperplane {x · ν = σt} is not zero. By symmetry arguments, one can therefore
assume j > 0. We first assume that U defines a compressive 1-Lax shock or, in other
words, that the following inequalities hold:

Mr =
ur · ν − σ

c(ρr)
< 1, Ml =

ul · ν − σ

c(ρl)
> 1, and ρr > ρl .

Note that the above assumptions immediately imply that the shock is noncharacteris-
tic: the propagation speed of the interface σ is different from the characteristic speeds
of system (2.1) on both sides of the interface. With the above notations, we have the
following statement.

Proposition 2.1 (Majda [25]). The shock U is uniformly stable if and only if

M2
r

(
ρr
ρl

− 1

)
< 1 .(2.3)

If inequality (2.3) does not hold, then the shock U is only weakly stable.
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Inequality (2.3) holds as long as p is a convex function of the density ρ which
is the case for the classical gamma-law but not for more complicated laws (like, for
instance, an isothermal van der Waals pressure law). We shall investigate in section
3 the case where the opposite strict inequality holds. We shall also detail why the
equality case cannot be treated by the techniques used in this paper.

If we now assume that p is a nonmonotone function of ρ (this hypothesis can be
viewed as a model of isothermal liquid-vapor phase transitions; see [18]), it is known
that subsonic discontinuities can appear for which we have

Mr =
ur · ν − σ

c(ρr)
< 1, Ml =

ul · ν − σ

c(ρl)
< 1, and ρr > ρl .

Such inequalities occur if p is, for instance, given by an isothermal van der Waals
pressure law with a temperature below the so-called critical temperature (see [4, 5,
39]). To avoid the natural instability of U with respect to small perturbations, one
needs to specify an additional jump relation to the Rankine–Hugoniot conditions.
The analysis developed in section 4 is based on the capillarity criterion proposed in
[39]. (The admissibility criterion proposed in [40] is the analogue for elastodynamics,
and the main idea governing both criteria is that there is no entropy dissipation upon
crossing the shock.) Together with the Rankine–Hugoniot conditions, this criterion
requires that U satisfies the generalized equal area rule∫ vl

vr

p(v) dv = (vl − vr)
p(vr) + p(vl)

2
,(2.4)

where v = 1/ρ is the specific volume of the fluid. Such phase transitions which differ
from Maxwell equilibrium states are noncharacteristic.

We are now able to develop Majda’s method to study the linear stability of such
multidimensional shocks. First note that, by a change of observer, one can always
assume that the unit vector ν is the last vector of the canonical basis of R

d. Since the
mass transfer j is not zero, equations (2.2) show that the tangential components of
the velocity are the same on both sides of the shock front curve. Performing another
change of observer one can assume from now on that

(ur1, . . . ,u
r
d−1) = (ul1, . . . ,u

l
d−1) = 0 and σ = 0 ,

which is of no consequence on the stability of the particular solution U . Note that
these operations yield a simplified expression of the mass transfer j across the interface
(defined by system (2.2)): j = ρrur = ρlul.

We adopt in all that follows the following notations: all space vectors x in R
d are

decomposed as x = (y, xd), where y is a vector in R
d−1 and xd is a scalar. Similarly,

all velocity vectors u are decomposed as u = (ǔ, u), where ǔ ∈ R
d−1 is the tangential

part of the velocity and u ∈ R is the normal velocity.
We are now led to search a weak solution U of (2.1) defining a compressive 1-Lax

shock (or an admissible phase transition) across a smooth hypersurface Σ(t) = {xd =
ϕ(t, y)} close to the hyperplane {xd = 0}. Since Σ(t) is part of the unknowns of the
problem, one first fixes the front by the following well-known transformation in free
boundary problems:(

U : (t, y, xd) −→ R
N
) −→ (U± : (t, y, z) 	−→ U(t, y, ϕ(t, y) ± z) ) ,

both applications U+ = (ρ+,u+) and U− = (ρ−,u−) being defined on the same half-
space {z > 0}. The quasi-linear form of Euler equations is linearized on both sides
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of Σ(t) around the piecewise constant solution U (see [25, 37]). The resulting linear
system reads 

∂t U+ +

d−1∑
j=1

Aj(Ur) ∂xj
U+ + Ad(Ur) ∂z U+ = f+ ,

∂t U− +

d−1∑
j=1

Aj(Ul) ∂xj U− −Ad(Ul) ∂z U− = f− ,

(2.5)

where Aj(Ur,l) are (d + 1) × (d + 1) matrices corresponding to the quasi-linear form
of isentropic Euler equations; see [9, 10, 36].

The linearization of the jump conditions across the interface Σ(t) yields the bound-
ary conditions on {z = 0}. When one deals with a compressive Lax shock, the jump
conditions are nothing but the Rankine–Hugoniot relations, and their linearized form
reads

urρ+ + ρru+ − ulρ− − ρlu− − [ρ]∂tϕ = g1 ,

ρrurǔ+ − ρlulǔ− − [p]∇yϕ = ǧ ,

(u2
r + c2r)ρ+ + 2ρruru+ − (u2

l + c2l )ρ− − 2ρlulu− = gd+1 .

(2.6)

When one deals with a subsonic phase transition in a van der Waals fluid, the complete
boundary conditions for the linearized problem are obtained by linearizing (2.4) and
adding this new relation to the linearized Rankine–Hugoniot relations (2.6). The
complete set of boundary conditions in this case reads

urρ+ + ρru+ − ulρ− − ρlu− − [ρ]∂tϕ = g1 ,

ρrurǔ+ − ρlulǔ− − [p]∇yϕ = ǧ ,

(u2
r + c2r)ρ+ + 2ρruru+ − (u2

l + c2l )ρ− − 2ρlulu− = gd+1 ,

c2r
ρ+

ρr
+ uru+ − c2l

ρ−
ρl

− ulu− − [u]∂tϕ = gd+2 .

(2.7)

It is now clear that, even though both examples rise from two different research
areas, they are exactly of the same kind. In both cases, we are led to study a non-
standard mixed initial boundary value problem

∂tU +

d−1∑
j=1

Aj ∂xjU + Ad ∂zU = f for z > 0,

∂tϕ b0 +

d−1∑
j=1

∂xjϕ bj + M U = g for z = 0.

(2.8)

The boundary conditions for the study of compressive Lax shocks are given by (2.6),
and the boundary conditions for the study of subsonic phase transitions are given by
(2.7). To write system (2.8), we have let

U =

(
U+

U−

)
, f =

(
f+

f−

)
, g =

 g1

ǧ
gd+1

 , or g =


g1

ǧ
gd+1

gd+2

 ,

Aj =

(
Aj(Ur) 0

0 Aj(Ul)

)
for 1 ≤ j ≤ d− 1, Ad =

(
Ad(Ur) 0

0 −Ad(Ul)

)
.
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In both examples, M represents the matrix of the linearized jump conditions (Rankine–
Hugoniot relations and the generalized equal area rule in the case of phase transitions).
The vectors b0, . . . , bd−1 come from (2.6) and (2.7). They belong to R

d+1 in the study
of Lax shocks, while they belong to R

d+2 in the study of subsonic phase transitions.
The derivation of an energy estimate for system (2.8) relies on the introduction

of a positive weight γ (see [20, 25]). More precisely, we perform a change of unknown
functions

v(t, y, z) = e−γt U(t, y, z) and ψ(t, y) = e−γt ϕ(t, y) ,

where γ is a nonnegative parameter. We now perform a Fourier transform in the
variables t and y. (The corresponding dual variables will be respectively denoted δ
and η.) These operations yield the system of ordinary differential equations

dV

dz
= A(δ, η, γ)V (z) + F for z > 0,

χ b(δ, η, γ) + M V (0) = G for z = 0,
(2.9)

with

A(δ, η, γ) = −A−1
d

τ + i

d−1∑
j=1

ηjAj

 and b(δ, η, γ) = τb0 + i

d−1∑
j=1

ηjbj .

For convenience we have let τ = γ+ iδ. Note that inverting Ad is legitimate, since the
shock is in both examples noncharacteristic. We now turn to the description of the
method: in both examples, we show that the boundary conditions in problem (2.9)
can be rewritten so that χ appears only in the last scalar boundary condition. The
remaining part of the work consists of deriving an a priori estimate on the resulting
initial boundary value problem for U where the boundary conditions take the form of
a pseudodifferential operator.

Because of the decoupled nature of system (2.5), it is clear that matrix A(δ, η, γ)
has a block diagonal structure: its first block corresponds to the linearized system
ahead of the shock, and its second block corresponds to the linearized system before
the shock (see [25, 26, 37]). The eigenmodes of the first block are ωr2 = −τ/ur, and
the roots of the second order polynomial equation are

(τ + ur ω)2 = c2r(ω
2 − |η|2) .(2.10)

In a similar way, the eigenmodes of the second block are ωl2 = τ/ul, and the roots of
the second order polynomial equation are

(τ − ul ω)2 = c2l (ω
2 − |η|2) .(2.11)

We briefly analyze the eigenmodes of A and begin with the eigenmodes of the first
block. In both problems analyzed in sections 3 and 4, the shock U is subsonic with
respect to the right state (Mr < 1). It is clear that ωr2 is of negative real part when
τ has positive real part (that is, when γ is positive). Moreover, (2.10) has one root
ωr3 of negative real part when τ has positive real. The other root of (2.10) is denoted
ωr1 and has positive real part when τ has positive real part. The parametrization
of the corresponding eigenspaces, which we use in sections 3 and 4, can be found in
[4, 37]. One crucial property of the eigenmodes ωr1,3 is that they can be extended up
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to imaginary values of τ . Note that ωr3 has negative real part if |τ | < |η|√c2r − u2
r and

is purely imaginary if |τ | ≥ |η|√c2r − u2
r.

In the case of a compressive 1-Lax shock, that is, when the shock is supersonic
with respect to the left state, then the second dynamical system does not give any
contribution to the stable subspace E− of A. Indeed, ωl2 is of positive real part when
τ has positive real part. Furthermore, (2.11) has two roots ωl1 and ωl3 of positive real
part when τ has positive real part. One easily checks that the continuous extension
of ωl1 and ωl3 for purely imaginary values of τ are always distinct.

In the case of a subsonic phase transition, (2.11) has the same behavior as (2.10).
More precisely, (2.11) has exactly one root ωl1 of negative real part when τ has positive
real part. The other root of (2.11) is denoted ωl3. It has positive real part when τ has
positive real part. When τ is a purely imaginary number, ωl1 has negative real part if
|τ | < |η|√c2l − u2

l and is purely imaginary if |τ | ≥ |η|√c2l − u2
l .

3. Nonuniformly stable shocks in gas dynamics. We begin by describing
the failure of the uniform stability condition for compressive Lax shocks in isentropic
gas dynamics. Let U define a compressive 1-Lax shock for isentropic Euler equations
(2.1) as described in the previous section. We study the nonstandard initial boundary
value problem (2.8) with boundary conditions given by (2.6). We assume that U
violates Majda’s inequality (2.3) in the following way:

M2
r

(
ρr
ρl

− 1

)
> 1 .

Note that the previous simplifications imply that this inequality is equivalent to

urul > c2r + u2
r .(3.1)

This remark will be useful to complete the proof of Lemma 3.3. Under the assumptions
made on U , the normal modes analysis of problem (2.9) is summarized in the following
result.

Lemma 3.1. There exists a positive number V1 such that, for all (δ, η, γ) ∈ R
d+1

satisfying γ ≥ 0 and (δ, γ) �= (±iV1|η|, 0), one has{
(Z, χ) ∈ E−(δ, η, γ) × C so that (s.t.) χ b(δ, η, γ) + M Z = 0

}
= {0} ,

and, for η �= 0, the set{
(Z, χ) ∈ E−(±V1|η|, η, 0) × C s.t. χ b(±V1|η|, η, 0) + M Z = 0

}
is a one-dimensional subspace of C

2d+3.
By definition, V 2

1 is the smallest root of the polynomial

P1(X) = (c2r − u2
r)(X

2 + u2
ru

2
l ) +

[
4u2

rc
2
r − 2urul(c

2
r + u2

r)
]
X ,

which has two real positive roots under assumption (3.1). (The greatest is denoted
V 2

2 .) Furthermore, we have

c2r − u2
r < V 2

1 < urul
c2r − u2

r

c2r + u2
r

< V 2
2 .
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Proof. This is a basic extension of the calculations already done in [25] (which can
also be found in [37]). First of all, we note that the stable subspace of the dynamical
system

dV

dz
= A(δ, η, γ)V

consists of all vectors Z = (Zr, Zl) such that

(urτ − (c2r − u2
r)ω

r
3, ρruriη

T ,−ρrτ) · Zr = 0 and Zl = 0 .

With this parametrization of the stable subspace, one easily computes the Lopatinskii
determinant associated with (2.9):

∆(δ, η, γ) = ρdru
d−1
r

[
(c2r − u2

r)[p]|η|2 + (c2r + u2
r)[ρ]τ2 + 2ur[ρ]τar3

]
,

where we have let ar3 = urτ − (c2r − u2
r)ω

r
3. It is clear that ∆(δ, 0, γ) does not vanish

for any (δ, γ) �= (0, 0). One can therefore factor the expression of ∆(δ, η, γ) by |η|2
and use the reduced variables

V =
τ

i|η| , Ar3 =
ar3
i|η| .

Some simplifications using the Rankine–Hugoniot relations lead to the expression

∆(δ, η, γ) = ρdru
d−1
r |η|2[ρ]

[
(c2r − u2

r)urul − (c2r + u2
r)V

2 − 2urV Ar3
]
.

Let R denote the complex square root mapping defined by

R : C \ R+ −→ {ζ ∈ C s.t. Im ζ > 0},
w 	−→ R(w) with R(w)2 = w .

Then analyzing equation (2.10) shows that for γ > 0 (or, equivalently, for V of
negative imaginary part) we have

Ar3 = −crR(V 2 − (c2r − u2
r)),

and therefore, if the Lopatinskii determinant vanishes at some point (τ, η), V 2 has to
be a root of the polynomial P1 defined in the lemma. Note that the assumption (3.1)
made on the shock U implies that P1 has two distinct positive roots V 2

1 and V 2
2 that

satisfy the properties given in the lemma. This already proves that the possible zeros
of ∆(δ, η, γ) have to satisfy

η �= 0 , γ = 0 and δ2 > (c2r − u2
r)|η|2 ,

and those requirements imply that V is a real number such that V 2 > c2r − u2
r.

One therefore has to extend the previous definition of Ar3 to such values of V . This
is achieved by using the Cauchy–Riemann relations on holomorphic functions (see
[4, 37] for the details):{

Ar3 = cr
√

V 2 − (c2r − u2
r) if V >

√
c2r − u2

r,

Ar3 = −cr
√

V 2 − (c2r − u2
r) if V < −√c2r − u2

r.
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Furthermore, the previous analysis shows that ∆(δ, η, 0) vanishes if and only if{
2urcrV

√
V 2 − (c2r − u2

r) = −(c2r + u2
r)V

2 + urul(c
2
r − u2

r) if V >
√

c2r − u2
r,

2urcrV
√

V 2 − (c2r − u2
r) = (c2r + u2

r)V
2 − urul(c

2
r − u2

r) if V < −√c2r − u2
r,

and these relations imply P1(V 2) = 0.
If the Lopatinskii determinant vanishes at V = V2, then we must have

2urcrV2

√
V 2

2 − (c2r − u2
r) = −(c2r + u2

r)V
2
2 + urul(c

2
r − u2

r) .

However, the left-hand term of the equality is positive, and the right-hand term is
negative. Therefore the Lopatinskii determinant cannot vanish at V = V2 (and neither
at V = −V2 by a similar argument). Since P1(V 2

1 ) = 0 we have

2urcrV1

√
V 2

1 − (c2r − u2
r) = −(c2r + u2

r)V
2
1 + urul(c

2
r − u2

r) ,

because both terms in the equality are positive. Therefore the Lopatinskii determinant
vanishes at V = V1 (and similarly at V = −V1). This completes the proof of the
existence and the characterization of points where the uniform stability condition
fails. The last assertion on the dimension of the corresponding kernel follows directly
from the shape of the boundary conditions (2.6).

Note that if in the special case urul = c2r + u2
r, then P1(c2r − u2

r) = 0. In other
words, the uniform stability condition fails exactly at the points where (2.10) has a
double root. At such points, the symbol A is not diagonalizable, and a 2 × 2 Jordan
block arises in the reduction of A which is used to construct a Kreiss symmetrizer (see
the proof of Proposition 3.4). At the present time, we have not been able to overcome
this difficulty. This case is left to a future work.

3.1. Elimination of the front. The first step in the derivation of an energy
estimate for the mixed problem (2.8) is to work in the Fourier space and to isolate
the front χ in the last boundary condition for problem (2.9). This operation can be
summarized in the following terms.

Lemma 3.2. There exists a C∞ mapping Q defined on the half-space R
d×R

+\{0},
homogeneous of degree 0, with values in the set of square (d + 1) × (d + 1) invertible
matrices such that, for all X ∈ R

d × R
+ \ {0}, the first d components of the vector

Q(X) b(X) vanish.
Proof. The Rankine–Hugoniot jump relations together with (2.6) yield the rela-

tions

b(δ, η, γ) =

 −τ [ρ]
−iurul[ρ]η

0

 if d = 2 and b(δ, η, γ) =


−[ρ]τ

−iurul[ρ]η1

−iurul[ρ]η2

0

 if d = 3.

To preserve the homogeneity of the physical quantities we handle in the calculations,
we fix a reference velocity Ṽ and a reference frequency γ̃, and we define Σ+ as the
hemisphere

Σ+ =
{

(δ, η, γ) ∈ R
d × R+ s.t. γ2 + δ2 + Ṽ 2|η|2 = γ̃2

}
.
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We first define the mapping Q on the hemisphere Σ+ and then extend it as a homo-
geneous mapping of degree 0. One easily checks that, for d = 2, the matrix

Q(δ, η, γ) =

 0 0 1
iurulη −τ 0

urulτ −iṼ 2η 0


satisfies all required properties. For d = 3, one can choose, for instance,

Q(δ, η, γ) =


0 0 0 1

iurulη1 −τ 0 0
iurulη2 0 −τ 0

urulτ −iṼ 2η1 −iṼ 2η2 0


which also satisfies all required properties. This completes the proof.

We can therefore write boundary conditions for the linearized problem (2.8) in
the equivalent way(

B(δ, η, γ)
1(δ, η, γ)

)
V (0) + χ

(
0d

α(δ, η, γ)

)
= Q(δ, η, γ)G ,

where α(δ, η, γ) is given by

α(δ, η, γ) = −urul[ρ]γ̃

√
γ2 + δ2 + Ṽ 2|η|2 �= 0 ,

and this relation holds for d = 2 and d = 3.
Lemma 3.1 ensures that the restriction of B(X) to the stable subspace E−(X) is

invertible except at the points X where the uniform stability condition fails. We thus
have to study the behavior of the restriction of B(X) to the stable subspace E− in the
neighborhood of those points. Lemma 3.3 asserts that the Lopatinskii determinant
vanishes at order 1 or, in other words, that the roots exhibited in Lemma 3.1 are
simple.

For all vectors Z belonging to the stable subspace E− we denote by Zr3 and Zr2
the components of Z on the eigenspaces associated with the eigenmodes ωr3 and ωr2.
In other words, we decompose Z as

Z =

(
Zr
0d+1

)
with Zr = Zr3

ρr(τ + ur ω
r
3)

−c2r iη
−c2r ω

r
3

 +

 0
−ωr2Z

r
2

iη · Zr2

 .

Then we have the following microlocal estimate.
Lemma 3.3. There exists a neighborhood V of (V1|η|, η, 0) in Σ+ and a constant

c > 0 such that, for all X ∈ V and for all Z ∈ E−(X), one has

|B(X)Z|2 ≥ c γ2
(|Zr3 |2 + |Zr2 |2

)
.

An analogous estimate holds in a neighborhood of points (−V1|η|, η, 0).
Proof. According to Lemma 3.1 we know that the kernel of the restriction of

B to the stable subspace E− at the point (V1|η|, η, 0) is a one-dimensional space.
Therefore, in order to prove Lemma 3.3, we need only to show that 0 is a simple root
of the determinant of the restriction of B to E− or, more precisely, that the partial
derivative of this determinant with respect to γ calculated at γ = 0 is not zero.
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We first deal with the case d = 2, and we keep the notation ar3 introduced in the
proof of Lemma 3.1. After a few simplifications, for Z ∈ E−, we get

B(δ, η, γ)Z =


ρr(c

2
rτ + ura

r
3) 2ijη

ijηγ̃(c2rτ + ula
r
3)√

γ2 + δ2 + Ṽ 2η2

−ρrγ̃(τ2 + urulη
2)√

γ2 + δ2 + Ṽ 2η2


(
Zr3
Zr2

)
.

Note that this expression involves γ̃ and some square roots because of the homogeneity
property of the mapping Q. The determinant of the restriction of B to the stable
subspace E− is therefore given by

detB− =
iγ̃ρ2

r|η|3√
γ2 + δ2 + Ṽ 2η2

[
c2rV (V 2 + 2u2

r − urul) + urA
r
3(V 2 + urul)

]︸ ︷︷ ︸
f(V )

,

where V and Ar3 denote the same reduced quantities as those defined in the proof
of Lemma 3.1. One can check that f(V ) vanishes at the points where the uniform
stability condition fails (thanks to the expression of the Lopatinskii determinant).
The final step consists of calculating the partial derivative of detB− with respect to
γ at γ = 0. Proving that this derivative is not zero is equivalent to proving that the
derivative (with respect to V ) of the function f(V ) calculated at V = ±V1 is not zero.
We have

f ′(V ) = cr(3V
2 + 2u2

r − urul) +
crurV

[
3V 2 + urul − 2(c2r − u2

r)
]

urV Ar3
,

and thus, using the expression of V Ar3 at (V1|η|, η, 0), we find the expression

f ′(V1) = c2r(3V
2
1 + 2u2

r − urul) −
2c2ru

2
rV

2
1

[
3V 2

1 + urul − 2(c2r − u2
r)
]

(c2r + u2
r)V

2
1 − (c2r − u2

r)urul
.

Eventually, f ′(V1) = 0 if and only if V 2
1 is a root of the polynomial

Q1(X) = 3(c2r − u2
r)X

2 + 2
[
u2
r(3c

2
r − u2

r) − 2urulc
2
r

]
X + urul(c

2
r − u2

r)(urul − 2u2
r) .

Assume that Q1(V 2
1 ) = 0. Since V 2

1 is also a root of the polynomial P1 defined in
Lemma 3.1, we get the relation[

urul(c
2
r + 3u2

r) − u2
r(3c

2
r + u2

r)
]
V 2

1 − urul(c
2
r − u2

r)(urul + u2
r) = 0 ,

and one easily checks that the previous term between brackets is positive, since urul >
c2r + u2

r. Plugging this explicit expression of V 2
1 into the definition of P1 implies that

S := urul/c
2
r is a root of the following polynomial:

Q2(X) = (1 −M2
r )X3 + (2M4

r + 3M2
r − 1)X2

−M2
r (M4

r + 5M2
r + 2)X + M4

r (3 + M2
r ) .

One easily checks that Q2(1) = 0, and we have assumed that S > 1 + M2
r . We thus

deduce that S is a root of the polynomial

Q3(X) = (1 −M2
r )X2 + 2M2

r (1 + M2
r )X −M4

r (3 + M2
r ) = 0 .
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However, the value of Q3(1 + M2
r ) is greater than 1, so S is always larger than the

greatest root of Q3. We are thus led to a contradiction. Therefore V 2
1 cannot be a

root of the polynomial Q1 which means exactly that f ′(V1) �= 0.
If d = 3 and Z is a vector in the stable subspace E−, we have the relation

B(δ, η, γ)Z

=



ρr(c
2
rτ + ura

r
3) 2ijη1 2ijη2

ijη1γ̃(c2rτ + ula
r
3)√

γ2 + δ2 + Ṽ 2|η|2
−ρrγ̃(τ2 + urulη

2
1)√

γ2 + δ2 + Ṽ 2|η|2
−ρrγ̃urulη1η2√
γ2 + δ2 + Ṽ 2|η|2

ijη2γ̃(c2rτ + ula
r
3)√

γ2 + δ2 + Ṽ 2|η|2
−ρrγ̃urulη1η2√
γ2 + δ2 + Ṽ 2|η|2

−ρrγ̃(τ2 + urulη
2
1)√

γ2 + δ2 + Ṽ 2|η|2



Zr3

Zr2

 ,

from which we get the expression

detB− =
iγ̃2ρ3

rV
2|η|5

γ2 + δ2 + Ṽ 2η2
f(V ) .

Therefore the previous analysis made in the case d = 2 applies, and the conclusion of
the lemma follows.

In order to simplify what follows, we assume that the reference speed Ṽ and
the reference frequency γ̃ are normalized and taken to be equal to 1. This is of pure
convenience and does not affect the following results, but it will clarify the introduction
of weighted Sobolev spaces.

3.2. A priori estimate on the linearized equations. We begin with a result
of existence of a microlocal Kreiss symmetrizer for system (2.8). The proof of this
result is detailed in the next subsection. Except at the particular points where the
uniform stability condition fails, the method is the one developed in [20] (see also
[8]) whose first purpose was the resolution of mixed initial boundary value problems
for strictly hyperbolic systems when the boundary conditions do not have any “dis-
sipativeness” property. We point out that this method was later used in [25] (see
also [27, 30]) to deal with multidimensional shock waves where no “dissipativeness”
argument holds, since the boundary conditions B take the form of a pseudodiffer-
ential operator of order 0. In our case, since we have limited the study to constant
coefficients systems, these boundary conditions take the simpler form of a Fourier
multiplier.

We shall see in the proof of Theorem 3.5 that the failure of the uniform stability
condition in the so-called hyperbolic region gives rise to some poor energy estimates
compared to the maximal L2 estimates obtained under the uniform stability condition.
In fact, we can state the following result.

Proposition 3.4. For all X0 ∈ Σ+, there exists an open neighborhood V of
X0 and matrices r(X), T (X) of class C∞ with respect to X ∈ V which satisfy the
following:
r(X) is hermitian.

T (X) is invertible, and, defining a(X) = T (X)−1A(X)T (X), B̃(X) = B(X)T (X),
there exist two positive constants C and c > 0 such that

Re (r(X) a(X)) ≥ cγI ,

r(X) + CB̃(X)∗B̃(X) ≥ cI ,
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if the Lopatinskii determinant does not vanish at X0, and

Re (r(X) a(X)) ≥ cγ3I ,

r(X) + CB̃(X)∗B̃(X) ≥ cγ2I ,

if X0 is a root of the Lopatinskii determinant. In this latter case, r(X) can be chosen
under the following diagonal form:

r(X) =

(−γ2Id 0
0 λId+2

)
,

where λ is a real number greater than 1.
Recall that, under the uniform stability condition, one can construct a Kreiss

symmetrizer R that satisfies

Re (R(X)A(X)) ≥ cγI ,

R(X) + CB(X)∗B(X) ≥ cI .

Proposition 3.4 enables us to derive an energy estimate on system (2.8) in some
appropriate weighted spaces. We define two domains Ω and ω as

Ω = R × R
d
+ = {(t, y, z) ∈ R

d+1 s.t. z > 0} and ω = R × R
d−1 = ∂Ω .

For γ > 0 and s ∈ R we define the following symbols:

∀ξ ∈ R
d, λs,γ(ξ) = (γ2 + |ξ|2)s/2 .

The usual Sobolev spaces Hs(ω) are equipped with the following weighted norms
(depending on the positive parameter γ):

‖u‖2
s,γ =

1

(2π)d

∫
Rd

λ2s,γ(ξ) |û(ξ)|2 dξ .

These weighted norms enable us to construct a parameter version of the classical
pseudodifferential calculus which is of constant use in the study of mixed initial bound-
ary value problems for hyperbolic systems; see [1, 20, 25].

For all integer k, we equip the usual Sobolev space Hk(Ω) with the following
norm:

|||U |||2k,γ =

k∑
j=0

∫ +∞

0

‖∂jzU(., z)‖2
k−j,γ dz .

We now define two operators L and B by

L(U) = ∂tU +

d−1∑
j=1

Aj ∂xj
U + Ad ∂zU for z > 0,

B(ϕ,U) = ∂tϕ b0 +

d−1∑
j=1

∂xjϕ bj + M U for z = 0.

The change of unknown functions described in section 2 leads to the introduction of
the “weighted” operators

Lγ(U) = L(U) + γU and Bγ(ϕ,U) = B(ϕ,U) + γϕ b0 .

These notations enable us to state our first weak stability theorem.
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Theorem 3.5. There exists a constant C > 0 such that, for all U ∈ H2(Ω), for
all ϕ ∈ H2(ω), and for all γ ≥ 1, the following estimate holds:

γ|||U |||20,γ + ‖U‖2
0,γ + ‖ϕ‖2

1,γ ≤ C

(
1

γ3
|||LγU |||21,γ +

1

γ2
‖Bγ(ϕ,U)‖2

1,γ

)
.

We recall that, under the uniform stability condition, one deduces from the exis-
tence of a global Kreiss symmetrizer the following maximal L2 estimate:

γ|||U |||20,γ + ‖U‖2
0,γ + ‖ϕ‖2

1,γ ≤ C

(
1

γ
|||LγU |||20,γ + ‖Bγ(ϕ,U)‖2

1,γ

)
.

Comparing to the result of Theorem 3.5, we see that losses of derivatives appear both
in the interior domain and on the boundary. This is quite a remarkable difference
between our study and previous works such as [11, 34], where derivatives were lost
only on the boundary.

Proof. The result is a consequence of the existence of a symbolic symmetrizer
r given by Proposition 3.4. Since Σ+ is a compact set, we can fix a finite covering
(Vi)1≤i≤I of Σ+ by open sets defined in Proposition 3.4. Let (ψi)1≤i≤I be a partition of
unity associated with this covering. More precisely, the functions ψi are nonnegative,
C∞, and satisfy

∀i = 1, . . . , I, Supp ψi ⊂ Vi and

I∑
i=1

ψ2
i ≡ 1 .

Now let U ∈ H2(Ω) and ϕ ∈ H2(ω). We denote Û(ξ, z) the Fourier transform of
U(t, y, z) with respect to the d first variables (t, y). We also define

F (t, y, z) = LγU(t, y, z) ∈ H1(Ω) ,

G(t, y) = Bγ(ϕ,U) ∈ H1(ω) .

Lemma 3.2 ensures that there exists a constant C > 0 such that

λ2,γ(ξ) |ϕ̂(ξ)|2 ≤ C
(
|Û(ξ, 0)|2 + |Ĝ(ξ)|2

)
,

with ξ = (δ, η). Integrating with respect to ξ and using Plancherel’s theorem yield
the inequalities

‖ϕ‖2
1,γ ≤ C

(‖U‖2
0,γ + ‖Bγ(ϕ,U)‖2

0,γ

)
≤ C

(‖U‖2
0,γ + γ−2‖Bγ(ϕ,U)‖2

1,γ

)
.

We now need to estimate the norms ‖U‖2
0,γ and |||U |||20,γ in terms of ‖G‖2

1,γ and |||F |||21,γ .
We define

Vi(X, z) = ψi(X)Ti(X)−1 Û(ξ, z) .

Since ψi has compact support in Vi, we extend the mappings ri and Ti on all Σ+,
assuming them to be constant outside of Vi. (This is of pure convenience since only
the value of these mappings on Supp ψi will be involved in what follows.) Then we
extend ri and Ti (and thus a) as homogeneous functions of degree 0 in X = (ξ, γ).
(This is the method developed in [8, 20, 30].)
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Using the definition of the matrix a(X), we know that Vi(X, z) satisfies the ordi-
nary differential equation

dVi
dz

= a(X)Vi + ψi(X)Ti(X)−1 A−1
d F̂ .

We first deal with the case where Vi is a neighborhood of a root of the Lopatinskii
determinant. We take the scalar product of the previous equation by λ2,γ(ξ) ri(X)Vi
and integrate with respect to ξ = (δ, η) ∈ R

d. Then we integrate with respect to z
from 0 to +∞. Using the properties of the symmetrizer ri, we get

− 2 Re
〈〈

ri(X)Vi, ψi(X)λ2,γ(ξ)Ti(X)−1 A−1
d F̂

〉〉
≥ cγ2

∥∥∥ψiÛ∥∥∥2

0,γ
− C

∥∥∥ψiB Û
∥∥∥2

1,γ
+ 2 Re 〈〈Vi, λ2,γ ri(X) a(X)Vi〉〉 .

Define a matrix Σ as

Σ =

 γ√
γ2 + |ξ|2 0

0
√
λ

 ,

where λ is a real number greater than 1 as stated in Proposition 3.4. We clearly
have Re ri(X) a(X) ≥ cγΣ2 for X in the support of ψi. Since a and ri are diagonal
matrices on Vi, we have

2 Re 〈〈Vi, λ2,γ ri(X) a(X)Vi〉〉 ≥ cγ|||λ1,γ ΣVi|||20,γ ,
and the Cauchy–Schwarz inequality yields the estimate

−2 Re
〈〈

ri(X)Vi, ψi(X)λ2,γ(ξ)Ti(X)−1 A−1
d F̂

〉〉
≤ cγ|||λ1,γ ΣVi|||20,γ +

C

γ

∣∣∣∣∣∣∣∣∣λ1,γ ΣF̂
∣∣∣∣∣∣∣∣∣2

0,γ

≤ cγ|||λ1,γ ΣVi|||20,γ + +
C

γ
|||F |||21,γ .

Eventually, we get the following estimate:

cγ2
∥∥∥ψiÛ∥∥∥2

0,γ
+ cγ|||λ1,γ ΣVi|||20,γ ≤ C

γ
|||F |||21,γ + C

∥∥∥ψiB Û
∥∥∥2

1,γ
,

from which we finally obtain

γ2
∥∥∥ψiÛ∥∥∥2

0,γ
+ γ3

∣∣∣∣∣∣∣∣∣ψiÛ ∣∣∣∣∣∣∣∣∣2
0,γ

≤ C

γ
|||F |||21,γ + C

∥∥∥ψiB Û
∥∥∥2

1,γ
.

When Vi is a neighborhood of a point X0, where the Lopatinskii determinant does
not vanish, the result is directly obtained by the analysis made by Kreiss [20] (see also
[8, 30]) which gives the maximal L2 estimate. All these inequalities give an estimate
on U in terms of Lγ(U) and Bγ(ϕ,U). The previous estimate on the front ϕ added
to this estimate on U gives the result.

Note that, when Lγ(U) = 0, we recover Majda’s statement on weakly stable
shocks (see [25, p. 10]). However, Theorem 3.5 is a little more precise, since it indicates
two types of loss of derivatives arising in this problem. Some regularity is lost on the
boundary, as pointed out in Majda’s work. However, in addition, a very severe loss
of regularity occurs in the domain Ω.
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3.3. Construction of a Kreiss symmetrizer: Proof of Proposition 3.4.
In this subsection, we prove Proposition 3.4 and construct a microlocal symmetrizer.
This construction relies on the so-called block structure of the symbol A which was
introduced by Kreiss in the case of strictly hyperbolic systems [20]. In [25], Ma-
jda extended this property in a general definition and proved that isentropic Euler
equations (2.1) met all the requirements. We point out that, in a recent paper [28],
Métivier succeeded in proving that Majda’s definition of the block structure condition
was a property satisfied by all hyperbolic systems of conservation laws with constant
multiplicity eigenvalues.

We need to distinguish four cases corresponding to the different behaviors of the
eigenmodes ωl,rk . We recall that, when γ = 0, the eigenmodes ωl1 and ωl3 are always
distinct (see section 2).

Construction of r in the elliptic region. Let X0 ∈ Σ+ such that γ > 0.
The symbol A(X0) has no purely imaginary eigenvalue, and one can therefore choose
two closed curves C− (resp., C+) lying in the half-plane {Re z < 0} (resp., {Re z >
0}) such that the eigenvalues of negative (resp., positive) real part of A(X0) stand
in the domain delimited by C− (resp., C+). Using the generalized eigenprojectors
associated with C±, one gets the existence of a C∞ mapping T (X) with values in
the set of 2(d + 1) × 2(d + 1) invertible matrices, defined on a neighborhood of X0,
such that

∀X ∈ V , T (X)−1A(X)T (X) =

(
a−(X) 0

0 a+(X)

)
,

and the spectrum of a−(X) (resp., a+(X)) is contained in the half-space {Re z < 0}
(resp., {Re z > 0}).

Now define the positive definite hermitian matrices

H− = 2

∫ +∞

0

exp(ta−(X0))∗ exp(ta−(X0)) dt

and

H+ = 2

∫ +∞

0

exp(−ta+(X0))∗ exp(−ta+(X0)) dt .

One easily checks that

Re (H+ a+(X0)) := (H+ a+(X0) + a+(X0)∗H+)/2 = I ,

Re (H− a−(X0)) := (H− a−(X0) + a−(X0)∗H−)/2 = −I .

This is the classical Lyapunov matrix theorem; see [2]. In a neighborhood V of X0,
one has

∀X ∈ V , Re H−a−(X) ≤ −1

2
I and Re H+a+(X) ≥ 1

2
I .

We now define

r =

(−H− 0
0 λH+

)
,
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where λ will be a real number fixed greater than 1 in what follows. It is clear that r
satisfies the first property of the lemma. Moreover, if Z denotes any vector of C

2(d+1),
we can write

B̃(X0)Z = B̃(X0)

(
Z−

0

)
+ B̃(X0)

(
0
Z+

)
.

Since the Lopatinskii determinant does not vanish at any point of V, there exists a
constant C > 0 such that

|Z−|2 ≤ C
(
|Z+|2 + |B̃(X0)Z|2

)
.

Following [8, 20], one can check that, for sufficiently large λ, we have

r + CB̃(X0)∗B̃(X0) ≥ cI ,

for some constant c > 0, and this estimate holds in all V by a continuity argument
(replacing c by c/2).

Construction of r at a hyperbolic diagonalization point. Let X0 ∈ Σ+

such that γ = 0, η �= 0, and δ �= ±|η|
√
c2r,l − u2

r,l. We also assume that the Lopatin-
skii determinant does not vanish at X0 and therefore does not vanish in a suitable
neighborhood of X0. Using the parametrization of the eigenspaces associated with
the eigenmodes ωl,r, it is clear that one can construct a C∞ mapping T such that,
for all X in a neighborhood V of X0, one has

∀X ∈ V , T (X)−1A(X)T (X) =


ωr3

ωr2Id−1 0
ωr1

ωl1
0 ωl2Id−1

ωl3

 .

To achieve the construction of the symmetrizer in this case, we first need to study
the behavior of ωr1 and ωr3 near X0. We shall prove in section 5 that there exists a
constant c > 0 such that

∀X ∈ V ,

{
−Re ωr3 ≥ cγ ,

Re ωr1 ≥ cγ .

Similar results hold for the behavior of the eigenmodes ωl1 and ωl3. Then it is sufficient
to choose r under diagonal form

r =


−1

−Id−1 0
λ

λ
0 λId−1

λ

 ,

and performing the same analysis as in the elliptic region yields the required properties
on the symmetrizer r.
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Construction of r in the neighborhood of Jordan points. Let X0 ∈ Σ+

such that γ = 0 and δ = ±|η|√c2r − u2
r. Using the same type of arguments as in the

case γ > 0, one can prove that there exists a C∞ mapping T (X) with values in the
set of 2(d + 1) × 2(d + 1) invertible matrices, defined on a neighborhood of X0, such
that

∀X ∈ V , T (X)−1A(X)T (X) =


ωr2Id−1

ar(X) 0
ωl1

0 ωl2Id−1

ωl3

 ,

with ar(X) some 2 × 2 matrix satisfying

ar(X0) =

(
λr i
0 λr

)
,

λr = iκr being the double (purely imaginary) root of the polynomial

(c2r − u2
r)X

2 ± 2i|η|ur
√

c2r − u2
rX − u2

r|η|2 ,

which is nothing but (2.10) at point X0. We shall show in section 5 that T can be
chosen such that, for all X ∈ V ∩ {γ = 0}, ar(X) has purely imaginary coefficients.
Furthermore, if Dr(X) denotes the partial derivative of ar(X) with respect to γ, the
lower left corner coefficient αr of Dr(X0) is a nonzero real number.

We define r(X) in the following way:

r(X) =


−1

−Id−1 0
hr(X)

0 λId−1

λ

 ,

λ once again being some real number greater than 1 fixed in what follows. Following
the analysis of Kreiss [8, 20], we choose hr of the form

hr(X) =

(
0 e1

e1 e2

)
︸ ︷︷ ︸

E

+

(
f(X) 0

0 0

)
︸ ︷︷ ︸

F (X)

−iγ

(
0 −g
g 0

)
︸ ︷︷ ︸

G

,

where e1, e2, and g are real numbers and f is a C∞ real-valued function that we shall
fix in what follows. The Taylor expansion of ar(X) reads

ar(X) = i
(
κrI + N − iBr

(
X̃
))

+ γDr

(
X̃
)

+ γ2M(X) ,

where X̃ = (δ, η, 0) if X = (δ, η, γ), and Br(X̃) = ar(X̃) − ar(X0); in the previous
relation, N denotes the nilpotent matrix

N =

(
0 1
0 0

)
.
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We know that Br reads

Br

(
X̃
)

= i

(
b11 b12
b21 b22

)
,

with real-valued C∞ functions bij vanishing at X0. We fix f by the following formula:

f(X) =
e1(b11 − b22) + e2b21

1 + b12

so that f has the required property. Moreover, this choice of f implies that

(E + F (X))
(
N − iBr

(
X̃
))

is a real symmetric matrix. As a consequence, one gets

Re (hr(X) ar(X)) = γ Re
(
GN + EDr

(
X̃
))

+ γ L(X) ,

where L is a C∞ hermitian matrix which vanishes at X0. The shape of E and G
yields

Re (GN + EDr(X0)) =

(
0 0
0 g

)
+

(
e1αr ∗
∗ ∗

)
,

where quantities denoted by ∗ depend only on e1 and e2. We fix e1 = 1/αr and g
sufficiently large so that

Re (hr(X) ar(X)) ≥ cγI .

This is possible as long as the choice of e2 does not depend on g. In fact, e2 will be
fixed in order to give the estimate with respect to the boundary conditions B̃, and
the choice will not involve g. Indeed, the choice of hr implies that

r(X0) =


−Id−1

0 e1 0
e1 e2

λ
0 λId−1

λ

 ,

and a rather tedious analysis (essentially based on the Cayley–Hamilton theorem)
shows that the stable subspace E−(X0) is spanned by the d first vectors of our new
basis. Since the Lopatinskii determinant does not vanish in V, we can therefore fix
sufficiently large e2 and λ (independently of g) to get an estimate of the type

r + CB̃(X0)∗B̃(X0) ≥ cI .

An appropriate choice of g achieves the construction.
We now turn to the last case of points where the uniform stability condition fails.

Note that the previous result on the behavior of the eigenmodes still hold because of
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the properties of V 2
1 . Indeed, one can diagonalize the symbol A in a neighborhood of

(V1|η|, η, 0); in other words, we still have the existence of a C∞ mapping T satisfying

∀X ∈ V , T (X)−1A(X)T (X) =


ωr3

ωr2Id−1 0
ωr1

ωl1
0 ωl2Id−1

ωl3

 .

To recover the estimate of r with respect to the boundary conditions B, one has to
choose r of the form

r =


−γ2

−γ2Id−1 0
λ

λ
0 λId−1

λ

 .

Using Lemma 3.3 and performing the same analysis as in the elliptic region yield the
estimate

r(X) + CB̃(X)∗B̃(X) ≥ cγ2I

for sufficiently large λ. Since r is diagonal, we immediately have the estimate

Re (r a(X)) ≥ cγ3I ,

and this completes the proof of Proposition 3.4.

4. Subsonic phase transitions in a van der Waals fluid. In this section,
we consider the nonstandard initial boundary value problem (2.8) with boundary
conditions given by (2.7). We follow the method adopted in section 3 and begin by
recalling the main result of [4].

Lemma 4.1 (Benzoni-Gavage [4]). There exists a positive number V0 such that,
for all (δ, η, γ) ∈ R

d+1 satisfying γ ≥ 0 and (δ, γ) �= (±iV0|η|, 0), one has{
(Z, χ) ∈ E−(δ, η, γ) × C s.t. χ b(δ, η, γ) + M Z = 0

}
= {0} ,

and, for η �= 0, the set{
(Z, χ) ∈ E−(±V0|η|, η, 0) × C s.t. χ b(±V0|η|, η, 0) + M Z = 0

}
is a one-dimensional subspace of C

2d+3. If (Z, χ) belongs to this subspace, then

Zr ∈ C

ρr(τ + ur ω
r
3)

−c2r iη
−c2r ω

r
3

 and Zl ∈ C

ρl(τ − ul ω
l
1)

−c2l iη
c2l ω

l
1

 ;

that is, Zr has no component on the eigenspace associated with the eigenvalue ωr2. At
all points of the form (±V0|η|, η, 0), both eigenmodes ωr3 and ωl1 have negative real
part (which explains the designation “surface waves”).
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By definition, V 2
0 is the positive root of the polynomial

P2(X) =
c2rc

2
l − u2

ru
2
l

u2
ru

2
l

X2 + (c2r − u2
r + c2l − u2

l )X − (c2r − u2
r)(c

2
l − u2

l ) ,

and the following inequalities hold:

V 2
0 < min(c2r − u2

r, c
2
l − u2

l ) and V 2
0 < urul .

4.1. Elimination of the front. As we did in section 3 we begin by isolating
the shock front in the last boundary condition of (2.9). This is stated as follows.

Lemma 4.2. There exists a C∞ mapping Q defined on the half-space R
d×R

+\{0},
homogeneous of degree 0, with values in the set of square (d + 2) × (d + 2) invertible
matrices such that, for all X ∈ R

d×R
+ \{0}, the first d+ 1 components of the vector

Q(X) b(X) vanish.
Proof. The Rankine–Hugoniot jump relations together with (2.7) yield the rela-

tions

b(δ, η, γ) =


−τ [ρ]
ij[u]η

0
−τ [u]

 if d = 2 and b(δ, η, γ) =


−τ [ρ]
ij[u]η1

ij[u]η2

0
−τ [u]

 if d = 3.

The mapping Q is first defined on the hemisphere Σ+ and then extended by homo-
geneity. Note that we go back to the first definition of Σ+ with a reference velocity

Ṽ and a reference frequency γ̃ to take the physical dimension of the quantities into
account.

One easily checks that, for d = 2, the matrix

Q(δ, η, γ) =


[u] 0 0 −[ρ]
0 τ 0 ijη
0 0 1 0

0 iṼ 2η 0 jτ


satisfies all required properties. For d = 3, one can choose, for instance,

Q(δ, η, γ) =


[u] 0 0 0 −[ρ]

0 τ 0 −iṼ η2 ijη1

0 0 τ iṼ η1 ijη2

0 −iṼ η2 iṼ η1 τ 0

0 iṼ 2η1 iṼ 2η2 0 jτ


which also satisfies all required properties. This completes the proof.

We can therefore write boundary conditions for the linearized problem (2.8) in
the equivalent way(

B(δ, η, γ)
1(δ, η, γ)

)
V (0) + χ

(
0d+1

β(δ, η, γ)

)
= Q(δ, η, γ)G ,

where β(δ, η, γ) is given by

β(δ, η, γ) = −j[u]γ̃

√
γ2 + δ2 + Ṽ 2|η|2 �= 0 ,
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and this relation holds for d = 2 and d = 3. We now turn to the study of the
behavior of the restriction of B(δ, η, γ) to the stable subspace E− in the neighborhood
of the points where the uniform stability condition fails. According to Lemma 4.1,
the symbol A is diagonalizable in the neighborhood of such points.

We decompose all vectors Z belonging to the stable subspace E− on the three
different eigenspaces, denoting by Zr3 , Zr2 , and Z−1 the components of Z on the
eigenspaces associated with the eigenmodes ωr3, ωr2, and ωl1. More precisely, we de-
compose Z as

Z =

(
Zr
Zl

)
with Zr = Zr3

ρr(τ + ur ω
r
3)

−c2r iη
−c2r ω

r
3

 +

 0
−ωr2Z

r
2

iη · Zr2



and Zl = Zl1

ρl(τ − ul ω
l
1)

−c2l iη
c2l ω

l
1

 .

Then we have the following microlocal estimate.
Lemma 4.3. There exists a neighborhood V of (V0|η|, η, 0) and a constant c > 0

such that, for all X ∈ V and for all Z ∈ E−(X), one has

|B(X)Z|2 ≥ c γ2
(|Zr3 |2 + |Zl1|2

)
+ c|Zr2 |2 .

An analogous estimate holds in a neighborhood of points of the form (−V0|η|, η, 0).
Proof. According to Lemma 4.1 we know that the kernel of the restriction of

B to the stable subspace E− is a one-dimensional space whose vectors have no Zr2
component. Therefore, in order to prove the stated result, it is again sufficient to
prove that 0 is a simple root of the determinant of the restriction of B to E−.

To avoid overloading this paper, we shall detail only the different steps of the
proof in the two-dimensional case. The three-dimensional case is carried out by similar
arguments, but the calculations are much more complicated due to the expression of
the mapping Q defined at the previous lemma which involves the complex conjugate
τ (which was not the case in section 3).

Let d = 2 and define (as in the proof of Lemma 3.1) the following quantities:

ar3 = τur − (c2r − u2
r)ω

r
3, al1 = τul + (c2l − u2

l )ω
l
1 .

Keeping the definition of the complex square root R introduced in the proof of Lemma
3.1, we also define two quantities Wr,l(V ) as

Wr,l(V ) = R(V 2 − (c2r,l − u2
r,l)) .

Because of the properties of V0 (see Lemma 4.1), both expressions Wr and Wl depend
analytically on V in a neighborhood of V0, and it is shown in [4] that V0 also satisfies

c2rc
2
l V

2
0 + urulWl(V0)Wr(V0) = 0 .

A direct calculation shows that V0 is a simple root of the above analytical function
(as mentioned in [5]).
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Now let Z be any vector in the stable subspace E−(δ, η, γ) with components Zr3 ,
Zr2 , and Zl1 on the eigenspaces associated with the eigenmodes ωr3, ωr2, and ωl1. We
have

B(δ, η, γ)Z =



ρr[u]ar3 − c2r[ρ]τ i(ρl + ρr)[u]η c2l [ρ]τ − ρl[u]al1

0 jγ̃
τ2/ur − urη

2√
γ2 + δ2 + Ṽ 2η2

0

ρr(c
2
rτ + ura

r
3) 2ijη −ρl(c

2
l τ + ula

l
1)


Zr3
Zr2
Z−1

 ,

from which we get the expression of the restriction of B to the stable subspace E−.
Letting X = (δ, η, γ), one gets the expression of the determinant of the above matrix:

detB−(X) = h2(γ)
[
c2rc

2
l V

2 + urulWl(V )Wr(V )
]
,

where h2 is given by

h2(γ) =
−jγ̃crcl[ρ]2|η|4(V 2 + u2

r)

ur

√
γ2 + V 2

0 |η|2 + Ṽ 2|η|2
.

With the preceding remarks, it is now a straightforward verification that the partial
derivative of this determinant with respect to γ calculated at γ = 0 is not zero, simply
because h2(0) �= 0.

For the three-dimensional case (d = 3), one proceeds in the same way. The
expression of the determinant of the restriction B− is

detB−(X) = h3(γ)
[
c2rc

2
l V

2 + urulWl(V )Wr(V )
]
,

where h3 is given by

h3(γ) =
j2γ̃3crcl[ρ]2|η|6 τ

(γ2 + V 2
0 |η|2 + Ṽ 2|η|2)3/2

[
V 4

u2
r

+ V 2 − Ṽ 2

(
V 2

u2
r

+ 1

)
τ

τ

]
.

Once again (since h3(0) �= 0) the partial derivative of the determinant with respect
to γ calculated at γ = 0 is not zero.

4.2. A priori estimate on the linearized equations. We begin with a result
of existence of a global Kreiss symmetrizer for system (2.8).

Proposition 4.4. There exist a C∞ mapping R defined on the half-space R
d ×

R+ \ {0}, homogeneous of degree 0, and two positive constants c and C such that

Re (R(X)A(X)) ≥ cγ2√
γ2 + δ2 + |η|2 ,

R(X) + CB(X)∗B(X) ≥ cγ2

γ2 + δ2 + |η|2

for all X = (δ, η, γ) ∈ R
d × R+ \ {0}.

This result will be directly derived from the microlocal analysis developed in the
next subsection. We simply make the following remark: as in the study of nonuni-
formly stable Lax shocks for isentropic Euler equations, the failure of the uniform
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stability condition yields two types of losses of derivatives. Some regularity is lost in
the interior domain, and some is lost on the boundary.

The previous result enables us to derive the second main result of this paper,
namely the complete energy estimate on the linearized problem (2.8) in the case of
subsonic phase transitions. We keep the notations introduced in subsection 3.2 for
the domains Ω, for its boundary ω, and for the linearized operators Lγ and Bγ .

Theorem 4.5. There exists a constant C > 0 such that, for all U ∈ H2(Ω), for
all ϕ ∈ H3/2(ω), and for all γ ≥ 1, the following estimate holds:

γ2(|||U |||20,γ + ‖U‖2
−1/2,γ + ‖ϕ‖2

1/2,γ) ≤ C

(
1

γ2
|||LγU |||21,γ + ‖Bγ(ϕ,U)‖2

1/2,γ

)
.

Proof. The result is a direct consequence of the existence of a symbolic sym-
metrizer R given by Proposition 4.4. Let U ∈ H2(Ω) and ϕ ∈ H3/2(ω). We denote

Û(ξ, z) the Fourier transform of U(t, y, z) with respect to the d first variables (t, y).
We also define

F (t, y, z) = LγU(t, y, z) ∈ H1(Ω) ,

G(t, y) = Bγ(ϕ,U) ∈ H1/2(ω) .

Then Lemma 4.1 ensures that there exists a constant C1 > 0 such that

λ1,γ(ξ) |ϕ̂(ξ)|2 ≤ C1λ
−1,γ(ξ)

(
|Û(ξ, 0)|2 + |Ĝ(ξ)|2

)
,

with ξ = (δ, η). Integrating with respect to ξ and using Plancherel’s theorem yield
the estimates

‖ϕ‖2
1/2,γ ≤ C1(‖U‖2

−1/2,γ + ‖Bγ(ϕ,U)‖2
−1/2,γ)

≤ C1(‖U‖2
−1/2,γ + γ−2‖Bγ(ϕ,U)‖2

1/2,γ) .

Furthermore, Û satisfies the ordinary differential equation

dÛ

dz
= A(ξ, γ) Û + A−1

d F̂ .

We take the scalar product of this equation by λ1,γ(ξ)R(ξ, γ) Û and integrate with
respect to ξ = (δ, η) ∈ R

d. Then we integrate with respect to z from 0 to +∞ and take
the real part of the corresponding equality. Using the properties of the symmetrizer
R, we get

−2 Re
〈〈

Û , λ1,γ(ξ)A−1
d F̂

〉〉
≥ 2cγ2|||U |||20,γ + 2cγ2‖U‖2

−1/2,γ − C2‖Bγ(ϕ,U)‖2
1/2,γ .

The Cauchy–Schwarz inequality yields the estimate

−2 Re
〈〈

Û , λ1,γ(ξ)A−1
d F̂

〉〉
≤ cγ2|||U |||20,γ +

C3

γ2
|||LγU |||21,γ .

This last inequality added to the previous estimate on the front ϕ enables us to
conclude.
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4.3. Construction of a Kreiss symmetrizer. We first construct a microlocal
symmetrizer from which we will deduce the result of Proposition 4.4.

Proposition 4.6. For all X0 ∈ Σ+, there exists an open neighborhood V of
X0 and matrices r(X), T (X) of class C∞ with respect to X ∈ V which satisfy the
following:
r(X) is hermitian,

T (X) is invertible, and, defining a(X) = T (X)−1A(X)T (X), B̃(X) = B(X)T (X),
there exist two positive constants C and c such that

Re (r(X) a(X)) ≥ cγ2I ,

r(X) + CB̃(X)∗B̃(X) ≥ cγ2I .

Proof. Many steps of the proof are identical to what has been done in the case
of Lax shocks, and we shall not repeat them: in the so-called elliptic region {γ > 0}
and at Jordan points, the construction is entirely similar. Note that the equality
c2r − u2

r = c2l − u2
l is not precluded in the context of phase transitions, though it is

highly unlikely. In such a case, the reduction of A would involve two distinct Jordan
blocks, but the microlocal construction of r would be a direct extension of what has
been done in the case of a single.

The only difference relies on the properties of the symbol A in the neighborhood
of the points where the uniform stability condition fails. Let X0 = (±V0|η|, η, 0)
be a point where the Lopatinskii determinant vanishes. We already know that A is
diagonalizable in a neighborhood V of X0 and that V may be suitably chosen so that
ωr3 and ωl1 have negative real part in V. We thus choose r of the form

r(X) =


−γ2

−Id−1 0
−γ2

λ
0 λId−1

λ

 ,

where λ is a real number greater than 1 which will be fixed in what follows. Since
there exists a C∞ invertible matrix T (X) such that

∀X ∈ V , T (X)−1A(X)T (X) =


ωr3

ωr2Id−1 0
ωl1

ωl3
0 ωl2Id−1

ωr1

 ,

we have Re (r(X) a(X)) ≥ cγ2I for all X in V. We now have to fix λ in order to get
the estimate on the boundary conditions. For this, we let Z ∈ C

2(d+1) and define Z−

(resp., Z+) as the vector formed by the (d + 1) first (resp., last) components of Z.
Writing Z− = (Z−1 , Ž−, Z−d+1), Lemma 4.3 ensures that there exists a constant c > 0
which does not depend on Z such that

cγ2
(|Z−1 |2 + |Z−d+1|2

)
+ c|Ž−|2 ≤ C

(
|Z+|2 + |B̃(X)Z|2

)
.
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By the same techniques as used in the construction of the symmetrizer in the elliptic
region, it is clear that, for a sufficiently large λ, there exists a constant C > 0 such
that the following estimate holds:

r(X) + CB̃(X)∗B̃(X) ≥ cγ2I .

This completes the proof of Proposition 4.6.
We can now turn to the proof of Proposition 4.4, using the gluing technique

developed in [8, 30]. We fix a finite covering (Vi)1≤i≤I of Σ+ by open sets defined in
Proposition 4.6. Let (ψi)1≤i≤I be a partition of unity associated with this covering
(with the same properties as stated in section 3). We define a C∞ mapping R on Σ+

by the following formula:

∀X ∈ Σ+, R(X) =

I∑
i=1

ψ2
i (X)

(
Ti(X)−1

)∗
ri(X)Ti(X)−1

so that R has values in the set of hermitian matrices. Moreover, we have

Re (R(X)A(X)) ≥ cγ2
I∑
i=1

ψ2
i (X)

(
Ti(X)−1

)∗
Ti(X)−1 ,

R(X) + CB(X)∗B(X) ≥ cγ2
I∑
i=1

ψ2
i (X)

(
Ti(X)−1

)∗
Ti(X)−1

for some positive constants c and C. It is clear that, for all X in the compact set Σ+,
the matrix

I∑
i=1

ψ2
i (X)

(
Ti(X)−1

)∗
Ti(X)−1

is hermitian positive definite. We can therefore conclude that there exists positive
constants c and C such that, for all X in Σ+,

Re (R(X)A(X)) ≥ cγ2I ,

R(X) + CB(X)∗B(X) ≥ cγ2I .

The result of Proposition 4.4 follows by extending R in a homogeneous function of
degree 0 and using the homogeneity properties of symbols A and B.

We point out that the result of Theorem 4.5 is not optimal in the sense that we
could define new spaces to get a refined estimate, since only 1/2 of a derivative is
lost in the interior domain (and only in the tangential variables). However, we have
preferred to state the result in this way to make it easier to visualize. Furthermore,
the proof of the theorem appears much more simple than the proof of Theorem 3.5
where attention needs to be paid to get the best result possible.

5. Some technical lemmas. In this section, we prove three results used in the
proof of Propositions 3.4 and 4.6. Though our proof uses some particular properties
of system (2.1), they are essentially the same as in the general case; see [8, 20, 32].

We first begin by studying the behavior of the eigenmodes ωr1 and ωr3 in a neigh-
borhood of points X0 = (δ, η, 0).
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Lemma 5.1. Let X0 ∈ Σ+ such that γ = 0, η �= 0, and δ �= ±|η|√c2r − u2
r. There

exists a neighborhood V of X0 in Σ+ and a positive constant c such that

∀X ∈ V ,

{
−Re ωr3 ≥ cγ ,

Re ωr1 ≥ cγ .

Proof. Let X0 = (δ0, η0, 0) satisfy the assumptions of the lemma. Using the proof
of Proposition 3.4, we already know that A is diagonalizable in a neighborhood V
of X0:

∀X ∈ V , T (X)−1A(X)T (X) =


ωr3

ωr2Id−1 0
ωr1

ωl1
0 ωl2Id−1

ωl3

 .

If both eigenmodes ωr1 and ωr3 are not purely imaginary at X0, the result comes from
a simple continuity argument. We shall therefore assume that both eigenmodes are
purely imaginary at X0. We fix η = η0 and define

Q(δ, γ, ω) = (ω + iωr1(X))(ω + iωr3(X))(ω + iωr2(X))d−1 .(5.1)

For τ = γ + iδ close to iδ0, the eigenmodes ωrk are pairwise distinct, and the hyper-
bolicity of the system (2.1) shows that, for all ξ ∈ R, Q is given by

Q(δ, γ, ξ) = α
[
δ − iγ +

(
ξur + cr

√
|η0|2 + ξ2

)]
[
δ − iγ +

(
ξur − cr

√
|η0|2 + ξ2

)]
(δ − iγ + ξur)

d−1

for some real constant α �= 0. Thus, for all real ξ, we have

Q(δ, 0, ξ) ∈ R and
∂Q

∂γ
(δ, 0, ξ) ∈ iR .(5.2)

Moreover, the definition of Q gives the relation

∂Q

∂γ
(δ0, 0,−iωr1(X0)) = i

∂ωr1
∂γ

(X0)(−iωr1(X0) + iωr3(X0))(−iωr1(X0) + iωr2(X0))d−1 ,

from which we conclude that the partial derivative ∂γω
r
1(X0) is a real number. A

similar result holds for ωr3. We are now going to prove that this partial derivative is
not zero. Equation (2.10) reads

(c2r − u2
r)(ω

r
1)2 − 2τurω

r
1 − τ2 − c2r|η0|2 = 0 ,

and thus differentiating with respect to γ yields the equality

(c2r − u2
r)2ω

r
1

∂ωr1
∂γ

− 2urω
r
1 − 2τur

∂ωr1
∂γ

− 2τ = 0 .

Since ωr1 and ωr2 are distinct, for all X ∈ V, it is clear that ∂γω
r
1 does not vanish at

X0. The end of the proof relies on a simple Taylor expansion of ωr1 at X0, using the
fact that ωr1 is of positive real part for γ > 0.
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We now turn to the study of the reduced symbol in the neighborhood of Jordan
points. Let X0 = (δ0, η0, 0) be such that

δ0 = |η0|
√

c2r − u2
r

so that, according to the proof of Proposition 3.4, we have

T (X)−1A(X)T (X) =


ωr2Id−1

ar(X) 0
ωl1

0 ωl2Id−1

ωl3

 ,

with ar(X) some 2 × 2 matrix satisfying

ar(X0) =

(
λr i
0 λr

)
= λrI2 + iN .

Recall that λr = iκr is the double root of the polynomial

(c2r − u2
r)X

2 ± 2i|η|ur
√

c2r − u2
rX − u2

r|η|2 .

With these notations, we have the following result.
Lemma 5.2. Defining Dr(X) = ∂ar

∂γ (X) for X close to X0, then the lower left

corner coefficient αr of Dr(X0) is a nonzero real number.
Proof. We fix η = η0 and let τ = γ + iδ be close to iδ0. We define a polynomial Q

by (5.1) (see the proof of Lemma 5.1) and two polynomials Qr and Q̃ by the following
formulas:

Qr(δ, γ, ω) = det [ωI2 + iar(δ, η0, γ)] ,

Q̃(δ, γ, ω) = (ω + iω+
2 )d−1 = (ω − iτ/ur)

d−1

so that Q = QrQ̃. We already know by relation (5.2) that, for all real ξ,

Q(δ, 0, ξ) ∈ R and
∂Q

∂γ
(δ, 0, ξ) ∈ iR .

It is also clear that, for ξ ∈ R, one has Q̃(δ, 0, ξ) ∈ R.
For δ close to δ0, Q(δ, 0, ω) seen as a polynomial in ω has real coefficients and

therefore has real roots or conjugate complex roots. Moreover, Q̃(δ, 0, ω) has exactly
one real root, so Qr(δ, 0, ω) has two real roots or two conjugate complex roots. Thus,
for δ close to δ0, we have

∀ ξ ∈ R , Qr(δ, 0, ξ) ∈ R .(5.3)

The definition of λr yields

∂Q

∂γ
(δ0, 0,−iλr) = Q̃(δ0, 0,−iλr)

∂Qr

∂γ
(δ0, 0,−iλr) ,

and since λr �= −iδr/ur we can conclude that ∂γQr(δ0, 0,−iλr) is a purely imag-
inary number. It is clear that 0 is a simple root of the polynomial Q(δ0, ·,−iλr),
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and therefore the partial derivative ∂γQr(δ0, 0,−iλr) is a nonzero purely imaginary
number.

To complete the proof, we note that

iar(X0) = iλrI2

(
0 −1
0 0

)
,

from which we get

∂Qr

∂γ
(δ0, 0,−iλr) = iαr ∈ iR \ {0} .

The last thing to check is the invertible matrix T (X) may be chosen in such a way
that ar(X) has purely imaginary coefficients for X ∈ V∩{γ = 0}. We base our proof of
this result on a technique developed in [32]. Let X0 be the triple (|η0|

√
c2r − u2

r, η0, 0).

For X = (δ, η, γ) close to X0, we define X̃ = (δ, η, 0). With these notations, we have
the following result.

Lemma 5.3. There exists a C∞ change of basis of C
2 such that, for all X close

to X0, ar(X̃) has purely imaginary coefficients.
Proof. Let (f1, f2) be the canonical basis of C

2. For X close to X0, define

N =

(
0 1
0 0

)
, Br(X) = ar(X) − ar(X0) .

Since Br(X0) is zero, the couple of vectors (f ′1 = (N − iBr(X̃)) f2, f2) forms a basis
of C

2 for X close to X0, and f ′1 is a C∞ vector-valued function of X. In this new

basis, N − iBr(X̃) reads (
b1 1
b2 0

)
,

and the characteristic polynomial of N − iBr(X̃) is therefore

P (ξ) = ξ2 − b1ξ − b2 .

We also have the relation N − iBr(X̃) = −iar(X̃) − κrI2, from which we get

P (ξ) = det
[
iar(X̃) + (κr + ξ)I2

]
,

and relation (5.3) asserts that P has real coefficients. This completes the proof.

6. Concluding remarks. In both problems detailed in this paper, a weak sta-
bility result has been proved. Though the present study is just a constant coefficients
analysis, it indicates the way to follow in order to get a nonlinear existence result.
(We warn the reader that such a result is not guaranteed at the present time.)

Since both problems give rise to losses of derivatives on the solution of the cor-
responding linearized system, special attention should be paid when dealing with
a variable coefficients linearized system. The usual linearized system (2.8) used in
[25, 27, 30] is not appropriate in this case, since the right-hand side would involve
some terms whose Sobolev norm needs to be controlled when one wants to construct
an iterative scheme. Higher order terms in the Taylor expansion should therefore
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be taken into account when linearizing equations (2.1) around a variable coefficients
state U .

It appears from Theorem 4.5 that the case of phase transitions in a van der
Waals fluid is rather similar to the problem treated in [34]. The study of the variable
linearized system should be carried out by using a parameter version of paradifferential
calculus as introduced in [30].

To conclude, it is known since Majda’s work that planar discontinuities for a
multidimensional scalar conservation law are only weakly stable: since our method
relies first on the elimination of the shock front, it cannot apply in the context of
scalar conservation laws. Moreover, instability in this case is associated with the
shock front symbol which is a second reason why we cannot deal with such equations.
Nevertheless, we postpone the extension of the previous results to the general case of
a multidimensional system to a future work.

Acknowledgments. The author is indebted to Sylvie Benzoni-Gavage and Guy
Métivier for precious help and valuable comments.
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Abstract. We develop a formal adjoint theory for retarded linear functional differential equa-
tions in Banach spaces and establish the existence and smoothness of center manifolds for nonlinearly
perturbed equations. The hypotheses imposed here are significantly weaker than those that usually
appear in the literature referring to semigroups for abstract functional differential equations, and the
smoothness of the center manifolds for nonlinear perturbed equations is derived from our general
results on the smoothness of center manifolds for maps in infinite-dimensional Banach spaces.
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vent compact operators, perturbations, center manifolds, smoothness
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1. Introduction. We consider the autonomous linear functional differential equa-
tions (FDEs) of retarded type,

u̇(t) = ATu(t) + L(ut), u(t) ∈ X,(1.1)

and the nonlinearly perturbed systems

u̇(t) = ATu(t) + L(ut) + F (ut),(1.2)

where X is a Banach space, r > 0, C := C([−r, 0];X) is the Banach space of
continuous mappings from [−r, 0] to X with the sup norm, ut ∈ C is defined by
ut(θ) = u(t + θ) for t ∈ R and θ ∈ [−r, 0], L : C −→ X is a bounded linear
operator, AT : D(AT ) ⊂ X −→ X is the infinitesimal generator of a compact C0-
semigroup of linear operators on X, and F is a sufficiently smooth nonlinear map
with F (0) = 0, DF (0) = 0.

In the last two decades, there has been an increasing interest in retarded FDEs
in Banach spaces. Typically, these equations depend on both spatial and temporal
variables, with the time-dependence involving discrete or distributed delays. Such
equations arise from a variety of situations in population dynamics and take the
abstract form (1.1) or (1.2), where a diffusion term d∆v(t, x) with d = (d1, . . . , dn) ∈
R
n defines ATu(t) = d∆v(t, x) for u(t)(x) := v(t, x), x ∈ R

n. See Wu [21] for more
details.
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The purpose of the present work is to establish two necessary technical tools—a
formal adjoint theory for equations of type (1.1) and the existence and smoothness
of center manifolds for nonlinearly perturbed equation (1.2)—in order to develop a
normal form theory on invariant manifolds of (1.2).

Several extensions of the formal adjoint and invariant manifold theory for FDEs
in R

n (see Hale [8]) to infinite-dimensional Banach spaces have been developed in
different frameworks. Related to our present work is the paper of Travis and Webb
[18], where the authors initiated a formal adjoint theory for linear equations of the
form (1.1); other related work includes Arino and Sanchez [1], Huang [9], Nakagiri
[13], Schumacher [15], Shin and Naito [16], Wu [21], and Yamamoto and Nakagiri
[22], to mention a few. We should particularly remark that a quite complete theory
has also been developed for FDEs in Banach spaces of type (1.1) and (1.2) regarding
duality, formal adjoint theory, and invariant manifolds (cf., e.g., Memory [12], Lin,
So, and Wu [11], Wu [21], and Faria [5]) under some quite severe constraints. In
fact, assume that the eigenvectors of AT form a basis for X in the following sense: if
µk, k ∈ N, are the eigenvalues of AT with associated eigenvectors βk, k ∈ N, then every
x ∈ X is written in a unique way as x =

∑
k∈N

xk, where xk ∈ span{βk}, k ∈ N, with
ATx =

∑
k∈N

µkxk. Assume also that L(ϕβk) ∈ span{βk} for all ϕ ∈ C([−r, 0]; R) and
all eigenvectors βk. Then it is possible to decompose the characteristic equation of the
abstract FDE into a sequence of characteristic equations in R. This decomposition
yields a decomposition of (1.1) into a sequence of scalar FDEs, to which the standard
formal adjoint theory for FDEs in R

n of Hale [8] can be applied (see [11], [12], [21],
and other references therein). A slightly weaker hypothesis was considered in [5], as
follows. In addition to the assumption that the eigenvectors of AT form a basis for
X, suppose now that the set of eigenvalues of AT can be written as {µikk : k ∈ N, ik =
1, . . . , pk}; for each k ∈ N, let Bk be the generalized eigenspace for AT associated
with the block of eigenvalues {µikk : ik = 1, . . . , pk}, and assume that L(Bk) ⊂ Bk,
where Bk = {ϕ ∈ C : ϕ(θ) ∈ Bk for θ ∈ [−r, 0]}. This means that the eigenvalues of
AT can be organized by blocks in such a way that L does not mix the modes of the
generalized eigenspaces associated with the eigenvalues in each block. Under these
conditions, (1.1) is decomposed into a sequence of FDEs in finite-dimensional spaces
(whose dimensions are now equal to the dimensions of the generalized eigenspaces Bk

associated with each block {µikk : ik = 1, . . . , pk}), and again one can apply the adjoint
theory for FDEs in R

n. However, these hypotheses impose severe restrictions on the
applicability of the approach to a wide range of problems arising from population
dynamics. For instance, even if AT is an n-dimensional elliptic operator with n > 1,
it is unknown whether the eigenfunctions of AT form a basis of X. Moreover, the above
assumption that the linear operator L does not mix the modes of the eigenfunction
spaces of the operator AT is not realistic, for this almost implies that the operator L
is a scalar multiplication.

Our goal is to develop a complete formal adjoint theory and center manifold theory
without the aforementioned restrictions. The main sources of inspiration for our work
on adjoint theory presented here are the work of Travis and Webb [18] for (1.1) and the
work of Arino and Sanchez [1] for equations of the form u̇(t) = L(ut), with L : C −→ X
being a bounded linear operator. More specifically, Travis and Webb [18] set the basis
for an adjoint theory by introducing an adequate bilinear form 〈〈·, ·〉〉, which serves
as the formal duality between C and its dual C∗, as well as an adequate definition
of formal adjoint equation for (1.1). However, their theory was not completed in the
following sense: in order to set a suitable framework to construct normal forms for
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perturbed FDE (1.2), a formal adjoint theory should eventually provide an analytic
formula for the decomposition of the phase space C by a nonempty finite set Λ of
characteristic values for (1.1). Here, we present results that enable us to decompose
C by Λ as the direct sum C = P⊕Q, where P is the generalized eigenspace associated
with Λ and Q = {ϕ ∈ C : 〈〈ψ,ϕ〉〉 = 0 for all ψ ∈ P ∗}, where P ∗ is the generalized
eigenspace associated with Λ for the formal adjoint equation.

Since we deal with infinite-dimensional Banach spaces X, rather than finite-
dimensional ones, our main difficulty is to use the formal duality to relate the gen-
eralized eigenspaces of the infinitesimal generator for the semigroup induced by the
solutions of (1.1) with the generalized eigenspaces of its formal adjoint. Without hav-
ing to impose further hypotheses on X or on the operators AT and L, we succeeded
in expressing the kernel and range for these generalized eigenspaces in terms of the
kernel and range for some auxiliary operators. (This is a generalization of the oper-
ators introduced by Hale [8] for the case X = R

n.) It turns out that these auxiliary
operators are crucial for deriving the decomposition C = P ⊕ Q by a nonempty fi-
nite set Λ of characteristic eigenvalues because, as we shall prove, they have compact
resolvents and closed ranges.

For the sake of exposition, we include some definitions and results from [18].
But we should emphasize that some results about duality in [18] were proven under
stronger hypotheses than the ones assumed in this paper. Namely, in the present
work the Banach space X is not required to be reflexive; also in [18, Propositions
4.14 and 4.15], some conditions on the characteristic operator were imposed in order
to derive some results, such as that the point spectra for the infinitesimal generator
of the semigroup defined by the mild solutions of (1.1) and for its formal adjoint
coincide. Our techniques and results on formal adjoints are different from those in
[1] for equations of type u̇(t) = L(ut) (i.e., where AT is absent). In [1] the authors
considered only elements in Λ that are not in the essential spectrum, so that their
auxiliary operators are Fredholm operators, while in the present paper we prove that
the corresponding auxiliary operators have compact resolvents and closed ranges (two
key points in establishing a Fredholm alternative result) from which the decomposition
C = P ⊕Q is deduced. Also, potential applications of the results in the present paper
are much different from those of [1]. For instance, as we have already mentioned, (1.1)
includes reaction-diffusion equations with delays as special cases.

As mentioned above, our second goal is to obtain the existence and smoothness
of the center manifold. We notice that center manifolds are of particular interest in
applications since the qualitative behavior of the solutions of a nonlinear equation in a
neighborhood of an equilibrium can be described by the flow on these manifolds. See,
for example, Carr [3]. See also Vanderbauwhede and van Gils [20], Vanderbauwhede
and Iooss [19], and Diekmann et al. [4] for the theory of center manifolds for FDEs in
R
n. As already observed in the aforementioned papers, the phase space for FDE (1.2)

is a Banach space which does not admit a smooth cut-off function, and thus it is a very
challenging task to obtain the smoothness of center manifolds. Such a difficult issue
was addressed for FDEs in R

n by Vanderbauwhede and van Gils [20], and the details
are presented by Diekmann et al. [4]. In the recent work of Krisztin, Walther, and Wu
[10], the existence and C1-smoothness of various invariant manifolds for C1-maps in
general Banach spaces were established. Here we utilize some of the ideas in [10] and
prove general Ck-smoothness for Ck-maps, with k being an arbitrary positive integer,
and we apply this general smoothness result for maps to obtain the existence and Ck-
smoothness of center manifolds for the semiflow generated by (1.2). Such a general
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smoothness result is necessary for the normal form theory to be developed later, as
the normal forms usually involve Taylor series expansions of various nonlinear maps
involved in the center manifold reduction.

Although our final goal is to use formal adjoints and center manifolds as basic
tools to develop a normal form theory for equations in the form (1.2), we note that
the results presented here are important by themselves, and a decomposition of the
phase space for linear equations and center manifolds for semilinear equations could
be applied in different frameworks of qualitative theory for FDEs.

The paper is organized as follows. In section 2, some definitions and results
are recalled, most of them from [18]. Sections 3 and 4 address a complete formal
adjoint theory for FDEs (1.1): the auxiliary operators are introduced in section 3,
and we derive some important properties of their spectra and resolvents; in section 4,
a Fredholm alternative result is presented, and the phase space C is decomposed by a
nonempty finite set Λ of characteristic eigenvalues of (1.1) by using the formal adjoint
equation. Section 5 develops general results for the smoothness of center-stable and
center-unstable manifolds for maps in Banach spaces, and section 6 applies these
results to obtain the existence and regularity of center manifolds for perturbed FDE
(1.2) at the zero equilibrium.

Because of space limitations, other important properties of the center manifold,
such as the local invariance and attractivity, will be studied in a separate paper.

We now list notation that will be used throughout the paper. For a given Ba-
nach space X and for a linear operator A from its domain in X to X, we shall use
D(A), R(A), and N(A) to denote the domain, range, and kernel of A, respectively.
The spectrum, point spectrum, and resolvent of A are considered as subsets of C and
are denoted by σ(A), σP (A), and ρ(A), respectively. If λ ∈ σP (A), then Mλ(A) is
the generalized eigenspace associated with λ.

2. Preliminary results and definitions. Consider

u̇(t) = ATu(t) + L(ut), t ≥ 0, u(t) ∈ X,(2.1)

where X is a Banach space over the field C, r > 0, C := C([−r, 0];X) is the Banach
space of continuous mappings from [−r, 0] to X with the sup norm, L : C −→ X is
a bounded linear operator, and AT : D(AT ) ⊂ X −→ X is linear. As usual, ut ∈ C
denotes the shifted restriction of u to [t − r, t], i.e., ut(θ) = u(t + θ) for −r ≤ θ ≤ 0.
We require the following assumptions:

(H1) AT generates a C0-semigroup of linear operators {T (t)}t≥0 on X, with ‖T (t)‖
≤Meωt (t ≥ 0) for some M ≥ 1, ω ∈ R.

(H2) T (t) is a compact operator for each t > 0.
For u ∈ C([−r,∞);X), u is said to be a mild solution of (2.1) with initial condition

ϕ ∈ C if it satisfies{
u(t) = T (t)ϕ(0) +

∫ t
0
T (t− s)L(us)ds, t ≥ 0,

u0 = ϕ.
(2.2)

(See, e.g., [23, p. 75] for the definition of integral used here.) It is known that the
initial value problem (2.2) has a unique solution denoted by u(ϕ)(t), t ∈ [−r,∞).
Moreover, for the operators U(t), t ≥ 0, given by

U(t) : C −→ C, U(t)ϕ = ut(ϕ),(2.3)

from Propositions 2.4, 3.1, and 3.2 in Travis and Webb [18], we have the following
proposition.
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Proposition 2.1. Assume (H1). Then {U(t)}t≥0 is a C0-semigroup of bounded
linear operators on C. Its infinitesimal generator AU : C −→ C is given by

AUϕ = ϕ̇,

D(AU ) = {ϕ ∈ C : ϕ̇ ∈ C,ϕ(0) ∈ D(AT ), ϕ̇(0) = ATϕ(0) + L(ϕ)}.(2.4)

Moreover, if (H2) holds, then U(t) is a compact operator for each t > r.
Since {U(t)}t≥0 is eventually compact (i.e., there exists t0 > 0 such that U(t) is

a compact operator for every t > t0), from Greiner [7, p. 209] the next result follows.
Proposition 2.2. Assume (H1), (H2) and let AU be defined by (2.4). Then we

have the following:
(i) σ(AU ) = σP (AU ) and every λ ∈ σ(AU ) is a pole of finite order of the resolvent

R(λ;AU ) = (λI −AU )−1;
(ii) for each λ ∈ σ(AU ), the generalized eigenspaceMλ(AU ) is finite-dimensional;
(iii) for each α ∈ R, the set {λ ∈ σ(AU ) : Reλ ≥ α} is finite.
From the general theory of C0-semigroups and compact operators, we also con-

clude the following.
Proposition 2.3. Assume (H1), (H2) and let λ ∈ C. If λ ∈ σ(AU ), then the

ascent and descent of AU − λI are both equal to m, where m is the order of λ as a
pole of the resolvent R(λ;AU ). Furthermore,

C = N [(AU − λI)m]⊕R[(AU − λI)m],(2.5)

where N [(AU − λI)m] =Mλ(AU ) and R[(AU − λI)m] is a closed subspace of C.
Proof. The first part follows directly from Theorem V.10.1 of Taylor and Lay

[17, p. 330]. Now, let k ∈ N, t > r. Since U(t) is compact, N [(U(t) − µI)k] is
finite-dimensional for µ ∈ σ(U(t)). On the other hand, from the general theory of
C0-semigroups,

N [(U(t)− µI)k] =
⊕
λ∈Sµ

N [(AU − λI)k], where Sµ = {λ ∈ σ(AU ) : eλt = µ}.

Thus, for m the ascent of λ, N [(AU−λI)m] =Mλ(AU ) is finite-dimensional and The-
orem IV.5.10 of Taylor and Lay [17, p. 217] implies that R[(AU−λI)m] is closed.

For λ ∈ C, we say that λ is a characteristic value for (2.1) if λ satisfies the
characteristic equation given by

∆(λ)x = 0, x ∈ D(AT ) \ {0},(2.6)

where ∆(λ) : D(AT ) ⊂ X −→ X is defined by

∆(λ)x := ATx + L(eλ·x)− λx, x ∈ D(AT ),(2.7)

and eλ·x ∈ C is given by (eλ·x)(θ) = eλθx for θ ∈ [−r, 0] and x ∈ X. It is easy to see
that λ ∈ σ(AU ) if and only if λ is a characteristic value for (2.1), in which case

N(AU − λI) = {eλ·x : x ∈ N(∆(λ))}.
Note also that for ψ ∈ C, the equation ψ = (AU − λI)ϕ has a solution ϕ ∈ D(AU ) if
and only if there is a b ∈ D(AT ) satisfying the equation

∆(λ)b = ψ(0)− L

(∫ θ

0

eλ(θ−ξ)ψ(ξ)dξ

)
.(2.8)
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In this case, the solution ϕ of ψ = (AU − λI)ϕ is given by

ϕ(θ) = eλθb +

∫ θ

0

eλ(θ−ξ)ψ(ξ)dξ, θ ∈ [−r, 0].(2.9)

Here and throughout the remainder of this paper, for the sake of simplicity, we abuse
notation and write explicitly the value of ϕ ∈ C at an arbitrary given θ ∈ [−r, 0]

in the evaluation of L(ϕ). Namely, L(
∫ θ
0
eλ(θ−ξ)ψ(ξ)dξ) should be understood as the

value of L acting on the mapping [−r, 0] � θ �→ ∫ θ
0
eλ(θ−ξ)ψ(ξ)dξ ∈ X.

We now assume that the linear operator L can be expressed in integral form by
means of a function of bounded variation:

(H3) There is η : [−r, 0] −→ L(X,X) of bounded variation such that

L(ϕ) =

∫ 0

−r
dη(θ)ϕ(θ), ϕ ∈ C,

where L(X,X) denotes the Banach space of bounded linear operators from
X into X.

Following Travis and Webb [18], we define the formal duality, the formal adjoint
operator of L, and the formal adjoint equation of (2.1) below.

Let X∗ be the dual of X and C∗ := C([0, r];X∗). The formal duality between C∗

and C is the bilinear form 〈〈·, ·〉〉 from C∗ × C to the scalar field, defined by

〈〈α,ϕ〉〉 = 〈α(0), ϕ(0)〉 −
∫ 0

−r

∫ θ

0

〈α(ξ − θ), dη(θ)ϕ(ξ)〉dξ(2.10)

for α ∈ C∗, ϕ ∈ C, where 〈·, ·〉 is the usual duality between X∗ and X. For f ∈
C([0, r]; R) and u∗ ∈ X∗, we use fu∗ to denote f ⊗ u∗ in C∗, i.e., (fu∗)(s) = f(s)u∗

for 0 ≤ s ≤ r. We remark that

〈〈fu∗, ϕ〉〉 = 〈u∗, f(0)ϕ(0)〉 −
〈
u∗, L

(∫ θ

0

f(ξ − θ)ϕ(ξ)dξ

)〉
.(2.11)

To avoid possible confusion, throughout this paper we adopt the following nota-
tion: given a densely defined linear operator B in a Banach space, we denote by B∗

the (true) adjoint of B, also called the dual of B; and by ∗B we denote the formal
adjoint of B relative to the formal duality 〈〈·, ·〉〉 defined above, in a sense that will
soon be more clearly defined. The formal adjoint operator ∗L of L is given by

∗L : C∗ −→ X∗, ∗L(α) =

∫ 0

−r
dη∗(θ)α(−θ),(2.12)

where η∗(θ) is the adjoint of η(θ). Since η is of bounded variation, its adjoint operator
η∗ : [−r, 0] −→ L(X∗, X∗) is also of bounded variation. For (2.1), the formal adjoint
equation is defined as

α̇(t) = −A∗Tα(t)− ∗L(αt), t ≤ 0,(2.13)

where A∗T is the adjoint of AT and αt ∈ C∗ is given by αt(s) = α(t+ s) for s ∈ [0, r].
Consider the mild solution αt(ψ) for (2.13) with initial condition ψ ∈ C∗, i.e., the

solution of the integral equation{
α(t) = T ∗(−t)ψ(0) +

∫ t
0
T ∗(s− t)∗L(αs)ds, t ≤ 0,

α0(ψ) = ψ.
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As for (2.1), equation (2.13) generates a C0-semigroup of linear operators {∗U(t)}t≥0

on C∗ defined by ∗U(t)ψ = α−t(ψ), whose infinitesimal generator ∗AU is given by

∗AUα = −α̇,
D(∗AU ) = {α ∈ C∗ : α̇ ∈ C∗, α(0) ∈ D(A∗T ),−α̇(0) = A∗Tα(0) + ∗L(α)}(2.14)

and has the following properties (see Travis and Webb [18]):

〈〈∗AUα,ϕ〉〉 = 〈〈α,AUϕ〉〉 for α ∈ D(∗AU ), ϕ ∈ D(AU ),(2.15)

〈〈α,ϕ〉〉 = 0 for α ∈ N(∗AU − µI), ϕ ∈ N(AU − λI), with λ �= µ.(2.16)

Note that (2.15) justifies the designation of ∗AU as the formal adjoint of AU , since its
behavior relative to the formal duality 〈〈·, ·〉〉 is similar to the behavior of the (true)
adjoint of an operator relative to the usual duality between a Banach space and its
dual.

3. The point spectrum of ∗AU . The classic (formal) adjoint theory for FDEs
in R

n will now be generalized to FDEs in Banach spaces, completing the theory
initiated by Travis and Webb [18] and following the ideas of Arino and Sanchez [1],
Busenberg and Huang [2], and Huang [9].

Similarly to what is done in section 7.3 of Hale [8] (see also [1]), we introduce
some auxiliary operators that allow us to express the null space and range for (AU −
λI)m, λ ∈ C,m ∈ N, in terms of the null space and range of those auxiliary operators.
For λ ∈ C, j ∈ N0,m ∈ N, we define the following linear operators:

Ljλ : X −→ X, Ljλ(x) = L

(
θj

j!
eλθx

)
,(3.1)

L(m)
λ : [D(AT )]m −→ Xm, L(m)

λ =


∆(λ) L1

λ − I L2
λ . . . Lm−1

λ

0 ∆(λ) L1
λ − I . . . Lm−2

λ
...

...
. . .

. . .
...

0 0 . . . ∆(λ) L1
λ − I

0 0 . . . 0 ∆(λ)

 ,

(3.2)

R(m)
λ : C −→ Xm, R(m)

λ (ψ) =


−L
( ∫ θ

0
eλ(θ−ξ) (θ−ξ)m−1

(m−1)! ψ(ξ)dξ
)

...
−L
( ∫ θ

0
eλ(θ−ξ)(θ − ξ)ψ(ξ)dξ

)
ψ(0)− L

( ∫ θ
0
eλ(θ−ξ)ψ(ξ)dξ

)

 .(3.3)

With the definitions above, it is clear that ∆(λ) = L(1)
λ = AT + L0

λ − λI. Moreover,
from (2.8) and (2.9) it follows that ψ ∈ R(AU−λI) if and only if there exists b ∈ D(AT )

such that ∆(λ)b = R(1)
λ (ψ).

As in [1] and [8], we can carry out direct computations to obtain an explicit
characterization of the spaces N [(AU − λI)m], R[(AU − λI)m], m ∈ N. So we state
the following proposition without a proof.
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Proposition 3.1. Assume (H1), (H2) and let λ ∈ C,m ∈ N. Then
(i) ϕ ∈ N [(AU − λI)m] if and only if

ϕ(θ) =

m−1∑
j=0

θj

j!
eλθuj , θ ∈ [−r, 0], with

 u0
...

um−1

 ∈ N(L(m)
λ );

(ii) ψ ∈ R[(AU − λI)m] if and only if R(m)
λ (ψ) ∈ R(L(m)

λ ).
From the definition of ∗L in (2.12), one can see that

〈∗L(fu∗), u〉 = 〈u∗, L(f̂u)〉

for u∗ ∈ X∗, u ∈ X, f ∈ C([0, r]; R), where f̂ ∈ C([−r, 0]; R) is given by f̂(θ) := f(−θ)
for θ ∈ [−r, 0]. Therefore, the adjoint (Ljλ)∗ of Ljλ (j ∈ N0, λ ∈ C) is given by

(Ljλ)∗u∗ = ∗L
(

(−θ)j

j!
e−λθu∗

)
, u∗ ∈ X∗.(3.4)

Similar to Proposition 3.1, we have an explicit characterization of N [(∗AU−λI)m].
Proposition 3.2. Assume (H1)–(H3). For m ∈ N, λ ∈ C,

α ∈ N [(∗AU − λI)m] if and only if α(s) =

m−1∑
j=0

(−s)j
j!

e−λsx∗m−j−1, s ∈ [0, r],

with (x∗0, . . . , x
∗
m−1)T ∈ N((L(m)

λ )∗). In particular, α ∈ N(∗AU − λI) if and only if
α(s) = e−λsx∗, s ∈ [0, r], with x∗ ∈ N(∆(λ)∗).

Proof. We have

(L(m)
λ )∗ =


∆(λ)∗ 0 . . . 0

(L1
λ)∗ − I ∆(λ)∗ . . . 0
(L2

λ)∗ (L1
λ)∗ − I . . . 0

...
. . .

. . .
...

(Lm−1
λ )∗ . . . (L1

λ)∗ − I ∆(λ)∗

 ,

with (Ljλ)∗ given by (3.4). Using this and direct computations in the same spirit as
in section 7.3 in Hale [8], we can complete the verification of Proposition 3.2.

Now, we want to present a Fredholm alternative result relative to the formal

adjoint. The following lemmas will establish some properties of the operators L(m)
λ

that will play an important role in this setting.
Lemma 3.3. Assume (H1), (H2) and let λ ∈ C. Then λ ∈ ρ(AU ) if and only if

0 ∈ ρ(∆(λ)).
Proof. For λ ∈ C, it has been shown in section 2 that λ ∈ ρ(AU ) if and only if

N(∆(λ)) = {0}. On the other hand, ∆(λ) = AT + L0
λ − λI, where AT generates a

compact C0-semigroup of bounded linear operators and L0
λ−λI is linear and bounded.

Hence, ∆(λ) is also the infinitesimal generator of a compact C0-semigroup (see Propo-
sition III.1.4 of Pazy [14, p. 79]). From the note in p. 51 of the same book, it follows
that 0 ∈ ρ(∆(λ)) if and only if 0 is not an eigenvalue of ∆(λ), or, equivalently, if and
only if N(∆(λ)) = {0}.
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Lemma 3.4. Assume (H1), (H2) and let λ ∈ C and m ∈ N. Then

(i) if µ ∈ ρ(∆(λ)), then µ ∈ ρ(L(m)
λ ) and (L(m)

λ − µI)−1 is a compact operator;

(ii) R(L(m)
λ ) is a closed subspace of Xm.

Proof. The proof of (i) is given by induction. For m = 1, L(1)
λ = ∆(λ). We have

already observed that ∆(λ) is the infinitesimal generator of a compact C0-semigroup.
Hence, for µ ∈ ρ(∆(λ)) the resolvent [∆(λ) − µI]−1 is compact (see Theorem II.3.3
of Pazy [14, p. 48]).

We now consider λ ∈ C, µ ∈ ρ(∆(λ)) and suppose that (i) is true for m. Since

L(m+1)
λ − µI =


L(m)
λ − µI


Lmλ

...
L2
λ

L1
λ − I


O ∆(λ)− µI

 ,

(L(m+1)
λ − µI)−1 =


(L(m)

λ − µI)−1 −(L(m)
λ − µI)−1


Lmλ

...
L2
λ

L1
λ − I

 (∆(λ)− µI)−1

O (∆(λ)− µI)−1


exists and is bounded. Now, let (yn) ⊂ Xm, (zn) ⊂ X be bounded sequences. The

compactness of the operators (L(m)
λ −µI)−1 and (∆(λ)−µI)−1 implies that there are

subsequences (ynk
), (znk

) such that

(L(m)
λ − µI)−1ynk

→ w ∈ Xm, (∆(λ)− µI)−1znk
→ x ∈ X.

Then (L(m+1)
λ − µI)−1 (ynk

znk
) converges, proving that (L(m+1)

λ − µI)−1 is a compact

operator.

To prove (ii), let (xn) ⊂ [D(AT )]m, L(m)
λ xn → y ∈ Xm. For µ ∈ ρ(∆(λ)), µ �= 0,[

I

µ
+ (L(m)

λ − µI)−1

]
xn =

1

µ
(L(m)

λ − µI)−1L(m)
λ xn → 1

µ
(L(m)

λ − µI)−1y.

The space R[ Iµ + (L(m)
λ − µI)−1] is closed, because (L(m)

λ − µI)−1 is compact (see

Theorem V.7.8 of Taylor and Lay [17, p. 300]). Thus, there exists x ∈ Xm such that

1

µ
(L(m)

λ − µI)−1y =

[
I

µ
+ (L(m)

λ − µI)−1

]
x,

i.e., L(m)
λ x = y ∈ R(L(m)

λ ).

The characterization of the point spectrum of ∗AU relies on the next lemma.

Lemma 3.5. Assume (H1)–(H3). Consider λ ∈ C,m ∈ N. Then

dim N(L(m)
λ ) = dim N((L(m)

λ )∗).
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Proof. We may assume that λ ∈ σ(AU ), i.e., 0 ∈ σ(∆(λ)) (cf. Lemma 3.3). For

µ ∈ ρ(∆(λ)), then µ ∈ ρ(L(m)
λ ) by Lemma 3.4, and we conclude that

N(L(m)
λ ) = N

(
(L(m)

λ − µI)−1 +
I

µ

)
,

N((L(m)
λ )∗) = N

(
[(L(m)

λ )∗ − µI]−1 +
I

µ

)
.

Since L(m)
λ is densely defined, we also conclude that µ ∈ ρ((L(m)

λ )∗) and [(L(m)
λ −

µI)−1]∗ = [(L(m)
λ )∗ − µI]−1 (cf. Lemma I.10.2 of Pazy [14, p. 38]). It remains to

be proved that N((L(m)
λ − µI)−1 + I

µ ) and N([(L(m)
λ − µI)−1]∗ + I

µ ) have the same

dimension. Since (L(m)
λ − µI)−1 is a compact operator, so is its adjoint [(L(m)

λ −
µI)−1]∗, and the result now follows from Theorem V.7.14 of Taylor and Lay [17,
p. 303].

As an immediate and most relevant consequence of this lemma, we can now derive
the following result.

Proposition 3.6. Assume (H1)–(H3). Then
(i) σP (AU ) = σP (∗AU );
(ii) dim N [(AU − λI)m] = dim N [(∗AU − λI)m],m ∈ N;
(iii) the ascent of AU − λI and ∗AU − λI are equal.
Proof. Propositions 3.1 and 3.2 and Lemma 3.5 imply (ii), from which (i) and

(iii) follow.
Remark 3.1. We note that (i) of Proposition 3.6 was proven in Proposition 4.14

of Travis and Webb [18] under the additional hypothesis N(∆(λ)) �= {0} if and only
if N(∆(λ)∗) �= {0}.

Remark 3.2. In the literature dealing with adjoint semigroups for FDEs in Banach
spaces (cf., e.g., Nakagiri [13] and Travis and Webb [18, p. 412]), it is often assumed
that the Banach space X is reflexive in order to have nice properties for adjoint
semigroups. Here, we are able to develop the adjoint theory without imposing such
a condition. Of course, if this condition holds, further properties for ∗AU and ∗U(t)
are obtained. For example, if the Banach space X is reflexive, then the adjoint A∗T
of AT is the infinitesimal generator of the adjoint C0-semigroup {T (t)∗}t≥0 (cf. Pazy
[14, p. 39]). For t > 0, T (t) is a compact operator, and hence its adjoint T (t)∗ is
also compact. Since (H1) and (H2) are fulfilled with AT , T (t) replaced by A∗T , T (t)∗,
respectively, the conclusions of Propositions 2.1, 2.2, and 2.3 hold for ∗AU ,

∗U(t) (t > 0)
instead of AU , U(t) (t > 0). In particular, σP (∗AU ) = σ(∗AU ).

Remark 3.3. In Arino and Sanchez [1], a formal adjoint theory was established
for equations of the form u̇(t) = L(ut), where L : C −→ X is a bounded linear
operator. Since AT = 0, the C0-semigroup {U(t)}t≥0 associated with the solutions of
this equation is not eventually compact in general. For this reason, in [1] the authors
restricted their study to eigenvalues of the infinitesimal generator that are not in

the essential spectrum. With this restriction, the corresponding operators L(m)
λ are

Fredholm operators, instead of having compact resolvent. However, for our purposes
and in view of applications, it is more interesting to consider equations of type (2.1)
rather than u̇(t) = L(ut), and in this situation no restrictions on the eigenvalues have
to be assumed.

4. Decomposition of the phase space by using the formal adjoint the-
ory. In this section, we always assume (H1)–(H3). The Fredholm alternative is stated
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in the next result.
Proposition 4.1. Consider λ ∈ σ(AU ) and m ∈ N. Then ψ ∈ R[(AU −λI)m] if

and only if 〈〈α, ψ〉〉 = 0 for all α ∈ N [(∗AU − λI)m]. In particular, ψ ∈ R(AU − λI)
if and only if

〈〈e−λ·u∗, ψ〉〉 = 0 for all u∗ ∈ N(∆(λ)∗).

Proof. Since R(L(m)
λ ) is closed (Lemma 3.4), we have

R(L(m)
λ ) = N((L(m)

λ )∗)⊥.

Thus, Proposition 3.1 implies that

ψ ∈ R[(AU − λI)m] if and only if 〈Y ∗,R(m)
λ (ψ)〉 = 0

for all Y ∗ ∈ N((L(m)
λ )∗). For Y ∗ = (y∗0 , . . . , y

∗
m−1)T ∈ (X∗)m, from (2.11) and (3.3)

we have

〈Y ∗,R(m)
λ (ψ)〉

= −
m−1∑
j=0

〈
y∗j , L

(∫ θ

0

eλ(θ−ξ) (θ − ξ)m−j−1

(m− j − 1)!
ψ(ξ)dξ

)〉
+ 〈y∗m−1, ψ(0)〉

=

m−1∑
j=0

〈〈
e−λs

(−s)m−j−1

(m− j − 1)!
y∗j , ψ

〉〉
,

and the result follows from Proposition 3.2.
We note that the above result was established in Proposition 4.15 of Travis and

Webb [18] only for the particular situation m = 1 and with the additional hypothesis
that ∆(λ) has a closed range. In Proposition 4.1, the most important case is the case
m equal to the ascent of AU −λI. For λ ∈ σ(AU ), denote byMλ(AU ) andMλ(∗AU )
the generalized eigenspaces for AU and ∗AU associated with λ, respectively.

Proposition 4.2. Let λ ∈ σ(AU ) and m be the ascent of AU − λI. Then
C =Mλ(AU )⊕Qλ, with Mλ(AU ) = N [(AU − λI)m], Mλ(∗AU ) = N [(∗AU − λI)m],
and

Qλ = {ψ ∈ C : 〈〈α, ψ〉〉 = 0 for all α ∈Mλ(∗AU )}.(4.1)

Proof. From Proposition 3.6, m is also the ascent of ∗AU − λI. On the other
hand, Proposition 4.1 implies that ψ ∈ R[(AU − λI)m] if and only if 〈〈α, ψ〉〉 = 0 for
all α ∈ Mλ(∗AU ). Decomposition (2.5) is therefore written as C = Mλ(AU ) ⊕ Qλ,
with Qλ = R[(AU − λI)m] defined by (4.1).

Lemma 4.3. For λ, µ ∈ σ(AU ), λ �= µ, and m, r ∈ N,

〈〈α,ϕ〉〉 = 0 for all α ∈ N [(∗AU − λI)m] and ϕ ∈ N [(AU − µI)r].

Proof. This lemma generalizes formula (2.16) for m ∈ N. It relies on the identity
(2.15) and is easily verified by using arguments as in Lemma 9 of Arino and Sanchez
[1], so we omit the details here.

Let λ ∈ σ(AU ) and choose bases

Φλ = (ϕ1, . . . , ϕpλ), Ψλ = (ψ1, . . . , ψpλ)T
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of Mλ(AU ) and Mλ(∗AU ), respectively, where pλ = dim Mλ(AU ) = dim Mλ(∗AU ).
Define a pλ × pλ matrix

〈〈Ψλ,Φλ〉〉 := [〈〈ψi, ϕj〉〉]i,j=1,...,pλ .

Suppose that 〈〈Ψ,Φ〉〉c = 0 for some constant vector c = (c1, . . . , cpλ)T . Then,
〈〈α, c1ϕ1 + · · · + cpλϕpλ〉〉 = 0 for all α ∈ Mλ(∗AU ), and Proposition 4.2 implies
that c1ϕ1 + · · ·+ cpλϕpλ ∈ Qλ ∩Mλ(AU ) = {0} for Qλ as in (4.1). This shows that
〈〈Ψλ,Φλ〉〉 is nonsingular. Therefore, we can always choose bases Ψλ,Φλ such that

〈〈Ψλ,Φλ〉〉 = Ipλ , pλ = dim Mλ(AU ).(4.2)

If the bases are normalized in such a way that (4.2) is fulfilled, then there is a pλ×pλ
constant matrix Bλ, with σ(Bλ) = {λ}, that satisfies simultaneously

Φ̇λ = ΦλBλ and − Ψ̇λ = BλΨλ.(4.3)

Furthermore,

U(t) = Φλe
Bλt, t > 0.(4.4)

We are now in the position to decompose C by a finite set of characteristic
eigenvalues of (2.1), using the formal duality 〈〈·, ·〉〉. Consider a nonempty finite set
Λ = {λ1, . . . , λs} ⊂ σ(AU ) and define ΦΛ = (Φλ1

, . . . ,Φλs),ΨΛ = (Ψλ1 , . . . ,Ψλs)T ,
where Φλj ,Ψλj are bases of the generalized eigenspaces Mλj (AU ),Mλj (∗AU ), re-
spectively, such that (4.2) holds (j = 1, . . . , s). From Lemma 4.3, it follows that
〈〈ΨΛ,ΦΛ〉〉 = Ip, where p = pλ1 + · · ·+ pλs .

Proposition 4.4. Assume (H1)–(H3), let Λ = {λ1, . . . , λs} ⊂ σ(AU ), define

PΛ =Mλ1(AU )⊕ · · · ⊕Mλs(AU ),

P ∗Λ =Mλ1(∗AU )⊕ · · · ⊕Mλs
(∗AU ),

and consider bases ΦΛ,ΨΛ for PΛ, P
∗
Λ such that 〈〈ΨΛ,ΦΛ〉〉 = Ip, p = dim PΛ. Then

there exists a subspace QΛ of C, invariant under AU and U(t), t ≥ 0, such that

C = PΛ ⊕QΛ(4.5)

with

QΛ = {ϕ ∈ C : 〈〈ΨΛ, ϕ〉〉 = 0},(4.6)

where 〈〈ΨΛ, ϕ〉〉 := (〈〈Ψλ1 , ϕ〉〉, . . . , 〈〈Ψλs
, ϕ〉〉)T . Moreover, ϕ ∈ C is written ac-

cording to decomposition (4.6) as ϕ = ϕPΛ + ϕQΛ , where ϕPΛ = ΦΛ〈〈ΨΛ, ϕ〉〉 and
ϕQΛ

∈ QΛ.

5. Center manifolds for maps in general Banach spaces: Smoothness.
We start with the following general results on smooth center-stable manifolds for
maps.

Theorem 5.1. Let f : U → E be a C1-map on an open subset U of a Banach
space E over R, with a fixed point p. Let L = Df(p) and assume that E has the
following decomposition:

E = Es ⊕ Ec ⊕ Eu,
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where Es is a closed subspace, Ec and Eu are finite-dimensional, L(Es) ⊂ Es, L(Ec) ⊂
Ec, and L(Eu) ⊂ Eu. We further assume that

σs = σ(L|Es : Es → Es) is contained in a compact subset of {z ∈ C : |z| < 1}
and

σc =σ(L|Ec : Ec → Ec) ⊂ S1
C
,

σu =σ(L|Eu
: Eu → Eu) ⊂ {z ∈ C : |z| > 1}.

Let Esc = Es ⊕ Ec. Then
(i) there exist open neighborhoods Nsc of 0 in Esc, Nu of 0 in Eu, N of p in

U , and a C1-map w : Nsc → Eu with w(0) = 0, Dw(0) = 0, and w(Nsc) ⊂ Nu so
that the shifted graph W = p + {z + w(z) : z ∈ Nsc} satisfies f(W ∩ N) ⊂ W and
∩∞n=0f

−n(p + Nsc + Nu) ⊂W ;
(ii) if f is Ck-smooth for an integer k ≥ 2, then so is w.
Part (i) was proved in [10]. Our argument for the general smoothness in (ii), given

below, will be based on the following general C1-smoothness result for fixed points of
contractions depending on a parameter developed in [10].

Lemma 5.2. Let Y,Λ be Banach spaces over R and let an open set P ⊂ Λ, a map
h : Y ×P → Y , and a constant κ ∈ [0, 1) be given with |h(y, p)−h(ỹ, p)| ≤ κ|y− ỹ| for
all y, ỹ in Y and all p ∈ P . Consider a convex subset M ⊂ Y and a map Φ : P →M
so that for every p ∈ P , Φ(p) is the unique fixed point of h(·, p) : Y → Y . Suppose
the following hold:

(i) the restriction h0 = h|M×P has a partial derivative D2h0 : M × P → L(Λ, Y )
and the map D2h0 is continuous;

(ii) there are a Banach space Y1 over R and a continuous injective linear map
j : Y → Y1 so that the map k = j ◦ h0 is continuously differentiable with respect to Y
in the sense that there is a continuous map A : M × P → L(Y, Y1) so that for every
(y, p) ∈M×P and every ε∗ > 0, there exists δ̃ > 0 with |k(ỹ, p)−k(y, p)−A(y, p)(ỹ−
y)| ≤ ε∗|ỹ − y| for all ỹ ∈M with |ỹ − y| ≤ δ̃;

(iii) there exist maps h(1) : M ×P → L(Y, Y ) and h
(1)
1 : M ×P → L(Y1, Y1) such

that

A(y, p)ŷ = jh(1)(y, p)ŷ = h
(1)
1 (y, p)jŷ on M × P × Y

and

|h(1)(y, p)| ≤ κ, |h(1)
1 (y, p)| ≤ κ on M × P ;

(iv) the map (y, p) ∈M × P → j ◦ h(1)(y, p) ∈ L(Y, Y1) is continuous.
Then the map j ◦ Φ : P → Y1 is C1-smooth and

D(j ◦ Φ)(p) = h
(1)
1 (Φ(p), p) ◦D(j ◦ Φ)(p) + j ◦D2h0(Φ(p), p) for all p ∈ P.

For a given positive integer k and for given Banach spaces Y1, . . . , Yk and Y ,
let L(k)(Y1 × · · · × Yk, Y ) be the Banach space of all continuous k-linear maps from
Y1 × · · · × Yk to Y , equipped with the operator norm. If Yi = Y1 for all 1 ≤ i ≤ k, we
write L(k)(Y1, Y ) for L(k)(Y1 × · · · × Yk, Y ). Also, we will denote the kth derivative
of a given map by Dk if it exists.

We now briefly recall some results and associated notation in [10] as a preparation
for the proof of Theorem 5.1. Set b = infλ∈σu |λ|, a = supλ∈σs

|λ| and fix ε > 0 with
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a + ε < 1 < 1 + ε < (1 + ε)k < b− ε. Let Ps, Pc, Pu denote the projections of E onto
Es along Ec ⊕ Eu, onto Ec along Es ⊕ Eu, and onto Eu along Ec ⊕ Es, respectively.
Whenever convenient, we shall use abbreviations like

xs = Psx, xc = Pcx, xu = Pux, Psc = Ps + Pc, xcu = xc + xu.

There exists a norm | · | on E which is equivalent to the originally given one and
satisfies

|x| = |xs|+ |xc|+ |xu|,
|LPsx| ≤ (a + ε)|Psx|,
|LPcx| ≤ (1 + ε)|Pcx|,
|LPux| ≥ (b− ε)|Pux|

for all x ∈ E.
Set V = U − p. Consider the transformed map g∗ : x ∈ V → f(x + p) − p ∈ E

with fixed point 0 and Dg∗(0) = L. Define r∗ : V → E as the nonlinear part of g∗

by r∗(x) = g∗(x) − Lx, and then extend r∗ to a map r : E → E by r(x) = 0 for all
x ∈ E \ V . Finally, let g = L + r.

To construct small Lipschitz continuous modifications of g which are smooth on
strips containing the center-unstable space Ecu, we fix a norm | · |cu on Ecu which
is C∞-smooth on Ecu \ {0}. The norm || · || : x ∈ E → max{|xs|, |xcu|cu} ∈ R is
equivalent to | · |. For δ > 0, set E(δ) = {x ∈ E : ||x|| < δ}. Choose a C∞-function
ρ : R→ R with ρ([0,∞)) ⊂ [0, 1], ρ(t) = 1 for 0 ≤ t ≤ 1, ρ(t) = 0 for t ≥ 2. For every
δ > 0, define rδ : E → E by

rδ(x) = ρ

( |xcu|cu
δ

)
ρ

( |xs|
δ

)
r(x)

and set gδ = L + rδ.
Fix δ0 > 0 so that E(3δ0) ⊂ V and that r|E(3δ0) is Ck-smooth and all lth deriva-

tives, 1 ≤ l ≤ k, of r|E(3δ0) are bounded. Observing that for every δ ∈ (0, δ0) the

restriction rδ|{x∈E:|xs|<δ} is given by ρ( |xcu|cu
δ )r(x), it follows that rδ|{x∈E:|xs|<δ} is

Ck-smooth and that the restriction of rδ to {x ∈ E; |xs| ≤ δ
2} has all lth derivatives

bounded, 1 ≤ l ≤ k.
It was shown in [10] that there exist δ1 ∈ (0, δ0) and a nondecreasing function

λ : [0, δ1]→ [0, 1] with limδ→0+ λ(δ) = 0 = λ(0) so that for each δ ∈ (0, δ1] and for all
x, y in E, |rδ(x)| ≤ δλ(δ) and |rδ(x)− rδ(y)| ≤ λ(δ)|x− y|.

For η > 0, let Eη denote the Banach space of all sequences χ = (xn)∞0 ∈ EN with

sup
j∈N

|xj |η−j <∞

and norm

||χ||η = sup
j∈N

|xj |η−j .

Consider {
xn+1 = Lxn + fn for n ≥ 0,
Pscx0 = z

(5.1)

for given z ∈ Esc, φ = (fn)∞0 ∈ Eη, and η ∈ (1 + ε, b− ε).
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Let Lsc = L|Esc
: Esc → Esc. It was shown in [10] that for fixed z ∈ Esc, 1 + ε <

η < b− ε, and φ ∈ Eη, if χ ∈ Eη satisfies (5.1), then

xn =

n−1∑
j=0

Ln−j−1
sc Pscfj −

∞∑
j=n

Ln−j−1
u Pufj + Lnscz for n ≥ 1

and

x0 = z −
∞∑
j=0

L−j−1
u Pufj .

In particular, given z ∈ Esc and φ = (fj)
∞
0 ∈ Eη, there is at most one solution of

(5.1) in Eη. Let

K : {χ ∈ EN : χ ∈ Eη for some η ∈ (1 + ε,b− ε)} → EN

be given by

(Kφ)n =

n−1∑
j=0

Ln−j−1
sc Pscfj −

∞∑
j=n

Ln−j−1
u Pufj for n ≥ 1

and

(Kφ)0 = −
∞∑
j=0

L−j−1
u Pufj .

Also, let

c(η) =
1

η − 1− ε
+

1

b− ε− η
.

Then the linear map Kη : Eη → Eη given by Kηφ = Kφ is continuous with |Kη| ≤
c(η). Furthermore, for every η ∈ (1 + ε, b − ε), z ∈ Esc, and φ ∈ Eη, the sequence
χ = Kηφ + (Lnscz)∞0 ∈ Eη solves (5.1).

Consider the substitution operator

Rδ : EN → EN by Rδ(χ) = (rδ(xn))∞0 for χ = (xn)∞0 ∈ EN.

For every η ∈ (1+ ε, b− ε), choose δη ∈ (0, δ1] with λ(δη)c(η) < 1. Let η ∈ (1+ ε, b− ε)
and δ ∈ (0, δη). It was shown in [10] that Rδ(Eη) ⊂ Eη, and the induced map
γδη : Eη � χ �→ Rδ(χ) ∈ Eη is Lipschitz continuous with a Lipschitz constant λ(δ).

Therefore, for every z ∈ Esc and χ = (xn)∞0 ∈ Eη the properties

xn+1 = gδ(xn) for all n ≥ 0, Pscx0 = z

are equivalent to the fixed point equation χ = Tδη(χ, z), where the map Tδη : Eη ×
Esc → Eη is given by

Tδη(χ, z) = Kη(γδη(χ)) + (Ljscz)∞0 .

As

|Tδη(χ, z)− Tδη(χ∗, z)|η ≤ c(η)λ(δ)|χ− χ∗|η
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for all χ, χ∗ ∈ Eη and for all z ∈ Esc, there is exactly one fixed point χδη(z) ∈ Eη of
the contraction Tδη(·, z) : Eη → Eη for every z ∈ Esc. Moreover, Psc(χδη(z))0 = z.
In summary, χ ∈ Eη is a trajectory of gδ with Pscx0 = z if and only if χ = χδη(z).

It was shown in [10] that the map χδη : z ∈ Esc → χδη(z) ∈ Eη is Lipschitz
continuous, and thus wδη : z ∈ Esc → Pu(χδη(z))0 ∈ Eu is Lipschitz continuous. To
obtain the differentiability of wδη, [10] proved the following important properties: if

0 < δ < δη and λ(δ) < (1−a−ε)2
2 , then for every z ∈ Esc with |Psz| < δ

2 and for all
integers j ≥ 0,

|Ps(χδη(z))j | < δ

2
.(5.2)

We can now give the following proof.

Proof of Theorem 5.1. We divide the long proof into several steps. The first step
concerns the proof of the C1-smoothness. Except for the last remark, all results in
Step 1 belong to [10].

Step 1. Fix η, η̃, η so that 1 + ε < η < η̃ ≤ η with η ∈ (ηk, b− ε), and fix δ > 0 so
that

δ < δη, λ(δ) <
(1− a− ε)2

2
, κ := sup

η̃∈[η,η̄]

λ(δ)c(η̃) < 1.

Let

P =

{
x ∈ Esc : |xs| < δ

2

}
.

P is an open set in the Banach space Λ = Esc.

Recall that rδ|{x∈E:|xs|<δ} is Ck-smooth and sup{|D1rδ(x)| : |xs| < δ} ≤ λ(δ). It
was shown in [10] that for any η̃ ∈ (η, η̄], the linear map

A(1)
rδ

(χ) : EN � χ̂ = (x̂j)
∞
0 �→ (D1rδ(xj)x̂j)

∞
0 ∈ EN, χ = (xj)

∞
0 , |Psxj | < δ

2
, j ∈ N,

induces a continuous map A
(1)
rδ η̃η

from the convex set

M =

{
χ ∈ Eη : |Psxj | < δ

2
for all j ∈ N

}
⊂ Eη

into L(Eη, Eη̃).

Let Y = Eη, h = Tδη|Y×P . It is important to keep in mind that χδη(P ) ⊂ M .
Define Φ : P → M by Φ(z) = χδη(z); we have h(Φ(p), p) = Φ(p) for all p ∈ P . The
map h0 = h|M×P is given by

h0(χ, z) = Tδη(χ, z) = K(Rδ(χ)) + (Ljscz)∞0 ,

so for every (χ, z) ∈M × P the derivative D2h0(χ, z) exists and is given by

D2h0(χ, z)z̃ = (Ljscz̃)∞0 ∈ Eη.

This derivative is constant on M × P and therefore is continuous.
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Set Y1 = Eη̃ and define jη̃η : Y → Y1 by

jη̃η(χ) = χ.

Then jη̃η is continuous and injective, and the map k = jη̃η ◦ h0 is given by

k(χ, z) = Tδη̃ (χ, z) = Kη̃(γδη̃ (χ)) + (Ljscz)∞0 .

It was shown in [10] that the map A : M × P � (χ, z) �→ Kη̃ ◦ Arδ η̃η(χ) ∈ L(Y, Y1) is

continuous, and each A
(1)
rδ (χ), χ ∈M , defines elements

A(1)
rδηη

(χ) ∈ L(Y, Y ) with |A(1)
rδηη

(χ)| ≤ λ(δ)

and

A
(1)
rδ η̃η̃

(χ) ∈ L(Y1, Y1) with |A(1)
rδ η̃η̃

(χ)| ≤ λ(δ).

Define

h(1) : M × P → L(Y, Y ) by h(1)(χ, z) = Kη ◦A(1)
rδηη

(χ)

and

h
(1)
1 : M × P → L(Y1, Y1) by h

(1)
1 (χ, z) = Kη̃ ◦A(1)

rδ η̃η̃
(χ).

It was shown in [10] that

max{|h(1)(χ, z)|, |h(1)
1 (χ, z)|} ≤ max{c(η), c(η̃)}λ(δ) = κ,

and all other conditions in Lemma 5.2 are satisfied. Therefore, jη̃η ◦Φ = jη̃η ◦ (χδη|P )
is C1-smooth and jη̃η ◦ Φ = χδη̃ |P . Moreover, D1(jη̃η ◦ Φ) satisfies

D1(jη̃η ◦ Φ)(z) = Kη̃ ◦A(1)
rδ η̃η̃

(Φ(z)) ◦D1(jη̃η ◦ Φ)(z) + jη̃η ◦ (Ljsc·)∞0 , z ∈ P.

The final remark of this step is essential for the general smoothness to be proved

in later steps. Recall that for any η̃ ∈ [η, η̄], Kη̃ ◦A(1)
rδ η̃η̃

(Φ(z)) ∈ L(Eη̃, Eη̃) and

|Kη̃ ◦A(1)
rδ η̃η̃

(Φ(z))|L(Eη̃,Eη̃) ≤ c(η̃)λ(δ) ≤ κ < 1.

Therefore, Kη̃ ◦A(1)
rδ η̃η̃

(Φ(z)) ∈ L(Eη̃, Eη̃) is a uniform contraction and the map

Kη̃ ◦A(1)
rδ η̃η̃

(Φ(z))L + jη̃η ◦ (Ljsc·)∞0 , z ∈ P, L ∈ L(Λ, Eη̃),

has a unique fixed point Ψ
(1)
η̃ (z) in L(Λ, Eη̃). Since jη̃η ◦ Ψ

(1)
η (z) ∈ L(Λ, Eη̃), the

uniqueness of a fixed point in L(Λ, Eη̃) implies

Ψ
(1)
η̃ (z) = jη̃η ◦Ψ(1)

η (z).

In particular,

D1(jη̃η ◦ Φ)(z) = Ψ
(1)
η̃ (z) = jη̃η ◦Ψ(1)

η (z), z ∈ P.
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Step 2. We now assume k ≥ 2. For any given integer l with 1 ≤ l ≤ k, consider

the operator A
(l)
rδ given by

A(l)
rδ

(χ)(χ1, . . . , χl) = (Dlrδ(xj)(x
1
j , . . . , x

l
j))
∞
0 ,

χ = (xj)
∞
0 , χi = (xij)

∞
0 ∈ EN, 1 ≤ i ≤ l.

Note that A
(l)
rδ with l = 1 was introduced in Step 1. The operators A

(l)
rδ with 1 ≤

l ≤ k are the substitution operators of Dlrδ; they can be regarded as the Nemytskii
operators induced by Dlrδ in the appropriate spaces.

As rδ|{z∈E;|zs|≤ δ
2} has all lth derivatives bounded, 1 ≤ l ≤ k, we can show that

A(l)
rδ

(χ)(Eηr1 × · · · ×Eηrl ) ⊂ Eηr1+···+rl , χ ∈M, 1 ≤ ri ≤ l.

We are going to use induction on p with 1 ≤ p ≤ k. (Note that for the remainder
of this proof, p is not the fixed point of f .) The strategy is to show that the order
of the smoothness of jη̃η ◦ Φ : P → Eη̃ is increased by at least one as η̃ passes ηp−1,
from (η, ηp−1] to (ηp−1, ηp], and to construct higher order derivatives inductively.

Suppose 1 ≤ p < k and suppose that for all integers q with 1 ≤ q ≤ p and for all
η̃ ∈ [ηq, η̄], the mapping jη̃η ◦ Φ : P → Eη̃ is Cq-smooth with

(i) Dq(jη̃η ◦ Φ) = jη̃η ◦Ψ
(q)
η ;

(ii) Ψ
(q)
η (z) ∈ L(q)(Λ, Eηq ) as the unique solution of

F = KA(1)
rδ

(Φ(z))F + Hq(z), F ∈ L(q)(Λ, Eηq ), z ∈ P,
with H1(z)z̃ = (Ljscz̃)∞0 , z̃ ∈ Λ, and for q ≥ 2,

Hq(z) =
∑

2≤l≤q,1≤i≤l,1≤ri≤l,r1+···+rl=q
KA(l)

rδ
(Φ(z))(Ψ(r1)

η (z), . . . ,Ψ(rl)
η (z));

(iii) jη̃η ◦Ψ
(q)
η : P → L(q)(Λ, Eη̃) being continuous.

We want to show that the above statement is true for q = p + 1.
Step 3. Fix η̃ ∈ [ηp+1, η̄] and let X = L(p)(Λ, Eη̃). For F ∈ L(p)(Λ, Eηp) and

z ∈ P , let

H(F, z) = KA(1)
rδ

(Φ(z))F + Hp(z).

By the induction hypotheses in Step 2 and the estimates in Step 1, for any η∗ ∈ [ηp, η],
F ∈ L(p)(Λ, Eη∗), z ∈ P , we have H(F, z) ∈ Eη∗ and

|H(F̃ , z)−H(F, z)| ≤ c(η∗)λ(δ)|F̃ − F | ≤ κ|F̃ − F |, F̃ , F ∈ L(p)(Λ, Eη∗).

Therefore, H(·, z) has a unique fixed point in L(p)(Λ, Eη∗). Note also that for η∗ = ηp

this fixed point is given by Ψ
(p)
η (z). From now on, we restrict H : X × P → X and

let N = L(p)(Λ, Eηp), H0 = H|N×P .
Step 4. Let ej : EN → E be given by

ej((zi)
∞
0 ) = zj , (zi)

∞
0 ∈ EN.

Define Φj = ej ◦ Φ : P → E and Ψ
(l)
ηj (z)z̃ = ej ◦ Ψ

(l)
η (z)z̃ for 1 ≤ l ≤ p, z ∈ P ,

and z̃ ∈ Λ. We claim that Φj is C1-smooth and DΦj(z)z̃ = Ψ
(1)
ηj (z)z̃. In fact,
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Φj = ej ◦ Φ = ej ◦ jη̃ηΦ, and thus Φj is C1-smooth since jη̃η ◦ Φ is. Moreover,

D(jη̃η ◦ Φ) = jη̃η ◦Ψ
(1)
η , and thus

ej(jη̃ηΨ(1)
η (z)z̃) = ejD(jη̃η ◦ Φ)(z)z̃.

This shows that Ψ
(1)
ηj (z)z̃ = DΦj(z)z̃.

Step 5. We now prove that for any fixed F ∈ L(p)(Λ, Eηp) and η̃ > ηp+1, the

mapping P � z �→ KA
(1)
rδ (Φ(z))F ∈ L(p)(Λ, Eη̃) has a derivative, which is given by

KA
(2)
rδ (Φ(z))(Ψ

(1)
η (z)·, F ), and the map

P × L(p)(Λ, Eηp) � (z, F ) �→ KA(2)
rδ

(Φ(z))(Ψ(1)
η (z)·, F ) ∈ L(Λ,L(p)(Λ, Eη̃))

is continuous.
Let

|Dlrδ|∞ = sup

{
|Dlrδ(z)|; z ∈ E, |zs| ≤ δ

2

}
.

Note that for 1 ≤ l ≤ k, |Dlrδ|∞ <∞.
For any zi ∈ Λ with 1 ≤ i ≤ p, let

Fj(z1, . . . , zp) = ej(F (z1, . . . , zp)).

Then for z̃, z ∈ P we have

η̃−j |D1rδ(Φj(z̃))Fj(z1, . . . , zp)−D1rδ(Φj(z))Fj(z1, . . . , zp)

−D2rδ(Φj(z))(Ψ
(1)
ηj (z)(z̃ − z), Fj(z1, . . . , zp))|

≤ η̃−j |D1rδ(Φj(z̃))−D1rδ(Φj(z))−D2rδ(Φj(z))Ψ
(1)
ηj (z)(z̃ − z)|ηpj |F ||z1| · · · |zp|.

Therefore, for any ε > 0 there exists an integer J0 ≥ 0 so that if j ≥ J0 and if
|z̃ − z| ≤ 1, then

η̃−j |D1rδ(Φj(z̃))Fj(z1, . . . , zp)−D1rδ(Φj(z))Fj(z1, . . . , zp)

−D2rδ(Φj(z))(Ψ
(1)
ηj (z)(z̃ − z), Fj(z1, . . . , zp))|

≤ [(η̃η−p)−j2|D1rδ|∞|F |+ (η̃η−p)−j |D2rδ|∞ηj |Ψ(1)
ηj (z)(z̃ − z)||F |]|z1| · · · |zp|

≤ ε

c(η̃) + 1
|z1| · · · |zp|.

As rδ|{x∈E;|xs|<δ} is Ck-smooth, k ≥ 2, Φi : P → E is C1-smooth and DΦj(z)z̃ =

Ψ
(1)
ηj (z)z̃ for z ∈ P and z̃ ∈ Λ. For any ε > 0, there exists δ > 0 so that when z̃ ∈ P

and |z̃ − z| < δ, then for 0 ≤ j ≤ J0 we have

|Drδ(Φj(z̃))−Drδ(Φj(z))−D2rδ(Φj(z))Ψ
(1)
ηj (z)(z̃ − z)| < η̃jη−pj

|F |+ 1

ε

c(η̃) + 1
,

and hence

η̃−j |D1rδ(Φj(z̃))Fj(z1, . . . , zp)−D1rδ(Φj(z))Fj(z1, . . . , zp)

−D2rδ(Φj(z))(Ψ
(1)
ηj (z)(z̃ − z), Fj(z1, . . . , zp))|

< η̃−j
η̃jη−pj

|F |+ 1

ε

c(η̃) + 1
ηpj |F ||z1| · · · |zp|

≤ ε

c(η̃) + 1
|z1| · · · |zp|.
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Therefore,

|KA(1)
rδ

(Φ(z̃))F −KA(1)
rδ

(Φ(z))F −KA(2)
rδ

(Φ(z))(Ψ(1)
η (z)(z̃ − z), F )|

≤ c(η̃) sup
zi∈Λ,|zi|≤1,1≤i≤p,j≥0

η̃−j |[D1rδ(Φj(z̃))Fj(z1, . . . , zp)

−D1rδ(Φj(z))Fj(z1, . . . , zp)−D2rδ(Φj(z))(Ψ
(1)
ηj (z)(z̃ − z), Fj(z1, . . . , zp))]|

< c(η̃)
ε

c(η̃) + 1
≤ ε.

This proves the differentiability.
We now prove that the map

P ×N � (z, F ) �→ KA(2)
rδ

(Φ(z))(Ψ(1)
η (z)·, F ) ∈ L(Λ,L(p)(Λ, Eη̃)) = L(p+1)(Λ, Eη̃)

is continuous. Fix (z, F ) ∈ P ×N . Then for any (z̃, F̃ ) ∈ P ×N , we have

|KA(2)
rδ

(Φ(z̃))(Ψ(1)
η (z̃)·, F̃ )−KA(2)

rδ
(Φ(z))(Ψ(1)

η (z)·, F )|
≤ |KA(2)

rδ
(Φ(z̃))(Ψ(1)

η (z̃)·, F̃ )−KA(2)
rδ

(Φ(z))(Ψ(1)
η (z)·, F̃ )|

+ |KA(2)
rδ

(Φ(z))(Ψ(1)
η (z)·, F̃ )−KA(2)

rδ
(Φ(z))(Ψ(1)

η (z)·, F )|
and

|KA(2)
rδ

(Φ(z̃))(Ψ(1)
η (z̃)·, F̃ )−KA(2)

rδ
(Φ(z))(Ψ(1)

η (z)·, F̃ )|
= sup

zi∈Λ,|zi|≤1,1≤i≤p+1

|KA(2)
rδ

(Φ(z̃))(Ψ(1)
η (z̃)zp+1, F̃ (z1, . . . , zp))

−KA(2)
rδ

(Φ(z))(Ψ(1)
η (z)zp+1, F̃ (z1, . . . , zp))|Eη̃

= sup
zi∈Λ,|zi|≤1,1≤i≤p+1

|Kη̃[A(2)
rδ

(Φ(z̃))(Ψ(1)
η (z̃)zp+1, F̃ (z1, . . . , zp))

−A(2)
rδ

(Φ(z))(Ψ(1)
η (z)zp+1, F̃ (z1, . . . , zp))]|Eη̃

.

Moreover,

|A(2)
rδ

(Φ(z̃))(Ψ(1)
η (z̃)zp+1, F̃ (z1, . . . , zp))−A(2)

rδ
(Φ(z))(Ψ(1)

η (z)zp+1, F̃ (z1, . . . , zp))|Eη̃

= sup
j∈N

η̃−j |D2rδ(Φj(z̃))(Ψ
(1)
ηj (z̃)zp+1, F̃j(z1, . . . , zp))

−D2rδ(Φj(z))(Ψ
(1)
ηj (z)zp+1, F̃j(z1, . . . , zp))|.

Note that for any η∗ ∈ (η, η̄], the mapping jη∗η ◦ Ψ
(1)
η : P → Eη∗ is continuous.

Fix η∗ ∈ (η, η̃
ηp ). There exists δ1 > 0 so that if z̃ ∈ P and |z̃ − z| < δ1, then

|jη∗η ◦Ψ(1)
η (z̃)− jη∗η ◦Ψ(1)

η (z)| ≤ 1.

Therefore, η∗−j |Ψ(1)
ηj (z̃)−Ψ

(1)
ηj (z)| ≤ 1 for all j ∈ N. In particular, |Ψ(1)

ηj (z̃)−Ψ
(1)
ηj (z)| ≤

η∗j for all j ∈ N.
Find an integer J0 ≥ 0 so that if j ≥ J0, then

|D2rδ|∞
(
η̃

ηp

)−j
[2ηj |Ψ(1)

η (z)|+ (η∗)j ] <
ε

2(c(η∗) + 1)(|F |+ 1)
.
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Therefore, for j ≥ J0, we have

η̃−j |D2rδ(Φj(z̃))(Ψ(1)
η (z̃)zp+1, F̃j(z1, . . . , zp))−D2rδ(Φj(z))(Ψ

(1)
ηj (z)zp+1, F̃j(z1, . . . , zp))|

≤ |D2rδ|∞η̃−j [2|Ψ(1)
ηj (z)|+ η∗j ]ηpj |F̃ ||z1| · · · |zp||zp+1|

≤ |D2rδ|∞
(
η̃

ηp

)−j
[2ηj |Ψ(1)

η (z)|+ η∗j ]|F̃ ||z1| · · · |zp+1|.

For 0 ≤ j ≤ J0, as Φj = ejΦ and Ψ
(1)
ηj = ejjη∗ηΨ

(1)
ηj are continuous, we can find

δ2 > 0 so that when z̃ ∈ P and |z̃ − z| < δ2, we have

η̃−j |D2rδ(Φj(z̃))(Ψ
(1)
ηj (z̃)zp+1, F̃j(z1, . . . , zp))−D2rδ(Φj(z))(Ψ

(1)
ηj (z)zp+1, F̃j(z1, . . . , zp))|

<
ε

2(c(η̃) + 1)(|F |+ 1)
|F̃ ||z1| · · · |zp+1|.

Therefore, if |F̃ − F | ≤ 1 and |z̃ − z| < min{δ1, δ2}, we have

|KA(2)
rδ

(Φ(z̃))(Ψ(1)
η (z̃)·, F̃ )−KA(2)

rδ
(Φ(z))(Ψ(1)

η (z)·, F̃ )|
≤ c(η̃)

ε

2(c(η̃) + 1)
<

ε

2
.

In a similar fashion, we get

|KA(1)
rδ

(Φ(z))(Ψ(1)
η (z), F̃ )KA

(2)
rδ

(Φ(z))(Ψ(1)
η (z), F )|

= sup
zi∈Λ,|zi|≤1,1≤i≤p+1

|KA(2)
rδ

(Ψ(1)
η (z)zp+1, (F̃ − F )(z1, . . . , zp))|Eη̃

≤ c(η̃) sup
zi∈Λ,|zi|≤1,1≤i≤p+1,j≥0

η̃−j |D2rδ|∞η−j |Ψ(1)
η (z)|η−pj |F̃ − F ||z1| · · · |zp+1|

≤ c(η̃)|D2rδ|∞|Ψ(1)
η (z)||F̃ − F |.

Therefore, if |z̃−z| < min{δ1, δ2} and if |F̃−F | < min{1, ε
2c(η̃)|D2rδ|∞|Ψ(1)(z)|+1

}, then

|KA
(1)
rδ (Φ(z̃)·, F̃ )−KA

(1)
rδ (Φ(z)·, F )| < ε. This completes the proof of the required

continuity.
For the sake of later reference, let us summarize the main idea of the arguments

involved in this step. To estimate

|KA(1)
rδ

(Φ(z̃))F −KA(1)
rδ

(Φ(z))F −KA(2)
rδ

(Φ(z))(Ψ(1)
η (z)(z̃ − z), F )|

in the proof of the differentiability of the mapping P � z �→ KA
(1)
rδ (Φ(z))F ∈

L(p)(Λ, Eη̃), we used the definition of the operator norm for multilinear operators

KA
(1)
rδ (Φ(z))F and the definition of the norm in Eη̃ and were led to the estimation of

the expression

η̃−j |[D1rδ(Φj(z̃))Fj(z1, . . . , zp)−D1rδ(Φj(z))Fj(z1, . . . , zp)

−D2rδ(Φj(z))(Ψ
(1)
ηj (z)(z̃ − z), Fj(z1, . . . , zp))|

for each given nonnegative integer j. The above term can be made arbitrarily small
if j is sufficiently large, thanks to the choice of η̃ > ηp+1 (the essential gradient of
the proof). When j is restricted to a finite set, the smallness of the above expression
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follows from the continuity of the involved operators and mappings. Similar arguments
were used to estimate

|KA(2)
rδ

(Φ(z̃))(Ψ(1)
η (z̃)·, F̃ )−KA(2)

rδ
(Φ(z))(Ψ(1)

η (z)·, F )|

in the proof of the continuity of the map

P ×N � (z, F ) �→ KA(2)
rδ

(Φ(z))(Ψ(1)
η (z)·, F ) ∈ L(Λ,L(p)(Λ, Eη̃)).

Step 6. Let 2 ≤ l ≤ p, 1 ≤ ri < l with r1 + · · · + rl = p. For any integer j ≥ 0,
z ∈ Λ, and ẑri ∈ Λri , let

Ψ
(ri)
ηj (z)ẑri = ej(Ψ

(ri)
η (z)ẑri).

Then for z, z̃ ∈ Λ we have∣∣∣∣∣KA(l)
rδ

(Φ(z̃))(Ψ(r1)
η (z̃), . . . ,Ψ(rl)

η (z̃))−KA(l)
rδ

(Φ(z))(Ψ(r1)
η (z), . . . ,Ψ(rl)

η (z))

−
l∑

k=1

KA(l)
rδ

(Φ(z))(Ψ(r1)
η (z), . . . ,Ψ(rk+1)

η (z)(z̃ − z), . . . ,Ψ(rl)
η (z))

−KA(l+1)
rδ

(Φ(z))(Ψ(1)
η (z)(z̃ − z),Ψ(r1)

η (z), . . . ,Ψ(rl)
η (z))

∣∣∣∣∣
≤ c(η̃) sup

ẑri∈Λri ,|zri |≤1,1≤i≤p,j≥0

η̃−j
∣∣∣∣∣Dlrδ(Φj(z̃))(Ψ

(r1)
ηj (z̃)ẑr1 , . . . ,Ψ

(rl)
ηj (z̃)ẑrl)

−Dlrδ(Φj(z))(Ψ
(r1)
ηj (z)ẑr1 , . . . ,Ψ

(rl)
ηj (z)ẑrl)

−
l∑

k=1

Dlrδ(Φj(z))(Ψr1
ηj(z)ẑr1 . . . ,Ψ

(rk+1)
ηj (z)(z̃ − z, ẑrk), . . . ,Ψ

(rl)
ηj (z)zrl)

−Dl+1rδ(Φj(z))(Ψ
(1)
ηj (z)(z̃ − z),Ψ

(r1)
ηj (z)ẑr1 , . . . ,Ψ

(rl)
ηj (z)ẑrl)

∣∣∣∣∣ .
Now we can use the fact that |Dlrδ|∞ <∞ for 1 ≤ l ≤ p, and the induction hypothesis
implies that the mapping

P � z �→ Ψ
(ri)
ηj (z) ∈ L(ri)(Λ, Eηri )

is differentiable, and we apply an argument similar to that for the first part of Step
5 to show that for any 2 ≤ l ≤ p, 1 ≤ ri < l with r1 + · · · + rl = p, the map

P � z �→ KA
(l)
rδ (Φ(z))(Ψ

(r1)
η (z), . . . ,Ψ

(rl)
η (z)) ∈ L(p)(Λ, Eη̃) is differentiable and the

derivative is given by

l∑
j=1

KA(l)
rδ

(Φ(z))(Ψ(r1)
η (z), . . . ,Ψ(rj+1)

η (z), . . . ,Ψ(rl)
η (z))

+ KA(l+1)
rδ

(Φ(z))(Ψ(1)
η (z),Ψ(r1)

η (z), . . . ,Ψ(rl)
η (z)).
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The continuity of the above derivative, with respect to z ∈ P , can also be verified by
using an argument similar to that for the second part of Step 5 and by noting that
the induction hypothesis implies that the mapping

P � z �→ Ψ
(ri+1)
ηj (z) ∈ L(ri+1)(Λ, Eηri )

is continuous.
Step 7. Let η̂ be given so that η̂ ∈ (η̃, η̄]. Define the continuous linear injective

map J : X → X1 = L(p)(Λ, Eη̂) by

J(L)(z1, . . . , zp) = jη̂η̃L(z1, . . . , zp), z1, . . . , zp ∈ Λ, L ∈ X.

Then

JH0(F, z) = jη̂η̃KA(1)
rδ

(Φ(z))F + jη̂ηHp(z), z ∈ P, F ∈ L(p)(Λ, Eηp).

Let A : P → L(X,X1) be given by

(A(z)F )(z1, . . . , zp) = jη̂η̃K◦Arδ(Φ(z))F (z1, . . . , zp), z ∈ P, F ∈ X, x1, . . . , zp ∈ Λ.

Again, we can use arguments similar to those in Step 5 (see the remarks at the end
of Step 5) to show that A is continuous. Moreover, we have

JH0(F̃ , z)− JH0(F, z) = A(z)(F̃ − F ), z ∈ P, F̃ , F ∈ N.

Note that for any η∗ ≥ η, KA
(1)
rδ (Φ(z)) induces a bounded linear map from L(p)(Λ, Eη∗)

into itself by

Qη∗(L)(z1, . . . , zp) = Kη∗A
(1)
rδη∗η∗(Φ(z))L(z1, . . . , zp)

and

|Qη∗ | ≤ c(η∗)λ(δ).

Define H(1) : P → L(X,X) and H
(1)
1 : P → L(X1, X1) by

H(1)(z) = Qη̃, H
(1)
1 (z) = Qη̂, z ∈ P.

Clearly, we have for F ∈ X the following:

A(z)F = jη̂η̃KA(1)
rδ

(Φ(z))F

= jη̂η̃Qη̃F = JH
(1)
1 (z)F

= Qη̂jη̂η̃F = H
(1)
1 (z)JF

and

|H(1)(z)| ≤ c(η̃)λ(δ) ≤ κ, |H(1)
1 (z)| ≤ c(η̂)λ(δ) ≤ κ.

Moreover, the mapping

P � z �→ J ◦H(1)(z) = jη̂η̃ ◦Qη̃ = Jη̂η̃Kη̃A
(1)
rδ η̃η̃

(Φ(z)) = A ∈ L(X,X1)
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is continuous. Therefore, by Lemma 5.2, the map jη̂η ◦Ψ(p)
η = jη̂η̃ ◦jη̃η ◦Ψ(p)

η : P → X1

is C1-smooth and

D(jη̂η ◦Ψ(p)
η )(z) = KA(1)

rδ
(Φ(z))D(jη̂η̃ ◦Ψ(p)

η ) + jη̂η̃ ◦D2H0(Ψ(p)
η , z), z ∈ P.

Step 8. We now prove that the mapping jη̂η◦Φ : P → Eη̂ is Cp+1-smooth. Indeed,
as η̂ > ηp+1 > ηp, jη̂η ◦ Φ : P → Eη̂ is Cp-smooth and

Dp(jη̂η ◦ Φ) = jη̂η ◦Ψ(p)
η .

Since jη̂η ◦Ψ(p)
η is C1-smooth, we conclude that jη̂η ◦Φ is Cp+1-smooth and Dp+1(jη̂η ◦

Φ) = D(jη̂η ◦ Ψ
(p)
η ). Let Hp+1(z) = D2H0(Ψp

η(z), z) and let Ψ
(p+1)
η (z) be the unique

fixed point of the contraction

L(p+1)(Λ, Eηp+1) � F �→ Kηp+1A
(1)
rδηp+1ηp+1(Φ(z))F + Hp+1(z) ∈ L(p+1)(Λ, Eηp+1);

then Dp+1(jη̂η ◦ Φ) = jη̂ηΨ
(p+1)
η . This proves all conclusions in the case of p + 1.

Therefore, we have proved that for a fixed η̃ > ηk the mapping jη̃η ◦Φ : P → Eηk

is Ck-smooth, and hence χδη̃ |P = jη̃ηΦ is Ck smooth. Consequently, wδη̃ |P = Pu ◦
e0χδη̃ |P is Ck-smooth.

Similarly, we have the following center-unstable manifold theorem.
Theorem 5.3. Let f : U → E be a C1-map on an open subset U of a Banach

space E over R, with a fixed point p. Let L = Df(p) and assume that E has the
following decomposition:

E = Es ⊕ Ec ⊕ Eu,

where Es is a closed subspace, Ec and Eu are finite-dimensional, L(Es) ⊂ Es, L(Ec) ⊂
Ec, and L(Eu) ⊂ Eu. We further assume that

σs = σ(L|Es
: Es → Es) is contained in a compact subset of {z ∈ C : |z| < 1}

and

σc = σ(L|Ec
: Ec → Ec) ⊂ S1

C
,

σu = σ(L|Eu : Eu → Eu) ⊂ {z ∈ C : |z| > 1}.

Let Ecu = Eu ⊕ Ec. Then
(i) there exist open neighborhoods Ncu of 0 in Ecu, Ns of 0 in Es, N of p in

U , and a C1-map w : Ncu → Es with w(0) = 0, Dw(0) = 0, and w(Ncu) ⊂ Ns so
that the shifted graph W = p + {z + w(z) : z ∈ Ncu} satisfies f(W ∩ N) ⊂ W and
{x ∈ E; there exists a trajectory (xn)0−∞ of f in p + Ncu + Ns with x0 = x} ⊂W ;

(ii) if f is Ck-smooth for an integer k ≥ 2, then so is w.
We can now state the following smoothness theorem for center manifolds in gen-

eral Banach spaces.
Theorem 5.4. Let f : U → E be a C1-map on an open subset U of a Banach

space E over R, with a fixed point p. Let L = Df(p) and assume that E has the
following decomposition:

E = Es ⊕ Ec ⊕ Eu,
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where Es is a closed subspace, Ec and Eu are finite-dimensional, L(Es) ⊂ Es, L(Ec) ⊂
Ec, and L(Eu) ⊂ Eu. We further assume that

σs = σ(L|Es
: Es → Es) is contained in a compact subset of {z ∈ C : |z| < 1}

and

σc =σ(L|Ec
: Ec → Ec) ⊂ S1

C
,

σu =σ(L|Eu : Eu → Eu) ⊂ {z ∈ C : |z| > 1}.
Let Esu = Es ⊕ Ec. Then

(i) there exist open neighborhoods Nc of 0 in Ec, Nsu of 0 in Esu, N of p in U,
and a C1-map w : Nc → Esu with w(0) = 0, Dw(0) = 0, and w(Nc) ⊂ Nsu so that
the shifted graph W = p + {z + w(z) : z ∈ Nc} satisfies f(W ∩N) ⊂ W, and if there
exists (xn)∞−∞ such that xn = f(xn−1) and xn ∈ p + Nc + Nsu for every integer n,
then x0 ∈W ;

(ii) if f is Ck-smooth for an integer k ≥ 2, then so is w.
Proof. Without loss of generality, we may assume p = 0. By Theorem 5.1, there

exist convex open neighborhoods Ñcs of 0 in Ec + Es, Ñu of 0 in Eu, Ñ of 0 in U ,
and a Ck-map (k = 1 in case of (i) and k ≥ 2 in case of (ii)) w̃cs : Ñcs → Eu with

w̃cs(0) = 0, Dw̃cs(0) = 0;

w̃cs(Ñcs) ⊂ Ñu,

and such that the graph

W̃cs = {zcs + w̃cs(zcs) : zcs ∈ Ñcs}
satisfies

f(W̃cs ∩ Ñ) ⊂ W̃cs

and

∩∞n=0f
−n(Ñcs + Ñu) ⊂ W̃cs.(5.3)

By Theorem 5.3, there exist open neighborhoods N̂cu of 0 in Ec ⊕ Eu, N̂s of
0 in Es, N̂ of 0 in U , and a Ck-map (k = 1 in case (i) and k ≥ 2 in case (ii))

ŵcu : N̂cu → Es with

ŵcu(0) = 0, Dŵcu(0) = 0;

ŵcu(N̂cu) ⊂ N̂s,

and the graph

Ŵcu = {zcu + ŵcu(zcu) : zcu ∈ N̂cu}
satisfies

f(Ŵcu ∩ N̂) ⊂ Ŵcu

and

z ∈ Ŵcu if there exists {zn}0n=−∞ ⊂ N̂cu + N̂s

such that zn+1 = f(zn) for n ≤ −1 and that z0 = z.
(5.4)
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Choose open neighborhoods N∗c of 0 in Ec, N
∗
s of 0 in Es, N

∗
c of 0 in Ec, N

∗ of
0 in E such that 

N∗ ⊂ N̂ ∩ Ñ ;

N∗c + N∗s ⊂ Ñcs;

N∗c + N∗u ⊂ N̂cu;
zc ∈ N∗c , zs ∈ N∗s if z ∈ f(N∗);
zc ∈ N∗c , zu ∈ N∗u if z ∈ f(N∗);
w̃cs(zc + zs) ∈ N∗u if zc ∈ N∗c and zs ∈ N∗s .

Define

W ∗cs = {zcs + w̃cs(zcs) : zcs = zc + zs ∈ N∗c + N∗s },
W ∗cu = {zcu + ŵcu(zcu) : zcu = zc + zu ∈ N∗c + N∗u},

and

W ∗ = W ∗cs ∩W ∗cu.
For z ∈W ∗, we have

z = zc + zs + w̃cs(zc + zs)

= zc + zu + ŵcu(zc + zu)

with zc ∈ N∗c , zs ∈ N∗s , and zu ∈ N∗u . Therefore,

zs = ŵcu(zc + zu) = ŵcu(zc + w̃cs(zc + zs)).

Consider the equation

zs = ŵcu(zc + w̃cs(zc + zs)).(5.5)

As both ŵcu and w̃cs are Ck-smooth and Dŵcu(0) = 0, Dw̃cs(0) = 0, the implicit
function theorem implies that there are open neighborhoods Nc of 0 in N∗c and Ns of
0 in N∗s and a Ck-map ws : Nc → Ns such that for every zc ∈ Ns equation (5.5) has
the unique solution zs = ws(zc). It is easy to verify that ws(0) = 0 and Dws(0) = 0.

We now define wc : Nc → Es ⊕ Eu by

wc(zc) = ws(zc) + w̃cs(zc + ws(zc)), zc ∈ Nc.

Clearly, wc is Ck-smooth, wc(0) = 0, Dwc(0) = 0, and

wc(Nc) ⊂ Ns + Nu

with

Nu = N∗u .

Let

Wc = {zc + wc(zc) : zc ∈ Nc}.
We prove that if there exists {zn}∞n=−∞ ⊂ Nc + Ns + Nu such that zn+1 = f(zn) for

n ∈ Z, then z = z0 ∈ Wc. In fact, (5.3) and (5.4) imply that z ∈ Ŵcu ∩ W̃cs. As
zc ∈ Nc ⊂ N∗c , zs ∈ Ns ⊂ N∗s , and zu ∈ Nu = N∗u , we have z ∈W ∗ and

z0 = zc + zs + w̃cs(zc + zs) = zc + zu + ŵcu(zc + zu),
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from which it follows that

zs = ŵcu(zc + w̃cs(zc + zs)), zs ∈ Ns, zc ∈ Nc.

Therefore, we must have zs = ws(zc) and zu = w̃cs(zc + ws(zc)). This shows that
z ∈Wc.

Other properties in Theorem 5.4 are straightforward consequences of Theorems 5.1
and 5.3.

6. Center manifolds for nonlinear FDEs in Banach spaces. We now start
to consider semilinear FDEs

u̇(t) = ATu(t) + L(ut) + F (ut),(6.1)

where we assume AT , L are as in the previous sections, and, in particular, that (H1)–
(H3) are satisfied. We also assume that F : V1 → X is a Ck-mapping (k ≥ 1) from a
neighborhood V1 of 0 ∈ C into X with F (0) = 0 and DF (0) = 0.

Fix ω > r. Using the arguments of Fitzgibbon [6] (see also Theorems 2.1 and 2.2
in Chapter 2 of Wu [21]), we can find an open neighborhood V2 ⊂ V1 of 0 in C such
that for any φ ∈ V2 there exists a unique continuous function uφ : [−r, ω] → X such

that uφ0 = φ and

uφ(t) = T (t)φ(0) +

∫ t

0

T (t− s)[L(uφs ) + F (uφs )]ds

for t ∈ [0, ω]. Define f̃ : V2 → C by

f̃(φ) = uφω for φ ∈ V2.

As ω > r, we can show that f̃ is compact (using the argument in Travis and Webb
[18]; see also Theorem 1.8 of Chapter 2 of Wu [21]). The next lemma shows that
there exists an open neighborhood V ⊂ V2 of 0 in C such that f = f̃ |V : V → C is
Ck-smooth and

Df(0) = U(ω) : C → C.

Lemma 6.1. There exists an open neighborhood V ⊂ V2 of 0 in C such that for
each t ∈ [0, ω], uφt is Ck-smooth with respect to φ ∈ V . Moreover, for each ψ ∈ C,
Dφu

φ(t)ψ satisfies the linear variational equation{
v(t) = T (t)ψ(0) +

∫ t
0
T (t− s)[L(vs) + DF (uφs )vs]ds,

v0 = ψ.
(6.2)

In particular, Df(0) = U(ω).
Proof. We are going to apply the same argument as that for Theorem 4.1 in Hale

[8] based on [8, Lemma 4.2, p. 46]. Let F̂ (φ) = L(φ) +F (φ). Fix χ ∈ V2. There exist
M > 0, δ > 0, and N > 0 such that

‖T (t)‖ ≤M for t ∈ [0, 1];

Bδ(χ) ⊂ V2 with Bδ(χ) = {ψ ∈ C : ||ψ − χ|| < δ};
|F̂ (ψ)| ≤ N, |DF̂ (ψ)| ≤ N for ψ ∈ Bδ(χ).
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Now choose ε ∈ (0, 1) and β ∈ (0, 1) so that
β < δ

2 ;
supθ,θ′∈[−r,0],|θ−θ′|≤ε |χ(θ)− χ(θ′)| < δ

8 ;

supt∈[0,ε] |T (t)χ(0)− χ(0)| < δ
8 ;

ε < β
MN .

Let

K(ε, β) = {y ∈ C([−r, ε];X) : y0 = 0, ||yt|| ≤ β for t ∈ [0, ε]}.

Clearly, K(ε, β) is a closed subset of the Banach space C0([−r, ε]) = {z ∈ C([−r, ε];X) :
z(s) = 0 for s ∈ [−r, 0]} equipped with the supremum norm.

For each φ ∈ C, define φ̃ : [−r,∞)→ X by φ̃0 = φ and φ̃(t) = T (t)φ(0) for t ≥ 0.
Now, for fixed φ ∈ B δ

8(1+M)
(χ) define A(φ) on K(ε, β) by

A(φ)y(t) =

{ ∫ t
0
T (t− s)F̂ (ys + φ̃s)ds, y ∈ K(ε, β), t ∈ [0, ε];

0, t ∈ [−r, 0].

Clearly, A(φ)y ∈ C([−r, ε];X). Moreover, since for s ∈ [0, ε], ||ys|| ≤ β, and

||φ̃s − χ|| ≤ ||φ̃s − χ̃s||+ ||χ̃s − χ||
≤ ||φ− χ||+ sup

s∈[0,ε]

||T (s)|||φ(0)− χ(0)|

+ sup
θ∈[−r,0],s∈[0,ε],s+θ∈[−r,0]

|χ(θ + s)− χ(θ)|

+ sup
θ∈[−r,0],s∈[0,ε],s+θ≥0

|T (s + θ)χ(0)− χ(0)|

+ sup
θ∈[−r,0],s∈[0,ε],s+θ≥0

|χ(θ)− χ(0)|

≤ (1 + M)||φ− χ||+ δ

8
+
δ

8
+
δ

8
<

δ

2
,

we have

||ys + φ̃s − χ|| < β +
δ

2
< δ,

and hence

|F̂ (ys + φ̃s)| ≤ N for s ∈ [0, ε].

This implies that

|A(φ)y(t)| ≤MNε < β for t ∈ [0, ε].

So, A(φ)y ∈ K(ε, β) and A(φ)K(ε, β) ⊂ K(ε, β).
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Moreover, using ||DF̂ (ψ)|| ≤ N for all ψ ∈ Bδ(χ), for y, ŷ ∈ K(ε, β) and t ∈ [0, ε]
we have

|A(φ)y(t)−A(φ)ŷ(t)|

≤
∣∣∣∣∫ t

0

T (t− s)[F̂ (ys + φ̃s)− F̂ (ŷs + φ̃s)ds]

∣∣∣∣
≤MNε sup

s∈[0,t]

||ys − ŷs||

≤MNε sup
s∈[−r,ε]

|y(s)− ŷ(s)|

≤ β sup
s∈[−r,ε]

|y(s)− ŷ(s)|.

As β < 1, we conclude that for each φ ∈ B δ
8(1+M)

(χ), the mapping A(φ) : K(ε, β) →
K(ε, β) is a contraction. By Lemma 4.2 of Hale [8], for each fixed φ ∈ B δ

8(1+M)
(χ),

A(φ) has a unique fixed point y(φ) ∈ K(ε, β) which is continuous in φ.
Note that B δ

8(1+M)
(χ) is the closure of the open set B δ

8(1+M)
(χ) and A(φ)y has a

continuous kth derivative with respect to (φ, y) ∈ B δ
8(1+M)

(χ)×K0(ε, β), where

K0(ε, β) = {y ∈ K(ε, β) : ||yt|| < β for t ∈ [0, ε]}
is open in C0([−r, ε]) and K(ε, β) = K0(ε, β). Therefore, by Lemma 4.2 in Hale [8],

y(φ) is Ck-smooth with respect to φ ∈ B δ
8(1+M)

(χ), and hence uφt = φ̃t + (y(φ))t

is Ck-smooth in φ ∈ B δ
8(1+M)

(χ) for each fixed t ∈ [0, ε]. A standard continuation

argument then leads to the Ck-smoothness of u(φ) with respect to φ for t ∈ [0, ω].
The remaining part of the lemma can be easily verified.

Let

Σs = {λ ∈ σP (AU ) : Reλ < 0},
Σu = {λ ∈ σP (AU ) : Reλ > 0},
Σc = {λ ∈ σP (AU ) : Reλ = 0},

and assume Σc �= ∅. We know that Σc ∪ Σu is a finite set.
Let

Cs =
⊕
λ∈Σs

Mλ(AU ),

Cu =
⊕
λ∈Σu

Mλ(AU ),

Cc =
⊕
λ∈Σc

Mλ(AU ).

Cs, Cu, and Cc are realified generalized eigenspaces associated with Σs, Σu, and Σc,
respectively. Then Cu and Cc are finitely dimensional and

C = Cs ⊕ Cu ⊕ Cc.

Recall that Cs, Cu, and Cc are called the stable, unstable, and center subspaces of the
C0-semigroup {U(t)}t≥0.
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We can now state the main result of this section.
Theorem 6.2. There exist open neighborhoods Nc of 0 in Cc, Ns of 0 in Cs, Nu

of 0 in Cu, and a Ck-map wc : Nc → Cs ⊕ Cu such that
(i) wc(0) = 0, Dwc(0) = 0, wc(Nc) ⊂ Ns + Nu;
(ii) for any φ ∈ V, if there exists a continuous mapping uφ : R → X such that

uφ0 = φ,

uφ(t) = T (t− s)uφ(s) +

∫ t

s

T (t− θ)[L(uφθ ) + F (uφθ )]dθ

for t, s ∈ R with t ≥ s, and uφt ∈ Ns +Nu +Nc for all t ∈ R, then uφt ∈Wc for t ∈ R,
where

Wc = {φc + wc(φc) : φc ∈ Nc}.

Proof. Recall that f : V → C is Ck-smooth, f(0) = 0, Df(0) = U(ω), and
C = Cs ⊕ Cu ⊕ Cc,
U(ω)Cs ⊂ Cs, U(ω)Cu ⊂ Cu, U(ω)Cc ⊂ Cc,
σ(U(ω)|Cs) is a compact subset of {z ∈ C : |z| < 1},
σ(U(ω)|Cc) ⊂ S1

C
,

σ(U(ω)|Cu) ⊂ {z ∈ C : |z| > 1}.

See Chapter IV.2 in Diekmann et al. [4].
By Theorem 5.4, there exist open neighborhoods Nc of 0 in Cc, Ns of 0 in Cs,

Nu of 0 in Cu, and a Ck-map w : Nc → Cs ⊕ Cu such that wc(0) = 0, Dwc(0) = 0,
and wc(Nc) ⊂ Ns + Nu. Moreover, for Wc = {φc + wc(φc) : φc ∈ Nc}, if there exists
(φn)∞−∞ such that φn = f(φn−1) and φn ∈ Nc + Nsu for n ∈ Z, then φ0 ∈Wc.

Fix φ ∈ V such that condition (ii) of this theorem is satisfied. Then for any fixed

t ∈ R, uφt ∈ Ns + Nu + Nc ⊂ V , and if we let

φn = uφt+nω, n ∈ Z,

then φn+1 = f(φn) for n ∈ Z and φn ∈ Nc + Ns + Nu for all n ∈ Z. Therefore, the

result in the last step implies that φ0 = uφt ∈Wc. This completes the proof.
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Abstract. A two species competition model with diffusion is considered. The parameters
describing the growth, interaction, and self-limitation of the species are spatially inhomogeneous
and temporally almost periodic. The boundary conditions are homogeneous and of Neumann or
Dirichlet type. First, a convergence theorem is derived in the single species case. Roughly speaking,
it states that one of the following alternatives will occur: either every positive solution converges
to a unique strictly positive almost periodic solution, every positive solution converges to the trivial
solution, or every positive solution is neither bounded away from the trivial solution nor converges
to it. Then appropriate conditions for uniform persistence of both species as well as for extinction of
one of the species are established. Moreover, it is shown that uniform persistence implies coexistence
in the sense that there is a strictly positive solution whose hull is almost automorphic. The above
results generalize earlier work in the time independent and time periodic cases for both single species
population models and two species competition models. The approach developed in this paper for
dealing with almost periodic equations can be applied to more general nonautonomous equations, as
we will indicate by briefly discussing applications where merely time recurrence is supposed.

Key words. almost periodicity, almost automorphy, competition, uniform persistence, coexis-
tence, extinction
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1. Introduction. A central issue in population dynamics is the long-term devel-
opment of populations, and one finds terms such as uniform persistence (sometimes
also called permanence), coexistence, and extinction describing important special
types of asymptotic behavior of the solutions of associated model equations. The time
independent and time periodic cases have found great interest in the past. Our goal,
however, is to investigate possible scenarios for two species populations in the case
where the model equations depend on time nonperiodically. The reaction-diffusion
system under consideration is given by

ut = k1∆u+ u(a1(t, x)− b1(t, x)u− c1(t, x)v), x ∈ Ω,
vt = k2∆v + v(a2(t, x)− b2(t, x)u− c2(t, x)v), x ∈ Ω,
Bu = Bv = 0, x ∈ ∂Ω,

(1.1)

where k1, k2 are positive constants, ai, bi, ci (i = 1, 2) are smooth functions, Ω ⊂ R
n

is a smooth bounded region, and Bu = ∂u
∂n , Bv =

∂v
∂n or Bu = u, Bv = v.

System (1.1) models the competition between two species. It is sometimes called
the Lotka–Volterra competition model. In the context of ecology, k1, k2 are the
dispersal rates, a1, a2 represent growth rates, b1, c2 denote self-limitation rates, and
c1, b2 are the interaction rates. Dirichlet boundary conditions (u = v = 0, x ∈ ∂Ω)
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describe a “lethal crossing” boundary, and Neumann boundary conditions (∂u∂n =
∂v
∂n =

0) exclude migration across the boundary.
Ecologically, one is only interested in positive solutions of system (1.1), and it

is the objective of this paper to study uniform persistence, coexistence, and extinc-
tion for (1.1). Roughly speaking, uniform persistence means that there are strictly
positive functions u∗(·), u∗(·), v∗(·), and v∗(·) such that, for every positive solution
(u(t, x), v(t, x)) of (1.1), u∗(x) ≤ u(t, x) ≤ u∗(x), and v∗(x) ≤ v(t, x) ≤ v∗(x) for
x ∈ Ω and large t, coexistence refers to the existence of certain distinct strictly posi-
tive solutions, and extinction indicates that at least one of the species eventually dies
out. These issues have been studied widely for time independent or time periodic
equations under Neumann boundary conditions; cf. [3], [4], [6], [9], [13], [16], [20],
[25], [26], [27], [30], [31], [42], [46], [47], [48], etc. In [8], [10], etc., one also finds
results in the case of Dirichlet boundary conditions. It turns out that, thanks to
the Poincaré map, time periodic equations resemble time independent ones in many
aspects.

In nature, populations evolve influenced by external effects which are roughly,
but not exactly periodic, or under environmental forcing which exhibits different,
noncommensurate periods. This sort of time dependence can arise from the interplay
of short-term weather cycles and seasonal climate variations, or from the superpo-
sition of daily and annually periodic phenomena, and so on. Growth processes, for
example, depend on the length of days and nights which varies during the year. Mod-
els with such time dependence are characterized more appropriately by quasi-periodic
or almost periodic equations or even by certain nonautonomous equations rather than
by periodic ones. Additionally, populations are affected by a wide variety of irreg-
ularly occurring phenomena which lead to stochastic or random equations. Both
types of equations, time nonperiodic deterministic (e.g., quasi-periodic and almost
periodic) equations and time stochastic ones are therefore worth studying. In this
paper, we will focus on the first type of equations, in particular, time quasi-periodic,
almost periodic, and certain general nonautonomous equations. These equations have
found much attention (see [1], [2], [14], [15], [22], [37], etc.). However, in contrast to
the time independent and periodic cases, many fundamental questions about general
nonautonomous, even about quasi-periodic or almost periodic cases remain open. For
example, in the time periodic case, uniform persistence implies the coexistence in the
sense that there is a strictly positive periodic solution having the same period as the
period of the functions arising in (1.1). However, it is not known yet whether, in the
general time quasi-periodic (almost periodic) case, uniform persistence implies the
existence of a strictly positive quasi-periodic (almost periodic) solution. If not, which
kind of distinct positive solution may result from uniform persistence? Note that
quasi periodicity is a special kind of almost periodicity. It is known (see [38]) that in
a certain sense quasi-periodic time dependence does not result in “better” dynamics
than general almost periodic dependence. Motivated by these facts, we will mainly
focus in this paper on (1.1) with general almost periodic time dependence. Typically,
studies about periodic equations are carried out in terms of the Poincaré map. A
unified framework to study an almost periodic equation is the so-called skew-product
(semi)flow generated by the equation (see [35], [36], [38], etc.). We will carry out our
study for almost periodic competition models in the skew-product setting, but note
that the approach developed in this paper for dealing with almost periodic equations
can be applied to more general time dependent settings. Moreover, methodologically
this framework can also be considered a precursor for a study of associated stochastic
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problems, even if the concept of random dynamical systems would prove to be inade-
quate due to technical obstacles from stochastic partial differential equations (cocycle
property).

From now on, we assume that ai, bi, ci (i = 1, 2) in (1.1) are smooth functions
(i.e., continuous in x on Ω̄ and Hölder continuous in t) and that they are uniformly
almost periodic in t (see section 2.1 for definition) unless otherwise specified. In such
a setting, system (1.1) has been considered under Neumann boundary conditions in
[1], [2], [14], etc. In [22], we studied the long-time behavior of positive solutions of
(1.1) when ai, bi, ci are spatially homogeneous and Neumann boundary conditions
are prescribed. We took advantage of findings for the associated system of ODEs,{

u̇ = u(a1(t)− b1(t)u− c1(t)v)
v̇ = v(a2(t)− b2(t)u− c2(t)v),(1.2)

by investigating the relation between (1.1) and (1.2) and utilized convergence results
from [37] for the single species population model{

ut = k∆u+ u(a(t, x)− b(t, x)u), x ∈ Ω,
Bu = 0, x ∈ ∂Ω,(1.3)

assuming that Bu = ∂u
∂n , k is a positive constant, a and b are smooth functions which

are uniformly almost periodic in t, and Ω has the same meaning as for (1.1).
Clearly, a new approach is required when dealing with (1.1) in the general case.

As a first step, we develop a general method for studying the convergence of positive
solutions of the single species population model (1.3) when Bu = u or Bu = ∂u

∂n . A
solution u(t, x) of (1.3) is said to be positive if u(t, x) ≥ 0 (u �≡ 0) for x ∈ Ω and t ≥ 0,
and strictly positive if in the Neumann case (Bu = ∂u

∂n ) one has u(x, t) > 0 for x ∈ Ω̄
and t ≥ 0, and if in the Dirichlet case (Bu = u) one has u(x, t) > 0 for x ∈ Ω and
t ≥ 0, ∂u∂n < 0 for x ∈ ∂Ω and t ≥ 0. A solution u(t, x) of (1.3) is said to converge
to u∗(t, x) if u(t, ·) − u∗(t, ·) → 0 in an appropriate function space norm as t → ∞.
Denote by M(·) the frequency module of an almost periodic (almost automorphic)
function (see section 2.1 for a definition). We prove the following result.

Theorem A (Corollary 3.4). Consider (1.3) and assume b(t, x) ≥ δ for some
δ > 0. One and only one of the following alternatives occurs.

(1) Every positive solution converges to a unique strictly positive almost periodic
solution u∗(t, x) with M(u∗) ⊂M(a, b).

(2) Every positive solution converges to the trivial solution u = 0.
(3) Every positive solution is neither bounded away from the trivial solution nor

converges to it.
Notice that if a, b in (1.3) are actually periodic in t, alternative (3) of Theorem

A cannot occur in view of the generic convergence of monotone dynamical systems
([24], [29], [33], [40], etc.). Theorem A extends the convergence results proved for
the periodic case in [18], [19], [21], as well as the convergence results for (1.3) which
were obtained in [37] for the Neumann case Bu = ∂u

∂n . It should be pointed out that
Takáč [43] has obtained some results which partially cover Theorem A, by using the
so-called part metric.

Next, we consider positive solutions of (1.1). A solution (u(t, x), v(t, x)) of (1.1)
is said to be positive if u(t, x) ≥ 0, v(t, x) ≥ 0 (u(t, x) �≡ 0, v(t, x) �≡ 0) for x ∈ Ω and
t ≥ 0, and strictly positive if one has in the Neumann case that u(t, x) > 0, v(t, x) > 0
for x ∈ Ω̄ and t ≥ 0, and if one has in the Dirichlet case that u(t, x) > 0, v(t, x) > 0
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for x ∈ Ω and t ≥ 0, ∂u∂n < 0, ∂v∂n < 0 for x ∈ ∂Ω and t ≥ 0. A solution (u(t, x), v(t, x))
of (1.1) is said to converge to (u∗(t, x), v∗(t, x)) if, in a certain function space norm,
u(t, x)− u∗(t, x)→ 0 and v(t, x)− v∗(t, x)→ 0 as t→∞. Let
(1.4)1 aiL(M) = inf(sup)t∈R,x∈Ω̄ai(t, x),

(1.4)2 biL(M) = inf(sup)t∈R,x∈Ω̄bi(t, x),

(1.4)3 ciL(M) = inf(sup)t∈R,x∈Ω̄ci(t, x).

Assume that aiL, biL, ciL > 0, and u ≡ 0 is an unstable solution of{
ut = k1∆u+ u(a1 − b1u), x ∈ Ω,
Bu = 0, x ∈ ∂Ω(1.5)

and v ≡ 0 is an unstable solution of{
vt = k2∆v + v(a2 − c2v), x ∈ Ω,
Bv = 0, x ∈ ∂Ω.(1.6)

Then, by Theorem A(1), (1.5), (1.6) has a globally stable strictly positive almost
periodic solution u∗(t, x) (v∗(t, x)) with M(u∗) ⊂ M(a1, b1) (M(v∗) ⊂ M(a2, c2)).
We show the following results.

Theorem B (Theorem 5.1). Consider (1.1). Assume that Bu = ∂u
∂n .

(1) If a1L >
c1Ma2M

c2L
and a2L >

a1Mb2M
b1L

, then uniform persistence occurs. More-
over, there is a strictly positive solution (u∗(t, x), v∗(t, x)) whose hull is almost au-
tomorphic, and, for each (ũ∗(·, ·), ṽ∗(·, ·)) ∈ H(u∗, v∗) with ũ∗(t, x), ṽ∗(t, x) being
almost automorphic in t, M(ũ∗, ṽ∗) ⊂M(a1, b1, c1, a2, b2, c2).

(2) If a1L >
c1Ma2M

c2L
and a2M ≤ a1Lb2L

b1M
, then every positive solution converges to

(u∗(t, x), 0).
(3) If a1M ≤ c1La2L

c2M
and a2L >

a1Mb2M
b1L

, then every positive solution converges to
(0, v∗(t, x)).

(4) If a1 = a2, b1 = b2 = c1 = c2, and also k1 = k2 in the case where ai, bi, ci
(i = 1, 2) are not spatially homogeneous, then there is a stable continuous family of
strictly positive almost periodic solutions connecting (u∗(t, x), 0) and (0, v∗(t, x)).

Theorem C. (Theorem 5.2). Consider (1.1). Assume that Bu = u.
(1) If a1L >

c1Ma2M

c2L
, a2L >

a1Mb2M
b1L

, k1 = k2, and a1 = a2 (constant), then uni-
form persistence occurs. Moreover, there is a strictly positive solution (u∗(t, x), v∗(t, x))
whose hull is almost automorphic, and one has M(ũ∗, ṽ∗) ⊂ M(a1, b1, c1, a2, b2, c2)
for each (ũ∗(·, ·), ṽ∗(·, ·)) ∈ H(u∗, v∗) for which ũ∗(·, ·), ṽ∗(·, ·) are almost automorphic
in t.

(2) If a1L >
c1Ma2M

c2L
, a2M ≤ a1Lb2L

b1M
, k2 ≥ k1, and a1L ≥ a2, then every positive

solution converges to (u∗(t, x), 0).
(3) If a1M ≤ c1La2L

c2M
, a2L >

a1Mb2M
b1L

, k1 ≥ k2, and a2L ≥ a1, then every positive
solution converges to (0, v∗(t, x)).

(4) If k1 = k2, a1 = a2, and b1 = b2 = c1 = c2, then there is a stable contin-
uous family of strictly positive almost periodic solutions connecting (u∗(t, x), 0) and
(0, v∗(t, x)).

As pointed out before, in the periodic case, uniform persistence implies coexistence
in the sense that there is a strictly positive periodic solution with the same period
as the period of the functions arising in (1.1). By Theorems B and C, in the almost
periodic case, uniform persistence implies the coexistence in the sense that there is a
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strictly positive solution whose hull is almost automorphic with the same frequency
module as that of the functions arising in (1.1). Note that such a solution is periodic
if these functions are actually periodic and all have the same period. Therefore, on
the one hand, Theorems B and C shed light on uniform persistence, coexistence,
and extinction in the case of almost periodic competition models, and, on the other
hand, they generalize most existing results for corresponding time independent or
time periodic competition models.

Also, as previously mentioned, the approach which we develop here for dealing
with (1.1) and (1.3) in the case of almost periodic time dependence extends to more
general situations. For example, if we assume only recurrent time dependence (see
section 2.1 for a definition) in the context of (1.1) and (1.3), we obtain the following
results.

Theorem D (Theorem 6.1). Consider (1.3) with a, b being recurrent in t and
b ≥ δ for some δ > 0. One and only one of the following alternatives occurs.

(1) Every positive solution converges to a unique strictly positive recurrent solution
u∗(t, x) whose hull is a 1-cover of the hull of (a, b).

(2) Every positive solution converges to the trivial solution u = 0.
(3) Every positive solution is neither bounded away from the trivial solution nor

converges to it.
Theorem E (Theorem 6.2). Consider (1.1) with ai, bi, ci (i = 1, 2) being recur-

rent in t. Assume that Bu = ∂u
∂n = 0.

(1) If a1L >
c1Ma2M

c2L
and a2L >

a1Mb2M
b1L

, then uniform persistence occurs. More-
over, there is a strictly positive recurrent solution (u∗(t, x), v∗(t, x)) whose hull is an
almost 1-cover of the hull of (a1, b1, c1, a2, b2, c2).

(2) If a1L >
c1Ma2M

c2L
and a2M ≤ a1Lb2L

b1M
, then every positive solution converges to

(u∗(t, x), 0), where u∗(t, x) is the unique strictly positive recurrent solution of (1.5)
guaranteed by Theorem D(1).

(3) If a1M ≤ c1La2L

c2M
and a2L >

a1Mb2M
b1L

, then every positive solution converges to
(0, v∗(t, x)), where v∗(t, x) is the unique strictly positive recurrent solution of (1.6)
guaranteed by Theorem D(1).

Theorem F (Theorem 6.3). Consider (1.1) with ai, bi, ci (i = 1, 2) being recur-
rent in t. Assume that Bu = u.

(1) If a1L > c1Ma2M

c2L
, a2L > a1Mb2M

b1L
, k1 = k2, and a1 = a2 (constant), then

uniform persistence occurs. Moreover, there is a strictly positive recurrent solution
(u∗(t, x), v∗(t, x)) whose hull is an almost 1-cover of the hull of (a1, b1, c1, a2, b2, c2).

(2) If a1L > c1Ma2M

c2L
, a2M ≤ a1Lb2L

b1M
, k2 ≥ k1, and a1L ≥ a2, then every pos-

itive solution converges to (u∗(t, x), 0), where u∗(t, x) is the unique strictly positive
recurrent solution of (1.5) guaranteed by Theorem D(1).

(3) If a1M ≤ c1La2L

c2M
, a2L >

a1Mb2M
b1L

, k1 ≥ k2, and a2L ≥ a1, then every positive
solution converges to (0, v∗(t, x)), where v∗(t, x) is the unique strictly positive recurrent
solution of (1.6) guaranteed by Theorem D(1).

Let us end the discussion of our results by the following remarks. First, Theorems
D, E, and F apply to both the almost periodic and the almost automorphic cases,
and, when applied to the almost periodic case, Theorems A, B, and C, respectively,
are recovered. In order to be more precise, if a and b are actually uniformly almost pe-
riodic (almost automorphic) in t (see section 2.1 for a definition), u∗(t, x) in Theorem
D(1) is also almost periodic (almost automorphic) andM(u∗) ⊂M(a, b). In the case
where ai, bi, and ci (i = 1, 2) are uniformly almost periodic (almost automorphic) in
t, u∗(t, x) and v∗(t, x) in Theorems E, F(2) and Theorems E, F(3) are almost periodic
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(almost automorphic), but (u∗(t, x), v∗(t, x)) in Theorems E, F(1) may be neither al-
most periodic nor almost automorphic; nevertheless, their hull is almost automorphic
(see section 2.1 for a definition). Second, we remark that the approach developed in
the current paper applies to more general right-hand sides of one species population
and two species competition models (see [22] for the spatially homogeneous case).
It also has certain implications on the study of stochastic population models (see
[23] for one species population models). Finally, we note that the dynamical system
framework employed in this paper can also be applied to (two species) competition
in stirred and unstirred chemostats, though due to the lack of monotonicity many
techniques developed in this paper do not extend to such models, and new techniques
need to be introduced. A characteristic feature of such models is a nutrition in- and
out-flow explicitly represented by an extra differential equation. Waltman has made
numerous contributions to this area, but we refer here only to the monograph [41].

The paper is organized as follows. In section 2, we present some preliminary
lemmas. Section 3 is devoted to the investigation of a single almost periodic popula-
tion model, and Theorem A will be proved in this section. We establish some basic
properties of the almost periodic two species competition model in section 4 and es-
tablish Theorems B and C in section 5. In section 6, we describe some results which
can be obtained for (1.1) and (1.3) in the case of general recurrent time dependence
by employing the approach which we have developed in this paper in the context of
almost periodic time dependence.

2. Preliminary lemmas. In this section, we present some results about fre-
quency module containment of almost periodic (almost automorphic) functions, ω-
limit sets of skew-product semiflows, and spectra of linear scalar parabolic equations
for use in later sections.

2.1. Almost periodic, almost automorphic, and recurrent functions.
Let E ⊂ R

n and f ∈ C(R×E,Rm) be uniformly almost periodic (almost automorphic)
in t. Recall that f ∈ C(R×E,Rm) is uniformly almost periodic (almost automorphic)
in t if f is uniformly continuous on R × E0 for any bounded subset E0 ⊂ E and is
almost periodic (almost automorphic) in t for each x ∈ E, and f(t, x) is almost periodic
(almost automorphic) in t for given x ∈ E if, for all sequences {α′

n}, {β
′
n} ⊂ R ({α′

n} ⊂
R), there are subsequences {αn} ⊂ {α′

n}, {βn} ⊂ {β
′
n} ({αn} ⊂ {α

′
n}) such that

limk→∞ limn→∞ f(t+αn+βk, x) = limn→∞ f(t+αn+βn, x) (limk→∞ limn→∞ f(t+
αn − αk, x) = f(t, x)) pointwise for t ∈ R (see [11], [45] for details). The so-called
frequency module of f is defined as follows. Let

f(t, x) ∼
∑
λ∈R

aλ(x)e
iλt(2.1)

be a Fourier series of f (see [44], [45] for the definition and existence of Fourier series).
Then S(f) = {λ : aλ(x) �≡ 0} is called the Fourier spectrum of f associated with the
Fourier series (2.3), andM(f) = the smallest additive subgroup of R containing S(f)
is called the frequency module of f . We note that S(f) may depend on the chosen
Fourier series (2.1), butM(f) is independent of that series (see [45]).

Let E ⊂ R
n and f ∈ C(R × E,Rn) be uniformly continuous on R × E0 for each

bounded subset E0 ⊂ E. The hull H(f) of f is defined to be H(f) = cl{f · τ |τ ∈ R},
where f · τ(t, x) = f(t + τ, x), and the closure is taken under the compact open
topology. Denote (H(f),R) as the translation flow (g, t) = g · t for each g ∈ H(h)
and t ∈ R. f is said to have an almost periodic (almost automorphic) hull if (H(f),R)
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is minimal and there is g ∈ H(f) such that g is uniformly almost periodic (almost
automorphic) in t. f is said to be recurrent if (H(f),R) is minimal. Notice that if f
is almost periodic (almost automorphic), then (H(f),R) is minimal, and hence f is
recurrent.

Lemma 2.1. Let f(t, x) and g(t, y) (f ∈ C(R × E,Rm), g ∈ C(R × E,Rk)) be
two uniformly almost automorphic functions in t. Then M(g) ⊂ M(f) iff for each
sequence {αn} ⊂ R, if limn→∞ f(t+αn, x) = f(t, x) uniformly for t and x in bounded
sets, then limn→∞ g(t+ αn, y) = g(t, y) uniformly for t and y in bounded sets.

Proof. See [45].

2.2. Skew-product semiflows. Let (Y,R) be a minimal flow with Y being a
compact metric space and y · t ≡ (y, t) for any y ∈ Y and t ∈ R. Let Z be a complete
metric space and ≤ be a partial ordering on Z satisfying that if z1

n ≤ z2
n (n ∈ N),

then limn→∞ z1
n ≤ limn→∞ z2

n provided that both limits exist. Let P : Z×Y → Y be
the natural projection and πt : Z × Y → Z × Y be a skew-product semiflow, that is,
a semiflow of the form

πt(z, y) = (Ψ(t; z, y), y · t)

for all (z, y) ∈ Z × Y and t ≥ 0. Given (z0, y0) ∈ Z × Y , if {πt(z0, y0)|t ≥ t0} is
relatively compact for a t0 > 0, then the set

ω(y0, z0) =
⋂
τ≥t0

cl{πt+τ (z0, y0)|t ≥ 0}

is called the ω-limit set of πt(z0, y0). We say πt is partially monotone with respect to
≤ if, for any y ∈ Y and any z1, z2 ∈ Z with z1 ≤ z2, Ψ(t; z1, y) ≤ Ψ(t; z2, y) for t ≥ 0.

Lemma 2.2. Assume that, for each (z, y) ∈ Z × Y , πt(z, y) has at most one
backward extension and that (z0, y0) ∈ Z × Y is such that {πt(z0, y0)|t ≥ t0} is
relatively compact for some t0 > 0.

(1) πt has a flow extension on the ω-limit set ω(z0, y0).
(2) There is a residual invariant subset Y0 ⊂ Y such that, for all y∗ ∈ Y0, y ∈ Y ,

and {tn} ⊂ R with y · tn → y∗ and for all (z∗, y∗) ∈ P−1(y∗) ∩ ω(z0, y0), there is a
sequence {(zn, y)} ⊂ P−1(y) ∩ ω(z0, y0) such that πtn(zn, y)→ (z∗, y∗).

(3) If πt is partially monotone with respect to ≤, and z0 ≤ z (z ≤ z0) for every
(z, y0) ∈ ω(z0, y0), then ω(z0, y0) is an almost 1-cover of Y ; that is, P−1(y)∩ω(z0, y0)
is a singleton for residually many y ∈ Y .

Proof. (1) The proof follows from [38].
(2) See [39] or [45].
(3) Without loss of generality, assume that z0 ≤ z for every (z, y0) ∈ ω(z0, y0). Let

Y0 ⊂ Y be the set guaranteed by (2). For y∗ ∈ Y0 and (z1, y
∗), (z2, y∗) ∈ ω(z0, y0), let

tn →∞ be such that πtn(z0, y0)→ (z1, y
∗). By (2), one finds (zn, y0) ∈ ω(z0, y0) (n ∈

N) such that πtn(z
n, y0) → (z2, y

∗). Since z0 ≤ zn, one has πtn(z0, y0) ≤ πtn(zn, y0)
for n ≥ 1, thus z1 ≤ z2. Similarly, we can prove that z2 ≤ z1. Hence z1 = z2 and
ω(z0, y0) is an almost 1-cover of Y .

2.3. Spectrum of linear scalar parabolic equations. Given a smooth
bounded region Ω ⊂ R

n, let X ⊂ Lp(Ω) (p > n) be a fractional power space of
−∆ : D → Lp(Ω) satisfying X ↪→ C1(Ω̄), where D = {u ∈ H2,p(Ω)|Bu = 0 for
x ∈ ∂Ω} and Bu = ∂u

∂n or u [17]. Then IntX+ �= ∅. This is because, in the case that
Bu = ∂u

∂n , the set {u ∈ X|u(x) > 0 for x ∈ Ω̄} ⊂ IntX+ is not empty, and, in the case
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that Bu = u, the set {u ∈ X|u(x) > 0 for x ∈ Ω and ∂u
∂n < 0 for x ∈ ∂Ω} ⊂ IntX+ is

not empty. Consequently, X+ defines a strong ordering on X as follows:

u1 ≤ u1 if u1(x) ≤ u2(x) for all x ∈ Ω,(2.2)

u1 < u2 if u1 ≤ u2 but u1 �= u2,(2.3)

u1 � u2 if u2 − u1 ∈ IntX+.(2.4)

Let (Y,R) be a compact flow and y · t ≡ (y, t). Consider

(2.5)y

{
ut = k∆u+A(y · t, x)u, x ∈ Ω,
Bu = 0, x ∈ Ω,

where u is a scalar function, k is a positive constant, y ∈ Y , A : Y × Ω̄ → R is
continuous, and A(y · t, x) is Hölder continuous in t uniformly with respect to y ∈ Y
and x ∈ Ω̄. Then (2.5)y generates a skew-product semiflow [17], Πt : X×Y → X×Y ,

Πt(u, y) = (Φ(t;u, y), y · t),(2.6)

where Φ(t;u, y) is the solution of (2.5)y with Φ(0;u, y) = u. Thanks to the maximum
principle for parabolic equations [12], [34], Πt in (2.6) is strongly monotone in the
sense that Φ(t;u, y)� 0 for any t > 0, y ∈ Y , and u ∈ X+ with u �≡ 0. The so-called
Sacker–Sell spectrum and upper Lyapunov exponent of (2.6) or (2.5)y are defined as
follows.

For a given σ ∈ R, define Πσt : X × Y → X × Y , t ≥ 0,
(2.7)σ Πσt (u, y) = (Φσ(t;u, y), y · t),
where Φσ(t;u, y) = e−σtΦ(t;u, y). Then the set

Σ(k, Y ) = {σ ∈ R | (2.7)σ admits no exponential dichotomy}
is called the Sacker–Sell (dynamical) spectrum and the number λ(k, Y ) = supy∈Y λ(k, y)
is called the upper Lyapunov exponent of (2.6), where λ(k, y) = lim supt→∞

ln ‖Φ(t;·,y)‖
t .

Notice that, for any smooth function h(t, x) which is uniformly almost periodic
(almost automorphic, recurrent) in t, the almost periodic (almost automorphic, re-
current) scalar parabolic equation{

ut = k∆u+ h(t, x)u, x ∈ Ω,
Bu = 0, x ∈ ∂Ω,(2.8)

can be built into (2.5)y by letting Y = H(h) and A : Y × Ω̄ → R, A(g, x) = g(0, x)
for any g ∈ Y and x ∈ Ω̄. Moreover, the dynamics of (2.8) is then reflected by that
of the skew-product semiflow generated (2.5)y with y ∈ Y = H(h). If h(t, x) = h(x)
is independent of t, then λ(k, h) is the largest eigenvalue of the eigenvalue problem,{

k∆u+ h(x)u = λu, x ∈ Ω,
Bu = 0, x ∈ ∂Ω.(2.9)

Lemma 2.3. (1) Suppose that h1(t, x) and h2(t, x) are two smooth functions which
are uniformly almost periodic (almost automorphic, recurrent) in t. If h1(t, x) ≤
h2(t, x), then λ(k,H(h1)) ≤ λ(k,H(h2)).
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(2) If h is uniformly almost periodic in t, then λ(k, g) is independent of g ∈ H(h)
(consequently, λ(k,H(h)) = λ(k, h)).

(3) If h is uniformly almost periodic in t, then λ(k, h) ≥ λ(k, h̄), where h̄(x) =

limt→∞ 1
t
∫ t
0
h(s, x)ds.

(4) If h is uniformly almost periodic in t, then there is σ1 < λ(k, h) such that
Σ(k,H(h)) = Σ1 ∪ {λ(k, h)} and λ ≤ σ1 for any λ ∈ Σ1.

(5) Suppose that 0 < k1 ≤ k2 are two constants and h1(x) ≥ h2(x) are two smooth
functions. Then λ(k1, h1) ≥ λ(k2, h2), and the strict inequality holds if h1 �≡ h2.

Proof. (1), (2), (3), and (4) follow from the arguments in [28] and the exponential
separation theory in [32]. (5) follows from the fact that

λ(ki, hi) = sup
u∈X,‖u‖2=1

(
−ki

∫
Ω

| � u(x)|2dx+
∫

Ω

hi(x)u
2(x)dx

)

(i = 1, 2), where ‖u‖2 = (
∫
Ω
u2(x)dx)1/2.

3. Convergence for almost periodic single species population models.
In this section, we consider the convergence in the following single species population
model: {

ut = k∆u+ u(a(t, x)− b(t, x)u), x ∈ Ω,
Bu = 0, x ∈ ∂Ω,(3.1)

where k is a positive constant, a(t, x), b(t, x) (b(t, x) ≥ δ > 0) are smooth functions
and are uniformly almost periodic in t, Ω ⊂ R

n is a smooth bounded region, and
Bu = ∂u

∂n or u.
Let X ↪→ C1(Ω̄) be as in section 2.3, and let ‖ · ‖ be the norm of X. Let

P : X×H(a, b)→ H(a, b) be the natural projection and Πt : X×H(a, b)→ X×H(a, b)
be the (local) skew-product semiflow generated by (3.1); that is,

Πt(u0, a, b) = (u(t, ·;u0, c, d), c · t, d · t),(3.2)

where u(t, ·;u0, c, d) is the solution of

(3.3)c,d

{
ut = k∆u+ u(c(t, x)− d(t, x)u), x ∈ Ω,
Bu = 0, x ∈ ∂Ω

with u(0, ·;u0, c, d) = u0(·) ((c, d) ∈ H(a, b)). By the comparison principle for parabo-
lic equations [12], [34], Πt is partially monotone with respect to the ordering ≤ in (2.2).

Definition 3.1. A set E ⊂ X ×H(a, b) is said to be trivial if E ⊂ {0}×H(a, b)
and strictly positive if there is u+ ∈ IntX+ such that u ≥ u+ for any (u, c, d) ∈ E.

Notice that, for any (c, d) ∈ H(a, b), u ≡ 0 is a solution of (3.3)c,d and that
for sufficiently large M > 1, u(t, x) = M is a supersolution of (3.3)c,d. Therefore
the comparison principle and standard a priori estimates for parabolic equations [12],
[17], [18] yield the following result.

Lemma 3.2. There is M0 > 0 such that, for any u0 ∈ X+ \ {0} and any (c, d) ∈
H(a, b), u(t, ·;u0, c, d) exists for all t ≥ 0 and

u(t, ·;u0, c, d)� 0 for t > 0,

0 < u(t, x;u0, c, d) ≤M0 for x ∈ Ω, t� 1.
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Lemma 3.2 and the theory of parabolic equations [12], [17] imply that Πt : X+ ×
H(a, b) → X+ × H(a, b) is a skew-product semiflow and {u(t, ·;u0, c, d)|t ≥ t0} is
relatively compact in X for any u0 ∈ X+ and t0 > 0. Therefore, the ω-limit set
ω(u0, c, d) of Πt(u0, c, d) is well defined for all (u0, c, d) ∈ X+ × H(c, d). Moreover,
Lemma 2.2(1) and the unique backward extensibility for parabolic equations show
that Πt has a flow extension on ω(u0, c, d). The main result of this section is the
following.

Theorem 3.3. Consider (3.2). One and only one of the following three alterna-
tives occurs.

(1) For any u0 ∈ X+\{0}, ω(u0, a, b) is strictly positive, a 1-cover of H(a, b) (that
is, P−1(c, d) ∩ ω(u0, a, b) is a singleton for any (c, d) ∈ H(a, b)), and independent of
u0.

(2) For any u0 ∈ X+ \ {0}, ω(u0, a, b) = {0} ×H(a, b).
(3) For any u0 ∈ X+ \ {0}, ω(u0, a, b) ∩ ({0} × H(a, b)) �= ∅ and ω(u0, a, b) ∩

(IntX+ ×H(a, b)) �= ∅.
The following corollary directly follows from Theorem 3.3 and Lemma 2.1.
Corollary 3.4. Consider (3.1). One and only one of the following three alter-

natives occurs.
(1) There is a strictly positive almost periodic solution u∗(t, x) with M(u∗) ⊂

M(a, b) such that, for any u0 ∈ X+ \ {0}, u(t, ·;u0, a, b) converges to u∗(t, x) in X;
i.e.,

‖u(t, ·;u0, a, b)− u∗(t, ·)‖ → 0

as t→∞.
(2) For any u0 ∈ X+ \ {0}, u(t, ·;u0, a, b) converges to u ≡ 0.
(3) For any u0 ∈ X+ \{0}, u(t, ·;u0, a, b) is neither bounded away from u ≡ 0 nor

converges to u ≡ 0.
Before presenting the proof of Theorem 3.3, we establish the following four lem-

mas.
Lemma 3.5. Given u0 ∈ X+, α, β ∈ R

+ with 0 < α ≤ 1 ≤ β, and (c, d) ∈ H(a, b),
then

αu(t, ·;u0, c, d) ≤ u(t, ·;αu0, c, d) ≤ u(t, ·;u0, c, d)

and

u(t, ·;u0, c, d) ≤ u(t, ·;βu0, c, d) ≤ βu(t, ·;u0, c, d)

for t ≥ 0.
Proof. First of all, the comparison principle for parabolic equations yields

u(t, ·;αu0, c, d) ≤ u(t, ·;u0, c, d) ≤ u(t, ·;βu0, c, d)(3.4)

for t ≥ 0.
Next, letting u1(t, x) = αu(t, x;u0, c, d), u2(t, x) = u(t, x;αu0, c, d), u3(t, x) =

u(t, x;βu0, c, d), and u4(t, x) = βu(t, x;u0, c, d), one has that u = ui(t, x) is the solu-
tion of {

ut = k∆u+ h(t, x)u, x ∈ Ω,
Bu = 0, x ∈ ∂Ω,(3.5)
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with h(t, x) = hi(t, x) and u(0, x) = ui(x) (i = 1, 2, 3, 4), where

h1(t, x) = h4(t, x) = c(t, x)− d(t, x)u(t, x;u0, c, d),

h2(t, x) = c(t, x)− d(t, x)u(t, x;αu0, c, d),

h3(t, x) = c(t, x)− d(t, x)u(t, x;βu0, c, d),

and

u1(x) = u2(x) = αu0(x), u3(x) = u4(x) = βu0(x).

By (3.4),

h1(t, x) ≤ h2(t, x) and h3(t, x) ≤ h4(t, x) for x ∈ Ω, t ≥ 0.
Again, it follows from the comparison principle that

u1(t, ·) ≤ u2(t, ·) and u3(t, ·) ≤ u4(t, ·)(3.6)

for t ≥ 0, and (3.4) and (3.6) imply the statements of the lemma.
Lemma 3.6. Suppose that ω(u∗0, a, b) is strictly positive for some u∗0 ∈ IntX+;

then ω(u0, a, b) is strictly positive for all u0 ∈ X+ \ {0}.
Proof. First of all, u(t, ·;u0, a, b) ∈ IntX+ for u0 ∈ X+ \ {0} and t > 0. Hence we

may assume without loss of generality that u0 ∈ IntX+.
Next, for any u0 ∈ IntX+, there is α > 0 such that u0 ≥ αu∗0. Then the

comparison principle for parabolic equations and Lemma 3.5 imply

αu(t, x;u∗0, a, b) ≤ u(t, ·;u0, a, b) for t > 0.

Thus, ω(u0, a, b) is strictly positive for any u0 ∈ IntX+.
Lemma 3.7. Let E ⊂ X+ × H(a, b) be compact, strictly positive, and invariant

under Πt. Then, for each ε > 0, there is δ > 0 such that, for any (u1, c, d) ∈ E and
u2 ∈ X+ with ‖u2 − u1‖ < δ,

|u(t, x;u2, c, d)− u(t, x;u1, c, d)| < ε for x ∈ Ω, t ≥ 0.
Proof. Since E is compact, strictly positive, and invariant under Πt, there exists

a u+ ∈ IntX+ such that u ≥ u+ for all (u, c, d) ∈ E. Also, one finds an M > 0 such
that |u(x)| ≤M for every (u, c, d) ∈ E and x ∈ Ω. Now let ε > 0 and select 0 < α < 1
with αM < ε. We claim that there is δ > 0 such that, for each (u1, c, d) ∈ E and
u2 ∈ X+ with ‖u2 − u1‖ < δ,

(1− α)u1(·) ≤ u2(·) ≤ (1 + α)u1(·).(3.7)

Otherwise, let δn =
1
n . Then there exist (u

1
n, cn, dn) ∈ E and u2

n ∈ X+ with ‖u2
n −

u1
n‖ < δn, but (3.7) does not hold for u1 = u1

n and u2 = u2
n. Without loss of generality,

assume that (u1
n, cn, dn)→ (u∗1, c

∗, d∗) as n→∞. We have
1 + α/2

1 + α
u∗1 ≤ u1

n ≤
1− α/2
1− α u∗1

and

(1− α/2)u∗1 ≤ u2
n ≤ (1 + α/2)u∗1
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for n large enough. This implies that

(1− α)u1
n ≤ (1− α/2)u∗1 ≤ u2

n ≤ (1 + α/2)u∗1 ≤ (1 + α)u1
n

for n large enough, a contradiction. Hence (3.7) holds for some δ > 0. Then the
comparison principle for parabolic equations and Lemma 3.5 show that

(1− α)u(t, ·;u1, c, d) ≤ u(t, ·;u2, c, d) ≤ (1 + α)u(t, ·;u1, c, d)

for all t ≥ 0 and (u1, c, d) ∈ E, u2 ∈ X+ with ‖u2 − u1‖ < δ, hence

|u(t, x;u2, c, d)− u(t, x;u1, c, d)| ≤ α|u(t, x;u1, c, d)| ≤ αM < ε

for x ∈ Ω and t ≥ 0.
Lemma 3.8. If ω(u0, a, b) is strictly positive for u0 ∈ X+ \ {0}, then it is inde-

pendent of u0.
Proof. It is sufficient to prove that, for any u1, u2 ∈ IntX+ with u1 � u2,

ω(u1, a, b) = ω(u2, a, b).
To this end, fix u0

1, u
0
2 ∈ IntX+ with u

0
1 � u0

2. By Lemma 3.6, both ω(u
0
1, a, b) and

ω(u0
2, a, b) are strictly positive. Suppose that ω(u

0
1, a, b) �= ω(u0

2, a, b). Then we may
assume that there is (u∗1, c, d) ∈ ω(u0

1, a, b) \ ω(u0
2, a, b). Let tn → ∞ and (u∗2, c, d) ∈

ω(u0
2, c, d) be such that Πtn(u

0
1, a, b) → (u∗1, c, d) and Πtn(u

0
2, a, b) → (u∗2, c, d) as

n→∞. By u0
1 � u0

2,

u(t, ·;u∗1, c, d) = lim
n→∞u(t+ tn, ·;u

0
1, a, b) ≤ lim

n→∞u(t, ·;u
0
2, a, b) = u(t, ·;u∗2, c, d)

for t ∈ R. Clearly, u∗1 �= u∗2, and the comparison principle yields

u(t, ·;u∗1, c, d)� u(t, ·;u∗2, c, d) for t ∈ R.

Moreover, we claim that there is u+(·) ∈ IntX+ such that

u(t, ·;u∗2, c, d)− u(t, ·;u∗1, c, d) ≥ u+(·) for t ≤ 0.(3.8)

Otherwise, there are u+
n (·) ∈ IntX+ with ‖u+

n ‖ → 0 as n → ∞ and tn ≤ 0 such that
(3.8) does not hold for u+ = u+

n and t = tn. Without loss of generality, assume that
u(tn, ·;u∗i , c, d) → u∗∗i (·) and (c, d) · tn → (c∗, d∗). By Lemma 3.7, u∗∗1 �= u∗∗2 , thus
u∗∗1 � u∗∗2 thanks to the comparison principle for parabolic equations. Hence there is
u∗+(·) ∈ IntX+ such that

u∗∗2 (·)− u∗∗1 (·)� u∗+(·)
and then

u(tn, ·;u∗2, c, d)− u(tn, ·;u∗1, c, d) ≥
1

2
u∗+(·) ≥ u+

n (·)

for n large enough, a contradiction. Therefore, (3.8) holds for some u+(·) ∈ IntX+.
Next, select sn → −∞ such that

u(sn, ·;u∗i , c, d)→ ũ∗i (·) and (c, d) · sn → (a, b),

and let ui(t, x) = u(t, x; ũ∗i , a, b) (i = 1, 2). By (3.8),

u2(t, ·)− u1(t, ·) ≥ u+(·) for t ∈ R.(3.9)
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By the positivity and compactness of ω(u0
i , a, b) (i = 1, 2), there is α > 0 such that

u2(t, ·) ≤ αu1(t, ·) for t ∈ R.(3.10)

Now let Φ1(t, x) be the evolution operator of (3.5) with h(t, x) = a(t, x) −
b(t, x)u1(t, x); that is, Φ

1(t, s)u0 = u(t; s, u0), where u(t; s, u0) is the solution of (3.5)
with h(t, x) = a(t, x) − b(t, x)u1(t, x) and u(s; s, u0) = u0. We claim that there is
β > 0 such that

Φ1(s+ 1, s)
(
b(s, ·)(u2(s, ·)− u1(s, ·))u2(s, ·)

) ≥ βu1(s+ 1, ·)(3.11)

for any s ∈ R. In fact, otherwise one finds for βn =
1
n an sn ∈ R such that

Φ1(sn + 1, sn)
(
b(sn, ·)(u2(sn, ·)− u1(sn, ·))u2(sn, ·)

) �≥ βnu1(sn + 1, ·).(3.12)

Without loss of generality, we may assume that

ui(sn, ·)→ ūi(·), (a · sn, b · sn)→ (ā, b̄)

as n → ∞. Let Φ̄1(t, s) be the evolution operator of (3.5) with h(t, x) = ā(t, x) −
b̄(t, x)ū1(t, x), where ū1(t, x) = limn→∞ u1(t+ sn, x). Then

Φ1(sn + 1, sn)
(
b(sn, ·)(u2(sn, ·)− u1(sn, ·))u2(sn, ·)

)
→ Φ̄1(1, 0)

(
b̄(0, ·)(ū2(·)− ū1(·))ū2(·)

)
as n→∞. By (3.9) and the positivity of ω(u0

2, a, b),

Φ̄1(1, 0)
(
b̄(0, ·)(ū2(·)− ū1(·))ū2(·)

)� 0.

Hence there is β̄ > 0 such that

Φ̄1(1, 0)
(
b̄(0, ·)(ū2(·)− ū1(·))ū2(·)

)� 2β̄ū1(1, ·).
This implies that

Φ1(sn + 1, sn)
(
b(sn, ·)(u2(sn, ·)− u1(sn, ·))u2(sn, ·)

)� β̄ū1(1, ·)
for n large enough; consequently, there is β > 0 such that

Φ1(sn + 1, sn)
(
b(sn, ·)(u2(sn, ·)− u1(sn, ·))u2(sn, ·)

) ≥ βu1(sn + 1, ·)
for n large enough, a contradiction to (3.12). Hence there is β > 0 such that (3.11)
holds.

Note that u2(t, x) is a solution of (3.5) with h(t, x) = a(t, x) −b(t, x)u2(t, x)
= a(t, x) −b(t, x)u1(t, x) −b(t, x)

(
u2(t, x) −u1(t, x)

)
. By the variation of constant

formula [17] and (3.10), (3.11), for t ≥ 1,

u2(t, x) = Φ
1(t, s)u2(s, ·)−

∫ t

0

Φ1(t, s)
(
b(s, ·)(u2(s, ·)− u1(s, ·))u2(s, ·)

)
ds

≤ Φ1(t, s)αu1(s, ·)−
∫ t−1

0

Φ1(t, s+ 1)Φ1(s+ 1, s)
(
b(s, ·)(u2(s, ·)− u1(s, ·))

× u2(s, ·)
)
ds

≤ αu1(t, ·)−
∫ t−1

0

Φ1(t, s+ 1)βu1(s+ 1, ·)ds

= αu1(t, ·)− β
∫ t−1

0

u1(t, ·)ds
= (α− β(t− 1))u1(t, ·),
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which contradicts the boundedness and positivity of u1, u2. Hence ω(u0
1, a, b) =

ω(u0
2, a, b).
Proof of Theorem 3.3. First of all, fix a u∗0 ∈ IntX+. Then ω(u

∗
0, a, b) is either

strictly positive, or trivial, or neither strictly positive nor trivial.
Claim 1. ω(u∗0, a, b) is strictly positive iff alternative (1) of Theorem 3.3 occurs.
First, if alternative (1) of Theorem 3.3 occurs, clearly, then ω(u∗0, a, b) is strictly

positive.
Next, suppose that ω(u∗0, a, b) is strictly positive. Then, by Lemmas 3.6 and 3.8,

ω(u0, a, b) is strictly positive and independent of u0 for any u0 ∈ IntX+. It remains to
prove that ω(u∗0, a, b) is a 1-cover of H(a, b). Note that there is u+ ∈ IntX+ such that
u(·) ≤ u+(·) for any (u, a, b) ∈ ω(u∗0, a, b). Hence u ≤ u+ for any (u, a, b) ∈ ω(u+, a, b).
Then by Lemma 2.2(3), ω(u∗0, a, b) = ω(u+, a, b) is an almost 1-cover of H(a, b).
Suppose that (c0, d0) ∈ H(a, b) is such that ω(u∗0, a, b)∩(X×{(c0, d0)}) = {(u0, c0, d0)}
is a singleton. Then one obtains for every (u1, c, d), (u2, c, d) ∈ ω(u∗0, a, b) and sn →
−∞ with (c, d) · sn → (c0, d0) that

‖u(sn, ·;u1, c, d)− u(sn, ·;u2, c, d)‖ → 0

as n→∞. By Lemma 3.7, we must have u1 = u2 and then ω(u
∗
0, a, b) is a 1-cover of

H(a, b).
Claim 2. ω(u∗0, a, b) is trivial iff alternative (2) of Theorem 3.3 occurs.
First, observe that, if alternative (2) of Theorem 3.3 occurs, then ω(u∗0, a, b) is

trivial.
Next, suppose that ω(u∗0, a, b) is trivial. Note that u(t, ·;u0, a, b)� 0 for all t > 0

and u0 ∈ X+ \ {0}. Hence we need only to prove that ω(u0, a, b) is trivial for each
u0 ∈ IntX+. Given any u0 ∈ IntX+, let α > 0 be such that αu0(·) ≤ u∗0(·). By
Lemma 3.5,

αu(t, x;u0, a, b) ≤ u(t, x;u∗0, a, b)

for x ∈ Ω and t ≥ 0. This implies that ω(u0, a, b) is trivial, and hence the claim
follows.

Claim 3. ω(u∗0, a, b) is neither trivial nor strictly positive iff alternative (3) of
Theorem 3.3 occurs.

Clearly, if alternative (3) of Theorem 3.3 holds, then ω(u∗0, a, b) is neither trivial
nor strictly positive.

Conversely, suppose that ω(u∗0, a, b) is neither trivial nor strictly positive. Then we
also have ω(u0, a, b) is neither trivial nor strictly positive for any u0 ∈ X+ \{0}. Since
ω(u0, a, b) �= {0}×H(a, b), there is (u∗, c, d) ∈ ω(u0, a, b) with u

∗ ∈ X+\{0}. Then we
must have u(t, ·;u∗, c, d) ∈ IntX+ for t > 0. Hence ω(u0, a, b)∩ (IntX+×H(a, b)) �= ∅.
Since ω(u0, a, b) is not strictly positive, for any u

+
n ∈ IntX+ with ‖u+

n ‖ → 0, there is
tn such that u(tn, ·;u0, a, b) �≥ u+

n (·). Assume that u(tn, ·;u0, a, b)→ u∗(·) as n→∞.
Then we must have u∗ = 0. Hence ω(u0, a, b) ∩ ({0} ×H(a, b)) �= ∅.

Theorem 3.3 now follows from Claims 1, 2, and 3.
Remark 3.1. (1) When a, b are actually periodic, alternative (3) of Theorem 3.3

does not occur (cf. [19], [21]).
(2) In the case where a is almost periodic and homogeneous Neumann boundary

conditions are prescribed, the theorem has been proved in [36] by means of a very
different approach which is limited to Neumann conditions. Moreover, it has been
shown in [36] that each of the alternatives (1), (2), (3) really occurs.
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Corollary 3.9. Let ā(x) = limt→∞ 1
t

∫ t
0
a(s, x)ds. If λ(k, a) > 0 or λ(k, ā) > 0,

then alternative (1) of Theorem 3.3 occurs.
Proof. By Lemma 2.3(4), there is σ1 < λ(k, a) such that Σ(k,H(a)) = Σ1 ∪

{λ(k, a)} and λ ≤ σ1 for any λ ∈ Σ1. Hence u ≡ 0 is a linearly unstable solution of
(3.1), and the invariant manifold theory ([5], [7], etc.) excludes alternatives (2) and
(3) of Theorem 3.3, thus alternative (1) holds.

4. Basic properties of almost periodic two species competition models.
In this section, we present some basic properties of the two species competition model:

ut = k1∆u+ u(a1(t, x)− b1(t, x)u− c1(t, x)v), x ∈ Ω,
vt = k2∆v + v(a2(t, x)− b2(t, x)u− c2(t, x)v), x ∈ Ω,
Bu = Bv = 0, x ∈ ∂Ω,

(4.1)

where ki, ai, bi, ci (i = 1, 2), Ω and Bu, Bv are as in (1.1), and b1, c2 ≥ δ for some
δ > 0, c1, b2 ≥ 0. Let fi(t, x, u, v) = ai(t, x) − bi(t, x)u − ci(t, x)v (i = 1, 2). Let X
be as in section 2.3 and Πt : X ×X ×H(f1, f2)→ X ×X ×H(f1, f2) be the (local)
skew-product semiflow generated by (4.1),

Πt(u0, v0, g1, g2) = (u(t, ·;u0, v0, g1, g2), v(t, ·;u0, v0, g1, g2), g1 · t, g2 · t),(4.2)

where (u(t, ·;u0, v0, g1, g2), v(t, ·;u0, v0, g1, g2)) is the solution of

(4.3)g1,g2


ut = k1∆u+ ug1(t, x, u, v), x ∈ Ω,
vt = k2∆v + vg2(t, x, u, v), x ∈ Ω,
Bu = Bv = 0, x ∈ ∂Ω

with (u0(·), v0(·)) := (u(0, ·;u0, v0, g1, g2), v(0, ·;u0, v0, g1, g2)).
Given (u1, v1), (u2, v2) ∈ X+ ×X+, we define

(4.4)1 (u1, v1) ≤1 (u2, v2) if u1 ≤ u2, v1 ≤ v2,
(4.4)2 (u1, v1) <1 (u2, v2) if (u1, v1) ≤1 (u2, v2), (u1, v1) �= (u2, v2),

(4.4)3 (u1, v1)�1 (u2, v2) if (u2 − u1, v2 − v1) ∈ Int(X+)× Int(X+),

(4.5)1 (u1, v1) ≤2 (u2, v2) if u1 ≤ u2, v1 ≥ v2,
(4.5)2 (u1, v1) <2 (u2, v2) if (u1, v1) ≤2 (u2, v2), (u1, v1) �= (u2, v2),

(4.5)3 (u1, v1)�2 (u2, v2) if (u2 − u1, v1 − v2) ∈ Int(X+)× Int(X+).

For (u1, v1, g1, g2), (u2, v2, g1, g2) ∈ X+ ×X+ ×H(f1, f2), define
(4.6)1 (u1, u2, g1, g2) ≤1 (<1,�1)(u2, v2, g1, g2) if (u1, v1) ≤1 (<1,�1)(u2, v2)

and

(4.6)2 (u1, u2, g1, g2) ≤2 (<2,�2)(u2, v2, g1, g2) if (u1, v1) ≤2 (<2,�2)(u2, v2).

Lemma 4.1. (1)

Πt(X+ × {0} ×H(f1, f2)) ⊂ X+ × {0} ×H(f1, f2) for t > 0,

Πt({0} ×X+ ×H(f1, f2)) ⊂ {0} ×X+ ×H(f1, f2) for t > 0.
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(2)

Πt(X+ ×X+ ×H(f1, f2)) ⊂ X+ ×X+ ×H(f1, f2) for t > 0.

Proof. These results follow from the standard parabolic theory.
By Lemma 4.1, Πt|X+×X+×H(f1,f2) (Π|X+×{0}×H(f1,f2), Π|{0}×X+×H(f1,f2)) is a

skew-product semiflow.
Lemma 4.2. If (u1, v1), (u2, v2) ∈ X+ ×X+ and (u1, v1) ≤2 (u2, v2), then

Πt(u1, v1, g1, g2) ≤2 Πt(u2, v2, g1, g2)

for all t > 0 and (g1, g2) ∈ H(f1, f2). Moreover, if (u1, v1) <2 (u2, v2) and (u1, v1) �∈
X+ × {0}, (u2, v2) �∈ {0} ×X+, then

Πt(u1, v1, g1, g2)�2 Πt(u2, v2, g1, g2)

for all t > 0 and (g1, g2) ∈ H(f1, f2).
Proof. The proof follows from Lemma 4.1 and the comparison principle for

parabolic equations.
By Lemmas 4.1 and 4.2, Πt|X+×X+×H(f1,f2) is partially monotone with respect to

the ordering≤2 in (4.5)1, and Πt(u0, v0, g1, g2) is strictly positive for all (u0, v0, g1, g2) ∈
(X+ \ {0})× (X+ \ {0})×H(f1, f2) and t > 0; that is,

(0, 0, g1 · t, g2 · t)�1 Πt(u0, v0, g1, g2)

for t > 0.
Lemma 4.3. Assume that λ(k1, a1) > 0 and λ(k2, a2) > 0.
(1) There is E1 ⊂ X+×{0}×H(f1, f2), which is invariant under Πt and has the

form

E1 = {(ug1 , 0, g1, g2)|(g1, g2) ∈ H(f1, f2)}.
E1 is attracting in the sense that, for each u0 ∈ X+ \ {0} and (g1, g2) ∈ H(f1, f2),

‖u(t, ·;u0, 0, g1, g0)− u(t, ·;ug1 , 0, g1, g2)‖ → 0

as t→∞.
(2) There is E2 ⊂ {0}×X+×H(f1, f2), which is invariant under Πt and has the

form

E2 = {(0, vg2 , g1, g2)|(g1, g2) ∈ H(f1, f2)}.
E2 is attracting in the sense that, for each v0 ∈ X+ \ {0} and (g1, g2) ∈ H(f1, f2),

‖u(t, ·; 0, v0, g1, g2)− u(t, ·; 0, vg2 , g1, g2)‖ → 0

as t→∞.
Proof. The proof follows from Corollary 3.9 and Lemma 4.1(1).
Unless otherwise specified, we assume throughout the rest of the paper that

λ(k1, a1) > 0 and λ(k2, a2) > 0. Let E ⊂ X+ ×X+ ×H(f1, f2) be such that
E ∩ (X ×X × {(g1, g2)}) = ([0, ug1 ]× [0, vg2 ]× {(g1, g2)}) \ {(0, 0, g1, g2)},(4.7)

where [0, ug1 ] = {u ∈ X | 0 ≤ u ≤ ug1} and [0, vg2 ] = {v ∈ X | 0 ≤ v ≤ vg2}.
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Lemma 4.4. (1) ΠtE ⊂ E for each t > 0;
(2) ω(u0, v0, g1, g2) ⊂ E for all (u0, v0) ∈ (X+ × X+) \ {(0, 0)} and (g1, g2) ∈

H(f1, f2).
Proof. The proof follows from Lemmas 4.2 and 4.3.
Let aiL(M), biL(M), and ciL(M) have the same meaning as in (1.4)1–(1.4)3, and

let (u±(t, ·;u0, v0), v
±(t, ·;u0, v0)) denote the solutions of

(4.8)+


ut = k1∆u+ u(a1M − b1Lu− c1Lv), x ∈ Ω,
vt = k2∆v + v(a2L − b2Mu− c2Mv), x ∈ Ω,
Bu = Bv = 0, x ∈ ∂Ω

(this is the case +) and

(4.8)−


ut = k1∆u+ u(a1L − b1Mu− c1Mv), x ∈ Ω,
vt = k2∆v + v(a2M − b2Lu− c2Lv), x ∈ Ω,
Bu = Bv = 0, x ∈ ∂Ω

satisfying (u±(0, ·;u0, v0), v
±(0, ·;u0, v0)) = (u0(·), v0(·)). The comparison principle

for parabolic equations yields the following result.
Lemma 4.5. If (u0, v0) ∈ X+ ×X+ and (g1, g2) ∈ H(f1, f2), then

(u−(t, ·;u0, v0), v
−(t, ·;u0, v0)) ≤2 (u(t, ·;u0, v0, g1, g2), v(t, ·;u0, v0, g1, g2))

and

(u(t, ·;u0, v0, g1, g2), v(t, ·;u0, v0, g1, g2)) ≤2 (u
+(t, ·;u0, v0), v

+(t, ·;u0, v0))

for t ≥ 0.
The following lemmas concern the dynamics of (4.1) when ai, bi, and ci (i = 1, 2)

are constants.
Lemma 4.6. Assume that ai, bi, ci (i = 1, 2) are positive constants and that

λ(k1, a1) > 0, λ(k2, a2) > 0. Then exactly one of the following alternatives holds.
(1) (4.1) has a strictly positive equilibrium solution.
(2) Every positive solution of (4.1) converges to the solution (uf1 , 0).
(3) Every positive solution of (4.1) converges to the solution (0, vf2).
Proof. See [25].
Lemma 4.7. Assume that ai, bi, ci (i = 1, 2) are positive constants and Bu = ∂u

∂n .

(1) If a1 >
c1a2

c2
and a2 >

a1b2
b1

, then every positive solution of (4.1) converges to
a unique strictly positive equilibrium.

(2) If a1 >
c1a2

c2
and a2 ≤ a1b2

b1
, then every positive solution of (4.1) converges to

the equilibrium (uf1 , 0) ≡ (a1

b1
, 0).

(3) If a1 ≤ c1a2

c2
and a2 >

a1b2
b1

, then every positive solution of (4.1) converges to
the equilibrium (0, vf2) ≡ (0, a2

c2
).

Proof. (1) The proof follows from [31], [48].
(2) and (3) follow from [3], [31].
Lemma 4.8. Assume that ai, bi, ci (i = 1, 2) are positive constants, Bu = u, and

λ(k1, a1) > 0, λ(k2, a2) > 0.
(1) If a1 >

c1a2

c2
, a2 >

a1b2
b1

, k1 = k2, and a1 = a2, then every positive solution of
(4.1) converges to a unique strictly positive equilibrium.

(2) If a1 >
c1a2

c2
, a2 ≤ a1b2

b1
, k1 ≤ k2, and a1 ≥ a2, then every positive solution of

(4.1) converges to (uf1 , 0).
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(3) If a1 ≤ c1a2

c2
, a2 >

a1b2
b1

, k1 ≥ k2, and a1 ≤ a2, then every positive solution of
(4.1) converges to (0, vf2).

Proof. (1) The proof follows from [8].
(2) First, we show that (0, vf2) is linearly unstable. Since vf2 is a solution of (3.5)

with k = k2 and h = a2 − c2vf2 , one has λ(k2, a2 − c2vf2) = 0. Linearizing (4.1)
around (0, vf2), we obtain

ut = k1∆u+ (a1 − c1vf2)u, x ∈ Ω,
vt = k2∆v − b2vf2u+ (a2 − 2c2vf2)v, x ∈ Ω,
u = v = 0, x ∈ ∂Ω.

(4.9)

Note that 0 < vf2 ≤ a2

c2
; consequently, a1 ≥ a2 and a1 >

c1a2

c2
yield

a1 − c1vf2 = a1

(
1− c1

a1
vf2

)
> a1

(
1− c2

a2
vf2

)
≥ a2

(
1− c2

a2
vf2

)
= a2 − c2vf2 .

Therefore k1 ≤ k2 and Lemma 2.3(5) imply λ(k1, a1 − c1vf2) > 0. Observe that
λ = λ(k1, a1− c1vf2) is an eigenvalue of the following eigenvalue problem which arises
from (4.9): 

k1∆u+ (a1 − c1vf2)u = λu, x ∈ Ω,
k2∆v − b2vf2u+ (a2 − 2c2vf2)v = λv, x ∈ Ω,
u = v = 0, x ∈ ∂Ω.

(4.10)

Hence (0, vf2) is linearly unstable, and therefore alternative (3) of Lemma 4.6 cannot
occur.

Next, we prove (4.1) has no strictly positive equilibrium. Suppose that there
is a strictly positive equilibrium (u∗, v∗). Then u = u∗ is a solution of (3.5) with
k = k1 and h = a1 − b1u∗ − c1v∗, and v = v∗ is a solution of (3.5) with k = k2 and
h = a2−b2u∗−c2v∗. Hence λ(k1, a1−b1u∗−c1v∗) = 0 and λ(k2, a2−b2u∗−c2v∗) = 0.
By a1 ≥ a2, a1 >

c1a2

c2
, and a2 ≤ a1b2

b1
, one gets

a1 − b1u∗ − c1v∗ > a1 − a1b2
a2

u∗ − a1c2
a2

v∗ =
a1

a2
(a2 − b2u∗ − c2v∗).(4.11)

Let ξ2(x) (‖ξ2‖2 = 1) be a positive eigenfunction of (2.9) with k = k2, h = a2−b2u∗−
c2v∗, and λ = λ(k2, a2 − b2u∗ − c2v∗). Then

k2

∫
Ω

| � ξ2|2dx =
∫

Ω

(a2 − b2u∗ − c2v∗)ξ22dx > 0.(4.12)

By (4.11) and (4.12),

−k1

∫
Ω

| � ξ2|2dx+
∫

Ω

(a1 − b1u∗ − c1v∗)ξ22dx

> −k2

∫
Ω

| � ξ2|2dx+ a1

a2

∫
Ω

(a2 − b2 − c2v∗)ξ22dx ≥ 0.

It then follows from the arguments of Lemma 2.3(5) that λ(k1, a1− b1u∗− c1v∗) > 0,
a contradiction. Therefore, (4.1) has no strictly positive equilibrium.

Now, by Lemma 4.6, every positive solution of (4.1) converges to (uf1 , 0).
(3) The proof can be derived by arguments similar to those in (2).
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5. Uniform persistence, coexistence, and extinction in almost periodic
two species competition models. Let aiL(M), biL(M), ciL(M) have the same mean-
ing as in (1.4)1–(1.4)3, and let ug1 , vg2 be understood as in Lemma 4.3. Then we obtain
for the Neumann case the following result.

Theorem 5.1. Consider (4.1). Suppose that Bu = ∂u
∂n and aiL, biL, and ciL

(i = 1, 2) are positive.
(1) If a1L > c1Ma2M

c2L
and a2L > a1Mb2M

b1L
, then there exist (u−, v−), (u+, v+) ∈

IntX+× IntX+ with (u−, v−)�2 (u+, v+) such that, for each (u0, v0) ∈ (X+ \ {0})×
(X+ \ {0}) and each (u, v, g1, g2) ∈ ω(u0, v0, f1, f2),

(u−, v−) ≤2 (u, v) ≤2 (u+, v+)

(hence uniform persistence occurs). Moreover, there are (u−∗ , v
−
∗ ), (u

+
∗ , v

+
∗ ) with

(u−, v−) ≤2 (u
−
∗ , v

−
∗ ) ≤2 (u

+
∗ , v

+
∗ ) ≤2 (u+, v+)

such that ω(u−∗ , v
−
∗ , f1, f2), ω(u+

∗ , v
+
∗ , f1, f2) are minimal and almost 1-covers of

H(f1, f2) (hence almost automorphic), and M(ũ∗, ṽ∗) ⊂M(a1, b1, c1, a2, b2, c2) holds
if (ū∗, v̄∗, g1, g2) ∈ω(u±∗ , v±∗ , f1, f2) is such that (ũ∗(t, x), ṽ∗(t, x)) = (u(t, x; ū∗, v̄∗, g1,
g2), v(t, x; ū∗, v̄∗, g1, g2)) is almost automorphic in t. In addition, if ai, bi, ci are
spatially homogeneous, then (u−∗ , v

−
∗ ) = (u+

∗ , v
+
∗ ) = (u∗, v∗) and (u(t;u∗, v∗, f1, f2),

v(t;u∗, v∗, f1, f2)) is a globally stable positive almost periodic solution of (4.1).
(2) If a1L > c1Ma2M

c2L
and a2M ≤ a1Lb2L

b1M
, then every positive solution of (4.1)

converges to (uf1(t, x), 0).
(3) If a1M ≤ c1La2L

c2M
and a2L > a1Mb2M

b1L
, then every positive solution of (4.1)

converges to (0, vf2(t, x)).
(4) If a1 = a2, b1 = b2 = c1 = c2, and additionally k1 = k2 in the case where ai,

bi, ci are not spatially homogeneous, then there exists a stable continuous family of
positive almost periodic solutions connecting (uf1(t, x), 0) and (0, vf2(t, x)).

The following results hold for the Dirichlet case.
Theorem 5.2. Consider (4.1). Suppose that Bu = u, aiL, biL, ciL are positive

constants, and λ(k1, a1) > 0, λ(k2, a2) > 0.
(1) If a1L >

c1Ma2M

c2L
, a2L >

a1Mb2M
b1L

, k1 = k2, and a1 = a2 (constant), then there
are (u−, v−), (u+, v+) ∈ IntX+ × IntX+ with (u−, v−) �2 (u+, v+) such that, for
each (u0, v0) ∈ (X+ \ {0})×X+ \ {0} and each (u, v, g1, g2) ∈ ω(u0, v0, f1, f2),

(u−, v−) ≤2 (u, v) ≤2 (u+, v+)

(hence uniform persistence occurs). Moreover, there exist (u−∗ , v
−
∗ ), (u

+
∗ , v

+
∗ ) with

(u−, v−) ≤2 (u
−
∗ , v

−
∗ ) ≤2 (u

+
∗ , v

+
∗ ) ≤2 (u+, v+)

such that ω(u−∗ , v
−
∗ , f1, f2), ω(u

+
∗ , v

+
∗ , f1, f2) are minimal and almost 1-covers of

H(f1, f2) (hence almost automorphic), and M(ũ∗, ṽ∗) ⊂ M(a1, b1, c1, a2, b2, c2) if
(ū∗, v̄∗, g1, g2) ∈ ω(u±∗ , v±∗ , f1, f2) is such that (ũ∗(t, x), ṽ∗(t, x)) = (u(t, x; ū∗, v̄∗, g1,
g2), v(t, x; ū∗, v̄∗, g1, g2)) is almost automorphic in t.

(2) If a1L >
c1Ma2M

c2L
, a2M ≤ b2La1L

b1M
, k2 ≥ k1, and a1L ≥ a2, then every positive

solution converges to (uf1(t, x), 0).
(3) If a1M ≤ c1La2L

c2M
, a2L >

a1Mb2M
b1L

, k1 ≥ k2, and a2L ≥ a1, then every positive
solution converges to (0, vf2(t, x)).

(4) If k1 = k2, a1 = a2, and b1 = b2 = c1 = c2, then there exists a stable
continuous family of positive almost periodic solutions connecting (uf1(t, x), 0) and
(0, vf2(t, x)).
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Proof of Theorem 5.1. (1) First, by a1L >
c1Ma2M

c2L
and a2L >

a1Mb2M
b1L

, we have

c1L
c2M

≤ c1M
c2L

<
a1L

a2M
≤ a1M

a2L
<
b1L
b2M

≤ b1M
b2L

.

Hence, by Lemma 4.7, (u±(t;u0, v0), v
±(t;u0, v0)) converges to a unique strictly pos-

itive equilibrium (u±, v±) of (4.8)± for each (u0, v0) ∈ (X+ \ {0})× (X+ \ {0}).
Next, Lemma 4.5 shows

(u−(t, ·;u0, v0), v
−(t, ·;u0, v0)) ≤2 (u(t, ·;u0, v0, f1, f2), v(t, ·;u0, v0, f1, f2))

and

(u(t, ·;u0, v0, f1, f2), v(t, ·;u0, v0, f1, f2)) ≤2 (u
+(t, ·;u0, v0), v

+(t, ·;u0, v0))

for t ≥ 0 and all (u0, v0) ∈ (X+ \ {0})× (X+ \ {0}), hence
(u−, v−) ≤2 (u, v) ≤2 (u+, v+)

for (u, v, g1, g2) ∈ ω(u0, v0, f1, f2).
Now we have (u−, v−) ≤2 (u, v) for every (u, v, g1, g2) ∈ ω(u−, v−, f1, f2). By

Lemma 2.2(3), ω(u−, v−, f1, f2) is an almost 1-cover of H(f1, f2). Similarly, we
obtain that ω(u+, v+, f1, f2) is an almost 1-cover of H(f1, f2). Therefore, there are
(u±∗ , , v

±
∗ , f1, f2) ∈ ω(u±, v±, f1, f2) such that

(u−, v−) ≤2 (u
−
∗ , v

−
∗ ) ≤2 (u

+
∗ , v

+
∗ ) ≤2 (u+, v+)

and ω(u±∗ , v
±
∗ , f1, f2) are minimal and almost 1-covers of H(f1, f2).

Note that if (ū∗, v̄∗, g1, g2) ∈ ω(u±∗ , v±∗ , f1, f2) is such that
{(ū∗, v̄∗, g1, g2)} = ω(u±∗ , v

±
∗ , f1, f2) ∩ (X+ ×X+ × {(g1, g2)}),(5.1)

then, by the definition of almost automorphic functions (see section 2.1),

(ũ∗(t, x), ṽ∗(t, x)) = (u(t, x; ū∗, v̄∗, g1, g2), v(t, x; ū∗, v̄∗, g1, g2))(5.2)

is uniformly almost automorphic in t (hence ω(u±∗ , v
±
∗ , f1, f2) is almost automor-

phic). Moreover, by Lemma 2.1, M(ũ∗, ṽ∗) ⊂ M(a1, b1, c1, a2, b2, c2). Conversely,
if (ū∗, v̄∗, g1, g2) ∈ ω(u±∗ , v

±
∗ , f1, f2) is such that (ũ∗(t, x), ṽ∗(t, x)) in (5.2) is uni-

formly almost automorphic in t, then (5.1) must hold, and hence one hasM(ũ∗, ṽ∗) ⊂
M(a1, b1, c1, a2, b2, c2). Otherwise, there is (ū1

∗, v̄
1
∗, g1, g2) ∈ ω(u±∗ , v

±
∗ , f1, f2) with

(ū1
∗, v̄

1
∗) �= (ū∗, v̄∗). Let (g0

1 , g
0
2) ∈ H(f1, f2) be such that

ω(u±∗ , v
±
∗ , f1, f2) ∩ (X+ ×X+ × {(g0

1 , g
0
2)}) = {(ū0

∗, v̄
0
∗, g

0
1 , g

0
2)}

is a singleton. Let βn →∞ be such that

Πβn
(ū0
∗, v̄

0
∗, g

0
1 , g

0
2)→ (ū1

∗, v̄
1
∗, g1, g2)

and αn = −βn. Then, given any subsequence {αnk
} ⊂ {αn},

lim
m→∞ lim

k→∞
Π−αnm

Παnk
(ū∗, v̄∗, g1, g2) = (ū1

∗, v̄
1
∗, g1, g2) �= (ū∗, v̄∗, g1, g2),

which contradicts the almost automorphy of (ũ∗(t, x), ṽ∗(t, x)) (see section 2.1).
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Finally, if ai, bi and ci (i = 1, 2) are spatially homogeneous, by [22], (u−∗ , v
−
∗ ) =

(u+
∗ , v

+
∗ ) = (u∗, v∗) and (u(t;u∗, v∗, f1, f2), v(t;u∗, v∗, f1, f2)) is a globally stable pos-

itive almost periodic solution of (4.1).
(2) First, a1L >

c1Ma2M

c2L
and a2M ≤ a1Lb2L

b1M
imply

c1M
c2L

<
a1L

a2M
and

a1L

a2M
≥ b1M
b2L

.

Therefore, by Lemma 4.7, every positive solution of (4.8)− converges to (u∗−, 0) ≡
( a1L

b1M
, 0).
Next, let (u0, v0) ∈ (X+ \ {0})× (X+ \ {0}). Lemma 4.5 yields

(u∗−, 0) ≤2 (u, v) ≤2 (ug1 , 0)

for every (u, v, g1, g2) ∈ ω(u0, v0, f1, f2). Assume that (u0, v0) ≤2 (u
∗
−, 0). Then, by

Lemma 2.2(3), ω(u0, v0, f1, f2) is an almost 1-cover of H(f1, f2). By the arguments
of Lemma 3.7, ω(u0, v0, f1, f2) is a 1-cover of H(f1, f2) and hence is minimal. By
Lemma 4.3, we must have ω(u0, v0, f1, f2) = E1, and hence (u(t, x;u0, v0, f1, f2),
v(t, x;u0, v0, f1, f2)) converges to (uf1(t, x), 0).

Finally, for any (u0, v0) ∈ IntX+ × IntX+, there is (ũ0, ṽ0) ∈ IntX+ × IntX+

such that (ũ0, ṽ0) �2 (u0, v0) and (ũ0, ṽ0) ≤2 (u
∗
−, 0). By the above arguments,

ω(ũ0, ṽ0, f1, f2) = E1, and we must have ω(u0, v0, f1, f2) = E1, and hence every
positive solution of (4.1) converges to (uf1(t, x), 0).

(3) The proof can be derived by similar arguments as in (2).
(4) If ai, bi, ci are spatially homogeneous, the proof follows from [22]. Otherwise,

note that w = u+ v satisfies{
wt = k∆w + w(a− bw), x ∈ Ω,
∂w
∂n

= 0, x ∈ ∂Ω,

where k = k1 = k2, a = a1 = a2, b = b1 = b2 = c1 = c2. (4) then follows from
Theorem 3.3.

Proof of Theorem 5.2. (1) Since a1 = a2 are constant, λ(ki, aiL(M)) > 0 for
i = 1, 2. Then, by Lemma 4.8, (u±(t, x;u0, v0), v

±(t, x;u0, v0)) converges to a unique
strictly positive equilibrium (u±, v±) of (4.8)± for every (u0, v0) ∈ (X+ \{0})× (X+ \
{0}). The rest of the proof now follows by employing the same arguments as in the
proof of Theorem 5.1(1).

(2) By k2 ≥ k1, a1L ≥ a2 and Lemma 2.3, we have λ(k1, a1L) ≥ λ(k2, a1L) ≥
λ(k2, a2) > 0 and λ(k2, a2M ) ≥ λ(k2, a2) > 0. By Lemma 4.8, for each (u0, v0) ∈
(X+ \{0})× (X+ \{0}), (u−(t, x;u0, v0), v

−(t, x; u0, v0)) converges to (u
∗
−, 0), where

u∗− is the unique positive equilibrium of (3.1) with k = k1, a = a1L, b = b1M , and
Bu = u. The rest of the proof then follows from the same arguments as in Theorem
5.1(2).

(3) The proof can be derived by similar arguments as in the proof of (2).
(4) The proof can be derived by similar arguments as in the proof of Theorem

5.1(4).

6. Single species population and two species competition models with
recurrent time dependence. In this section, we state results similar to those of
Theorems 3.3, 5.1, and 5.2 for more general time dependent single species population
and two species competition models. They can be derived by the approach we have
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developed in the previous sections. We deal with the case where the reaction terms
in (1.1) and (1.3) exhibit merely recurrent time dependence.

Throughout this section, we assume that ai, bi, ci (i = 1, 2) in (1.1) and a, b in
(1.3) are recurrent in t, b(t, x) ≥ δ for some δ > 0. Let aiL(M), biL(M), and ciL(M) be
as in (1.4)1–(1.4)3.

First, by arguments similar to those in the proofs of Theorem 3.3 and Corollary
3.4, one obtains the following result.

Theorem 6.1. Consider (1.3). One and only one of the following alternatives
occurs.

(1) Every positive solution converges to a unique strictly positive recurrent solution
u∗(t, x) whose hull is a 1-cover of the hull of (a, b).

(2) Every positive solution converges to the trivial solution u = 0.
(3) Every positive solution is neither bounded away from the trivial solution nor

converges to it.
Next, consider (1.1) with Bu = ∂u

∂n . If a1L > 0 and a2L > 0, then by Theorem
6.1 and the comparison principle for parabolic equations, (1.3) with a = a1 and
b = b1 (a = a2 and b = c2) has a unique strictly positive recurrent solution u

∗
N (t, x)

(v∗N (t, x)). Following arguments similar to those in proving Theorem 5.1, we have the
following result.

Theorem 6.2. Consider (1.1). Assume that Bu = ∂u
∂n and aiL, biL, ciL > 0

(i = 1, 2).
(1) If a1L >

c1Ma2M

c2L
and a2L >

a1Mb2M
b1L

, then uniform persistence occurs. More-
over, there is a strictly positive recurrent solution (u∗(t, x), v∗(t, x)) whose hull is an
almost 1-cover of the hull of (a1, b1, c1, a2, b2, c2).

(2) If a1L >
c1Ma2M

c2L
and a2M ≤ a1Lb2L

b1M
, then every positive solution converges to

(u∗N (t, x), 0).
(3) If a1M ≤ c1La2L

c2M
and a2L >

a1Mb2M
b1L

, then every positive solution converges to
(0, v∗N (t, x)).

Finally, consider (1.1) with Bu = u. Assume that λ(k1, H(a1)) > 0 and
λ(k1, H(a2)) > 0. If k2 ≥ k1 and a1L ≥ a2 (k1 ≥ k2 and a2L ≥ a1), then λ(k1, a1L) ≥
λ(k2, a1L) ≥ λ(k2, H(a2)) > 0 (λ(k2, a2L) ≥ λ(k1, a2L) ≥ λ(k1, H(a1)) > 0). Again,
by Theorem 6.1 and the comparison principle for parabolic equations, (1.3) with
a = a1 and b = b1 (a = a2 and b = c2) has a unique strictly positive recurrent solu-
tion u∗D(t, x) (v

∗
D(t, x)). Arguments similar to those in proving Theorem 5.2 yield the

following result.
Theorem 6.3. Consider (1.1) with ai, bi, ci (i = 1, 2) being recurrent. Assume

that Bu = u, aiL, biL, ciL > 0 (i = 1, 2), and λ(k1, H(a1)) > 0, λ(k2, H(a2)) > 0.
(1) If a1L > c1Ma2M

c2L
, a2L > a1Mb2M

b1L
, k1 = k1, and a1 = a2 (constant), then

uniform persistence occurs. Moreover, there is a strictly positive recurrent solution
(u∗(t, x), v∗(t, x)) whose hull is an almost 1-cover of the hull of (a1, b1, c1, a2, b2, c2).

(2) If a1L >
c1Ma2M

c2L
, a2M ≤ a1Lb2L

b1M
, k2 ≥ k1, and a1L ≥ a2, then every positive

solution converges to (u∗D(t, x), 0).
(3) If a1M ≤ c1La2L

c2M
, a2L >

a1Mb2M
b1L

, k1 ≥ k2, and a2L ≥ a1, then every positive
solution converges to (0, v∗D(t, x)).
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DAVID ESCHWÉ† AND HEINZ LANGER†

SIAM J. MATH. ANAL. c© 2002 Society for Industrial and Applied Mathematics
Vol. 34, No. 1, pp. 228–238

Abstract. We derive triple variational principles for the eigenvalues of a self-adjoint operator
pencil, which also allow a characterization of discrete eigenvalues within a gap of the essential spec-
trum. In the general case, we can prove only an inequality; the equality sign is shown to hold in four
particular situations.
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1. Introduction. It is well known that the discrete eigenvalues of a self-adjoint
operator A on some Hilbert space H, which lie below or above the essential spectrum
of A, can be characterized by double variational principles applied to the Rayleigh

quotients (Ax,x)
(x,x) , x ∈ H, x �= 0. For example, if the eigenvalues below the minimum

of the essential spectrum of A are denoted by

λ1 ≤ λ2 ≤ · · · ,(1.1)

counted according to their multiplicities, then

λj = sup
V⊂H

dim V=j−1

inf
x�=0
x⊥V

(Ax, x)

(x, x)
, j = 1, 2, . . . .

These formulas have been generalized for sufficiently smooth self-adjoint operator
functions L, defined on some interval ∆ of the real axis, under the assumption that
for some α ∈ ∆ the operator L(α) is uniformly positive or uniformly negative (see,
e.g., [M], [BEL]): in this case the discrete eigenvalues, numbered according to their
multiplicity and their distance from α, can be characterized by such double variational
principles applied to the zeros of the scalar functions (L( · )x, x), x ∈ H, x �= 0. They
have been generalized further to the case where L(α) is not definite but has a finite
number of positive or of negative eigenvalues (see [BEL]). In the latter case, in the
formulas an index shift, corresponding to the number of these eigenvalues, appears.

On the other hand, already in 1970 Phillips [P] and, subsequently, Textorius [T]
proved a triple variational principle for eigenvalues of positive compact operators on
Krein spaces. For example, given a positive self-adjoint operator A on a Krein space
(K, [ · , · ]) such that below the essential spectrum of A there are isolated eigenvalues
as in (1.1), then

λj = sup
M∈M−−

sup
V⊂M

dim V=j−1

inf
x�=0
x⊥V

[Ax, x]

[x, x]
, j = 1, 2, . . . ;
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here M−− denotes the set of all maximal negative subspaces of K. This result can
be understood as corresponding to a situation where the function L is linear in the
parameter λ and for a certain α the operator L(α) has infinitely many positive and
infinitely many negative spectral points. On the other hand, it is not hard to see
that the above mentioned double variational principles with index shift can also be
replaced by triple variational principles.

In the present paper we show that such triple variational principles do also hold
in other situations for discrete eigenvalues which lie in a gap of the essential spectrum.
In section 2 we prove a general triple variational inequality for discrete eigenvalues of
a continuous self-adjoint operator function L which satisfies Assumptions 1–3 (listed
in section 2 below). These discrete eigenvalues are numbered starting from a certain
point α ∈ ρ(L), and in the variational principle the maximal L(α)-nonnegative sub-
spaces play an important role. We do not know if in the general situation of section 2
such a maximal L(α)-nonnegative subspace exists for which the inequalities become
equalities. This we can show only in particular situations in section 3. Namely, we can
show it for the discrete eigenvalues in a gap of the essential spectrum of a self-adjoint
operator, for a nonnegative operator in a Krein space (this situation corresponds to
the results of Phillips and Textorius mentioned above), for a special class of quadratic
operator pencils, and for a self-adjoint block operator matrix

Ã =

(
A B
B∗ D

)
.

In the latter case, double variational principles for eigenvalues in a certain gap of the
essential spectrum of Ã were proved by Griesemer and Siedentop [GS] if the numerical
ranges of A and D overlap in at most one point. Here we show that triple variational
principles also allow us to characterize certain discrete eigenvalues of Ã if the numerical
ranges of A and D overlap in an interval.

In this paper we restrict ourselves to bounded operators. In a subsequent publi-
cation pencils of unbounded self-adjoint operators will be considered. They include
Hain–Lüst-type equations for partial or ordinary differential operators; e.g.,

−y′′ + λy − qy

u− λ = 0 on [0, 1], y(0) = y(1) = 0,

with real continuous functions q, u (see [ALM]). Here the essential spectrum consists
of the range of the function u, and the eigenvalues λ1 ≤ λ2 ≤ · · · to the right of this
essential spectrum should be characterized by triple variational principles from the
left. They also include quadratic pencils arising in the consideration of beams with
inner and outer damping (so-called Vogt material), e.g., from the equation

α
∂5u

∂t∂x4
+
∂4u

∂x4
+

∂

∂x
g(x)

∂u

∂x
+ k(x)

∂u

∂t
+
∂2u

∂t2
= 0

with appropriate boundary and initial conditions (see [Pi2]). Finally, these principles
can also be applied to the problem considered in [LM].

2. A general inequality. Let H be a Hilbert space. We make the following
assumptions.

Assumption 1. The operator function L is defined and continuous in the operator
norm on the interval [α, β), and its values are self-adjoint operators on H and 0 ∈
ρ(L(α)).
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It follows that for some α′ > α the interval [α, α′) belongs to ρ(L). We allow
β = ∞. The point λ ∈ C is an eigenvalue of the operator function L if 0 is an
eigenvalue of L(λ), and a normal eigenvalue of L if 0 is a normal eigenvalue of L(λ);
recall (see [GK]) that the latter means that the algebraic eigenspace L of L(λ) at 0
is finite-dimensional and that the space H is the direct sum of L and an invariant
subspace N of L(λ) such that 0 ∈ ρ(L(λ)|N ). Further, the point λ ∈ C belongs to the
essential spectrum σess(L) of the operator function L if 0 ∈ σess(L(λ)). If the essential
spectrum σess(L) in [α, β) is not empty we set λe := minσess(L) ∩ [α, β); otherwise,
if there is no essential spectrum of L in [α, β), then λe := β. By definition of the
essential spectrum of an operator function and Assumption 1, in the interval (α, λe)
the spectrum of L is discrete; that is, it consists of normal eigenvalues of L(λ), and
λe is their only possible accumulation point.

If we equip the space H with the inner product [ · , · ]α := (L(α)· , · ), by Assump-
tion 1 it becomes a Krein space (see [B], [AI]) which we denote by Kα. A natural
canonical decomposition of this Krein space is given by Kα = H+ ⊕ H−, where H+

is the spectral invariant subspace of L(α) corresponding to (0,+∞) and H− is the
spectral invariant subspace of L(α) corresponding to (−∞, 0). In this section, the set
of all maximal nonnegative subspaces of this Krein space Kα, which are also called
maximal L(α)-nonnegative subspaces of H, is denoted by M+

α .
A function ϕ, considered on a real interval, is said to be decreasing at value zero

if ϕ(λ0) = 0 implies that ϕ(λ) > 0 if λ < λ0 and ϕ(λ) < 0 if λ > λ0.
Assumption 2. For each x ∈ H, x �= 0, the function ϕx : ϕx(λ) := (L(λ)x, x),

λ ∈ [α, β), is decreasing at value zero.
It follows that each function ϕx, x �= 0, has at most one zero in the interval [α, β);

this zero is denoted by p(x). If ϕx(α) > 0 and the function ϕx does not have a zero
in [α, β) we put p(x) = +∞. Evidently, if x ∈ H, x �= 0, and γ �= 0 is a complex
number, then p(γx) = p(x). Also, the convention min ∅ = +∞ is used.

Sometimes we need the following assumption.
Assumption 3. If λ0 ∈ (α, β) is fixed, for each ε > 0 such that (λ0 − ε, λ0 + ε) ⊂

(α, β) there exists a δ(ε) > 0 such that ‖x‖ = 1, |ϕx(λ0)| ≤ δ(ε) implies that ϕx has
a zero in the interval (λ0 − ε, λ0 + ε).

For any subspaceM of H, byM1 we denote the unit sphere ofM that is the set
of all elements x ∈M with ‖x‖ = 1.

Theorem 2.1. Under Assumptions 1–3, for each subspace M∈M+
α we have

inf
x∈M1

p(x) ≤ min σ(L) ∩ [α, β).

Proof. Denote a := min σ(L) ∩ [α, β) and assume to the contrary that

inf
x∈M1

p(x) > a.(2.1)

First we suppose that a is an eigenvalue of L: L(a)x0 = 0, ‖x0‖ = 1. Then p(x0) = a
and, by (2.1), x0 /∈ M. We considerM′ := span {M, x0}. Since L(a) is self-adjoint
and L(a)x0 = 0, for an arbitrary element x ∈M we obtain

(L(a)(x+ x0), x+ x0) = (L(a)x, x) + (L(a)x0, x) + (L(a)x, x0) + (L(a)x0, x0)

= (L(a)x, x) ≥ 0.

It follows that (L(α)(x+ x0), x+ x0) ≥ 0, henceM′ is an L(α)-nonnegative subspace,
a contradiction to the fact thatM is a maximal L(α)-nonnegative subspace.
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In the general case, for the point a there exists a sequence (yn) in H, ‖yn‖ = 1,
such that ‖L(a)yn‖ → 0 if n→∞. According to Assumption 3 and (2.1) there exists
a c > 0 such that ϕx(a) ≥ c‖x‖2 for all x ∈ M. Indeed, otherwise inM there would
exist a sequence of elements xn, ‖xn‖ = 1, such that ϕxn(a) ↓ 0, and Assumption 3
would imply that p(xn)→ a, which is impossible because of (2.1). Now we obtain for
x ∈M

(L(a)(x+ yn), x+ yn) = (L(a)x, x) + (L(a)x, yn) + (L(a)yn, x) + (L(a)yn, yn)

≥ c‖x‖2 − 2‖x‖ ‖L(a)yn‖+ (L(a)yn, yn)

≥
(√

c‖x‖ − ‖L(a)yn‖√
c

)2

− ‖L(a)yn‖
2

c
− ‖L(a)yn‖

≥ −
(‖L(a)yn‖2

c
+ ‖L(a)yn‖

)
.

If we choose ε > 0 such that (a−ε, a+ε) ⊂ [α, β), δ(ε) according to Assumption 3, and,

finally, n such that ‖L(a)yn‖2
c +‖L(a)yn‖ < δ(ε), then ϕx+yn(a−ε) > 0, which is again

a contradiction to the fact thatM is a maximal L(α)-nonnegative subspace.
Remark 2.2. The proof of Theorem 2.1 shows that Assumption 3 is needed only

if σ(L) ∩ (α, λe) = ∅.
Let K be a Krein space, and let K = H+ ⊕ H− be a canonical decomposition

of K. We denote the corresponding orthogonal projections onto H± by P±. Each
nonnegative subspace L ofK, if it is not maximal nonnegative, is contained in infinitely
many maximal nonnegative subspaces. If M denotes one of these, the dimension
of the factor space M/L is independent of the choice of the maximal nonnegative
subspaceM, and it coincides with the dimension of the space H+ � P+L. Moreover,
the spaceML := L ⊕ (H+ � P+L) is a maximal nonnegative subspace containing L,
and L is the orthogonal complement inML of the subspace

VL := H+ � P+L.(2.2)

The spaceML will be called the standard maximal nonnegative extension of L.
We also need the following lemma; cf. [M].
Lemma 2.3. Suppose that the operator function L, defined on the interval [α, β),

satisfies Assumptions 1 and 2. If λ1 ≤ λ2 ≤ · · · ≤ λn are eigenvalues of L with
corresponding eigenvectors y1, y2, . . . , yn and L is a subspace of H such that p(x) ≥ λn
for all x ∈ L, then (L(λ1)x, x) ≥ 0 for all x ∈ span {L, y1, y2, . . . , yn}.

Proof. If y ∈ L, then (L(λn)(y + yn), y + yn) = (L(λn)y, y) ≥ 0, and hence also
(L(λn−1)(y + yn), y + yn) ≥ 0. If n ≥ 2 the same reasoning yields

(L(λn−1)(y + yn + yn−1), y + yn + yn−1) ≥ 0,

and repeating this we finally get (L(λ1)x, x) ≥ 0 for x ∈ span {L, y1, y2, . . . , yn}, which
implies (L(α)x, x) ≥ 0 for the same x.

Theorem 2.4. Suppose that the operator function L, defined on the inter-
val [α, β), satisfies Assumptions 1 and 2. If L has at least n eigenvalues in (α, λe)
and we denote the n smallest ones by

λ1= · · ·=λn1
<λn1+1= · · ·=λn2

< · · ·<λnk+1= · · ·=λnk+1
< · · ·≤λn,(2.3)

counted according to their multiplicities, then

sup
M∈M+

α

sup
V⊂M

dim V=j−1

inf
x∈M1

x⊥V

p(x) ≤ λj , j = 1, 2, . . . , n.(2.4)
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If the total number of eigenvalues of L in (α, λe) is finite, say n, and Assumption 3
is satisfied, then the inequality in (2.4) holds also for j = n+1, n+2, . . . if we define
λn+1 = λn+2 = · · · = λe.

Proof. Let y1, y2, . . . , yn be a system of linearly independent eigenvectors of L
corresponding to the eigenvalues in (2.3). We denote the number on the left-hand side
of (2.4) by µj . Since the sequence of these numbers is nondecreasing, the relation (2.4)
will be proved if we show that µnk

≤ λnk
for k = 1, 2, . . . . We prove this by induction

with respect to k.
So for k = 1 assume that

λ1 = λn1
< inf

x∈M1
0

x⊥V0

p(x)

for some maximal L(α)-nonnegative subspace M0 and some (n1 − 1)-dimensional
subspace V0 ⊂ M0. Then (L(λ1)x, x) > 0 for all x ∈ V⊥0 ∩M0, x �= 0. If y is any
nonzero element of the linear span of y1, y2, . . . , yn1

, it follows that y /∈ V⊥0 ∩M0, and
hence V⊥0 ∩M0 and the elements y1, y2, . . . , yn1 are linearly independent. Further,
we obtain for x ∈ V⊥0 ∩M0 from Lemma 2.3

(L(λ1)(x+ y), x+ y) = (L(λ1)x, x) ≥ 0.

Because of Assumption 2,

(L(α)u, u) ≥ 0 for all u ∈ span {V⊥0 ∩M0, y1, y2, . . . , yn1
},

or, in words, this subspace is L(α)-nonnegative. However, this is impossible since
the defect of V⊥0 ∩M0 with respect to M0 and hence with respect to any maximal
L(α)-nonnegative subspace is n1 − 1.

The proof of the step from k to k + 1 is similar. Suppose that

µnk
≤ λnk

,(2.5)

but µnk+1
> λnk+1

. Then there exists a maximal L(α)-nonnegative subspaceM0 and
an (nk+1 − 1)-dimensional subspace V0 ofM0 such that

inf
x∈M1

0
x⊥V0

p(x) > λnk+1
.

Since
(
L(λnk+1

)y, y
)
= 0 for all y in the linear span of ynk+1, ynk+2, . . . , ynk+1

, these
elements are linearly independent of V⊥0 ∩M0. Consider

L := span {V⊥0 ∩M0, ynk+1, ynk+2, . . . , ynk+1
}.

By the same argument as above, this is an L(α)-nonnegative subspace, and its de-
fect to a maximal L(α)-nonnegative subspace is dim V0 − (nk+1 − nk) = nk − 1.
With the standard maximal L(α)-nonnegative extensionML and the corresponding
subspace VL from (2.2) it follows that

λnk+1
= inf
x∈L

p(x) = inf
x∈M1

L
x⊥VL

p(x) ≤ sup
V⊂ML

dim V=nk−1

inf
x∈M1

L
x⊥V

p(x)

≤ sup
M∈M+

α

sup
V⊂M

dim V=nk−1

inf
x∈M1

x⊥V

p(x) = µnk
≤ λnk

,
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where the last inequality is a consequence of the induction assumption (2.5). On the
other hand, λnk+1

> λnk
, a contradiction.

In order to prove the last statement of the theorem, assume that for some l > 0
we have µn+l > λe. Then there exists a maximal L(α)-nonnegative subspaceM0 and
an (n+ l − 1)-dimensional subspace V0 ofM0 such that

inf
x∈M1

0
x⊥V0

p(x) > λe.

Choose ε > 0 such that

λn < λe − ε < λe < λe + ε < inf
x∈M1

0
x⊥V0

p(x).

As above, Assumption 3 implies for x ∈ M0, x ⊥ V0 that (L(λe)x, x) ≥ c‖x‖2 with
some c > 0. Since λe belongs to the essential spectrum of L, that is, 0 belongs to the
essential spectrum of L(λe), for each η > 0 there exists an l-dimensional subspace Lηl
such that ‖L(λe)

∣∣
Lη

l

‖ ≤ η. As in the proof of Theorem 2.1 it follows that for some

subspace Lηl it holds (L(λe − ε)x, x) > 0 for all x �= 0, x ∈ span {V⊥0 ∩M0,Lηl }. Now
Lemma 2.3 implies that the subspace M1 := span {V⊥0 ∩ M0,Lηl , y1, y2, . . . , yn} is
L(λ1)-nonnegative, and hence also L(α)-nonnegative. On the other hand, the dimen-
sion of the factor space M1/(V⊥0 ∩M0) equals l + n. This is a contradiction since
dimM0/(V⊥0 ∩M0) = n+ l− 1 and the dimensions of all the complementary spaces
of V⊥0 ∩M0 to maximal L(α)-nonnegative spaces coincide.

3. Triple variational principles.

3.1. Self-adjoint operators in Hilbert space with a gap in the essential
spectrum. In this subsection a self-adjoint operator A on some Hilbert space H will
be considered for which there exists a semiclosed interval such that σ(A) is discrete
in this interval. The eigenvalues of A in this interval are characterized by a triple
variational principle. By M+

α we denote the set of maximal (A − αI)-nonnegative
subspaces; that is, a subspace M of H belongs to M+

α if ((A − α)x, x) ≥ 0 for all
x ∈M andM is maximal with respect to this property. The results of section 2 will
be applied to the linear pencil L(λ) = A−λI. Evidently, if α ∈ ρ(A), then L satisfies
Assumptions 1–3.

Theorem 3.1. Let A be a self-adjoint operator A such that for some α ∈ ρ(A)∩R
and β > α the spectrum σ(A) is discrete in the interval [α, β). If A has at least n
eigenvalues in [α, β) and we denote the smallest n ones by

λ1=λ2= · · ·=λn1<λn1+1= · · ·=λn2< · · ·<λnk+1= · · ·=λnk+1
< · · ·≤λn,

counted according to their multiplicities, then

λj = max
M∈M+

α

sup
V⊂M

dim V=j−1

inf
x∈M1

x⊥V

p(x), j = 1, 2, . . . , n.(3.1)

If A has finitely many, say n eigenvalues in [α, β) and σess(A)∩ [α, β] �= ∅, then with
λe = minσess(A) ∩ [α, β] and λn+1 = λn+2 = · · · = λe the relation (3.1) holds also
for j = n+ 1, n+ 2, . . . .

Proof. We apply Theorem 2.4 to the linear pencil

L(λ) := A− λI, λ ∈ R,(3.2)
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and obtain the relation (3.1) with ≥ instead of the sign =. It remains to find a
subspaceM0 ∈M+

α such that

λj = max
V⊂M0

dim V=j−1

inf
x∈M1

0
x⊥V

p(x).(3.3)

If we choose forM0 the spectral subspace of A corresponding to the interval [α,∞)
the relation (3.3) is a consequence of a classical double variational principle of the
spectrum of a self-adjoint operator, applied to the operator A|M0 .

Remark 3.2. In Theorem 3.1 the setM+
α can be replaced by the set of all maximal

(A− αI)-positive subspaces.

3.2. Nonnegative operators on Krein spaces. Let (K, [ · , · ]) be a Krein
space. We fix a fundamental symmetry J on K and introduce the Hilbert space
(H, ( · , · )), which consists of the same elements as K and with inner product

(x, y) := [Jx, y], x, y ∈ K.

Let A be a bounded positive operator on K; here positive means that [Ax, x] > 0 for
all x ∈ K, x �= 0. Then the spectrum σ(A) is real, with positive eigenvalues having
positive-type and negative eigenvalues having negative-type eigenvectors; see, e.g. [L],
[AI]. The spectrum of A on K and also the eigenvalues, eigenvectors, etc. coincide with
the spectrum, the eigenvalues, etc. of the self-adjoint linear pencil M(µ) := JA− µJ
on the Hilbert space H.

We introduce the pencil

L(λ) := J − λJA.

The spectrum of the pencil L is in general unbounded, the relations

λ ∈ σ(L)⇐⇒ µ =
1

λ
∈ σ(M), λ ∈ σp(L)⇐⇒ µ =

1

λ
∈ σp(M)

hold, and the eigenvectors of corresponding eigenvalues of L and M coincide. The
pencil L satisfies Assumptions 1–2 with respect to α = 0 and β =∞. Denote by M+

0

the set of all maximal nonnegative subspaces of K, by M++
0 the set of all maximal

positive subspaces of K.
Theorem 3.3. Let A be a positive operator on the Krein space K. Suppose that

A has at least n eigenvalues which are greater than max{σess(A), 0} denoted by

µ1=µ2= · · ·=µn1>µn1+1= · · ·=µn2> · · ·>µnk+1= · · ·=µnk+1
> · · ·≥µn,

counted according to their multiplicities. Then

µj = inf
M∈M++

0

inf
V⊂M

dim V=j−1

sup
x∈M1

x⊥V

[Ax, x]

[x, x]
, j = 1, 2, . . . , n.(3.4)

Proof. If we apply Theorem 2.4 to the pencil L and the interval [0,∞) we obtain
with λj = µ−1

j , j = 1, 2, . . . , n,

λj ≥ sup
M∈M+

0

sup
V⊂M

dim V=j−1

inf
x∈M1

x⊥V

[x, x]

[Ax, x]
, j = 1, 2, . . . , n.
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Rewriting this relation for the µj and positive subspacesM gives

µj ≤ inf
M∈M++

0

inf
V⊂M

dim V=j−1

sup
x∈M1

x⊥V

[Ax, x]

[x, x]
, j = 1, 2, . . . , n.

It remains to find a subspaceM0 ∈M++
0 such that

µj = inf
V⊂M0

dim V=j−1

sup
x∈M1

0
x⊥V

[Ax, x]

[x, x]
, j = 1, 2, . . . , n.

We chooseM0 to be a maximal nonnegative subspace of K which is invariant under A
and which exists according to [L, Theorem 7.1]. ThenM0 is even a positive subspace:
If it contains a neutral element x0 it follows that [Ax0, x0] = 0, and hence x0 = 0
since A is positive. Now consider the Hilbert space completion H0 ofM0 with respect
to the inner product [ · , · ]. The restriction A|M0 extends by continuity to a bounded
self-adjoint operator A0 in H0 which has the same discrete spectrum as the restriction
A|M0

. If we apply the classical variational principle to A0 the claim follows.

3.3. A class of quadratic operator pencils. In this subsection we consider
a self-adjoint quadratic operator pencil

L(λ) = −λ2I + λB + C

with bounded operators B and C in some Hilbert space H, B being nonpositive. As
we have mentioned already, pencils of this form with unbounded operators arise in
problems of mechanics; see [Pi1], [Pi2]. Here, however, we shall restrict ourselves to
the case of bounded operators.

For convenience it is also assumed that C is boundedly invertible: 0 ∈ ρ(C), and
we write C as the difference of its two positive components C+, C− : C = C+ − C−.
We shall characterize the smallest discrete positive eigenvalues of L by a variational
principle from the left.

The pencil L satisfies Assumptions 1–3 with respect to α = 0 and β =∞. Denote
by M+

0 the set of all C-nonnegative subspaces of H. For x �= 0 the solutions of the
equation

λ2‖x‖2 − λ(Bx, x)− (Cx, x) = 0

are

λ = p±(x) =
1

2‖x‖2
(
(Bx, x)±

√
(Bx, x)2 + 4(Cx, x)‖x‖2

)
.

Hence this equation has a solution in the right half plane if and only if (Cx, x) > 0,
and then this solution p+(x) is unique and real; we denote it for short by p(x). It
follows that under the above assumptions the spectrum of L in the right half plane is
real.

Theorem 3.4. Given the quadratic operator pencil

L(λ) = −λ2I + λB + C

with a bounded nonpositive operator B and a bounded self-adjoint operator C such
that 0 ∈ ρ(C). Then the spectrum of L in the right half plane is real, and hence
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positive, and it is nonempty if and only if C+ �= 0. If L has at least n eigenvalues in
the interval [0, λe), where λe := minσess(L) ∩R+ and we denote the n smallest ones
as in (2.3):

λ1= · · ·=λn1
<λn1+1= · · ·=λn2

< · · ·<λnk+1= · · ·=λnk+1
< · · ·≤λn,

counted according to their multiplicities, then

sup
M∈M+

0

sup
V⊂M

dim V=j−1

inf
x∈M1

x⊥V

p(x) = λj , j = 1, 2, . . . , n.(3.5)

If the total number of eigenvalues of L in [0, λe) is finite, say n, and ranC+ is infinite-
dimensional, then the equality sign in (3.5) holds also for j = n + 1, n + 2, . . . if we
define λn+1 = λn+2 = · · · = λe.

Proof. Theorem 2.4 yields immediately the inequalities

sup
M∈M+

α

sup
V⊂M

dim V=j−1

inf
x∈M1

x⊥V

p(x) ≤ λj , j = 1, 2, . . . , n.(3.6)

We shall find a maximal C-positive subspaceM0 such that

sup
V⊂M0

dim V=j−1

inf
x∈M1

0
x⊥V

p(x) = λj , j = 1, 2, . . . , n.

In order to find such a subspace we consider the following linearization of the pencil L.
In the space H̃ := H⊕H define the operators

Ã :=

(
B C
I 0

)
, G̃ :=

(−I 0
0 C

)
.(3.7)

The operator Ã is a standard linearization of the pencil L, and it is well known that
the spectra of L and of Ã coincide. In particular, the spectrum of Ã in the right
half plane forms a spectral set in the Riesz–Dunford sense. Denote the corresponding
spectral subspace of Ã by M̃0. The operator Ã is G̃-accretive:

� (G̃Ã) = �
(−B −C

C 0

)
=

(−B 0
0 0

)
≥ 0.

Therefore this spectral subspace M̃0 is G̃-nonnegative; see [AI]. It follows that it
admits a representation of the form

M̃0 =

{(
KPM0x
PM0x

)
: x ∈ H

}
,

where PM0 is an orthogonal projection in H = ranC− ⊕ ranC+ onto a subspaceM0

of the form

M0 =

{(
K1x
x

)
: x ∈ ranC+

}
,

with a bounded linear operator K1 from ranC+ into ranC−. It is now easy to see

that the spectrum of the operator Ã|M̃0
, which is the spectrum of Ã in the right half

plane, coincides with the spectrum of the pencil

LM0(λ) := λ2PM0 − λPM0BPM0 − PM0CPM0 ,
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(which is considered just in the subspace M0 of H) in the right half plane, and, in
particular, the eigenvalues in the right half plane and the corresponding eigenvectors
of the pencils L and LM0 coincide. On the other hand, we have from (3.7) for

x̃ = (KPM0
x

PM0
x
) ∈ M̃0

(G̃x̃, x̃) = (CPM0x, PM0x)− ‖KPM0x‖2 ≥ 0,

and it follows that PM0CPM0 is strictly positive onM0, or, in other words, the sub-
spaceM0 is PM0CPM0-positive. Therefore the positive eigenvalues of the pencil LM0

can be characterized by double variational principles, which implies that

sup
V⊂M0

dim V=j−1

inf
x∈M0

1

x⊥V

p(x) = λj , j = 1, 2, . . . , n;

that is, forM =M0 the equality sign in (3.6) is attained.

3.4. Block operator matrices. In this subsection we consider a self-adjoint
operator Ã on the orthogonal sum H̃ = H1 ⊕H2 of two Hilbert spaces H1, H2 given
by the block operator matrix

Ã =

(
A B
B∗ D

)
.(3.8)

Evidently, A and D are self-adjoint operators on H1 and H2, respectively. The
spectrum of Ã outside of σ(D) coincides with the spectrum of the first Schur comple-
ment

L(λ) := A− λI −B(D − λI)−1B∗

of Ã. If λ /∈ σ(D), then L′(λ) = −I − B(D − λI)−2B∗ ≤ −I; therefore, if α >

max σ(D), α ∈ ρ(Ã), and β > α, then for L and the interval [α, β) Assumptions 1–3
are satisfied. In particular, for x ∈ H1, x �= 0, the equation (L(λ)x, x) = 0 has
at most one zero in the interval [α,∞) and has exactly one zero in this interval if
(L(α)x, x) ≥ 0. Denote this zero by p(x). Further, by M+

α we denote the set of all
maximal L(α)-nonnegative subspaces of H1.

Theorem 3.5. Let the self-adjoint block operator matrix Ã be given as in (3.8).

Consider α ∈ ρ(Ã) such that α > max σ(D), and denote λe := min σess(Ã) ∩ [α,∞).

If Ã has at least n eigenvalues in (α, λe) and we denote the n smallest ones as in
(2.3):

λ1= · · ·=λn1
<λn1+1= · · ·=λn2

< · · ·<λnk+1= · · ·=λnk+1
< · · ·≤λn,

counted according to their multiplicities, then

λj = sup
M∈M+

α

sup
V⊂M

dim V=j−1

inf
x∈M1

x⊥V

p(x), j = 1, 2, . . . , n.(3.9)

If the total number of eigenvalues of L in (α, λe) is finite, say n, then the equality
in (3.9) holds also for j = n+ 1, n+ 2, . . . if we define λn+1 = λn+2 = · · · = λe.

Proof. Theorem 2.4 yields immediately the relation (3.9) with the sign ≥ instead
of the sign =. It remains to find a maximal L(α)-nonnegative subspace ofH1 such that

the equality is attained. To this end we consider the spectral invariant subspace M̃
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of Ã corresponding to the interval ∆ := [α,∞). According to [LMMT, Theorem 1.2]
this invariant subspace is of the form

M̃ =

{(
x

K∆x

)
: x ∈ H∆

1

}
,

whereH∆
1 is a subspace ofH1 andK∆ is a bounded operator fromH∆

1 intoH2. Let P∆

be the orthogonal projection in H1 onto H∆
1 . We introduce the space H̃∆ := H∆

1 ⊕H2

and the compression Ã∆ of Ã to H̃∆:

Ã∆ :=

(
P∆AP∆ P∆B
B∗P∆ D

)
.

Evidently, with the first Schur complement L∆(λ) of Ã∆ it holds that

(L(λ)x, x) = (L∆(λ)x, x), x ∈ H∆
1 .

Then, according to [LMMT, Theorem 2.6], M0 := H∆
1 is a maximal L(α)-positive

subspace. The discrete eigenvalues of Ã and of Ã∆ in [α,∞) coincide, and it is well
known (see [BEL]) that the latter can be characterized by the formula

λj = sup
V⊂M0

dim V=j−1

inf
x∈M1

0
x⊥V

p(x), j = 1, 2, . . . , n.

REFERENCES

[ALM] V. Adamyan, H. Langer, and R. Mennicken, Eigenvalues of a Sturm-Liouville problem
depending rationally on the eigenvalue parameter, Math. Res. 79, Akademie Verlag,
Berlin, 1994, pp. 589–594.

[AI] T. Ya. Azizov and I. S. Iokhvidov, Linear Operators in Spaces with an Indefinite
Metric, John Wiley and Sons, Chichester, UK, 1989.

[B] J. Bognár, Indefinite Inner Product Spaces, Springer-Verlag, Berlin, 1974.
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[GK] I. C. Gohberg and M. G. Krěin, Introduction to the Theory of Linear Nonselfadjoint
Operators, Transl. Math. Monogr. 18, AMS, Providence, RI, 1969.

[GS] M. Griesemer and H. Siedentop, A minimax principle for the eigenvalues in spectral
gaps, J. London Math. Soc. (2), 60 (1999), pp. 490–500.

[L] H. Langer, Spectral functions of definitizable operators in Krein spaces, in Proceedings
of the Graduate School “Functional Analysis”, Dubrovnik, 1981, Lecture Notes in
Math. 948, Springer-Verlag, Berlin, 1982, pp. 1–46.

[LMMT] H. Langer, A. Markus, V. Matsaev, and C. Tretter, Self-adjoint block operator
matrices with non-separated diagonal entries, J. Funct. Anal., to appear.
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Abstract. In this paper, we discuss the vortex structure of the superconducting thin films placed
in a magnetic field. The discussion is based on a system of simplified Ginzburg–Landau equations.
We obtain the estimate for the lower critical magnetic field Hc1 , in the sense that it is the first
critical value of hex, the applied field, for which the minimal energy among vortexless configurations
is equal to the minimal energy among single-vortex configurations; moreover, it corresponds to the
first phase transition in which vortices appear in the superconductor. We also discuss the location
of these vortices and the asymptotic behavior of the local minimizers.

Key words. superconductivity, thin films, vortices, pinning, critical magnetic field
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1. Introduction. Consider a three-dimensional superconducting thin film that
occupies the domain Ωδ = Ω×(−δa, δa), where Ω is a bounded smooth planar domain
and a ∈ C∞(Ω) is a function measuring the variation in the film thickness. Assume
that a(x) ≥ a0 > 0 for all x ∈ Ω; by taking integral averages along the vertical
direction and setting δ going to zero, it was shown in [10] that the three-dimensional
Ginzburg–Landau model of superconductivity [16, 26] defined on Ωδ may be reduced
to a two-dimensional one given by the minimization in H1(Ω) of the functional

Ja(u) =
1

2

∫
Ω

a(x)

[
|∇A0

u|2 + 1

2ε2
(1− |u|2)2

]
,(1.1)

where A0(x), the in-plane component of the magnetic potential, is determined by div(a(x)A0) = 0, curlA0 = hex in Ω,

A0 · n = 0 on ∂Ω.
(1.2)

Here, hex is the external magnetic field which is applied vertically to the (x1, x2)-
plane, n denotes the outward normal to ∂Ω, u is the complex superconducting order
parameter with |u|2 representing the density of superconducting electrons (|u| = 1
corresponds to the superconducting state, |u| = 0 corresponds to the normal state),
∇A0u = ∇u− iA0u, and ε is proportional to the coherence length.

Let u be a critical point of the functional Ja(u) in H1(Ω) which satisfies the
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Euler–Lagrange (or simplified Ginzburg–Landau) equation −(∇− iA0) · a(x)(∇u− iA0u) =
a(x)
ε2 u(1− |u|2) in Ω,

∂nu = 0 on ∂Ω.
(1.3)

The points where the zeros of u appear, with their topological degrees, are called
the vortices of the map u. Understanding the vortex structures in the solutions and
describing the vortices as hex varies is of great physical relevance and mathematical
interests. Discussions on the vortex state in the thin film geometry have been given
in [1, 16, 17, 19, 20, 26]; in particular, the variation in the film thickness is thought
to provide an effective vortex pinning mechanism [10]. For works related to the
mathematical analysis of the various pinning mechanisms, we refer to [2, 3, 4, 6, 10,
11, 12, 15].

In [7, 8], rigorous mathematical analysis of vortex solutions has been done for
a similar problem with a(x) = 1, A0 = 0 and Dirichlet boundary condition u =
g: Ω→ S1 of degree d. It was proved that, asymptotically, minimizers have d isolated
vortices of degree one and their locations are determined by minimizing a renormalized
energy. This result was extended to the case a(x) 	≡ 1, A0 = 0 with the same Dirichlet
boundary conditions in [6] and [15] independently, and the vortices of the minimizers
were shown to be located at the minimum of a(x). Some results similar to those in [7]
were obtained in [9] for the original Ginzburg–Landau functional J(u,A),

J(u,A) =
1

2

∫
Ω

[
|∇Au|2 + |curlA− hex|2 + 1

2ε2
(1− |u|2)2

]
,

with hex = 0 and the gauge invariant Dirichlet conditions (a name given in [22]).
This work was later extended in [14] to the case where a weight (thickness) appears in
the functional J(u,A); the corresponding renormalized energy was presented in [13].
Similar analysis based on the functional (1.1) was also presented in [18]. All the
available results substantiate the pinning effect of the thickness variation; that is, the
vortices turn to stay where the film is thin.

Recently, the minimizers of J(u,A) with nonzero applied fields with natural
boundary conditions were studied in [5, 18, 23, 24, 25, 21, 22]. In this case, there
is no a priori bound on the number of the vortices for the minimizers in H1 × H1.
To overcome this difficulty, i.e., to have an a priori control on the numbers of the
vortices, in [23, 24], the local minimizers of the functional

J(u,A) =
1

2

∫
Ω

[
|∇Au|2 + |curlA− hex|2 + 1

2ε2
(1− |u|2)2

]
in the set DM were studied, where

DM =
{
(u,A) ∈ H1(Ω)×H1(Ω) : F (u) < M | ln ε| }

and F (u) = J1(u) = J(u, 0) with A0 = 0. The minimizers were shown not to be
on the boundary of DM , hence the Ginzburg–Landau equations (the Euler–Lagrange
equations for the functional J) are satisfied. Such analysis also provided estimates on
the lower critical magnetic field Hc1 , the locations of the vortices, and the asymptotic
behaviors of the minimizers. The lower critical field Hc1 may be defined as the value
of hex for which the minimal energy among vortexless configurations is equal to the
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minimal energy among single-vortex configurations. For hex ≤ Hc1 , it was shown
in [21] that the global minimizer (in H1×H1) of Ginzburg–Landau functional J(u,A)
is the vortexless solution found in [23]. For the case Hc1 � hex � Hc2 , in [22], it
was shown that as ε → 0 the energy minimizers have vortices whose density tends
to be uniform and proportional to hex. For other discussions, we refer the reader to
[2] and [25] and references therein.

In this paper, we study the minimizers of the functional (1.1) in the set

DaM =
{
u ∈ H1(Ω) : Fa(u) < M | ln ε| } ,(1.4)

where Fa(u) = Ja(u) with A0 = 0. The main techniques of this paper come from
[23, 24]. We also present the estimate on the lower critical magnetic field Hc1 and
discuss the impact of the thickness function a(x) and the given applied field curlA0

on the vortices: their number and their locations. These new results have not been
stated even in the physics literature. Our results also provide rigorous theoretical
justification of the pinning mechanism due to the thickness variation based on the
simplified Ginzburg–Landau model.

Let us introduce a few notation. By (1.2), there is a function ξ ∈ H2(Ω) such
that

a(x)A0(x) = ∇⊥ξ = (−ξx2
, ξx1

) in Ω.

Using the scaling ξ = ξ0hex, we have from (1.2) that −div( 1
a(x)∇ξ0) = −1 in Ω,

ξ0 = 0 on ∂Ω.
(1.5)

By the maximum principle, we may easily see that −C ≤ ξ0 < 0 for some constant
C > 0 and ξ0 is a smooth function that depends only on Ω and a = a(x). Let

Λ =

{
x ∈ Ω, |ξ0(x)/a(x)| = max

y∈Ω
|ξ0(y)/a(y)|

}
.(1.6)

To state our main results, the following assumption is made.
Assumption 1.1. Assume that the constant M in (1.4) is chosen so that there

is a positive integer n ∈ N such that M

πmax
Λ

a(x)
,

M

πmin
Λ

a(x)

 ⊂ (n, n+ 1).(1.7)

The above assumption on the existence of n ∈ N with the desired property (1.7)
is needed in proving (see section 6) that the minimizer of Ja(u) in DaM is in DaM (not
on ∂DaM ) and thus the minimizer is a solution of (1.3). Under the above assumption,
we have the following theorem.

Theorem 1.1. There exists ka = 1
2 maxΩ |ξ0(x)/a(x)| , kε2 = O(1), kε3 = o(1), and

ε0 = ε0(M) > 0 such that

Hc1 = ka| ln ε|+ kε2,(1.8)

and, for ε < ε0, the following holds:
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(i) If hex ≤ Hc1 , there exists a solution uε of (1.3) which minimizes Ja(u) in DaM ,
and it satisfies 1/2 ≤ |uε| ≤ 1.

(ii) If Hc1 + kε3 ≤ hex ≤ Hc1 + O(1), there exists a solution uε of (1.3) that
minimizes Ja(u) in DaM . The solution has a bounded positive number of vortices bεi
of degree one such that

dist(bεi ,Λ)→ 0, as ε→ 0,(1.9)

and there exists a constant α > 0 such that dist(bεi , b
ε
j) ≥ α for i 	= j.

Remark 1.1. The main differences between our results and those in [23, 24] are
as follows: first, A0 is determined a priori, and it satisfies (1.2) and curlA0(x) =
O(| ln ε|) so that no London type equation is used; second, with a variable weight
a = a(x) in the functional, methods developed in [6] (see also [13]) and in [23] are
needed to derive the energy lower bound.

Remark 1.2. It follows from the proof of Theorem 1.1 that the number of the
vortices, under our assumption, is bounded by

N = min

{
M

πmaxΛ a(x)
,

minΛ a(x)

maxΛ a(x)−minΛ a(x)

}
.

Remark 1.3. From (1.6) and (1.9), one may conclude that the distribution of the
vortex locations are influenced both by the pinning effect due to thickness variation and
the effect of the applied magnetic field. A similar phenomenon has also been explored
in [2] with normal inclusion serving as pinning sites.

Let us discuss briefly Assumption 1.1 and the results of Theorem 1.1. The pa-
rameter M in (1.4) is chosen such that[

M/(πmax
Λ

a(x)),M/(πmin
Λ

a(x))
]
⊂ (n, n+ 1)

for some positive integer n. For Λ defined by (1.6), it is easy to see that the above
assumption can be equivalently replaced by

max
Λ

a(x) < 2min
Λ

a(x).(1.10)

Note that if Λ consists of only one point, or if a(x) satisfies

max
Ω

a(x) < 2min
Ω

a(x),

then (1.10) is automatically satisfied. With suitable choices of the domain Ω and the
coefficient a(x), it is indeed possible to make Λ a single point. A couple of simple
examples are in order; let Ω = B(0, R0) be a two-dimensional disc of radius R0 and
r = |x| for x ∈ Ω. Let v(x) = ξ0(x)/a(x); (1.5) for ξ0 may be rewritten, in the polar
coordinate system, as v

′′
(r) + v

′
(r)/r + v

′
(r)(ln a(r))

′
+ v(r)∆ ln a(r) = 1 in (0, R0),

v
′
(0) = 0, v(R0) = 0,

(1.11)

where v(r) and a(r) represent the functions v and a in the polar coordinates.

Example 1. If a(r) = e−
r2

4 , then Λ = {0}.
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Since ∆ ln a(r) = −1, (ln a(r))
′
= −r/2, we have

v
′′
(r) + (1/r − r/2)v

′
(r)− v(r) = 1 in (0, R0).

One may verify that v(r) = z(r)/z(R0)− 1 is nonpositive in [0, R0], where

z(r) = r2 + r3 +

+∞∑
n=0

(
1

4n+1(n+ 2)!
r2(n+2) +

1

2n+1(2n+ 5)!!
r2n+5

)
.

v(r) is a solution of problem (1.11). Since z(r) is strictly increasing in [0, R0], so is
v(r). We know |v(r)| takes its maximum value only at 0, that is, Λ = {0}.

Example 2. If a(r) = 2(1 + r), then Λ = {0}.
In fact, let ξ0(r) =

1
3r

3 + 1
2r

2− ( 1
3R

3
0 +

1
2R

2
0). Then ξ0(r) is nonpositive in [0, R0],

ξ0(R0) = 0, and ξ0 is a solution of (1.11). ξ0 = ξ0(r) is strictly increasing in [0, R0], so
is a = a(r). Therefore |ξ0(r)|/a(r) takes its maximum value only at {0}, so Λ = {0}.

For both of the above examples, depending on R0, the thickness function a may
take on values of different magnitude at different locations in the domain B(0, R0). It
is interesting to note that the coefficient a(x) takes its minimum value at the boundary
in Example 1 but at the origin in Example 2. Based on the analysis given in this paper,
near Hc1 , the solution of (1.3) with a single vortex in Ω will have its vortex pinned
near the origin in both cases for small enough ε even though the origin is the thickest
position in Example 1. This illustrates that the vortex pinning phenomenon may be
affected by the competition between the applied field and the thickness variation.

We now state the second main theorem.
Theorem 1.2. For a solution sequence un = uεn of (1.3) given by the part (ii)

of Theorem 1.1, up to a subsequence, there exist d points ci ∈ Λ such that un → u∗
weakly in W 1,p (p < 2) and strongly in H1

loc(Ω \ ∪di=1 {ci}), where u∗ is a solution of
−∇ · (a(x)∇u∗) = a(x)u∗|∇u∗|2 in Ω \ ∪di=1{ci},
∂u∗
∂n = 0 on ∂Ω,

|u∗| = 1 a.e. on Ω.

(1.12)

It is easy to see that the local minimizers in DaM may not be the solution of (1.3)
(if it is on the boundary of DaM ). However, the vortex structure is only well defined
for solutions that satisfy |∇u| ≤ C/ε. For this reason, similar to [23], we introduce a
regularization as follows.

Let uγε ∈ H1(Ω,R2) be a minimizer of the following minimization problem:

min
v∈H1(Ω,R2)

{∫
Ω

a(x)

[
1

2
|∇v|2 + 1

4ε2
(1− |v|2)2

]
+

∫
Ω

|v − uε|2
2ε2γ

}
,(1.13)

where uε ∈ DaM . uγε is, in some sense, a regularization of uε in DaM and an a priori
bound on the number of the vortices of uγε can be obtained. This in turn leads to
a description of the vortices of uε. More careful examination of the minimizers uε
of Ja(u) in DaM shows that they are actually not on the boundary of DaM , and hence
they solve (1.3). For brevity, in the rest of the paper, unless explicitly stated to avoid
ambiguity, the subscript ε is dropped from the notation uε and uγε ; i.e., u and uγ are
used instead.
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This paper is organized as follows. In the next section we shall give some basic
estimates for Ja(u) and for the regularization uγ . The main ideas are to define the
vortices of uγ and to expand the energy Ja(u). Using the idea of [23] and the estimate
in [6], we may then give the lower bound for the energy. In section 3, we shall provide
estimates to the critical magnetic field. In section 4, the proof Theorem 1.1 is given,
and in section 5 we shall prove the convergence of the sequence of the minimizers, i.e.,
Theorem 1.2.

In the following discussion, we always consider the case hex ≤ C| ln ε| for some
positive constant C and assume that the Abrikosov estimate Hc1 ≤ C| ln ε| holds.

2. Preliminaries. In this section we present technical estimates which can be
proved by a slight modification of the results in [6, 23]. The detailed proofs are
omitted. We begin by defining

J0 = Ja(1) =
1

2

∫
Ω

1

a(x)
|∇ξ|2 ≤ Ch2

ex.(2.1)

Lemma 2.1. For u ∈ DaM minimizing Ja(u) in DaM , we have

Ja(u) ≤ Ch2
ex,(2.2) ∫

Ω

a(x)|∇A0u|2 ≤ Ch2
ex,(2.3)

1

4ε2

∫
Ω

a(x)(1− |u|2)2 ≤ Ch2
ex.(2.4)

Proof. Taking v ≡ 1 as a comparison function leads to the results.
For any ũ with Ja(ũ) ≤ Ch2

ex, let η = |ũ|. Since
a(x)|∇u− iA0u|2 = a(x)[|∇u|2 + iA0(u

∗∇u− u∇u∗) + |A0|2|u|2],
where u∗ is the complex conjugate of u, we have the following lemma.

Lemma 2.2. For any ũ with Ja(ũ) ≤ Ch2
ex, we have

Ja(ũ) = Fa(ũ) +
1

2

∫
Ω

1

a(x)
|∇ξ|2 +

∫
Ω

(iũ, ξx2 ũx1 − ξx1 ũx2) + o(1).

Lemma 2.3. For ũ ∈ DaM such that Ja(ũ) ≤ Ch2
ex, there exists u ∈ DaM such that

|u| ≤ 1,(2.5)

Fa(u) ≤ Fa(ũ),(2.6)

Ja(u) ≤ Ja(ũ) + o(1).(2.7)

If, in addition, ũ ∈ DaM is a minimizer of Ja in DaM , then, as ε→ 0, there holds

Fa(u) = Fa(ũ) + o(1),(2.8)

Ja(u) = Ja(ũ) + o(1).(2.9)

Lemma 2.4. For u ∈ DaM , we have uγ ∈ H3(Ω) (for any 0 < γ < 1) which solves
(1.13) and satisfies

−∇ · (a(x)∇uγ) =
a(x)

ε2
uγ(1− |uγ |2) + u− uγ

ε2γ
,(2.10)

Fa(u
γ) ≤ Fa(u) ≤M | ln ε|,(2.11)

|uγ | ≤ 1, |∇uγ | ≤ C

ε
.(2.12)
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This implies that uγ ∈ DaM . Taking u as a comparison function in (1.13) gives∫
Ω

1

2ε2γ |u− uγ |2 + Fa(u
γ) ≤ Fa(u) ≤M | ln ε|

so that ‖u− uγ‖L2(Ω) ≤ Cεγ | ln ε| 12 . Since |∇uγ | ≤ C
ε , the vortices are well defined in

the following sense.
Lemma 2.5. There exists λ > 0 and points aεi (i ∈ J1) in Ω with CardJ1 ≤ Ch2

ex

such that

|uγ | ≥ 1

2
in Ω \ ∪i∈J1B(aεi , λε).

Proof. We know from [7] that there exists µ0 > 0 such that

1

ε2

∫
B(aε

i
,λε)

(1− |uγ |2)2 ≥ µ0 ∀i ∈ J1.

Using exactly the same arguments given in [7], this implies that CardJ1 ≤ Ch2
ex since

Ja(u) ≤ Ch2
ex.

The balls B(aεi , λε) are called “bad” discs and aεi together with its degree dεi
is called a vortex of “size” λε. We now pay attention to the minimizer uγ . Al-
though a weight is added to the functional on uγ , i.e., (1.13), the proofs of the fol-
lowing four lemmas on the properties of uγ can still be obtained directly from the
corresponding ones in [23] and [24] by replacing the energy density with eε(u) =
1
2a(x)[|∇u|2 + 1

ε2 (1− |u|2)2]. We omit the details.
Lemma 2.6. For any 0 < γ < β < 1, uγ has no vortex (i.e., |uγ | ≥ 1/2) in

{x ∈ Ω; dist(x, ∂Ω) ≤ εβ}.
Lemma 2.7. For small enough ε, CardJ1 is uniformly bounded by a constant N

which is independent of ε. Let 0 < γ < β < µ < 1 such that µ = µN+1 > β. For ε
small enough, there exists a subset J ⊂ J1 and a radius ρ > 0 with λε ≤ εµ ≤ ρ ≤
εµ < εβ such that

|uγ | ≥ 1/2 in Ω \ ∪i∈JB(aεi , ρ),

|uγ | ≥ 1− 2| ln ε|−2 on ∂B(aεi , ρ), i ∈ J ,∫
∂B(aε

i
,ρ)

eε(u
γ) ≤ C(β, µ)/ρ, i ∈ J ,

|aεi − aεj | ≥ 8ρ, i 	= j ∈ J .

Denote dεi = deg(uγ , ∂B(aεi , ρ)). We have the following lemma.
Lemma 2.8. For small enough ε and u ∈ DaM , |dεi | = O(1) for all i ∈ J .
Assume for the moment that |∇u| ≤ C/ε which is true if u is shown to be a

solution of (1.3); then, in the sense of [7], the vortices of u are well defined and there
exists the same uniform bound on the vortex number. One may also have bigger
vortices of size ρ (where “bigger” means ρ ≥ λε), (bεi , q

ε
i ), such that u satisfies the

same conclusions as in Lemma 2.7 for uγ . As in [23], we may compare (aεi , d
ε
i ) (the

vortices of uγ) with (bεi , q
ε
i ) (the vortices of u) by the minimal connection between the

vortices.
Lemma 2.9. For small ε, there holds dist(a, b) ≤ Cεγ | ln ε|
For the definition of dist(a, b) and the proof of this lemma, we refer to [23]. The

following lemma gives the splitting of the energy Ja(u) as in [23].
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Lemma 2.10. For any ũ satisfying (2.2)–(2.4), let u be associated to ũ as in
Lemma 2.3 and uγ be associated to u by solving the minimization problem (1.13) with
vortices (ai, di) satisfying Lemma 2.7. Then we have

Ja(u) = Fa(u) +
1

2

∫
Ω

1

a(x)
|∇ξ|2 + 2π

∑
i∈J

diξ(ai), as ε→ 0,

where ξ = hexξ0 and ξ0 is the unique solution of problem (1.5).
Using this splitting, we have the following lemma.
Lemma 2.11. The constant J0 in (2.1) is asymptotically equal to the minimal

energy among vortexless configurations; i.e., inf{u:J=∅} Ja(u) = J0 + o(1) as ε→ 0.

Let eε(u) = 1
2a(x)[|∇u|2 + 1

2ε2 (1 − |u|2)2] and Ωρ = Ω \ ∪i∈JB(ai, ρ), where
B(ai, ρ)’s are defined in Lemma 2.7. We have the following lemma.

Lemma 2.12. Assume that J = {1, 2, . . . , k}; then
1

2

∫
Ωρ

a(x)|∇uγ |2 ≥ π
∑
i∈J

a(ai)d
2
i | ln ρ|+W ((a1, d1), . . . , (ak, dk)) +O(1),

where

W ((a1, d1), . . . , (ak, dk)) = −π
∑
i �=j∈J

a(ai)didj ln |ai − aj | − π
∑
i∈J

diR0(ai)

and R0(x) = Φ0(x)−
∑
i∈J a(ai)di ln |x− ai| with Φ0(x) solves −div( 1

a(x)∇Φ0) = 2π
∑
i∈J diδai in Ω,

Φ0 = 0 on ∂Ω.

In the following lemma, we give a few more precise lower bounds on Fa(u
γ).

Lemma 2.13. For ε and ρ satisfying Lemma 2.7, we have

Fa(u
γ) ≥ π

∑
i∈J

a(ai)[d
2
i | ln ρ|+ |di|| ln(ρ/ε)|

+W ((a1, d1), . . . , (ak, dk)) +O(1),(2.13)

Fa(u
γ) ≥ π

∑
i∈J

a(ai)|di|| ln(ρ/ε)|+O(1).(2.14)

3. Obtaining the critical magnetic field Hc1 . Using the splitting and the
lower bound of Ja(u), we now estimate the critical magnetic field Hc1 .

Lemma 3.1. Let hex = ka| ln ε|+ o(| ln ε|) and ũ ∈ DaM be a minimizer of Ja(u)
in DaM and {(ai, di) : i ∈ J } be the vortices of uγ . For ε small enough, if J 	= ∅,
say, J = {1, . . . , k}, then

(i) di > 0 for any i ∈ J , and
(ii) dist(ai, ∂Ω) ≥ α > 0 for some positive constant α, and consequently
(iii) W ((a1, d1), . . . , (ak, dk)) ≥ C for some constant C.
Proof. We divide the proof into two steps.
Step 1. We first prove that, for ε small enough, di > 0 for i ∈ J . Since ũ ∈ DaM

is a minimizer of Ja(u), it follows from Lemma 2.11 that Ja(u) ≤ J0 + o(1), i.e.,

Fa(u) + J0 + 2πhex
∑
i∈J

diξ0(ai) + o(1) ≤ J0 + o(1).
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Therefore

Fa(u) ≤ −2πhex
∑
i∈J

diξ0(ai) + o(1)(3.1)

or equivalently (noting that ξ0 < 0 in Ω)

Fa(u) ≤ 2π(ka| ln ε|+ o(| ln ε|))max

∣∣∣∣ξ0(x)a(x)

∣∣∣∣ ∑
di>0

a(ai)di + o(1)

≤ π| ln ε|
∑
di>0

a(ai)di + o(| ln ε|).

This inequality implies

Fa(u
γ) ≤ Fa(u) ≤ π| ln ε|

∑
di>0

a(ai)di + o(| ln ε|).(3.2)

Combining (3.2) with (2.14) in Lemma 2.13 we obtain

π(1− µ)

(∑
i∈J

a(ai)|di|
)
| ln ε| ≤ π

(∑
di>0

a(ai)di

)
| ln ε|+ o(| ln ε|)(3.3)

since εµ ≤ ρ ≤ εµ. This implies

(1− µ)
∑
di<0

a(ai)|di| ≤ µ
∑
di>0

a(ai)di + o(1).(3.4)

We estimate the first term on the right-hand side of (3.4). By (2.11), (2.14),

µ
∑
di>0

a(ai)di ≤ µ
∑
i∈J

a(ai)|di| ≤Mµ/(π(1− µ)) + o(1).

Substituting this into (3.4), we get∑
di<0

a(ai)|di| ≤Mµ/(π(1− µ)2) + o(1).

This means {i ∈ J ; di < 0} = ∅ if one chooses µ small enough.
Step 2. We prove (ii) and (iii) in this step. It follows from Step 1 that

−π
∑
i �=j

a(ai)didj ln |ai − aj | ≥ O(1)

and then

W ((a1, d1), . . . , (ak, dk)) ≥ −π
∑
i∈J

diR0(ai) +O(1).(3.5)

For the proof of ‖R0‖L∞(Ω) ≤ C, similar to [23] and [6], it suffices to prove that
dist(ai, ∂Ω) is uniformly bounded from below. Indeed, it can be shown as in [23] that

‖R0(x)‖L∞(Ω) ≤ Cβ| ln ε|+O(1).(3.6)
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Therefore we deduce

W ((a1, d1), . . . , (ak, dk)) ≥ −Cβ| ln ε|.(3.7)

On the other hand, we know from (3.2) and (2.13) (in view of d2
i ≥ di > 0) that

Fa(u
γ) ≤ Fa(u) ≤ −2πhex

∑
i∈J

diξ0(ai) + o(1),

Fa(u
γ) ≥ π

∑
i∈J

a(ai)di| ln ε|+W ((a1, d1), . . . , (ak, dk)) +O(1)

≥ π
∑
i∈J

a(ai)di| ln ε| − Cβ| ln ε|+O(1).

Putting these two inequalities together and using

hex = ka| ln ε|+ o(| ln ε|) = | ln ε|
2maxΩ |ξ0(x)/a(x)| + o(| ln ε|),

we get

2πhex
∑
i∈J

a(ai)di

[
ξ0(ai)

a(ai)
+ max

Ω

∣∣∣∣ξ0(x)a(x)

∣∣∣∣] ≤ Cβ| ln ε|+ o(| ln ε|).(3.8)

Since di ≥ 1 and a(ai) ≥ α0 > 0 for i ∈ J , the above implies

ξ0(ai)

a(ai)
+ max

Ω

∣∣∣∣ξ0(x)a(x)

∣∣∣∣ ≤ Cβmax
Ω

∣∣∣∣ξ0(x)a(x)

∣∣∣∣ ∀i ∈ J .(3.9)

Taking β > 0 such that Cβ < 1/2, we get

ξ0(ai)

a(ai)
≤ −1

2
max

Ω

∣∣∣∣ξ0(x)a(x)

∣∣∣∣ < 0.(3.10)

Since ξ0 = 0 on ∂Ω, we thus have dist(ai, ∂Ω) being uniformly bounded from below.
So, ‖R0‖L∞(Ω) ≤ C. This implies W ≥ O(1) uniformly by (3.5).

Now, let D0 = {u ∈ DaM ;J = ∅}, and we have the following lemma.
Lemma 3.2. Suppose maxΩ a(x)π < M . There are kε2 = O(1), kε3 = o(1), and

ε0 > 0 such that, for hex = | ln ε|/(2maxΩ |ξ0(x)/a(x)|) + t, there holds
(i) if t < kε2 and ũ is a minimizer of Ja in DaM , then J = ∅ and

Ja(ũ) = inf
D0

Ja(u) = J0 + o(1);

(ii) if t = kε2, there is u ∈ DaM with a simple vortex and Ja(u) ≤ infD0
Ja(v);

(iii) if t ≥ kε2+kε3, there is u ∈ DaM with a simple vortex and Ja(u) < infD0
Ja(v).

Proof. Let J0 be as in (2.1). We have

Ja(u) = Fa(u) + J0 + 2πhex
∑
i∈J

diξ0(ai) + o(1).

Clearly, J0 = infD0
Ja(v). If J 	= ∅, then we consider two cases.
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Case 1. hex ≤ (1−µ∗)ka| ln ε| for some 0 < µ∗ < 1. Since ρ ≥ εµ for some µ > 0,
it follows from Lemma 2.13 that

Fa(u) ≥ Fa(u
γ) ≥ (1− µ)π

∑
i∈J

a(ai)|di|| ln ε|+O(1),(3.11)

and then

Ja(u) ≥ J0 + π(1− µ)
∑
i∈J

a(ai)|di|| ln ε| − 2πhex
∑
i∈J

a(ai)|di|
∣∣∣∣ξ0(ai)a(ai)

∣∣∣∣+O(1).

Hence, Ja(u) > infD0
Ja(v) as long as

2πhex
∑
i∈J

a(ai)|di|
∣∣∣∣ξ0(ai)a(ai)

∣∣∣∣ ≤ (1− µ)π
∑
i∈J

a(ai)|di|| ln ε|+O(1)

which may be valid if we take µ < µ∗ since

hex ≤ (1− µ)
| ln ε|

2max
Ω
|ξ0(x)/a(x)| .

Case 2. t < kε2 with |t| = o(| ln ε|). Then, by Lemma 3.1, we have

W ((a1, d1), . . . , (ak, dk)) ≥ C

for some constant C, thus, by Lemma 2.13, we get

Fa(u) ≥ Fa(u
γ) ≥ π

∑
i∈J

a(ai)|di|| ln ε|+O(1).

Then, similar to Case 1, we have Ja(u) > infD0
Ja(v) as long as

hex ≤ | ln ε|
2max

Ω
|ξ0(x)/a(x)| +O(1).

This verifies conclusion (i) in the lemma.
Next, let ka = 1/(2maxΩ |ξ0(x)/a(x)|). As in [23], set

Zε =

{
t ∈ R; there exists u ∈ DaM with at least one vortex

and Ja(u) < inf
{J=∅}

Ja for hex = ka| ln ε|+ t

}
.

In the following, we prove Zε 	= ∅ which would allow us to define kε2 = inf Zε and
to prove that there exists kε3 = o(1) such that [kε2 + kε3,+∞] ⊂ Zε.

Let c ∈ Ω such that |ξ0(c)/a(c)| = maxΩ |ξ0(x)/a(x)|. Consider the problem

νε(c) = min
W

1

2

∫
Ω\B(c,ε)

a(x)|∇u|2,(3.12)

where W =
{
u ∈ H1(Ω \B(c, ε), S1),deg(u, ∂B(c, ε)) = 1

}
. Similar as before,

νε(c) = πa(c)| ln ε|+O(1).
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Let u be a minimizer of problem (3.12) which is well defined on Ω\B(c, ε). Extending
u to the whole domain Ω by defining it on B(c, ε) as in [23] and denoting it by ū, we
may get, as similarly done in [23],

Fa(u,Ω) = Fa(u,B(c, ε)) +
1

2

∫
Ω\B(c,ε)

a(x)|∇u|2 ≤ K + a(c)π| ln ε|.

For hex =
1

2 max |ξ0(x)/a(x)| | ln ε|+ t = − 1
2ξ0(c)/a(c)

| ln ε|+ t, we have

Ja(u) ≤ Fa(u) + J0 + 2πhexξ0(c) + o(1)

= K − 2π|ξ0(c)|t+ J0 + o(1).

This implies t ∈ Zε when 2π|ξ0(c)|t ≥ K + o(1). So, Zε 	= ∅ and kε2 = inf Zε ≤
K/2π|ξ0(c)|+o(1). On the other hand, hex ≤ ka| ln ε|+O(1); we thus know kε2 ≥ O(1)
which gives kε2 = O(1).

Finally, we prove that there exists kε3 = o(1) such that [kε2 + kε3,+∞] ⊂ Zε. In
fact, let t ∈ Zε and, for hex,1 = ka| ln ε|+ t, Ja(u) < infD0

Ja(v) and uγ has vortices

(ai, di). Assume t
′
> t and hex,2 = ka| ln ε|+ t

′
; we have

Ja(u) = Fa(u) + J0 + 2πhex,2

k∑
i=1

ξ0(ai)di + o(1)

≤ Ja(u) + o(1)− (t
′ − t)

k∑
i=1

2π|ξ0(ai)|di.

Thus, if t
′ − t ≥ kε3 = o(1), then Ja(u) < inf{J=∅} Ja, i.e., [kε2 + kε3,+∞] ⊂ Zε.

In summary, we have deduced that Hc1 = ka| ln ε|+ kε2 for the lower critical field.
This completes the proof of the lemma.

4. Proof of Theorem 1.1. By Lemma 3.2 and the bounds in Lemma 2.3 and
Lemma 2.11, we see that, for hex ≤ Hc1 , the minimizer of Ja in DaM has no vortex
and it is in the interior of DaM , thus the first part of Theorem 1.1 follows.

To complete the proof of Theorem 1.1, we need the following lemmas.
Lemma 4.1. Let hex = ka| ln ε|+ o(| ln ε|) and ũ ∈ DaM be a minimizer of Ja(u)

in DaM . {(ai, di)}ki=1 are the vortices of uγ . Then di = 1 for any i ∈ J = {1, . . . , k}.
Proof. Using the lower bound on W proved in Lemma 3.1 and returning to

Lemma 2.13, we have

π
∑
i∈J

a(ai)d
2
i | ln ρ|+ π

∑
i∈J

a(ai)di ln
ρ

ε
+O(1) ≤ π

∑
di>0

a(ai)di| ln ε|+ o(| ln ε|).

This gives

π
∑
i∈J

a(ai)(d
2
i − di)| ln ρ| ≤ o(| ln ε|).

Therefore we have from ρ ≥ εµ that

µ
∑
i∈J

a(ai)(d
2
i − di)| ln ε| ≤

∑
i∈J

a(ai)(d
2
i − di)| ln ρ| ≤ o(| ln ε|),
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which implies

µmin
Ω

a(x)
∑
i∈J

(d2
i − di) ≤ o(1).

This inequality is impossible if there is a di > 1 for small ε. So when ε ≤ ε0, we have
di = 1 for all i ∈ J . The lemma is proved.

We are now closer to a complete proof of Theorem 1.1. Consider

Hc1 + kε3 ≤ hex ≤ ka| ln ε|+O(1),

where

Hc1 = ka| ln ε|+ kε2, ka = 1/(2max
Ω
|ξ0(x)/a(x)|),

kε2 = O(1), and kε3 = o(1). Let

Λ =

{
x, x ∈ Ω :

∣∣∣∣ξ0(x)a(x)

∣∣∣∣ = max
y∈Ω

∣∣∣∣ξ0(y)a(y)

∣∣∣∣} .

The proof of Theorem 1.1 can be obtained by proving the following three lemmas.
Lemma 4.2. Let u ∈ DaM be a minimizer of Ja(u), and let (ai, di) (di = 1 for all

i ∈ J ) be the vortices of uγ . Then

dist(ai,Λ)→ 0, as ε→ 0 ∀i ∈ J ,(4.1)

dist(ai, aj) ≥ α > 0 ∀i 	= j ∈ J .(4.2)

The first result is also true under the assumption hex ≤ ka| ln ε|+ o(| ln ε|).
Proof. If J 	= ∅, we have from Lemma 4.1 that di = 1 for all i ∈ J . Now

let d =
∑
i∈J di = CardJ = deg(uγ , ∂Ω). It follows from Step 1 in the proof of

Lemma 3.1 and from Lemma 2.13 that

W (a1, . . . , ak) + π
∑
i∈J

a(ai)| ln ε|+O(1) ≤ Fa(u
γ) ≤ −2πhex

∑
i∈J

ξ0(ai) + o(| ln ε|).

Then

2πhex
∑
i∈J

a(ai)

(
ξ0(ai)

a(ai)
+ max

Ω

∣∣∣∣ξ0(x)a(x)

∣∣∣∣) ≤ o(| ln ε|).

Hence we have ∑
i∈J

(
ξ0(ai)

a(ai)
+ max

Ω

∣∣∣∣ξ0(x)a(x)

∣∣∣∣) ≤ o(| ln ε|)
hex

→ 0.

This implies the first conclusion

dist(ai,Λ)→ 0, as ε→ 0 ∀i ∈ J .

Moreover, since W (a1, . . . , ak) ≥ O(1) and

W (a1, . . . , ak) + π
∑
i∈J

a(ai)| ln ε|+O(1) ≤ −2πhexπ
∑
i∈J

ξ0(ai) +O(1),
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we have W (a1, . . . , ak) ≤ O(1) if hex ≤ ka| ln ε| + O(1). Therefore we conclude that
|ai − aj | remains bounded from below uniformly, since as in [7] we could prove that
W → +∞ if |ai − aj | → 0 for some i 	= j. Lemma 4.2 is proved.

Lemma 4.3. Let M , n satisfy Assumption 1.1, and let ũ be a minimizer of Ja(u)
in DaM ; then ũ satisfies (1.3) and u = ũ, where u is defined by ũ as in Lemma 2.3.

Proof. It suffices to prove that ũ is not on the boundary of DaM . Since we have
proved that W is a bounded quantity and dist(ai, aj) ≥ α > 0, we get

π
∑
i∈J

a(ai)| ln ε|+O(1) ≤ −2πhex
∑
i∈J

ξ0(ai) +O(1)

= 2πhex
∑
i∈J

a(ai) |ξ0(ai)/a(ai)|+O(1)

≤ π
∑
i∈J

a(ai)| ln ε|+O(1).

This inequality and Lemma 2.3 yield that

Fa(u) = Fa(ũ) + o(1) = π
∑
i∈J

a(ai)| ln ε|+O(1) ≤M | ln ε|+O(1).

So,
∑
i∈J a(ai) ≤M/π. It follows from Lemma 4.2 that as ε→ 0, ai → ci ∈ Λ. Then,

for ε small enough, d ≤M/(πmd), where md = (
∑
i∈J a(ci))/d and

M

πmd
∈
 M

πmax
Λ

a(x)
,

M

πmin
Λ

a(x)

 ⊂ (n, n+ 1).

Thus, M/(πmd) is not an integer which implies d < M/(πmd). Hence π
∑
i∈J a(ai) <

M for ε ≤ ε0. Thus, there is a positive number η > 0 such that

Fa(ũ) ≤ π
∑
i∈J

a(ai)| ln ε|+O(1) ≤ (M − η)| ln ε|,

which means that ũ is not on ∂DaM . The lemma is proved.
Remark 4.1. It follows from the proof of Lemma 4.3 that d < M/(πmaxΛ a(x)).

Otherwise, since we also have dminΛ a(x) ≤∑d
i=1 a(ai) ≤M/π, this implies that

d ∈
 M

πmax
Λ

a(x)
,

M

πmin
Λ

a(x)

 ⊂ (n, n+ 1);

then d is not an integer. This leads to a contradiction.
Now we may continue the proof of Theorem 1.1 with the following lemma. Once

u is a solution of (1.3), we may show that |∇u| ≤ C/ε. Then u has bigger vortices of
size ρ: {(bi, qi)}i∈J . The following lemma compares what we call the bigger vortices
of u (i.e., the vortices of uγ) with the real vortices of u. Its proof follows easily from
the same arguments given in [23].

Lemma 4.4. For sufficiently small ε, we have
(i) if u is a solution of (1.3) such that Ja(u) ≤ Ch2

ex, then |u| ≤ 1 and there
exists a constant C > 0 such that |∇u| ≤ C/ε;
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(ii) if u is a solution of (1.3) such that uγ has no vortices (i.e., |uγ | ≥ 1/2) and
Ja(u) ≤ J0, then u has no vortices on Ω (|u| ≥ 1/2);

(iii) if u is a solution given in Theorem 1.1, then its vortices (of size ρ) satisfy
the same conclusions as those of uγ ;

(iv) if, in addition, {ai}i∈J are the vortices of uγ of degree one, then the vortices
{bi}i∈J are also of degree one and Lemma 2.7 (on uγ) is satisfied by u.

The following lemma shows that the real vortices of u remain far from the bound-
ary.

Lemma 4.5. If u ∈ DaM is an energy minimizer satisfying (1.3), then, for any
0 < β < 1, |u| ≥ 1/2 on {x ∈ Ω : dist(x, ∂Ω) ≤ εβ}. Moreover, u has no zero degree
vortex.

Finally, since dist(ai, ∂Ω), dist(bi, ∂Ω) remain bounded from below by a positive
constant and dist(a, b) ≤ Cεγ | ln ε|, we have for small ε that R

2 is a hole of null
multiplicity. This implies

∑
i qi =

∑
i qi = CardJ ′

, and the bi’s tend to the ai’s

with the same multiplicities. However, infi �=j |ai − aj | ≤ C| ln ε|− 1
2 ; comparing with

dist(a, b) ≤ Cεγ | ln ε|, the bi’s must be of multiplicity one, and qi = 1 for all i ∈ J ′
.

Theorem 1.1 is proved.

5. Proof of Theorem 1.2. In this section we derive the convergence of uε and
the limit equation of (1.3). The case d = 0 is again trivial to consider; we omit the
details. Now, for Hc1 + kε3 ≤ hex ≤ Hc1 + O(1), let us consider a sequence εn → 0
and denote un = uεn an associated solution of (1.3) given by Theorem 1.1.

We also denote {bi}i∈J the real vortices of un (see Lemma 4.4) of size λε, and
{bi}i∈J ′⊂J its vortices of size ρ, exactly as we did for uγ . (Again, the superscript ε
in the notation of bi is removed.) This means

|un| ≥ 1/2 on Ω \ ∪i∈JB(bi, λε) and on Ω \ ∪i∈J ′B(bi, ρ),

∪i∈JB(bi, λε) ⊂ ∪i∈J ′B(bi, ρ).

Extracting a subsequence if necessary, we may assume that CardJ ′ ≡ d ≥ 1 and

bεni → ci ∈ Λ for i ∈ J ′
.

Here, we put back the superscript εn to avoid ambiguity. First, we prove that

| ln εn|∇un → 0, strongly in Lp(Ω) ∀p < 2.

In fact, we may rewrite (1.3) as

−∇ · (a(x)∇u) + 2ia(x)A0 · ∇u = a(x)u

[
|A0|2 + 1

ε2
(1− |u|2)

]
.(5.1)

This equation is equivalent to the following system if we write locally u = ρeiϕ: −∇ · (a(x)∇ρ) + a(x)ρ|∇ϕ|2 − 2aρA0 · ∇ϕ = a(x)ρ(|A0|2 + 1−ρ2
ε2 ),

−∇ · (a(x)ρ2∇ϕ) + a(x)A0 · ∇ρ2 = 0.
(5.2)

Define

ρ = max{ρ, 1− | ln ε|−4} ≥ 1− | ln ε|−4, K = {x ∈ Ω, ρ ≥ 1− | ln ε|−4};
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then ∇ρ = ∇ρ on K, and ∇ρ = 0 on Ω \K. It follows from

1

ε2

∫
Ω

(1− ρ)2 ≤ 1

ε2

∫
Ω

(1− ρ2)2 ≤ C| ln ε|2

that meas(Ω \K) ≤ Cε2| ln ε|10.
Multiplying the first equation in (5.2) by 1− ρ, and integrating over Ω, we get

2

∫
K

a(x)ρ|∇ρ|2 ≤ C

∫
Ω

a(x)(1− ρ)ρ[|A0|2 + |A0||∇u|] ≤ C‖1− ρ‖L∞ | ln ε|2.

This inequality, together with the fact 0 ≤ 1− ρ ≤ | ln ε|−4, yields∫
K

|∇ρ|2 ≤ C/| ln ε|2 → 0.

On the other hand, we have for p < 2

∫
Ω\K
|∇ρ|p ≤

(∫
Ω\K
|∇ρ|2

)p/2
meas(Ω \K)

1−p/2

≤ Cε2−p| ln ε|10−4p ≤ C/| ln ε|2 → 0.

Combining the above two estimates, we have∫
Ω

|hex∇ρ|p ≤ C

| ln ε|2−p → 0.(5.3)

Now we rewrite the second equation of (5.2) as

−∇ · (a(x)ρ2∇ϕ) = f(x),

where f(x) = −a(x)A0 ·∇ρ2. Since a(x)A0 = hex∇⊥ξ0 is a smooth function, we have∫
Ω

|f(x)|p ≤ C/| ln ε|2−p.

Hence we have ∫
Ω

|hex∇ϕ|p ≤ C/| ln ε|2−p → 0.(5.4)

The estimates (5.3) and (5.4) yield∫
Ω

|hex∇u|p → 0.

It follows that, for any smooth test function φ ∈ C∞0 (Ω),

2i

∫
Ω

aφA0 · ∇u = 2i

∫
Ω

(φ∇⊥ξ0) · (hex∇u)→ 0(5.5)

since we may take (φ∇⊥ξ0) ∈ Lq(Ω) for any q > 2.
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Let s be a positive integer. As in the proofs of Lemmas 2.12 and 2.13, by solving
an auxiliary problem, we may get∫

B(ci,
1
s )\B(bi,ρ)

a(x)|∇un|2 ≥ πa(bi)| ln ρ|+O(1) ∀i ∈ J ′

and ∫
B(bi,ρ)

eε(un) ≥ πa(bi) ln
ρ

ε
+O(1) ∀i ∈ J ′

.

These two inequalities yield∫
B(ci,

1
s )

eε(un) ≥ πa(bi)| ln ε|+O(1) ∀i ∈ J ′
.

On the other hand, we have

Fa(u) ≤ π

d∑
i=1

a(ai)| ln ε|+O(1) ≤ π

d∑
i=1

a(bi)| ln ε|+O(1),

where we have used dist(a, b) ≤ Cεγ | ln ε| (see Lemma 2.9). We finally get∫
B(ci,

1
s )

|∇un|2 ≤ C.

Extracting a subsequence if necessary, there exists u∗ such that

un → u∗ weakly in H1(Ω \ ∪di=1B(ci, 1/s)).(5.6)

By standard diagonal extraction, we may find a subsequence such that this is true for
any positive integer s. |u∗| = 1 follows from∫

Ω

(1− |un|2)2 ≤ Cε2| ln ε|2.

Taking the cross product of (5.1) with u, we get

un × [−∇ · (a(x)∇un) + 2ia(x)A0 · ∇un] = 0.

Using (5.5) and (5.6), we have from the above that u∗ solves

u∗ × (∇ · (a(x)∇u∗)) = 0 in D′
(Ω \ ∪{ci}).

Now it is easy to get the limit (1.12) from the above inequality. Theorem 1.2 is proved.
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Abstract. The Lifshitz–Slyozov–Wagner theory of coarsening (Ostwald ripening) in alloys de-
scribes the time evolution of the sizes of the grains of a new phase growing by diffusional mass
transfer from a supersaturated solid solution. The volume distribution function of the grains obeys a
nonlinear transport equation with a nonlocal nonlinearity. Global existence of solutions is obtained
for a large class of data including the ones derived by Lifshitz and Slyozov [J. Phys. Chem. Solids,
19 (1961), pp. 35–50] and Wagner [Z. Elektrochem., 65 (1961), pp. 581–591], and uniqueness of these
solutions is proved in some cases.
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1. Introduction. The theory of coarsening (Ostwald ripening) in alloys de-
scribes the late stages of the formation and growth of grains of a new phase from
a supersaturated solid solution. During these stages, no new grains can form and the
determining process is the growth of the grains by diffusional mass exchange [6, 11].
More precisely, the grains of the new phase larger than some critical size grow at the
expense of smaller ones, the critical size varying in time as a function of the degree
of supersaturation. A mean-field approach for this process has been formulated by
Lifshitz and Slyozov [6] and Wagner [11]. The resulting model consists of an evolu-
tion equation for the volume distribution function f of the grains coupled with the
equation of the conservation of matter and reads, for spherical grains,

ft + (V f)x = 0, (t, x) ∈ (0,+∞)× (0,+∞),

u(t) +A

∫ ∞
0

x f(t, x) dx = Q, t ∈ (0,+∞).

Here x ∈ (0,+∞) is the volume of the grains, t ∈ (0,+∞) is the time variable, Q is
the total initial supersaturation, and A is a physical constant [6]. Finally V = V(t, x)
denotes the rate of growth of the grains and is determined by the mechanism of mass
transfer between the grains, e.g., volume diffusion [6, 11] or grain-boundary diffusion
[9]. In general one has V(t, x) = k(x)u(t) − q(x), where k and q are computed from
the modeling of the mechanism of mass transfer between the grains [6, 9, 11], and the
Lifshitz–Slyozov–Wagner equation reads

ft + ((ku− q) f)x = 0, (t, x) ∈ (0,+∞)× (0,+∞),(1)

u(t) +A

∫ ∞
0

x f(t, x) dx = Q, t ∈ (0,+∞).(2)

For instance, in the model considered in [6], the grains are assumed to be widely
separated spheres evolving in a quasi-static diffusion field. The interaction between
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the grains is ignored and the diffusion field is taken to be close to the degree of
supersaturation far from the grains. Assuming the growth rate of the grains to be
proportional to the mass flux at the grain boundary, it can be computed explicitly [6]
and reads, in dimensionless form,

V(t, x) = 3
(
x1/3 u(t)− 1

)
,

that is, k(x) = 3 x1/3 and q(x) = 3, x ∈ (0,+∞).
For very dilute solutions a physically relevant assumption at large times is that

the variation of the degree of supersaturation is small during the time evolution and
the equation of conservation of matter (2) becomes [11]∫ ∞

0

x f(t, x) dx = const., t ∈ (0,+∞).

In that case the function u is determined by requiring that the solution f to (1)
comply with the above conservation law, that is,

u(t)

∫ ∞
0

k(x) f(t, x) dx =

∫ ∞
0

q(x) f(t, x) dx, t ∈ (0,+∞).

The aim of this work is thus to investigate the existence and uniqueness of weak
solutions to the initial value problem

ft + ((ku− q) f)x = 0, (t, x) ∈ (0,+∞)× (0,+∞),(3)

u(t)

∫ ∞
0

k(x) f(t, x) dx =

∫ ∞
0

q(x) f(t, x) dx, t ∈ (0,+∞),(4)

f(0, x) = f0(x), x ∈ (0,+∞).(5)

The initial value problem (3)–(5) is a nonlinear transport equation with a nonlocal
nonlinearity. Observe, however, that the main difference between (2) and (4) is that
u is a linear functional of f in the former, while it is a nonlinear functional of f in
the latter. It is thus expected that the initial value problem (3)–(5) will be more
delicate to handle than the initial value problem (3), (2), and (5). Still, existence and
uniqueness of measure-valued solutions are proved by Niethammer and Pego when k
and q are given by

k(x) = 3 x1/3 and q(x) = 3, x ∈ (0,+∞),(6)

the initial datum f0 being a probability measure with compact support [7]. The
extension of this result to an arbitrary probability measure is performed in [8]. To
our knowledge these are the only available existence and uniqueness results for (3)–
(5), and the purpose of this work is to investigate the existence and uniqueness of
solutions to (3)–(5) for a larger class of functions k and q, including the ones derived
in [6], which are given by (6), and the ones derived in [11], namely,

k(x) =
a x2/3

c x1/3 + d
and q(x) =

b x1/3

c x1/3 + d
, x ∈ (0,+∞),(7)
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where a, b, c, and d are positive real numbers. Our analysis relies on different ar-
guments than the ones developed in [7] and actually includes the following typical
example (which generalizes the Lifshitz–Slyozov case (6)):

k(x) = a xα and q(x) = b xβ , x ∈ (0,+∞),(8)

where 0 ≤ β < α ≤ 1 and a, b are positive real numbers. We will, however, restrict
ourselves to nonnegative and integrable initial data with finite first moment and do
not consider the case of measures. Before going further, let us mention that the
initial value problem (3), (2), and (5) has been studied recently, and existence and
uniqueness of measure-valued and integrable solutions have been obtained in [1, 7]
and [1, 4], respectively.

We now briefly outline the contents of the paper and sketch the main ideas of
the existence proof as well. In the next section we state the assumptions on the data
k, q, and f0 together with our main results. The case where the functions k and q
are given by (8) is included in our analysis, and we prove the existence of a solution
to (3)–(5) when 0 ≤ β < α ≤ 1 for any nonnegative and integrable initial datum f0
with finite first moment. In addition, this solution is shown to be unique if β > 0
or (α, β) = (1, 0). Thus, our uniqueness result unfortunately does not apply to the
Lifshitz–Slyozov case (6). Nevertheless our results apply when k and q are given by
(7) and provide also the existence and uniqueness of a solution to (3)–(5) in that case.
The existence proof is inspired by the derivation of (3)–(5) performed in [11] and may
be seen somehow as a penalization method. More precisely, we consider ε ∈ (0, 1) and
denote by (fε, uε) the solution to (3), (2), and (5), where we have chosen

Aε = ε
−1 and Qε = ε

−1

∫ ∞
0

x f0(x) dx.

Then (2) reads

ε uε(t) =

∫ ∞
0

x f0(x) dx−
∫ ∞

0

x fε(t, x) dx, t ∈ [0,+∞),

and it is easily seen (at least formally) that the above equation yields (4) as ε → 0.
We might thus expect that the sequence (fε, uε) will converge to a solution to (3)–
(5), and this turns out to be true as we shall see below. We thus recall in section 3.1
some results for (3), (2), and (5) previously obtained in [4], namely, the existence
of solutions together with some estimates which will be needed later. Section 3.2 is
devoted to the main step of the existence proof, namely, an L∞-bound for uε which
is uniform with respect to ε ∈ (0, 1). Thanks to this bound, we may argue as in [4]
and prove that (fε) enjoys some weak compactness properties in L1(0,+∞;xdx) with
the help of a refined version of the de la Vallée–Poussin theorem [5]. Equicontinuity
with respect to time then follows from (3) and allows us to complete the proof of the
existence result in section 3.3. Uniqueness of solutions to (3)–(5) is investigated in
the final section and requires stronger assumptions on the functions k and q.

Remark. The above choice of Qε entails that uε(0) = 0 and is made throughout
the paper for simplicity. However, the convergence of (fε, uε) shown in section 3 is
still valid with Qε = Q

0
ε/ε, (Q

0
ε) being a nondecreasing sequence satisfying

lim
ε→0
Q0
ε =

∫ ∞
0

x f0(x) dx.
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2. Main results. We first describe the class of functions f0, k, and q to be
considered in this paper. More precisely, we assume that the data f0, k, and q enjoy
the following properties:

f0 ∈ L1(R+; (1 + x)dx) and f0 ≥ 0 a.e. in R+,(9)

where R+ = (0,+∞).

The function k is a nonnegative function in C([0,+∞)) ∩ C1(R+)
satisfying k(0) = 0, k(r) > 0 if r > 0 and

k′ ∈ L∞(1,+∞) and k′ ≥ 0,

r �→ k(r)
r

is nonincreasing on R+.

(10)


The function q is a nonnegative function in C([0,+∞)) ∩ C1(R+)
and satisfies

q′ ∈ L∞(1,+∞) and q′ ≥ 0.

(11)

In other words the functions k and q are Lipschitz continuous functions for large values
of x and might be less regular near x = 0 but are nondecreasing. Note also that since
k(0) = 0 and q is nonnegative, no boundary condition is needed at x = 0 to solve (3).

We also assume that for every U ≥ 0, there exists xU ∈ (0, 1] such that

U k(x)− q(x) ≤ −x q′(x), x ∈ (0, xU ].(12)

In particular, q′ being nonnegative by (11), we infer from (12) that

lim
x→0

q(x)

k(x)
= +∞.(13)

Let us point out here that the functions k and q given by (6) (see [6]) and (7)
(see [11]) fulfill the assumptions (10)–(12) and the functions k and q given by (8) as
well (since 0 ≤ β < α ≤ 1).

Remark. The assumption that k and q are nondecreasing may actually be relaxed,
and the results presented below are also true for Lipschitz continuous perturbations
of nondecreasing functions k and q. We restrict ourselves, however, to the framework
described above for simplicity and refer to [4], where this more general class of data
is considered for the initial value problem (3), (2), and (5).

We are now in a position to state our existence result.

Theorem 1. Consider a function f0 satisfying (9) and assume that the functions
k and q enjoy the properties (10)–(12). There are at least a couple of nonnegative
functions (f, u) satisfying

f ∈ C([0, t];L1(R+;xdx)) ∩ L∞(0, t;L1(R+)),

u ∈ L∞(0, t)
(14)
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and ∫ ∞
0

f(t, x) g(x) dx =

∫ ∞
0

f0(x) g(x) dx(15)

+

∫ t

0

∫ ∞
0

gx(x) V(s, x) f(s, x) dxds

for each t ∈ R+ and g ∈ C∞0 (R+), where

V(t, x) = k(x) u(t)− q(x), x ∈ R+,(16)

u(t)

∫ ∞
0

k(x) f(t, x) dx =

∫ ∞
0

q(x) f(t, x) dx,(17)

or, equivalently, ∫ ∞
0

x f(t, x) dx =

∫ ∞
0

x f0(x) dx.(18)

Note that (15) makes sense since the continuity of k, q, and (14) ensure that
V ∈ L∞((0, T ) × K) for every compact subset K of R+ and T ∈ R+. Let us also
mention here that, in the proof of Theorem 1, we first obtain that f ∈ C([0,+∞);w−
L1(R+;xdx)). Here we use the following notation: if X is a Banach space and T ∈
(0,+∞], then C([0, T );w−X) denotes the space of weakly continuous functions from
[0, T ) in X. The time continuity (14) of f in the strong topology of L1(R+;xdx) then
follows from (3) by arguments similar to those of [3, sections II.1 and II.2].

If we strengthen the assumptions on the data k and q, we are able to show that
there is only one solution to (3)–(5) with the properties stated in Theorem 1.

Theorem 2. Assume that f0, k, and q fulfill (9)–(12) and that

sup
x∈(0,+∞)

(U k′(x)− q′(x)) < +∞(19)

for each U ∈ R+. Then there are a unique couple of nonnegative functions (f, u)
satisfying (14)–(17).

Clearly the functions k and q given by (8) satisfy (19) only if 0 < β < α ≤ 1
or (α, β) = (1, 0), which unfortunately excludes the Lifshitz–Slyozov case (6). The
assumption (19) is also fulfilled in the Wagner case (7) and guarantees that Vx is
bounded from above on (0, T )× R+ for each T > 0.

From now on we assume that f0, k, and q are given functions satisfying (9)–(12).
Since f ≡ 0 is clearly a solution to (3)–(5) with initial datum f0 ≡ 0, we further
assume that f0 �≡ 0 and put

M0 :=

∫ ∞
0

x f0(x) dx > 0.

In the following we denote by C any positive constant depending only on f0, k, and
q. The dependence of C upon additional parameters will be indicated explicitly.
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3. Existence.

3.1. The approximating equation. For ε ∈ (0, 1) we put

Aε = ε
−1 and Qε = ε

−1

∫ ∞
0

x f0(x) dx.(20)

Owing to (9)–(12) and (20), we are in a position to apply [4, Theorem 2.2, Proposi-
tions 3.1 and 3.3] to obtain the existence of a weak solution to (3), (2), and (5) with
initial datum f0 and (Aε, Qε) instead of (A,Q). More precisely, we have the following
result.

Proposition 3. For ε ∈ (0, 1) there is a nonnegative function

fε ∈ C([0,+∞);L1(R+;xdx)) ∩ L∞(0,+∞;L1(R+))(21)

satisfying for each t ∈ R+ and g ∈ C∞0 (R+)

Aε

∫ ∞
0

x fε(t, x) dx ≤ Qε,(22)

∫ ∞
0

fε(t, x) g(x) dx =

∫ ∞
0

f0(x) g(x) dx(23)

+

∫ t

0

∫ ∞
0

gx(x) Vε(s, x) fε(s, x) dxds,

where

Vε(t, x) = k(x) uε(t)− q(x), x ∈ R+,(24)

uε(t) +Aε

∫ ∞
0

x fε(t, x) dx = Qε.(25)

In addition,∫ ∞
0

fε(t, x) dx ≤
∫ ∞

0

fε(s, x) dx ≤
∫ ∞

0

f0(x) dx, 0 ≤ s ≤ t.(26)

Notice that (22) warrants that uε is nonnegative, while (25) also reads

ε uε(t) +

∫ ∞
0

x fε(t, x) dx =

∫ ∞
0

x f0(x) dx, t ∈ [0,+∞).(27)

From the analysis of [4] we also deduce some estimates on the moments of fε,
together with some integrability properties. We first introduce the set J∞ of nonneg-
ative and convex functions j : [0,+∞) −→ [0,+∞) such that

j ∈ C1([0,+∞)) ∩W 2,∞
loc (R+) with j(0) = 0 and j′(0) ≥ 0, j′ is a

concave function on [0,+∞) and

lim
r→+∞ j

′(r) = lim
r→+∞

j(r)

r
= +∞.

(28)
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The next result follows at once from [4, Lemma 3.4] and provides a control on the
propagation of moments of fε.

Lemma 4. Let ε ∈ (0, 1) and T ∈ R+. Assume that there are a function j ∈ J∞
and a real number U such that

M =

∫ ∞
0

j(x) f0(x) dx < +∞ and sup
t∈[0,T ]

{uε(t)} ≤ U.(29)

There is a constant K1 depending only on k, q, f0, j, M , U , xU , and T such that∫ ∞
0

j(x) fε(t, x) dx ≤ K1, t ∈ [0, T ].(30)

Notice that since j is superlinear at infinity, Lemma 4 allows us to control the
behavior of fε for large values of x. As for the local behavior of fε we have the
following result, which is a consequence of [4, Lemma 3.5].

Lemma 5. Let ε ∈ (0, 1) and T ∈ R+. Assume that there are a function j ∈ J∞
and a real number U such that

M =

∫ ∞
0

j (f0(x)) x dx < +∞ and sup
t∈[0,T ]

{uε(t)} ≤ U.(31)

There is a constant K2 depending only on k, q, f0, j, M , U , xU , and T such that∫ ∞
0

j (fε(t, x)) min (x, 1) dx ≤ K2, t ∈ [0, T ].(32)

Here again the superlinearity of j at infinity ensures that fε(t) cannot concentrate
on a small measurable subset of R+ and thus excludes the formation of Dirac masses.
We thus conclude from the previous results that if f0 enjoys the integrability properties
(29) and (31) and if the sequence (uε) is uniformly bounded in L∞(0, T ), the sequence
(fε(t)) is uniformly integrable in L1(R+;xdx) for t ∈ [0, T ], whence it is weakly
compact in L1(R+;xdx) by the Dunford–Pettis theorem. Therefore an L∞-bound on
uε seems to be an important step towards the proof of Theorem 1 and is derived in
the next section.

3.2. An L∞-estimate for uε. We now turn to the cornerstone of the proof of
Theorem 1 and prove the following result.

Lemma 6. Let T ∈ R+. There are ε(T ) ∈ (0, 1) and C(T ) such that there holds

uε(t) ≤ C(T )
for every ε ∈ (0, ε(T )) and t ∈ [0, T ].

Proof. The proof of Lemma 6 actually splits into two parts and depends on the
compactness or noncompactness of the support of f0.

Case 1. We first consider the case where∫ ∞
x

f0(y) dy > 0(33)

for every x ∈ R+ (i.e., f0 is not compactly supported). It follows from (23), (24), and
(25) that

duε

dt
(t) +

1

ε

(∫ ∞
0

k(x) fε(t, x) dx

)
uε(t) =

1

ε

∫ ∞
0

q(x) fε(t, x) dx.
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Owing to (11), there holds q(x) ≤ C (1 + x) for x ∈ R+, and the right-hand side of
the above equality can be bounded from above with the help of (25) and (26) by

1

ε

∫ ∞
0

q(x) fε(t, x) dx ≤ C
ε

∫ ∞
0

(1 + x) fε(t, x) dx ≤ C
ε

∫ ∞
0

(1 + x) f0(x) dx.

Therefore,

duε

dt
(t) +

1

ε

(∫ ∞
0

k(x) fε(t, x) dx

)
uε(t) ≤ C

ε
.(34)

We now introduce the function F ε defined by

F ε(t, x) =

∫ ∞
x

fε(t, y) dy, (t, x) ∈ [0,+∞)× R+.

Owing to (21) and (23), we have F εt = Vε fε, and the nonnegativity of k, uε, and
fε further entails that F εt ≥ −q fε. Since q(x) ≤ C (1 + x) for x ∈ R+ by (11) and
fε = −F εx , we end up with

F εt ≥ C (1 + x) F εx ,

whence

F ε(t, x) ≥ F ε (0, (1 + x) eCt − 1
)
, (t, x) ∈ [0,+∞)× R+.

Since k satisfies (10) with k(0) = 0, we deduce from the above estimate that∫ ∞
0

k(x) fε(t, x) dx ≥
∫ ∞
e−Ct

k(x) fε(t, x) dx

≥ k (e−Ct) F ε (t, e−Ct)
≥ k (e−Ct) F ε (0, eCt)
≥ k (e−CT ) ∫ ∞

eCT

f0(y) dy.

Recalling (34), we finally obtain

duε

dt
(t) +

δ(T )

ε
uε(t) ≤ C

ε

with

δ(T ) := k
(
e−CT

) ∫ ∞
eCT

f0(y) dy.

Thanks to (10) and (33) we have δ(T ) > 0, and the differential inequality satisfied by
uε yields

uε(t) ≤ C

δ(T )
, t ∈ [0, T ].

Recall that uε(0) = 0 by (20) and (25). We have thus proved Lemma 6 for noncom-
pactly supported initial data (with ε(T ) = 1).
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Case 2. We now turn to the case of a compactly supported initial datum f0 and
assume that f0(x) = 0 a.e. in (R0,+∞) for some R0 > 0. We first notice that the
previous proof does not work in that case as δ(T ) vanishes for T large enough. Since
(3) is a transport equation, we actually expect fε(t) to be compactly supported for
each t ≥ 0, and the proof of Lemma 6 relies on an estimate of the growth of the
support of fε, which we derive now.

Lemma 7. There is a unique couple (Rε, τε) in C([0,+∞)) × (0,+∞] satisfying
Rε(0) = R0, Rε(t) > 0 if t ∈ [0, τε), Rε ∈ C1([0, τε)), and

dRε
dt

(t) = Vε (t, Rε(t)) if t ∈ [0, τε),

Rε(t) = 0 if t ≥ τε.
(35)

In addition, the support of fε(t) is included in [0, Rε(t)] for each t ≥ 0.
Proof of Lemma 7. First we remark that Vε is continuous on [0,+∞)2 and Lip-

schitz continuous with respect to x on compact subsets of [0,+∞)×R+. Since R0 > 0,
classical results ensure that there is a unique maximal solution Rε ∈ C1([0, τε);R+)
to

dRε
dt

(t) = Vε (t, Rε(t)) , Rε(0) = R0,

and we have the following alternative: either τε = +∞, or τε < +∞ and the only
possible cluster points of Rε(t) as t → τε− are 0 and +∞. In the latter case, notice
that (10), (11), and (25) entail that

dRε
dt

(t) ≤ C Qε (1 +Rε(t)) , t ∈ [0, τε),

which excludes the possibility of blow-up as t → τε−. Consequently Rε(t) converges
to 0 as t → τε−, and we extend Rε to [0,+∞) by putting Rε(t) = 0 for t ≥ τε. The
estimate for the support of fε(t) then follows by standard arguments if t ∈ [0, τε). If
τε < +∞, we further obtain that fε(τε) ≡ 0, whence fε(t) ≡ 0 for t ≥ τε by (26), and
the proof of Lemma 7 is complete.

We are now in a position to complete the proof of Lemma 6. Let T ∈ R+ and
consider t ∈ [0, T ] such that t < τε. We infer from (10) and (27) that∫ ∞

0

k(x) fε(t, x) dx =

∫ Rε(t)

0

k(x)

x
x fε(t, x) dx

≥ k (Rε(t))
Rε(t)

∫ Rε(t)

0

x fε(t, x) dx

≥ k (Rε(t))
Rε(t)

∫ ∞
0

x fε(t, x) dx

≥ k (Rε(t))
Rε(t)

(M0 − ε uε(t)) .

Recalling (34) and (35), we obtain the following system of differential inequalities
for (uε, Rε):

duε

dt
(t) +

k (Rε(t))

Rε(t)

(
M0

ε
− uε(t)

)
uε(t) ≤ C

ε
,(36)

dRε
dt

(t) ≤ k (Rε(t))
Rε(t)

uε(t) Rε(t),(37)
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which is valid for t ∈ [0, T ] ∩ [0, τε). Since u
ε(0) = 0 by (20), we have

σε := sup

{
t ∈ [0, T ] ∩ [0, τε), u

ε(s) ≤ M0

2 ε
for s ∈ [0, t)

}
> 0.

Assume for contradiction that σε < min {T, τε}. On the one hand, we infer from (36)
that

duε

dt
(t) +

M0

2 ε

k (Rε(t))

Rε(t)
uε(t) ≤ C

ε
(38)

for t ∈ [0, σε], whence, after integration,

M0

2 ε

∫ t

0

k (Rε(s))

Rε(s)
uε(s) ds ≤ C t

ε
,∫ t

0

k (Rε(s))

Rε(s)
uε(s) ds ≤ C t,

since uε is nonnegative and uε(0) = 0. On the other hand, the positivity of Rε on
[0, σε] and (37) entails that

Rε(t) ≤ R0 exp

{∫ t

0

k (Rε(s))

Rε(s)
uε(s) ds

}
, t ∈ [0, σε].

Combining the above two estimates finally yields

Rε(t) ≤ R0 e
Ct ≤ C(T ), t ∈ [0, σε].

Recalling that r �→ k(r)/r is nonincreasing by (10), we may use the above upper
bound on Rε to estimate the second term of the left-hand side of (38) from below and
obtain

duε

dt
(t) +

C(T )

ε
uε(t) ≤ C

ε
, t ∈ [0, σε].

The Gronwall lemma then ensures that

uε(t) ≤ C(T ), t ∈ [0, σε],

and a contradiction for ε small enough. Therefore σε = min {T, τε} for ε small enough,
and the above computation entails that

uε(t) ≤ C(T ), t ∈ [0,min {T, τε}].(39)

We next argue again by contradiction to show that τε > T for ε small enough.
Otherwise τε ≤ T for ε ∈ (0, 1) and fε(τε) ≡ 0. Therefore uε(τε) = M0/ε by (25),
while (39) ensures that uε(τε) ≤ C(T ), whence we obtain a contradiction for ε small
enough. Consequently τε > T for ε small enough, and Lemma 6 then follows from
(39).
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3.3. Proof of Theorem 1. We are now in a position to complete the proof
of Theorem 1. As already mentioned, we proceed along the lines of the proof of [4,
Theorem 2.2] and aim to prove that the sequence (fε) is relatively weakly compact
in L1((0, T ) × R+;xdxdt) for each T ∈ R+. For that purpose we need to be able to
control the behavior of the sequence (fε) for large values of x and on small measurable
subsets of (0, T )×R+. Concerning the latter it is equivalent to obtain an upper bound
on the L1-norm of j(fε) for some function j which is superlinear for large values of
its argument. Thanks to the L∞-bound on uε obtained in Lemma 6, both results will
follow from Lemma 4 and Lemma 5, respectively. We first recall a refined version of
the de la Vallée–Poussin theorem [5, Proposition I.1.1].

Theorem 8. If (Ω,B, µ) is a measured space and w ∈ L1(Ω,B, µ), there exists a
function j ∈ J∞ (depending only on w) such that

j (|w|) ∈ L1(Ω,B, µ).

Remark. Theorem 8 is a classical result when µ(Ω) < ∞ (see, e.g., [2, p. 38]),
except for the possibility of choosing j′ concave. This last fact has been noticed in
[5].

Owing to (9), we may apply Theorem 8 to conclude that there are two functions
j1 and j2 in J∞ such that

M :=

∫ ∞
0

j1(x) f0(x) dx+

∫ ∞
0

j2 (f0(x)) x dx <∞.(40)

We fix T ∈ R+. Owing to (40) and Lemma 6, we may apply Lemmas 4 and 5 and
conclude that there holds∫ ∞

0

j1(x) f
ε(t, x) dx+

∫ ∞
0

j2 (f
ε(t, x)) min (x, 1) dx ≤ C(T )

for every ε ∈ (0, ε(T )) and t ∈ (0, T ). Since both j1 and j2 are superlinear at infinity,
we infer from the above estimates and the Dunford–Pettis theorem that there is a
weakly compact subset K(T ) of L1(R+;xdx) such that

fε(t) ∈ K(T ), (t, ε) ∈ [0, T ]× (0, ε(T )).(41)

We next study the equicontinuity of (fε) with respect to time and claim that

lim
h→0

sup
t∈[0,T−h]

sup
ε∈(0,ε(T ))

∣∣∣∣∫ ∞
0

(fε(t+ h, x)− fε(t, x)) ϕ(x) min (x, 1) dx

∣∣∣∣ = 0(42)

for ϕ ∈ W 1,∞(0,+∞). Indeed, consider ε ∈ (0, ε(T )), h ∈ (0, T ), and t ∈ (0, T − h).
By (23) we have ∣∣∣∣∫ ∞

0

(fε(t+ h, x)− fε(t, x)) ϕ(x) min (x, 1) dx

∣∣∣∣
≤ |ϕx|L∞

∫ t+h

t

∫ ∞
0

|Vε(s, x)| fε(s, x) min (x, 1) dxds

+ |ϕ|L∞

∫ t+h

t

∫ 1

0

|Vε(s, x)| fε(s, x) dxds.
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Now (10)–(11) and Lemma 6 entail that |Vε(s, x)| ≤ C(T ) (1+x) for (s, x) ∈ (0, T )×
R+. Consequently, thanks to (25) and (26), we have∣∣∣∣∫ ∞

0

(fε(t+ h, x)− fε(t, x)) ϕ(x) min (x, 1) dx

∣∣∣∣
≤ C(T ) |ϕ|W 1,∞

∫ t+h

t

∫ ∞
0

(1 + x) fε(s, x) dxds ≤ C(T ) |ϕ|W 1,∞ h,

from which the claim (42) follows. Furthermore, since an arbitrary function ϕ in
L∞(R+) is the almost everywhere limit of a sequence of functions inW 1,∞(R+) which
is bounded in L∞(R+), it follows from (41) and (42) that (42) is actually valid for
every ϕ ∈ L∞(R+). We have thus proved that{

the family {fε, ε ∈ (0, ε(T ))} is weakly equicontinuous in
L1(R+; min (x, 1)dx) at every t ∈ [0, T ] (see [10, Definition 1.3.1]).

(43)

Now, according to a variant of the Arzelà–Ascoli theorem (see, e.g., [10, Theo-
rem 1.3.2]), we infer from (41) and (43) that

(fε) is relatively compact in C([0, T ];w − L1(R+; min (x, 1)dx)).

Once more using (41), we actually obtain that (fε) is relatively compact in C([0, T ];w−
L1(R+;xdx)). This last fact and Lemma 6 yield that there are a sequence (εn),
εn → 0, and functions

f ∈ C([0, T ];w − L1(R+;xdx)) and u ∈ L∞(0, T )

such that

lim
n→+∞ sup

t∈[0,T ]

∣∣∣∣∫ ∞
0

(fεn(t, x)− f(t, x)) ϕ(x) x dx
∣∣∣∣ = 0,(44)

uεn
∗
⇀ u in L∞(0, T )(45)

for every ϕ ∈ L∞(R+). Let t ∈ [0, T ]. As fεn(t) is nonnegative a.e. in R+, a first
consequence of (44) is that f(t) is nonnegative a.e. in R+. Similarly we deduce from
(45) that u is nonnegative a.e. in (0, T ). It also readily follows from (44) that f(0) = f0
and

lim
n→+∞

∫ ∞
0

x fεn(t, x) dx =

∫ ∞
0

x f(t, x) dx

for t ∈ [0, T ]. We may then pass to the limit in (25) and use (45) to obtain that∫ ∞
0

x f(t, x) dx =

∫ ∞
0

x f0(x) dx, t ∈ [0, T ].

Owing to (44) and (45), we may also pass to the limit in (23) to obtain that (f, u)
satisfies (15) with V given by (16). Owing to (9)–(11) and the integrability properties
of f , we may take g(x) = x as a test function in (15) and deduce that u satisfies (17).
Also, proceeding as in [3] yields that f ∈ C([0, T ];L1(R+;xdx)).

Finally, another consequence of (44) and (26) is that

lim
n→+∞

∫ ∞
δ

fεn(t, x) dx =

∫ ∞
δ

f(t, x) dx ≤
∫ ∞

0

f0(x) dx,
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and the Fatou lemma guarantees that∫ ∞
0

f(t, x) dx ≤
∫ ∞

0

f0(x) dx, t ∈ [0, T ].

The above analysis being valid for an arbitrary T ∈ R+, we may take T to be an
arbitrary large integer and perform countably many successive extractions to complete
the proof of Theorem 1.

We conclude this section with a remark on the almost everywhere finiteness of
some negative moments of solutions to (3)–(5).

Proposition 9. Let f0, k, and q be functions enjoying the properties (9)–(12)
and denote by f a solution to (3)–(5) in the sense of Theorem 1. For α ∈ (0, 1) and
T ∈ R+ there holds ∫ T

0

∫ ∞
0

xα−1 q(x) f(t, x) dxdt <∞.

Proof. Consider δ ∈ (0, 1) and put gδ(x) = (x + δ)α − δα for x ∈ R+. Owing to
(14), we may take gδ as a test function in (15) and use the nonnegativity of f and u
to obtain

α

∫ T

0

∫ ∞
0

(x+ δ)α−1 q(x) f(t, x) dxdt

≤
∫ ∞

0

xα f0(x) dx+ α

∫ T

0

∫ ∞
0

(x+ δ)α−1 k(x) u(t) f(t, x) dxdt

≤
∫ ∞

0

(1 + x) f0(x) dx+ α |u|L∞(0,T )

∫ T

0

∫ ∞
0

(x+ δ)α−1 k(x) f(t, x) dxdt.

Recalling (13), there is xT such that

q(x) ≥ 2 |u|L∞(0,T ) k(x)

for x ∈ (0, xT ). Consequently,

α

∫ T

0

∫ ∞
0

(x+ δ)α−1 q(x) f(t, x) dxdt

≤ C +
α

2

∫ T

0

∫ xT

0

(x+ δ)α−1 q(x) f(t, x) dxdt

+ α xα−1
T |u|L∞(0,T )

∫ T

0

∫ ∞
xT

k(x) f(t, x) dxdt

≤ C(T, α) + α
2

∫ T

0

∫ ∞
0

(x+ δ)α−1 q(x) f(t, x) dxdt,

where we have used (10) and (14) to obtain the last estimate. Therefore,∫ T

0

∫ ∞
0

(x+ δ)α−1 q(x) f(t, x) dxdt ≤ C(T, α)

and we may let δ → 0 and use the Fatou lemma to complete the proof of Proposi-
tion 9.

Remark. When k and q are given by (6) and α = 1/3, Proposition 9 is similar to
the last assertion of [7, Corollary 2.5] but stated in a different way.
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4. Uniqueness. Throughout this section, f0 and f̂0 are two functions satisfying
(9), while k and q are two functions enjoying the properties (10)–(12) and (19) as

well. Let (f, u) and (f̂ , û) be two solutions to (3)–(5) in the sense of Theorem 1 with

data (f0, k, q) and (f̂0, k, q), respectively, with the obvious notation

V(t, x) = k(x) u(t)− q(x), V̂(t, x) = k(x) û(t)− q(x), (t, x) ∈ [0,+∞)× R+.

Next we introduce

F (t, x) =

∫ ∞
x

f(t, y) dy, F̂ (t, x) =

∫ ∞
x

f̂(t, y) dy,

E(t, x) = F (t, x)− F̂ (t, x)
for (t, x) ∈ [0,+∞)× R+. We infer from (14) that

F ∈W 1,1(0, T ;L1(R+)) with Fx = −f ∈ L∞(0, T ;L1(R+;xdx))

and Ft = V f for each T ∈ (0,+∞). The function F̂ enjoying similar properties, we
conclude that, for each T ∈ (0,+∞),

E ∈W 1,1(0, T ;L1(R+)) with Ex = f̂ − f ∈ L∞(0, T ;L1(R+;xdx))

and

Et = V f − V̂ f̂ = −V Ex +
(
V − V̂

)
f̂ .(46)

Since k(0) = 0 by (10), we infer from (46) that∫ ∞
0

|E(t, x)| dx ≤
∫ ∞

0

|E(0, x)| dx− q(0)
∫ t

0

|E(s, 0)| ds(47)

+

∫ t

0

∫ ∞
0

Vx(s, x) |E(s, x)| dxds

+

∫ t

0

∫ ∞
0

k(x) f̂(s, x) |(u− û) (s)| dxds.

A formal proof of (47) follows by multiplying the equation satisfied by E by sign(E)
and integrating by parts. We next compute the last term of the right-hand side of
(47) as follows. Since f̂ and k are nonnegative, we have∫ ∞

0

k(x) f̂(s, x) |(u− û) (s)| dx

=

∣∣∣∣u(s) ∫ ∞
0

k(x) f̂(s, x) dx−
∫ ∞

0

q(x) f̂(s, x) dx

∣∣∣∣
=

∣∣∣∣u(s) ∫ ∞
0

k(x)
(
f̂ − f

)
(s, x) dx−

∫ ∞
0

q(x)
(
f̂ − f

)
(s, x) dx

∣∣∣∣
=

∣∣∣∣u(s) ∫ ∞
0

k(x) Ex(s, x) dx−
∫ ∞

0

q(x) Ex(s, x) dx

∣∣∣∣ .
Now it readily follows from (10), (11), and (14) that∫ ∞

0

k(x) Ex(s, x) dx = −
∫ ∞

0

k′(x) E(s, x) dx,

−
∫ ∞

0

q(x) Ex(s, x) dx = q(0) E(s, 0) +

∫ ∞
0

q′(x) E(s, x) dx.
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We thus end up with∫ ∞
0

k(x) f̂(s, x) |(u− û) (s)| dx =
∣∣∣∣q(0) E(s, 0)− ∫ ∞

0

Vx(s, x) E(s, x) dx
∣∣∣∣ .

After inserting the above formula in (47), we are led to∫ ∞
0

|E(t, x)| dx ≤
∫ ∞

0

|E(0, x)| dx− q(0)
∫ t

0

|E(s, 0)| ds

+

∫ t

0

∫ ∞
0

Vx(s, x) |E(s, x)| dxds

+ q(0)

∫ t

0

|E(s, 0)| ds+
∫ t

0

∫ ∞
0

|Vx(s, x)| |E(s, x)| dxds,

whence ∫ ∞
0

|E(t, x)| dx ≤
∫ ∞

0

|E(0, x)| dx(48)

+

∫ t

0

∫ ∞
0

(|Vx(s, x)|+ Vx(s, x)) |E(s, x)| dxds.

We finally consider T ∈ R+ and t ∈ [0, T ]. On the one hand, it follows from (14)
that u ∈ L∞(0, T ). On the other hand, notice that

|Vx(s, x)|+ Vx(s, x) =


0 if Vx(s, x) ≤ 0,

2 Vx(s, x) otherwise,

and

Vx(s, x) ≤
(|u|L∞(0,T ) k

′(x)− q′(x))
in the latter case. The condition (19) then warrants that (s, x)→ |Vx(s, x)|+Vx(s, x)
belongs to L∞((0, T ) × R+). We may now apply the Gronwall lemma to (48) and
obtain that there is a positive constant γ (depending on T , k, q, and u) such that∫ ∞

0

|E(t, x)| dx ≤
(∫ ∞

0

|E(0, x)| dx
)
eγt

for each t ∈ [0, T ]. Theorem 2 then readily follows by taking f0 = f̂0.

REFERENCES

[1] J.F. Collet and T. Goudon, On solutions of the Lifshitz-Slyozov model, Nonlinearity, 13
(2000), pp. 1239–1262.

[2] C. Dellacherie and P.A. Meyer, Probabilités et potentiel, chapitres I à IV, Hermann, Paris,
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ASYMPTOTIC BEHAVIOR OF A ONE-DIMENSIONAL
COMPRESSIBLE VISCOUS GAS WITH FREE BOUNDARY∗
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Abstract. We consider the initial-boundary value problem for a one-dimensional compressible
viscous gas with free boundary, which is modeled in the Eulerian coordinate as

(IBVP)


ρt + (ρu)x = 0, x > x(t), t > 0,

(ρu)t + (ρu2 + p)x = µuxx, x > x(t), t > 0,

(p− µux)|x=x(t) = p0,
dx(t)
dt

= u(x(t), t), t ≥ 0,

(ρ, u)|t=0 = (ρ0, u0)(x), x ≥ x(0).

Here, ρ (> 0) is the density, u is the velocity, p = p(ρ) = ργ (γ ≥ 1: the adiabatic constant) is
the pressure, and µ (> 0) is the viscosity constant. At the boundary the flow is attached to the
atmosphere with pressure p0 (> 0) and the boundary condition is derived by the balance law. The
initial data have constant states (ρ+, u+) at x = ∞. The flow has no vacuum state so that ρ0(x) > 0
and ρ+ > 0 are assumed. Our main purpose is to investigate the asymptotic behaviors of solutions
for (IBVP), which are closely related to those for the corresponding Cauchy problem and hence the
corresponding Riemann problem. Depending on p0 and the endstates (ρ+, u+), the solutions are
shown to tend to the outgoing rarefaction wave or the outgoing viscous shock wave as t tends to
infinity. The proof is given under the weakness assumption of the waves. The analysis will be done
by changing (IBVP) into the problem in the Lagrangian coordinate.

Key words. one-dimensional compressible viscous gas, free boundary, asymptotic behavior,
rarefaction wave, viscous shock wave

AMS subject classification. 35L65

PII. S0036141001385745

1. Introduction. A one-dimensional barotropic viscous flow is modeled in the
Eulerian coordinate (x̃, t̃) as{

ρ̃t̃ + (ρ̃ũ)x̃ = 0,
(ρ̃ũ)t̃ + (ρ̃ũ2 + p̃)x̃ = µũx̃x̃,

(1.1)

where ρ̃ is the density, ũ is the velocity, p̃ = p̃(ρ̃) = p̃γ (γ ≥ 1: the adiabatic constant)
is the pressure, and µ (> 0) is the viscosity constant. If the flow is attached at the
boundary to the atmosphere with pressure p0, then the balance law at the boundary
x̃ = x̃(t̃) gives the condition

(p̃− µũx̃)|x̃=x̃(t̃) = p0 and
dx̃(t̃)

dt̃
= ũ(x̃(t̃), t̃)(1.2)
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by (1.1)2 (second equation of (1.1)), which implies that x̃ = x̃(t̃) is the free boundary.
We now consider (1.1) on x̃ > x̃(t̃) with the boundary condition (1.2) and the

initial data

(ρ̃, ũ)|t̃=0 = (ρ̃0, ũ0)(x̃), x̃ ≥ x̃(0) =: 0.(1.3)

The initial data are assumed to be constant as x̃→∞:

lim
x̃→∞

(ρ̃0, ũ0)(x̃) = (ρ+, u+).(1.4)

Also,

0 < ρ̃0(x̃) <∞, ρ+ > 0, and p0 > 0(1.5)

are assumed, so that the flow has no vacuum state.
Our main interest concerns the large-time behaviors of solutions to (1.1)–(1.3).

To explore those, we transform the Eulerian coordinate (x̃, t̃) into the Lagrangian
coordinate (x, t) by

x =

∫ x̃

0

ρ̃0(y)dy, t̃ = t.

Then, (1.1)–(1.3) changes into the problem with fixed boundary in the form of{
vt − ux = 0, x ∈ R+ = (0,∞), t > 0,

ut + p(v)x = µ
(ux

v

)
x

(1.6)

with the boundary condition(
p(v)− µ

ux
v

)
(0, t) = p0, t ≥ 0,(1.7)

and the initial condition

(v, u)(x, 0) = (v0, u0)(x), x ∈ R+,(1.8)

where ũ(x̃, t̃) = u(x, t), etc., and v = 1/ρ, so that p(v) := p̃(ρ̃) = v−γ satisfies

p′(v) < 0, p′′(v) > 0 for v > 0.(1.9)

The assumptions (1.4) and (1.5) are written as

lim
x→∞(v0(x), u0)(x) = (v+, u+), v+ = 1/ρ+(1.10)

and

0 < v0(x) <∞, v+ > 0, and p0 > 0.(1.11)

The cases of the Dirichlet boundary

u|x=0 = u− := 0(1.12)

instead of (1.7) have been investigated by Matsumura and Mei [3], Pan, Liu, and
Nishihara [11], and Matsumura and Nishihara [8]. From those results the behaviors
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of solutions closely relate to those for the corresponding Cauchy problem on R =
(−∞,∞) for (1.6) with (v, u)|t=0 = (v0, u0)(x)→ (v±, u±) as x→∞, and hence the
corresponding Riemann problem for (1.6) with µ = 0 for the Riemann data

(vR0 , uR0 )(x) =

{
(v−, u−), x < 0,
(v+, u+), x > 0.

As is well known, the behaviors expected for the Cauchy problem and the Riemann
problem divide R2

(v,u)-space into four ranges by the shock curves Si(v−, u−) and the

rarefaction curves Ri(v−, u−) (i = 1, 2). Refer to [5, 7, 12] and the survey paper [10].
Roughly speaking, it is shown in [3] that if u− > u+, then there is a constant v−

such that (v+, u+) ∈ S2(v−, u−) (the 2-shock curve) and the solution (v, u) to (1.6),
(1.12), (1.8) tends to the 2-viscous shock wave (V2, U2)(x−st+α) connecting (v−, u−)
and (v+, u+) as t→∞ for some shift α determined by the initial data. On the other
hand, in [11, 8] they have shown that if u− < u+, then there is a constant v− such
that (v+, u+) ∈ R2(v−, u−) (the 2-rarefaction curve) and the solution (v, u) tends to
the 2-rarefaction wave (vr2, u

r
2)(x/t) connecting (v−, u−) and (v+, u+) as t→∞.

Summing up their results, all waves are reflected at the boundary and they merge
to the outgoing wave, which is the 2-viscous shock wave or the 2-rarefaction wave
depending on the data u− and (v+, u+).

Thus, in our problem it is also a key point to determine the value v− = v(0, t)
instead of (1.12). From (1.6)1, the boundary condition (1.7) can be rewritten as(

p(v)− µ
vt
v

)
(0, t) = p0.(1.13)

If we define v− by

p(v−) = p0 or v− = p
1/γ
0 ,(1.14)

then (1.13) becomes the ordinary differential equation

µ
vt
v

(0, t) = p(v(0, t))− p(v−).(1.15)

The initial data of v(0, t) should be

v(0, t)|t=0 = v0(0)(1.16)

from the compatibility condition. Solving (1.15)–(1.16) we have

lim
t→∞ v(0, t) = v−,(1.17)

which will be shown in the next section.
Thus, we can expect that if v− > v+, then u− is uniquely determined by (v+, u+) ∈

R2(v−, u−) and the solution (v, u) to (1.6)–(1.8) tends to the 2-rarefaction wave
(vr2, u

r
2)(x/t) connecting (v−, u−) and (v+, u+) as t → ∞, and that if v− < v+,

then u− is uniquely determined by (v+, u+) ∈ S2(v−, u−) and the solution (v, u) to
(1.6)–(1.8) tends to the 2-viscous shock wave (V2, U2)(x − s2t + α) as t → ∞ for
suitable α. In the results, in each case u(0, t) → u− as t → ∞, and hence the free

boundary x̃(t̃) in the Eulerian coordinate satisfies dx̃(t̃)

dt̃
= ũ(x̃(t̃), t̃)→ u− as t̃→∞.

Our purpose in this paper is to show these two assertions under some weakness
condition, that is, |v+ − v−| is suitably small. We note that the weakness conditions
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are assumed in [3] and [11]. In [8] any smallness conditions are not assumed. A global
result corresponding to [8] will be expected in our problem, which will be investigated
in a forthcoming paper.

Related to the boundary effect, we mention about another kind of initial and
boundary problems, i.e., the inflow problem and outflow problem. Those problems
have been recently proposed by Matsumura, and all behaviors of solutions expected
are classified in [2]. In [9] some cases are proved rigorously. Other cases remain open.

The outline of this paper is as follows. In the next section the behavior of v(0, t)
will be studied. In section 3 the convergence to the 2-rarefaction wave will be treated,
and the convergence to the 2-viscous shock wave will be done in the final section.

2. Preliminaries. We observe the behaviors of the boundary value v(0, t). De-
note v(t) := v(0, t) in this section; then v(t) satisfies the ordinary differential equation{

dv
dt = 1

µ (p (v)− p (v−)) v,

v (0) = v0(0) =: v0
(2.1)

by (1.15)–(1.16). Note that v− is defined by (1.14) and v0(x) is a initial value in (1.8).
Lemma 2.1. Under the condition (1.9), the global smooth solution v = v (t) for

(2.1) satisfies the following properties:
(i) If v0 = v−, then v (t) ≡ v−. If v0 �= v−, then v(t) �= v− for any t ∈ R+.
(ii) If v0 > v−, then v− < v (t) < v0, v

′ (t) < 0, v′′ (t) > 0.
(iii) If v0 < v−, then v0 < v (t) < v−, v′ (t) > 0, v′′ (t) < 0.
(iv) limt→+∞ v (t) = v−.
Proof. (i) If there is a global smooth solution for (2.1), then it is easy to show

that the solution is unique. Hence v(t) ≡ v− if v0 = v−. If v0 > v− and v(t0) = v−
with v(t) > v− for 0 ≤ t < t0 <∞, then∫ t

0

dv
dτ (τ)

v(τ)− v−
dτ =

∫ t

0

1

µ

p(v(τ))− p(v−)

v(τ)− v−
v(τ)dτ, t < t0.

When τ → t0 − 0, the left-hand side tends to −∞, and the right-hand side is larger
than

− t0
µ

max
[0,t0]

{
p(v(τ))− p(v−)

v(τ)− v−
v(τ)

}
(> −∞),

which deduces the contradiction. Hence we obtain the property (i).
(ii) Rewrite (2.1) as∫ v

v0

dw

(p (w)− p (v−))w
=

∫ t

0

dt

µ
=

t

µ
.(2.2)

By the mean-value theorem ∫ v

v0

dw

(w − v−)wp′ (ξ)
=

t

µ
,(2.3)

where ξ is between v0 and v.
Suppose that there exists t0 > 0 such that v (t0) = v̄ ≥ v0 > v−; then from (2.3),

we have ∫ v̄

v0

dw

(w − v−)wp′ (ξ)
=

t0
µ
.
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The left-hand side of the above equality is negative, in which the signs contradict.
Hence v (t) < v0. From v (0) = v0 �= v−, v (t) �≡ v− for t ≥ 0. If v (t) ≥ v− is
not valid, then there exist 0 < t0 < t1 such that v (t0) = v− > v (t1). Therefore,
as t ≥ t0, v (t) ≡ v− is the solution of (2.1). This contradicts v (t1) < v−. Thus,
we have proved that v− < v (t) < v0. Hence v′ (t) = 1

µ (p (v)− p (v−)) v < 0 and

v′′ (t) = 1
µ (p′(v)v + p(v)− p(v−))v′(t) > 0.

(iii) The proof is similar to that of (ii).

(iv) We show limt→+∞ v (t) = v− when v0 > v−. If not, then there exists ε > 0
such that for any t > 0, there is a positive constant t1 > t such that v (t1) ≥ v− + ε.
Since (p(v)− p(v−))v is decreasing for v > v−,

v′ (t1) = (p (v (t1))− p (v−))
v (t1)

µ
≤ (v− + ε)

µ
(p (v− + ε)− p (v−))

∆
= −ν.

In view of v′′ (t) > 0, we have v′ (t) ≤ v′ (t1) ≤ −ν. Let t → +∞; then v (t) → −∞.
This generates a contradiction. Thus limt→+∞ v (t) = v−. The proof in the case of
v0 < v− is similar.

Conversely, we show the global existence and precise behavior for v(t).

Lemma 2.2. Suppose that (1.9) holds. Then there exists a unique global smooth
solution v (t) to (2.1). Moreover, |v (t)− v−| = O (1) |v0 − v−| e−c0t and |v′ (t)| =
O (1) |v0 − v−| e−c0t as t→ +∞, where c0 = 1

µv− |p′ (v−)|.
Proof. The local existence of a smooth solution to (2.1) can be shown in the

standard way. Making use of the local existence result and the a priori estimate in
Lemma 2.1, we can prove the existence of the unique global smooth solution to (2.1)
through the continuation process.

Next, we shall prove v (t) − v−, v′ (t) → 0 exponentially as t → +∞ in the case
of v0 > v−. By Lemma 2.1 v− < v (t) < v0. By using the Taylor expansion theorem,
we can rewrite (2.2) as∫ v0

v

dw

(w − v−)
(

1− p′′(η)
2|p′(v−)| (w − v−)

)
w |p′ (v−)|

=
t

µ
,(2.4)

where η = v− + θ (w − v−), 0 < θ < 1.

Put m0 = supv−≤v≤v0

p′′(η)
2|p′(v−)| and take v1 = v(t1) > v−, t1 
 1 such that

1−m0 (v1 − v−) ≥ 1
2 , and then (2.4) is rewritten as(∫ v1

v

+

∫ v0

v1

)
v−dw

(w − v−) (1−m0 (w − v−))w
≥ 1

µ
v− |p′ (v−)| t = c0t,

and hence ∫ v1

v

v−dw
(w − v−) (1−m0 (w − v−))w

≥ c0t− c (v0, v1) ,

where c (v0, v1) =
∫ v0

v1

v−dw
(w−v−)(1−m0(w−v−))w .

Using the equality

v−
(w − v−) (1−m0 (w − v−))w

=
1

w − v−
+

B0m0

1−m0 (w − v−)
− A0

w
,
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where A0 = 1
1+m0v−

, B0 = m0v−
1+m0v−

, we obtain

ln
v − v−

(1−m0 (v − v−))
B0 vA0

∣∣∣∣∣
v1

v

≥ c0t− c (v0, v1) ,

which gives

v − v− ≤ (v1 − v−) (1−m0(v−v−))B0vA0

(1−m0(v1−v−))B0v
A0
−

e−c(v0,v1)e−c0t

≤ v
A0
0

(1−m0(v1−v−))B0v
A0
−

e−c(v0,v1) |v0 − v−| e−c0t.(2.5)

On the other hand, by (2.4),∫ v0

v

v−dw
(w − v−)w

≤ 1

µ
v− |p′ (v−)| t,

which implies that

v − v− ≥ (v0−v−)v
v0

e−c0t

≥ v−
v0
|v0 − v−| e−c0t.(2.6)

Thus we have the desired result |v (t)− v−| = O (1) |v0 − v−| e−c0t by (2.5) and (2.6).
From (2.1) we also have |v′ (t)| = O (1) |v0 − v−| e−c0t.

3. Convergence to rarefaction waves. As stated in the introduction, the
asymptotic behavior of the solution to (1.6)–(1.8) depends on the sign of v− − v+.
This section is devoted to studying the case v− > v+, in which the solution to (1.6)–
(1.8) converges to the 2-rarefaction waves.

3.1. Main result. To state our result, we first remember the results for the cor-
responding Riemann problem on R = (−∞,+∞) for given constant states (v±, u±),
v± > 0:

vt − ux = 0,
ut + p (v)x = 0,

(v, u) (x, 0) =
(
vR0 , uR0

)
(x) =

{
(v−, u−) , x < 0,
(v+, u+) , x > 0,

t > 0, x ∈ R.(3.1)

It is well known that if (v+, u+) ∈ Ri (v−, u−) (i = 1, 2), then (3.1) admits an
i-rarefaction wave solution

(vri , u
r
i ) (x/t) =


(v−, u−) , −∞ < ξ ≤ λi (v−) ,(
λ−1
i (ξ) , u− −

∫ λ−1
i

(ξ)

v−
λi (s) ds

)
, λi (v−) ≤ ξ ≤ λi (v+) ,

(v+, u+) , λi (v+) ≤ ξ < +∞,

(3.2)

where λi (v) = (−1)
i
√−p′ (v) (i = 1, 2) are the eigenvalues for (3.1) and

Ri (v−, u−) =

{
(v, u) ∈ Ω

∣∣∣∣∣u = u− −
∫ v

v−
λi (s) ds, u ≥ u−

}
(3.3)

for a suitable neighborhood Ω of (v−, u−) in R2
(v,u).
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Since there is a boundary at x = 0 in our problem, the backward flow reflects at
the boundary and the total flow is eventually expected to move forward and behave
as the 2-rarefaction wave for large time if v− > v+. Therefore, for any given v− =
p−1 (p0) > v+ > 0 and u+ ∈ R, there is a unique u− ∈ R such that

(v+, u+) ∈ R2 (v−, u−)(3.4)

and (3.1) admits the 2-rarefaction wave (vr2, u
r
2) (x/t) connecting (v−, u−) and (v+, u+),

and the solution (v, u) of (1.6)–(1.8) is expected to behave as (vr2, u
r
2) (x/t) |x≥0.

We now assume

(v0 (·)− v+, u0 (·)− u+) ∈ L2 (R+) , (v0 (·) , u0 (·))x ∈ L2 (R+)(3.5)

and set

Φ2
0 = ‖(v0 (·)− v+, u0 (·)− u+)‖2 + ‖(v0 (·) , u0 (·))x‖2

+ |(v+ − v−, u+ − u−)|+ |v0(0)− v−| .
Then our first main theorem is the following.

Theorem 3.1. For given constants (v+, u+) and v− = p−1(p0) with 0 < v+ < v−
and u− ∈ R determined by (3.4), there exists a positive constant ε such that if Φ0 <
ε, then the initial-boundary value problem (1.6)–(1.8) has a unique global solution
(v, u) (x, t) in time satisfying

(v − v+, u− u+) ∈ C0
(
[0,+∞) ;L2

)
,

(v, u)x ∈ C0
(
[0,+∞) ;L2

)
,

uxx ∈ L2
(
[0,+∞) ;L2

)(3.6)

and

lim
t→+∞ sup

x∈R+

|(v, u) (x, t)− (vr2, u
r
2) (x/t)| = 0,(3.7)

where (vr2, u
r
2) (x/t) is given by (3.2).

3.2. Smooth rarefaction wave. To prove Theorem 3.1 we start with the Rie-
mann problem on R = (−∞,+∞) for the typical Burgers equation

ωt + ωωx = 0, (x, t) ∈ R×R+,

ω (0, x) = ωr
0 (x) =

{
ω−, x < 0,
ω+, x > 0,

(3.8)

with ω− < ω+. As is well known, the problem (3.8) has the centered rarefaction wave
ω (x, t) = ωr

(
x
t

)
given by

ωr
(x
t

)
=


ω−, x ≤ ω−t,
x
t , ω−t < x < ω+t,
ω+, x ≥ ω+t.

(3.9)

We approximate the rarefaction wave by the solution to the following problem:{
ωt + ωωx = 0,
ω (0, x) = ω0 (x) := ω̂ + ω̃ tanhx,

(3.10)

where ω̂ = (ω+ + ω−) /2, ω̃ = (ω+ − ω−) /2.
Now, we state the properties of ω.
Lemma 3.1. Suppose ω+ > ω− > 0. Then (3.10) has a unique smooth global

solution in time ω (x, t), which satisfies the following properties:
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(i) ω− < ω (x, t) < ω+, ωx (x, t) > 0.
(ii) For any p (1 ≤ p < +∞), there exists a constant Cp such that for t ≥ 0,

‖ωx (·, t)‖Lp ≤ Cp min
{
ω̃, ω̃

1
p t−1+ 1

p

}
,

‖ωxx (·, t)‖Lp ≤ Cp min
{
ω̃, t−1

}
.

(iii) For any x ≤ 0 and t ≥ 0,

0 < ω (x, t)− ω− ≤ ω̃ exp {−2 (|x|+ ω−t)} ,
0 < ωx (x, t) ≤ 2ω̃ exp {−2 (|x|+ ω−t)} .

(iv) limt→+∞ supx∈R |ω (x, t)− ωr (x/t)| = 0.
Since the 2-rarefaction waves (vr2, u

r
2) (x, t) are constructed in (3.2), their smooth

approximation (V,U) (x, t) can be defined by

λ2 (V ) = ω(x, t), U = u− −
∫ V (x,t)

v−
λ2 (s) ds,

where ω is the solution to (3.10) with λ2 (v±) = ω±. Then it can be easily seen that
(V,U) is a smooth exact solution to (3.1)1–(3.1)2. Moreover, the properties of ω shift
to those of (V,U).

Lemma 3.2. Let δ = |v+ − v−|+ |u+ − u−|. Then the following hold:
(i) There exists a positive constant C such that for any t ≥ 0, x ∈ R+, and

0 ≤ δ ≤ δ0,

|Vx| ≤ CVt, 0 < Vt = Ux ≤ Cδ,

|Uxx| ≤ C
(
|Vxx|+ |Vx|2

)
.

(ii) For any p (1 ≤ p < +∞), there exists a constant Cp > 0 such that for t ≥ 0
and 0 ≤ δ ≤ δ0,

‖(Vx, Ux) (·, t)‖Lp(R+) ≤ Cpδ
1
p (1 + t)

−1+ 1
p ,

‖(Vxx, Uxx) (·, t)‖Lp(R+) ≤ Cp min
{
δ, (1 + t)

−1
}
.

(iii) There exist positive constants C and c− depending only on λ2 (v) and v± such
that for t ≥ 0 and 0 ≤ δ ≤ δ0,

|V (0, t)− v−, Vx (0, t) , Vxx (0, t)| ≤ Cδe−c−t.

(iv) limt→+∞ supx∈R+

∣∣(V,U) (x, t)− (vr2, u
r
2)
(
x
t

)∣∣ = 0.

The proofs of Lemmas 3.1 and 3.2 are given in [6].

3.3. Reformulation of the problem. Rewrite (1.6)–(1.8) by the change of
variables (v, u) = (V + φ,U + ψ) as follows:

φt − ψx = 0,

ψt + (p (V + φ)− p (V ))x − µ

(
ψx

V + φ

)
x

= F, F = µ

(
Ux

V + φ

)
x

,(
p(V + φ)− µ

Ux + ψx

V + φ

)
|x=0 = p0,

(φ, ψ) (x, 0) = (φ0, ψ0) (x) := (v0 (x)− V (0, x) , u0 (x)− U (0, x)) .

(3.11)
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Here (V,U) is the smooth approximate solution constructed in section 3.2.
We first choose a positive constant E0 by virtue of Sobolev’s imbedding theorem

such that

sup
x∈R+

|f (x)| ≤ 1

4
v+ for any f ∈ H1 (R+) , ‖f‖1 := ‖f‖H1 ≤ E0.

We look for the solution (φ, ψ) of (3.11) in the solution space X (0,+∞), where

X (0, T ) =

{
(φ, ψ)

∣∣(φ, ψ) ∈ C0
(
[0, T ];H1 (R+)

)
, φx ∈ L2

(
[0, T ] ;L2 (R+)

)
(3.12)

ψx ∈ L2
(
[0, T ] ;H1 (R+)

)
and sup

0≤t≤T
‖(ψ,ψ)‖1 ≤ E0

}
for 0 < T ≤ +∞. Note that V + φ ≥ 3

4v+ if (φ, ψ) ∈ X(0, T ).
Similar to the previous papers [9, 6], for the proof of Theorem 3.1 it suffices to

show the following theorem.
Theorem 3.2. For each fixed constant (v+, u+) and v− = p−1(p0) (v− > v+ >

0) and u− satisfying (3.4), there exist positive constants ε0 and C0 such that if
|(φ0, ψ0)|1 + δ + |v0(0) − v−| ≤ ε0 (δ = |v+ − v−| + |u+ − u−|), then the problem
(3.11) has a unique global solution (φ, ψ) ∈ X (0,+∞) which satisfies

sup
t≥0
‖(φ, ψ) (t)‖21 +

∫ +∞

0

(∥∥∥V 1
2
t φ (τ)

∥∥∥2

+ ‖φx (τ)‖2 + ‖ψx (τ)‖21
)
dτ

(3.13)
≤ C0

(
δ

1
6 + |v0(0)− v−|+ ‖(φ0, ψ0)‖21

)
.

Along the same lines as in previous papers (see, e.g., [1, 4, 13]), Theorem 3.2
can be shown by the continuation argument combining the local existence with the a
priori estimates. For the local existence we define the sequence {(φ(n), ψ(n))} by the
iteration

(φ(0), ψ(0))(x) = (φ0, ψ0)(x),


ψ

(n+1)
t − µ

(
ψ

(n+1)
x

V + φ(n)

)
x

= −(p(V + φ(n))− p(V )) + µ

(
Ux

V + φ(n)

)
x

,

ψ(n+1)
x |x=0 =

{
1

µ
(V + φ(n))(p(V + φ(n))− p0)− Ux

}∣∣∣∣
x=0

,

ψ(n+1)(x, 0) = ψ0(x),

φ(n+1)(x, t) = φ0(x) +

∫ t

0

ψ(n+1)
x (x, s)ds.

Since it is standard to show that {(φ(n), ψ(n))} is the Cauchy sequence in X(0, t0) for
t0 = t0(‖ (φ0, ψ0) ‖1) > 0 and ‖ (φ0, ψ0) ‖1 ≤ E0, we omit the details. It now suffices
to show the following a priori estimate.

Proposition 3.1 (a priori estimate). For given constants (v±, u±) in Theorem
3.2, suppose that (φ, ψ) (x, t) is a solution of (3.11) in X (0, T ) for some T > 0.
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Then there exist positive constants ε1 and C1 independent of T and δ such that if
sup0≤t≤T ‖(φ, ψ) (t)‖1 + δ ≤ ε1, then it holds that

sup
0≤t≤T

‖(φ, ψ) (t)‖21 +

∫ T

0

(∥∥∥V 1
2
t φ (τ)

∥∥∥2

+ ‖φx (τ)‖2 + ‖ψx (τ)‖21
)
dτ

(3.14)
≤ C1

(
δ

1
6 + |v0(0)− v−|+ ‖(φ0, ψ0)‖21

)
.

Note that the smallness of |v0(0)−v−| in Theorem 3.2 is used in the continuation
process.

3.4. A priori estimates. Let (v±, u±) be fixed as in Theorem 3.2 and let
(φ, ψ) ∈ X ([0, T ]) be a solution of (3.11) for some T (> 0) and δ (0 ≤ δ < δ0).
Setting E = sup0≤t≤T ‖(φ, ψ) (t)‖1 and E (t) = sup0≤τ≤t ‖(φ, ψ) (τ)‖ we proceed to
estimate (φ, ψ). Throughout this subsection and later, we write C as generic positive
constants independent of T and δ, which may depend on (v±, u±) and v0.

To prove Proposition 3.1, we need the following estimates at the boundary.
Lemma 3.3. Assume E (t) ≤ 1. Then it holds for 0 ≤ t ≤ T that∣∣∣∣∣
∫ t

0

(
(p (V + φ)− p (V ))ψ − µ

ψxψ

V + φ

)∣∣∣∣+∞
0

dτ

∣∣∣∣∣ ≤ ν

∫ t

0

‖ψx (τ)‖2 dτ + Cδ
4
3 ,(3.15)

∣∣∣∣∫ t

0

ψ (0, τ)ψx (0, τ) dτ

∣∣∣∣ ≤ ν

∫ t

0

‖ψx (τ)‖2 dτ + C (δ + |v0 − v−|) ,(3.16)

∣∣∣∣∫ t

0

ψτ (0, τ)ψx (0, τ) dτ

∣∣∣∣ ≤ C (δ + |v0 − v−|)(3.17)

for any fixed constant ν (> 0).
Proof. Making use of the boundary condition (3.11)3, Lemma 3.2, and Sobolev’s

inequality, we have∣∣∣∣∫ t

0

(
(p (V + φ)− p (V ))ψ − µ ψxψ

V +φ

)∣∣∣+∞
0

dτ

∣∣∣∣
=

∣∣∣∣∫ t

0

(
p (v (0, τ))− p (V (0, τ))− µux(0,τ)

v(0,τ) + µµUx(0,τ)
v(0,τ)

)
ψ (0, τ) dτ

∣∣∣∣
=

∣∣∣∣∫ t

0

(
p (v−)− p (V (0, τ)) + µUx(0,τ)

v(0,τ)

)
ψ (0, τ) dτ

∣∣∣∣
≤ C

∫ t

0

(|v− − V (0, τ)|+ |Vx (0, τ)|) |ψ (0, τ)| dτ

≤ C

∫ t

0

g (τ) ‖ψ (τ)‖ 1
2 ‖ψx (τ)‖ 1

2 dτ
(

where g (t)
∆
= |v− − V (0, t)|+ |Vx (0, t)|

)
≤ ν

∫ t

0

‖ψx (τ)‖2 dτ + Cν

∫ t

0

g (τ)
4
3 ‖ψ (τ)‖ 2

3 dτ

≤ ν

∫ t

0

‖ψx (τ)‖2 dτ + CνE (t)
2
3

∫ t

0

g (τ)
4
3 dτ

≤ ν

∫ t

0

‖ψx (τ)‖2 dτ + Cνδ
4
3 ,
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which shows (3.15). By virtue of (3.15) we derive (3.16) and (3.17) as follows:∣∣∣∣∫ t

0

ψ (0, τ)ψx (0, τ) dτ

∣∣∣∣ ≤ C

∣∣∣∣∫ t

0

µψ(0,τ)ψx(0,τ)
v(0,τ) dτ

∣∣∣∣
≤ ν

∫ t

0

‖ψx (τ)‖2 dτ + Cδ
4
3 + C

∣∣∣∣∫ t

0

(p (V + φ)− p (V ))ψ|+∞0 dτ

∣∣∣∣
≤ ν

∫ t

0

‖ψx (τ)‖2 dτ + Cδ
4
3 + C

∫ t

0

‖ψ (τ)‖ 1
2 ‖ψx (τ)‖ 1

2 |v (0, τ)− V (0, τ)| dτ

≤ ν

∫ t

0

‖ψx (τ)‖2 dτ + Cδ
4
3 + CE

∫ t

0

(|v (0, τ)− v−|+ |v− − V (0, τ)|) dτ

≤ ν

∫ t

0

‖ψx (τ)‖2 dτ + Cδ
4
3 + C (|v0 − v−|+ δ)

≤ ν

(∫ t

0

‖ψx (τ)‖2 dτ + C (δ + |v0 − v−|)
)

and∣∣∣∣∫ t

0

ψτ (0, τ)ψx (0, τ) dτ

∣∣∣∣
=

∣∣∣∣∫ t

0

ψτ (0, τ) (ux (0, τ)− Ux (0, τ)) dτ

∣∣∣∣
=

∣∣∣∣∫ t

0

ψτ (0, τ) a (τ) dτ

∣∣∣∣ (where a (t)
∆
= 1

µ (p (v (0, t))− p (v−)) v (0, t)− Ux (0, t)
)

=

∣∣∣∣a (t)ψ (0, t)− a (0)ψ (0, 0)−
∫ t

0

ψ (0, τ) a′ (τ) dτ

∣∣∣∣
≤ C

(
|a (t)|+ |a (0)|+

∫ t

0

|a′ (τ)| dτ
)
E

≤ C (δ + |v0(0)− v−|) .

Thus we complete the proof.

Using Lemmas 3.2 and 3.3, we can establish the following three lemmas using the
same technique as in [11].

Lemma 3.4. It follows that for 0 ≤ t ≤ T ,

‖(φ, ψ) (t)‖2 +

∫ t

0

(∥∥∥V 1
2
τ φ (τ)

∥∥∥2

+ ‖ψx (τ)‖2
)
dτ

≤ C

(
δ

1
6 + ‖(φ0, ψ0)‖2 + E

1
2

∫ t

0

‖(φ, ψ)x (τ)‖2 dτ
)
.

Lemma 3.5. It follows that for 0 ≤ t ≤ T ,

‖φx (t)‖2 +

∫ t

0

‖φx (τ)‖2 dτ

≤ C

(
δ

1
2 + |v0 − v−|+ ‖φ0x‖2 + ‖ψ0‖2 + ‖ψ (t)‖2

+

∫ t

0

(
‖ψx (τ)‖2 + (E + δ) ‖φx (τ)‖2 + E ‖ψxx (τ)‖2

)
dτ

)
.
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Lemma 3.6. It follows that for 0 ≤ t ≤ T ,

‖ψx (t)‖2 +

∫ t

0

‖ψxx (τ)‖2 dτ

≤ C

(
δ

1
2 + |v0 − v−|+ ‖ψ0x‖2 +

∫ t

0

(
‖(φ, ψ)x (τ)‖2 + E ‖ψxx (τ)‖2

)
dτ

)
.

Combining Lemmas 3.4–3.6 yields

‖(φ, ψ) (t)‖21 +

∫ t

0

(∥∥∥V 1
2
τ φ (τ)

∥∥∥2

+ ‖φx (τ)‖2 + ‖ψx (τ)‖21
)
dτ

≤ C

(
δ

1
6 + |v0 − v−|+ ‖(φ0, ψ0)‖21

+

∫ t

0

(
E

1
2 ‖ψx (τ)‖2 +

(
E

1
2 + δ

)
‖φx (τ)‖2 + E ‖ψxx (τ)‖2

)
dτ

)
.

Hence, choosing E and δ suitably small as E + δ < ε1, we have the a priori estimate
(3.14). Thus Proposition 3.1 is completed.

4. Convergence to viscous shock wave. In this section, we discuss the con-
vergence for the solution of (1.6)–(1.8) toward the front viscous shock wave for p (v) =
v−γ under the condition v− < v+. Our discussions are largely due to those by Mat-
sumura and Mei [3].

4.1. Viscous shock wave. The viscous shock wave of system (1.6) for the
corresponding Cauchy problem is a smooth solution (V,U) (ξ) (ξ = x− st) satisfying
(1.6) and (V,U) (±∞) = (v±, u±), namely,

−sV ′ − U ′ = 0,

−sU ′ + p (V )
′

= µ
(
U ′
V

)′
,

(V,U) (±∞) = (v±, u±) ,

(4.1)

where ′ = d/dξ, s is the shock speed, and (v±, u±) are the given constant states at
ξ = ±∞, satisfying the Rankine–Hugoniot condition{ −s (v+ − v−)− (u+ − u−) = 0,

−s (u+ − u−) + (p (v+)− p (v−)) = 0
(4.2)

and the entropy condition

λ1 (v+) < s < λ1 (v−) (< 0) or (0 <)λ2 (v+) < s < λ2 (v−) .(4.3)

Integrate (4.1) under the Rankine–Hugoniot condition (4.2), and the problem
(4.1) is deduced to{

µsV ′

V = −s2V − p (V )− b
∆
= h (V ) , V (±∞) = v±,

U = −s (V − v±) + u±,
(4.4)

where b = −s2v± − p (v±).
In our present problem, the solution to (1.6)–(1.8) is expected to behave as the

front viscous shock wave, i.e., s > 0, and hence the entropy condition (4.3) yields

v− < v+.(4.5)
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Therefore, we have the following lemma on the existence of the front viscous shock
wave (see [3]).

Lemma 4.1. For any (v+, u+) and v− = p−1 (p0) with 0 < v− < v+, there exist

a unique number u− ∈ R (u− > u+) and s =
√
−p(v+)−p(v−)

v+−v− > 0 satisfying (4.2),

and a unique front viscous shock profile (V,U) (ξ) (ξ = x− st) of (1.6) up to shift
determined by (4.4), which satisfies

|V (ξ)− v±, U (ξ)− u±| = O (1) |v+ − v−, u+ − u−| e−c±|ξ|(4.6)

as ξ → ±∞, where c± = v±
∣∣p′ (v±) + s2

∣∣ /µs > 0.

4.2. Determination of the shift. We first fix a viscous shock wave (V,U)(x−
st) mentioned above. Assume that the initial perturbation (v0, u0)(x) is given in a
neighborhood of the front viscous shock profile (V,U) (x− β), where β is a sufficient
large constant so that (V,U) (x− β) is away from the boundary. Then a shifted front
viscous profile (V,U) (x− st + α− β) is determined by the data (v0, u0)(x) as in [3].

Denote (V,U) = (V,U) (x− st + α− β). From (1.6)2 and (4.1)2 we have

(u− U)t = −
(
p (v)− p (V )− µ

ux
v

+ µ
U ′

V

)
x

.(4.7)

Integrating (4.7) over [0,+∞) with respect to x and using the boundary condition
(1.7), we have

d

dt

∫ +∞

0

(u (x, t)− U (x− st + α− β)) dx

= −
(
p (v)− p (V )− µ

ux
v

+ µ
U ′

V

)∣∣∣∣+∞
0

(4.8)

=

(
p (v−)− p (V ) + µ

U ′

V

)∣∣∣∣
x=0

.

Integrating (4.8) again with respect to t, we get∫ +∞

0

(u (x, t)− U (x− st + α− β)) dx

=

∫ +∞

0

(u0 (x)− U (x + α− β)) dx +

∫ t

0

(
p (v−)− p (V ) + µU ′

V

)∣∣∣
x=0

dτ.

(4.9)

If we assume that u (x, t) tends to U (x− xt + α− β) in L1 as t → +∞, then the
right-hand side of (4.9) must go to zero as t→ +∞. Hence, if we set

I (α)
∆
=

∫ +∞

0

(u0 (x)− U (x + α− β)) dx

(4.10)

+

∫ +∞

0

(
p (v−)− p (V ) +

µU ′

V

)∣∣∣∣
x=0

dτ,

then the shift α must be determined by I (α) = 0. Differentiating I (α) with respect
to α and using (4.4) yields

I ′ (α) = −
∫ ∞

0

U ′ (x + α− β) dx +

∫ ∞
0

(−sU ′(−sτ + α− β)) dτ

= −u+ + U (α− β) + u− − U (α− β)
= u− − u+.

(4.11)
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Hence I (α) = I (0) + (u− − u+)α. Thus, the shift α = α (β) should be determined
explicitly by I (0) + (u− − u+)α = I (α) = 0, that is,

α
∆
=

1

u− − u+

(∫ ∞
0

(u0 (x)− U (x− β)) dx

+

∫ ∞
0

(p (v−)− p (V (−st− β))) dt +

∫ ∞
0

µU ′

V
(−st− β) dt

)
(4.12)

=
1

u− − u+

(∫ ∞
0

(u0 (x)− U (x− β)) dx

+

∫ ∞
0

(p (v−)− p (V (−st− β))) dt + µ ln
v−

V (−β)

)
.

From (4.9), (4.12), (4.1), and Lemma 4.1 we have heuristically∫ ∞
0

(u (x, t)− U (x− st + α− β)) dx

= I (α)−
∫ ∞
t

(
p (v−)− p (V ) +

µU ′

V

)∣∣∣∣
x=0

dτ

(4.13)

= −
∫ ∞
t

(p (v−)− p (V (−sτ + α− β))) dτ − µ ln
v−

V (−st + α− β)

→ 0 as t→∞.

Particularly, note that∫ ∞
0

(u0 (x)− U (x + α− β)) dx

= −
∫ ∞

0

(
p (v−)− p (V ) +

µU ′

V

)∣∣∣∣
x=0

dt(4.14)

= −
∫ ∞

0

(p (v−)− p (V (−st + α− β))) dt + µ ln
V (α− β)

v−
.

On the other hand, by the similar argument of (1.1)1 and (4.1)1, the following
must hold:∫ ∞

0

(v0 (x)− V (x + α− β)) dx +

∫ ∞
0

(U (−st + α− β)− u (0, t)) dt = 0.(4.15)

However, as stated in Matsumura and Mei [3], we expect that u (0, t) is automatically
controlled by the effect of boundary so that (4.15) holds with the same shift α defined
by (4.12). This situation is really possible because u (0, t) is not specified.

4.3. Main result. Suppose that for some β > 0,

(v0 (x)− V (x− β) , u0 (x)− U (x− β)) ∈ H1 (R+) ∩ L1 (R+) ,(4.16)

(Φ0,Ψ0) (x) = −
∫ ∞
x

(v0 (y)− V (y − β) , u0 (y)− U (y − β)) dy ∈ L2 (R+) ,(4.17)
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then we have an asymptotic property of the constant shift α as follows.
Lemma 4.2. If (4.16) and (4.17) hold, then (Φ0,Ψ0) ∈ H2 (R+) and the shift α

defined by (4.12) satisfies that α→ 0 as ‖(Φ0,Ψ0)‖2 → 0 and β → +∞.
The proof of Lemma 4.2 is easily shown by (4.12).
We now state our second main theorem.
Theorem 4.1. For any given (v+, u+), v− = p−1 (p0) > 0 with v+ > v−, and

u− determined in Lemma 4.1, suppose the assumptions (4.16)–(4.17) and

(γ − 1)
2

(v+ − v−) < 2γv−.

Then there exists a positive constant ε2 such that if ‖(Φ0,Ψ0)‖2+|v0 − v−|+β−1 < ε2,
then (1.6)–(1.8) has a unique global solution (v, u) (x, t) satisfying

v (x, t)− V (x− st + α− β) ∈ C0
(
[0,∞) ;H1 (R+)

) ∩ L2
(
[0,∞) ;H1 (R+)

)
,

u (x, t)− U (x− st + α− β) ∈ C0
(
[0,∞) ;H1 (R+)

) ∩ L2
(
[0,∞) ;H2 (R+)

)
and, moreover,

sup
x∈R+

|(v, u) (x, t)− (V,U) (x− st + α− β)| → 0 as t→∞,(4.18)

where α = α (β) is determined by (4.12).

4.4. Reformulation of the original problem. Define the new unknowns by
φ (x, t) = −

∫ ∞
x

(v (y, t)− V (y − st + α− β)) dy,

ψ (x, t) = −
∫ ∞
x

(u (y, t)− U (y − st + α− β)) dy.

(4.19)

Then the original system (1.6) can be reduced to{
φt − ψx = 0,

ψt + (p (V + φx)− p (V )) = µ
(
U ′+ψxx

V +φx
− U ′

V

)
.

(4.20)

The initial condition (1.8) is transformed to

φ (x, 0) = −
∫ ∞
x

(v0 (y)− V (y + α− β)) dy

= Φ0 (x) +

∫ ∞
x

(V (y + α− β)− V (y − β)) dy

(4.21)

= Φ0 (x) +

∫ ∞
x

∫ α

0

V ′ (y + θ − β) dθdy

= Φ0 (x) +

∫ α

0

(v+ − V (x + θ − β)) dθ
�
= φ0 (x) ,

ψ (x, 0) = −
∫ ∞
x

(u0 (y)− U (y + α− β)) dy

= Ψ0 (x) +

∫ ∞
x

(U (y + α− β)− U (y − β)) dy(4.22)

= Ψ0 (x) +

∫ α

0

(u+ − U (x + θ − β)) dθ
�
= ψ0 (x) .
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Then, by the same proof as in [3], we have the following fact for the initial
perturbations (4.21) and (4.22) for φ and ψ.

Lemma 4.3. Under the conditions (4.16) and (4.17), the initial perturbation
(φ0, ψ0) ∈ H2 (R+) and satisfies

‖(φ0, ψ0)‖2 → 0 as ‖(Φ0,Ψ0)‖2 → 0 and β → +∞.(4.23)

Concerning the boundary data, from (4.19) and (4.13), it must hold that

ψ (0, t) = −
∫ ∞

0

(u (y, t)− U (y − st + α− β)) dy

=

∫ ∞
t

(p (v−)− p (V (−sτ + α− β))) dτ + µ ln v−
V (−st+α−β)

�
= A (t) .

(4.24)

Thus, by (4.20)–(4.24), we reformulate our problem to
φt − ψx = 0,

ψt − f (V )φx − µ
V ψxx = F,

(φ, ψ) (x, 0) = (φ0, ψ0) (x) ∈ H2 (R+) , x ≥ 0,

ψ (0, t) = A (t) , t ≥ 0,

(4.25)

where

f (V ) = −p′ (V ) +
µsVx
V 2

=
h (V )− p′ (V )V

V
≡ K (V )

V
,(4.26)

F = − (p (V + φx)− p (V )− p′ (V )φx)− (µψxx + h (V )φx)

(
1

V + φx
− 1

V

)
.(4.27)

We define the solution space of (4.25) on I ⊂ [0,∞) by

G (I) =

{
(φ, ψ)

∣∣(φ, ψ) ∈ C0
(
I;H2 (R+)

)
, φx ∈ L2

(
I;H1 (R+)

)
,

ψx ∈ L2
(
I;H2 (R+)

)
with sup

[0,T ]

‖(φ, ψ)(t)‖2 ≤ E0

}

for some small constant E0, so that supR+×I(V + φx)(x, t) ≥ 1
2v−. We also set

N (t) = sup
0≤τ≤t

‖(φ, ψ) (τ)‖2 , N0 = ‖φ0‖2 + ‖ψ0‖2 .

To prove Theorem 4.1 it suffices to prove the following theorem.
Theorem 4.2. Suppose that the assumptions in Theorem 4.1 hold. Then there

exist positive constants ε3 and C such that if N0 + |v0 − v−| + β−1 ≤ ε3, then the
initial-boundary value problem (4.25) has a unique global solution (φ, ψ) ∈ G ([0,∞))
satisfying

‖(φ, ψ) (t)‖22 +

∫ t

0

(
‖φx (τ)‖21 + ‖ψx (τ)‖22

)
dτ

(4.28)
≤ C

(
|v0 − v−|+ e−c−β + ‖(φ0, ψ0)‖22

)
,
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0

(∣∣∣∣ ddτ ‖φx (τ)‖2
∣∣∣∣+

∣∣∣∣ ddτ ‖ψx (τ)‖2
∣∣∣∣) dτ

(4.29)
≤ C

(
|v0 − v−|+ e−c−β + ‖(φ0, ψ0)‖22

)
for all t ≥ 0. Moreover, it holds that the asymptotic stability

sup
x∈R+

|(φx, ψx) (x, t)| → 0 as t→∞.(4.30)

Similar to Theorem 3.2, Theorem 4.2 can be shown by the continuation argument
combining the local existence result together with the a priori estimates. We omit
here the local existence result since it is standard. We now give the following a priori
estimates which will be shown in the next subsection.

Proposition 4.1 (a priori estimates). Suppose all assumptions in Theorem 4.2.
Let (φ, ψ) ∈ G ([0, T ]) be a solution to (4.25) for T > 0. Then there exist positive
constants δ1 and C independent of T such that if N (T ) < δ1, then (φ, ψ) satisfies the
a priori estimates (4.28) and (4.29) for 0 ≤ t ≤ T .

4.5. A priori estimates. Let (φ, ψ) ∈ G ([0, T ]) be a solution to (4.25) which
satisfies N (T ) < 1, β > 1, and |α| < 1. In this subsection, we use the letter C to
denote some positive constant independent of T , β, and α.

To prove the a priori estimates, we need the following estimates at the boundary.
Lemma 4.4. The following inequalities hold for 0 ≤ t ≤ T :∣∣∣∣∫ t

0

φ (0, τ)ψ (0, τ) dτ

∣∣∣∣ ≤ Ce−c−β ,∣∣∣∣∫ t

0

ψ (0, τ)ψx (0, τ) dτ

∣∣∣∣ ≤ Ce−c−β ,

∣∣∣∣∫ t

0

φx (0, τ)ψx (0, τ) dτ

∣∣∣∣ ≤ C
(|v0 − v−|+ e−c−β

)
,∣∣∣∣∫ t

0

ψx (0, τ)ψt (0, τ) dτ

∣∣∣∣ ≤ Ce−c−β ,

and ∣∣∣∣∫ t

0

ψx (0, τ)ψxx (0, τ) dτ

∣∣∣∣ ≤ C
(|v0 − v−|+ e−c−β

)
,∣∣∣∣∫ t

0

ψxt (0, τ)ψxx (0, τ) dτ

∣∣∣∣ ≤ C
(|v0 − v−|+ e−c−β

)
.

Proof. By Sobolev’s inequality, we have
|φ (0, t)| ≤ sup

x∈R+

|φ (x, t)| ≤ CN (T ) ≤ C,

|ψx (0, t)| ≤ sup
x∈R+

|φx (x, t)| ≤ CN (T ) ≤ C.
(4.31)

Using Lemma 4.1 gives

|V (−st + α− β)− v−| ≤ Ce−c−|−st+α−β|

= Ce−c−(β−α)e−c−st ≤ Ce−c−βe−c−st.
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Thus we have

|ψ (0, t)| = |A (t)| ≤ C

∫ ∞
t

|V (−sτ + α− β)− v−| dτ + C |V (−st + α− β)− v−|
≤ Ce−c−βe−c−st.

Similarly, we can conclude from (4.4) and Lemma 4.1 that∣∣∣∣dkA (t)

dtk

∣∣∣∣ ≤ Ce−c−βe−c−st, k = 0, 1, 2, 3.(4.32)

From (4.31) and (4.32), it follows that∣∣∣∣∫ t

0

φ (0, τ)ψ (0, τ) dτ

∣∣∣∣ ≤ ∫ t

0

|φ (0, τ)| |A (τ)| dτ ≤ Ce−c−β ,

∣∣∣∣∫ t

0

ψ (0, τ)ψx (0, τ) dτ

∣∣∣∣ ≤ ∫ t

0

|ψx (0, τ)| |A (τ)| dτ ≤ Ce−c−β ,

∣∣∣∣∫ t

0

ψx (0, τ)ψt (0, τ) dτ

∣∣∣∣ ≤ ∫ t

0

|ψx (0, τ)| |A′ (τ)| dτ ≤ Ce−c−β .

In light of (4.31), (4.25), (4.32), and Lemma 2.2, we obtain∣∣∣∣∫ t

0

φx (0, τ)ψx (0, τ) dτ

∣∣∣∣ ≤ ∫ t

0

|v (0, τ)− V (−sτ + α− β)| |ψx (0, τ)| dτ

≤ C

∫ t

0

|v (0, τ)− V (−sτ + α− β)| dτ

≤ C

∫ t

0

(|v (0, τ)− v−|+ |V (−sτ + α− β)− v−|) dτ
≤ C

(|v0 − v−|+ e−c−β
)
.

By (4.19) and the boundary condition (1.7)

ψxx (0, t) = ux (0, t)− U ′ (−st + α− β)

= − 1
µv (0, t) (p (v (0, t))− p (v−)) − U ′ (−st + α− β) .

(4.33)

Hence (4.31) and Lemma 2.2 yield∣∣∣∣∫ t

0

ψx (0, τ)ψxx (0, τ) dτ

∣∣∣∣ ≤ C

(∫ t

0

1
µ |v (0, τ)| |p (v (0, τ))− p (v−)| dτ

+

∫ t

0

|U ′ (−sτ + α− β)| dτ
)

≤ C
(|v0 − v−|+ e−c−β

)
.

Finally, we estimate | ∫ t
0
ψxt (0, τ)ψxx (0, τ) dτ |. Making use of (4.33), (4.31),
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Lemma 2.2, (4.4), Lemma 4.1, and the integration of parts, we have∣∣∣∣∫ t

0

ψxt (0, τ)ψxx (0, τ) dτ

∣∣∣∣
=

∣∣∣∣ψx (0, t)ψxx (0, t)− ψx (0, 0)ψxx (0, 0)−
∫ t

0

ψx (0, τ)ψxxt (0, τ) dτ

∣∣∣∣
≤ |ψx (0, t)ψxx (0, t)|+ |ψx (0, 0)ψxx (0, 0)|+

∫ t

0

|ψx (0, τ)| |ψxxt (0, τ)| dτ

≤ C
(|v0 − v−|+ e−c−β

)
+ C

∫ t

0

(
1
µ |vt (0, τ)| |p (v (0, τ))− p (v−)|

+ 1
µ |v (0, τ)| |p′ (v (0, τ)) vt (0, τ)|+ s |U ′′ (−sτ + α− β)|

)
dτ

≤ C
(|v0 − v−|+ e−c−β

)
.

Applying Lemma 4.4, we get the desired a priori estimates (4.28) and (4.29). The
proof is the same as that of Proposition 3.4 in [3] except for the boundary values
mentioned above, so we omit the details.
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Abstract. To demonstrate the influence of spatial heterogeneity on the predator-prey model,
we study the effects of the partial vanishing of the nonnegative coefficient functions b(x) and e(x),
respectively, in the steady-state predator-prey model

−d1(x)∆u = λa1(x)u− b(x)u2 − c(x)uv,
−d2(x)∆v = µa2(x)c− e(x)v2 + d(x)uv,

u|∂Ω = v|∂Ω = 0,

where all other coefficient functions are strictly positive over the bounded domain Ω in RN . Critical
values of the parameter λ are obtained to show that, in each case, the vanishing has little effect on
the behavior of the model when λ is below the critical value, while essential changes occur once λ is
beyond the critical value.

Key words. global bifurcation, a priori estimates, predator-prey
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1. Introduction. We are mainly concerned with the nonnegative steady-state
solutions of the predator-prey model

ut − d1(x)∆u = λa1(x)u− b(x)u2 − c(x)uv,
vt − d2(x)∆v = µa2(x)v − e(x)v2 + d(x)uv,
u|∂Ω×(0,∞) = v|∂Ω×(0,∞) = 0,

(1.1)

where Ω is a bounded smooth domain inRN (N ≥ 2), λ, µ are constants, and d1, d2, a1,
a2, b, c, d, e are nonnegative continuous functions on Ω. The dependence on the space
variable x of these coefficient functions represents the fact that the prey u and predator
v interact in a spatially heterogeneous environment. If the environment is spatially
homogeneous, then all these coefficient functions reduce to positive constants, and
(1.1) is known as, in this special case, the classical Lotka–Volterra predator-prey model
with diffusion, which has attracted extensive study (see, e.g., [BB1, Da1, Da2, KL, Li,
LP, Pao, Ya] and the references therein). It is interesting to know whether the model
behaves differently when the environment is spatially heterogeneous. When all the
coefficient functions are strictly positive over Ω, it is easy to see that (1.1) behaves
similarly to the classical Lotka–Volterra case. Thus, we will call (1.1) a classical
predator-prey model when all the coefficient functions are strictly positive over Ω. A
limiting case is when some of the coefficient functions in (1.1) vanish partially over
Ω, which we henceforth call a degeneracy. Equation (1.1) with a degeneracy will
hence be called a degenerate predator-prey model. The main purpose of this paper is
to show that the dynamical behavior of (1.1) with certain degeneracies may change
drastically from the classical model. This fact shows that the influence of certain
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spatial heterogeneity may cause significant changes of behavior for the predator-prey
model. A study in the same spirit was carried out recently by Du [Du1, Du2] for the
competition model, but the difficulties and the techniques required in the predator-
prey model here are very different from those in [Du1, Du2]; the new phenomena
revealed are also fundamentally different.

We would like to remark that a degenerate model as described above is a nat-
ural limiting problem for the classical model when some of its coefficients are very
small on part of the underlying domain. This is an extreme opposite case from all
coefficients being constant. Hence a better understanding of the degenerate cases
helps the understanding of the more natural classical model with variable coefficients,
particularly, the transition of its behavior from a homogeneous environment to an ex-
tremely heterogeneous environment. Note that while we understand completely when
there is at least one coexistence state for the classical model (see [BB1] or [Da2]),
we do not know much about the multiplicity of the coexistence states (except for
space dimension 1, where uniqueness is known to hold) and their spatial behavior.
To try to understand these problems one is led naturally to degenerate cases. The
cases we choose to study here demonstrate considerable differences from the classical
homogeneous problem (see, for example, our discussions after Theorem 2.6) and re-
veal interesting spatial behavior of the coexistence states (see Theorems 2.7 and 3.4).
However, they do not seem to lead to multiple coexistence states. It is our hope that
this sort of information can also help with the difficult problem of understanding the
dynamics of the parabolic predator-prey system.

Let us now describe our results in more detail. We will analyze the effects on the
set of steady-state solutions of (1.1) caused by the partial vanishing of b(x) and e(x),
respectively. Let us recall that these two functions describe the introspecific pressures
of u and v, respectively. The partial vanishing of b(x) implies that in the absence of v,
the growth of u is governed by a degenerate logistic law or, more precisely, a mixture
of the logistic and Malthusian laws over Ω. The implication of the vanishing of e(x)
on v is similar.

When b(x) vanishes partially in Ω, we assume that all the other coefficient func-
tions are positive over Ω. For simplicity, we assume further that all these nonvanishing
coefficients are positive constants. It can be easily seen that our arguments work as
well without this further assumption. Therefore we lose no generality by doing this.
Furthermore, through some simple rescalings of u, v and the coefficients, we see that
for the steady-state solutions, we need only consider the following further simplified
system: 

−∆u = λu− b(x)u2 − cuv,
−∆v = µv − v2 + duv,
u|∂Ω = v|∂Ω = 0,

(1.2)

where c, d are positive constants. We assume that b(x) ≡ 0 on the closure of some
smooth domain Ω0 satisfying Ω0 ⊂ Ω and b(x) > 0 over Ω \ Ω0. We will show that
there exists a critical value λ∗ > 0 such that (1.2) behaves as if b(x) ≡ 1 when λ < λ∗,
while essential changes occur once λ ≥ λ∗ (see Theorems 2.4 and 2.6 for details).
We will also discuss the limiting behavior of the system as µ → −∞, where the
limiting problem is an interesting free boundary problem (see (2.14), Theorem 2.7,
and Remark 2.1 for more details).

Similarly, when e(x) in (1.1) vanishes partially in Ω while all other coefficient
functions are positive, then without loss of generality we can consider the following
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simplified system: 
−∆u = λu− u2 − cuv,
−∆v = µv − e(x)v2 + duv,
u|∂Ω = v|∂Ω = 0,

(1.3)

where we assume that e(x) satisfies the same conditions as b(x) given above. Again
we will show that there exists a critical number λ∗ > 0 such that (1.3) behaves as if
e(x) ≡ 1 if λ < λ∗, but drastic changes occur once λ ≥ λ∗. However, we will show
that the changes now are very different in nature from that for (1.2) (see Theorems
3.2 and 3.3 for details).

The rest of this paper is organized as follows. In section 2 we study (1.2), where
for both cases λ < λ∗ and λ ≥ λ∗, sufficient and necessary conditions are obtained
for the existence of positive solutions of (1.2). Our analysis is based on an a priori
estimate result (Theorem 2.1) and a global bifurcation method adapted from [BB2].
When the global bifurcation branch of positive solutions is unbounded, its asymptotic
behavior is studied (Theorem 2.7). In section 3 we carry out a similar analysis for
(1.3), but as will become clear later, the techniques used and phenomena revealed
there are quite different from those in section 2. In the appendix, we collect a few
known results used in sections 2 and 3.

2. Degeneracy in the prey equation. This section is devoted to the under-
standing of the effects of the vanishing of b(x) on the system (1.2). We will, as usual,
fix c, d and regard λ and µ as varying parameters. We assume that b(x) possesses the
properties described in the introduction.

Clearly v ≡ 0 satisfies the second equation in (1.2). In this case u satisfies the
so-called degenerate logistic equation

−∆u = λu− b(x)u2, u|∂Ω = 0.(2.1)

It is well known (see [Ou, dP, FKLM]) that (2.1) has only the trivial nonnegative
solution u ≡ 0 when λ 	∈ (λΩ

1 , λ
Ω0
1 ), while there is a unique positive solution uλ when

λ belongs to this open interval. Here we use λω1 to denote the first Dirichlet eigenvalue
of the Laplacian over the domain ω. For later use, we also introduce the notation
λω1 (φ), which denotes the first eigenvalue of the problem

−∆u+ φu = λu, u|∂ω = 0.

Clearly, λω1 = λω1 (0) under these notations.
It is easily seen that uλ → 0 in L∞(Ω) when λ → λΩ

1 . Moreover, by [DH], as
λ→ λΩ0

1 ,

uλ →∞ uniformly on Ω0,

uλ → UλΩ0 locally uniformly on Ω \ Ω0,

where Uλ denotes the minimal positive solution of the following boundary blow-up
problem:

−∆U = λU − b(x)U2, x ∈ Ω \ Ω0; U |∂Ω = 0, U |∂Ω0
=∞.(2.2)

Here U |∂Ω0 = ∞ means limd(x,∂Ω0)→0 U(x) = ∞. By [DH], (2.2) has a minimal and
maximal positive solution for each λ ∈ (−∞,∞).



DEGENERATE PREDATOR-PREY MODEL 295

To summarize, for each λ ∈ (λΩ
1 , λ

Ω0
1 ), (1.2) has a unique semitrivial solution of

the form (u, 0) with u > 0, namely, (uλ, 0); there is no such semitrivial solution for
other λ values.

When u ≡ 0, then v satisfies the logistic equation

−∆v = µv − v2, v|∂Ω = 0.

It is well known that this equation has no positive solution when µ ≤ λΩ
1 , and there is

a unique positive solution v = θµ when µ > λΩ
1 . Thus (1.2) has a unique semitrivial

solution (0, θµ) of the form (0, v) with v > 0 if µ > λΩ
1 , and there is no such semitrivial

solution for other µ values.
The obvious solution (u, v) = (0, 0) of (1.2) is called the trivial solution.
To analyze the set of positive solutions for (1.2) we will need the following a priori

estimates.
Theorem 2.1. Given an arbitrary positive constant M we can find another

positive constant C, depending only on M and b, c, d,Ω in (1.2), such that if (u, v) is
a positive solution of (1.2) with |λ|+ |µ| ≤M , then

‖u‖∞ + ‖v‖∞ ≤ C.

Here ‖ · ‖∞ = ‖ · ‖L∞(Ω).
In the proof of Theorem 2.1, and also in later discussions of the paper, we will

need the following result.
Lemma 2.2. Suppose {un} ⊂ C2(Ω) satisfies

−∆un ≤ λun, un|∂Ω = 0, un ≥ 0, ‖un‖∞ = 1,

where λ is a positive constant. Then there exists u∞ ∈ L∞(Ω) ∩ H1
0 (Ω) such that,

subject to a subsequence, un → u∞ weakly in H1
0 (Ω), strongly in Lp(Ω) for all p ≥ 1,

and ‖u∞‖∞ = 1.
Proof. From the assumption, clearly∫

Ω

|∇un|2dx ≤ λ

∫
Ω

u2
ndx ≤ λ|Ω|.

Hence {un} is bounded in H1
0 (Ω). It follows that by passing to a subsequence, un →

u∞ weakly in H1
0 (Ω) and strongly in L2(Ω). As ‖un‖∞ = 1, un → u∞ in L2(Ω)

implies un → u∞ in Lp(Ω) for all p ≥ 1. Clearly 0 ≤ u∞ ≤ 1.
It remains to show that ‖u∞‖∞ = 1. Assume by way of contradiction that

‖u∞‖∞ = 1− ε < 1. We are going to prove that this implies ‖un‖∞ < 1 for all large
n, contradicting the assumption that ‖un‖∞ = 1. This would finish the proof.

From the regularity of the operator (−∆)−1 we know that

w := lim
n→∞λ(−∆)−1un = λ(−∆)−1u∞

belongs to C1(Ω), and w = 0 on ∂Ω. By our assumption, we easily see that 0 ≤ un ≤
λ(−∆)−1un. Hence there exists n0 ≥ 1 such that for all n > n0, un ≤ w+1− (3/4)ε.
We can now choose a small neighborhood U of ∂Ω in Ω such that, on U , un < 1− ε/2
for n = 1, . . . , n0 and w < ε/4. Thus we have un < 1− ε/2 on U for all n ≥ 1.

In the following, we want to show that for any x0 ∈ Ω\U , we can find a small open
ball Bx0

centered at x0 such that un ≤ 1− ε/2 on Bx0
for all large n. As Ω \ U can
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be covered by finitely many such balls, this would eventually mean that un ≤ 1− ε/2
on Ω \ U for all large n. Therefore, ‖un‖∞ < 1 for all large n, as required.

Let us now fix such an x0. Denote Br(x0) = {x : |x− x0| < r} and let

vn(r) =

∫
∂Br(x0)

|un(y)− u∞(y)|dSy.

We have, for some small positive r0,∫ r0

0

vn(r)dr =

∫
Br0

(x0)

|un(x)− u∞(x)|dx ≤ ‖un − u∞‖L1(Ω) → 0

as n→∞. Hence, vn(r)→ 0 for almost every r ∈ (0, r0).
Choose r ∈ (0, r0) very small so that vn(r) → 0 for this r and that the unique

solution to

−∆w = λ, x ∈ Br(x0), w|∂Br(x0) = 0

satisfies ‖w‖∞ < ε/4. Then let wn be the unique solution to the problem

−∆wn = 0, wn|∂Br(x0) = un.

We find that zn = w + wn − un satisfies

−∆zn = λ+∆un ≥ λ− λun ≥ 0 ∀x ∈ Br(x0), zn|∂Br(x0) = 0.

Hence, by the maximum principle, zn ≥ 0 in Br(x0), i.e.,

un ≤ w + wn ∀x ∈ Br(x0).

Denote, for x ∈ Br(x0),

w∞(x) =
r2 − |x− x0|2

NωNr

∫
∂Br(x0)

u∞(y)
|x− y|N dSy,

where ωN stands for the volume of the unit ball in RN . We clearly have

w∞(x) ≤ r2 − |x− x0|2
NωNr

∫
∂Br(x0)

1− ε

|x− y|N dSy = 1− ε ∀x ∈ Br(x0).

By the Poisson integral formula, for x ∈ Br(x0),

wn(x) =
r2 − |x− x0|2

NωNr

∫
∂Br(x0)

un(y)

|x− y|N dSy.

Therefore, we have, for x ∈ Br/2(x0),

|wn(x)− w∞(x)| ≤ r2 − |x− x0|2
NωNr

∫
∂Br(x0)

|un(y)− u∞(y)|
|x− y|N dSy

≤ r2 − |x− x0|2
NωNr

∫
∂Br(x0)

|un(y)− u∞(y)|
(r/2)N

dSy

≤ 2N

NωNrN−1
vn(r)→ 0
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as n→∞. It follows that for all large n,

|wn(x)− w∞(x)| < ε/4 ∀x ∈ Br/2(x0).

Thus,

wn(x) ≤ w∞(x) + ε/4 ≤ 1− (3/4)ε ∀x ∈ Br/2(x0).

We finally obtain

un ≤ w + wn < ε/4 + 1− (3/4)ε = 1− ε/2 ∀x ∈ Br/2(x0).

This is what we wanted and the proof is thus complete.
Proof of Theorem 2.1. We use an indirect argument. Suppose the conclusion of

our theorem is false. Then we can find a constant M > 0 and λn, µn satisfying

|λn|+ |µn| ≤M

and positive solutions (un, vn) of (1.2) with λ = λn, µ = µn such that

‖un‖∞ + ‖vn‖∞ →∞ as n→∞.

Since

−∆vn = µnvn − v2
n + dunvn ≤ (M + d‖un‖∞)vn − v2

n,

an application of Lemma 2.1 of [DM] (recalled in Lemma A.1 in the appendix) shows
that

vn ≤M + d‖un‖∞.(2.3)

Therefore we must have ‖un‖∞ →∞.
From the equation for un we easily see that −∆un ≤ Mun. Hence if we define

ûn = un/‖un‖∞, then

−∆ûn ≤Mûn.(2.4)

Applying Lemma 2.2 we find that, subject to a subsequence, ûn converges weakly
in H1

0 (Ω) and strongly in Lp(Ω) for all p ≥ 1, to some û ∈ H1
0 (Ω). Moreover, û 	≡ 0.

We claim further that û = 0 a.e. on Ω+ := Ω \ Ω0. To see this, we compare un
with UM over Ω+, where UM satisfies (2.2) with λ = M . Clearly we have

−∆un ≤Mun − b(x)u2
n over Ω+.

Moreover, for each fixed n,

limd(x,∂Ω+)→0(un − UM ) ≤ 0.

Therefore an application of [DH, Lemma 2.1] gives un ≤ UM in Ω+. As ‖un‖∞ →∞,
we now easily see that û = 0 a.e. on Ω+.

From (2.3), we find that v̂n := vn/‖un‖∞ gives rise to a bounded sequence in
L∞(Ω). Therefore, by passing to a subsequence, we may assume that v̂n converges
weakly in L2(Ω) to some v̂. Clearly v̂ must be nonnegative and L∞ bounded.
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Choose φ ∈ C∞c (Ω0) and multiply the equation for un by φ/‖un‖2∞ and then
integrate over Ω0. We obtain

(‖un‖∞)−1

∫
Ω0

∇ûn · ∇φdx =

∫
Ω0

ûn(λn/‖un‖∞ − cv̂n)φdx.

Letting n→∞, we deduce ∫
Ω0

ûv̂φdx = 0.

This implies

ûv̂ = 0 a.e. in Ω0.(2.5)

To derive a contradiction, we now look at the equation satisfied by vn and find
that vn satisfies

−∆v + ψv = µnv, v|∂Ω = 0,

where ψ = vn − dun. It follows that

µn = λΩ
1 (vn − dun).(2.6)

By the variational characterization of the first eigenvalue, we have∫
Ω

(|∇φ|2 + (vn − dun)φ
2)dx ≥ µn

∫
Ω

φ2dx

for any φ ∈ H1
0 (Ω). Choosing φ = ûn/

√‖un‖∞, we obtain∫
Ω

|∇ûn|2dx/‖un‖∞ +

∫
Ω

(v̂n − dûn)û
2
ndx ≥ µn

∫
Ω

û2
ndx/‖un‖∞.

Letting n→∞ and recalling ûn → û in Lp(Ω) for any p ≥ 1, we deduce∫
Ω

(v̂û2 − dû3)dx ≥ 0.

We already know that û = 0 a.e. in Ω+ and v̂û = 0 a.e. in Ω0. Therefore v̂û2 = 0 a.e.
in Ω. It follows that ∫

Ω

û3 ≤ 0.

This can happen only if the nonnegative function û is identically zero almost every-
where, which contradicts our earlier observation on û. This completes the proof of
Theorem 2.1.

We are now ready to study the positive solution set of (1.2). We will adapt the
bifurcation approach used by Blat and Brown in [BB2] by fixing λ and using µ as the
main bifurcation parameter.

Let us observe that if (1.2) has a positive solution (u, v), then from the first
equation in (1.2) we obtain

λ = λΩ
1 (bu+ cv) > λΩ

1 (0) = λΩ
1 .
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Hence we assume

λ > λΩ
1

from now on.
Our discussion below is divided into two cases:

(i) λΩ
1 < λ < λΩ0

1 and (ii) λ ≥ λΩ0
1 .

In the first case, (1.2) has a unique semitrivial solution of the form (u, 0), namely,
(uλ, 0). If (u, v) is a positive solution to (1.2), then u satisfies

−∆u ≤ λu− b(x)u2, u|∂Ω = 0.

An application of [DM, Lemma 2.1] (see Lemma A.1) yields

0 < u ≤ uλ ∀x ∈ Ω.(2.7)

From the equation for v we find

−∆v > µv − v2, v|∂Ω = 0,

which implies, by [DM, Lemma 2.1], that

v ≥ θµ ∀x ∈ Ω,(2.8)

where we make the convention that θµ ≡ 0 whenever µ ≤ λΩ
1 .

From the equation for v we also obtain

µ = λΩ
1 (v − du).

Therefore, by (2.7) and the well-known monotonicity property of λΩ
1 (φ), we easily

deduce

µ > λΩ
1 (−duλ).(2.9)

By the equation for u and (2.8), we deduce

λ = λΩ
1 (bu+ cv) > λΩ

1 (cv) ≥ λΩ
1 (cθµ),

that is,

λ > λΩ
1 (cθµ).(2.10)

Summarizing, we have the following result.
Theorem 2.3. In the case that λΩ

1 < λ < λΩ0
1 , a necessary condition for (1.2) to

possess a positive solution is that both (2.9) and (2.10) hold.
We will see in the following that (2.9) and (2.10) are also sufficient conditions

for the existence of positive solutions. Our argument below is very similar to that of
[BB2], and hence we will only sketch it here.

In the (µ, u, v)-space X := R× C1(Ω)× C1(Ω), we have two semitrivial solution
curves

Γu := {(µ, uλ, 0) : µ ∈ (−∞,∞)} and Γv := {(µ, 0, θµ) : λΩ
1 < µ <∞}.
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A local bifurcation analysis along Γu shows that a smooth curve of positive solutions
Γ′ = {(µ, u, v)} bifurcates from (λΩ

1 (−duλ), uλ, 0) ∈ Γu. A global bifurcation con-
sideration, together with an application of the maximum principle, shows that Γ′ is
contained in a global branch (i.e., connected set) of positive solutions Γ = {(µ, u, v)}
which is either unbounded or joins the semitrivial curve Γv at exactly (µ0, 0, θµ0) ∈ Γv,
where µ0 > λΩ

1 is determined uniquely by

λ = λΩ
1 (cθµ0).(2.11)

It follows from (2.10) that µ < µ0 whenever (µ, u, v) ∈ Γ. Therefore, we find that
(µ, u, v) ∈ Γ implies

λΩ
1 (−duλ) < µ < µ0.(2.12)

From this, and applying Theorem 2.1, we conclude that Γ is bounded in the space
R×L∞(Ω)×L∞(Ω). By standard Lp theory for elliptic operators, we conclude that
Γ is also bounded in X. Hence Γ must join Γv. A local bifurcation analysis near
(µ0, 0, θµ0) shows that near this point, Γ consists of a smooth curve.

To summarize, we have proved the following result.
Theorem 2.4. When λΩ

1 < λ < λΩ0
1 , there is a bounded connected set of positive

solutions Γ = {(µ, u, v)} in the space X which joins the semitrivial solutions branches
Γu and Γv at (λ

Ω
1 (−duλ), uλ, 0) and (µ0, 0, θµ0), respectively; moreover, near these

two points, Γ consists of smooth curves.
Clearly, (2.12) is equivalent to (2.9) and (2.10) combined. From Theorems 2.3

and 2.4 the following result now follows.
Corollary 2.5. When λΩ

1 < λ < λΩ0
1 , (1.2) has a positive solution if and only

if (2.12) holds.
The statement in Corollary 2.5 can also be proved by the fixed point index method

developed in [Da1, Da2].
In conclusion, we find that our results above are very similar with that for the

classical case b(x) ≡ 1 obtained in [BB1, BB2] and [Da1, Da2].
Let us now consider the second case where λ ≥ λΩ0

1 . The striking difference with
the classical case now is that we no longer have a semitrivial solution of the form (u, 0).
However, the semitrivial solution curve Γv is unchanged, and the bifurcation analysis
of [BB2] along Γv can still be adapted. Again, a local bifurcation analysis shows that
a smooth curve of positive solutions Γ′ = {(µ, u, v)} bifurcates from (µ0, 0, θµ0) ∈ Γv,
where µ0 is determined by (2.11). As before, a global bifurcation analysis, together
with an application of the maximum principle, shows that Γ′ is contained in a global
branch of positive solutions Γ which is either unbounded in X or joins a semitrivial
solution of the form (u, 0). But we already know that there is no semitrivial solution
of the form (u, 0). Therefore, Γ must be unbounded.

One easily sees that the arguments leading to (2.10) still work for our present
situation. Hence µ < µ0 whenever (1.2) has a positive solution. We now apply
Theorem 2.1 and conclude that

{µ : (µ, u, v) ∈ Γ} = (−∞, µ0).(2.13)

Summarizing the above discussion, we obtain the following result.
Theorem 2.6. When λ ≥ λΩ0

1 , (1.2) has a positive solution if and only if µ < µ0.
Moreover, there is an unbounded connected set of positive solutions Γ = {(µ, u, v)} in
X which joins the semitrivial solution branch Γv at (µ0, 0, θµ0

) and satisfies (2.13).
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The fact that (1.2) has a positive solution for arbitrarily large negative µ is strik-
ingly different from the classical case. Biologically, this implies that the prey species
can support a predator species of arbitrarily negative growth rate. This is due to the
fact that the population of the prey would blow up in the region Ω0 in the absence
of the predator, and hence one might think of Ω0 as a region where food is abundant
for the predator. On the other hand, our above result indicates that the blow-up of
the prey population can be avoided by introducing a predator with rather arbitrary
growth rate.

It is natural to consider the asymptotic behavior of the positive solutions of (1.2)
as µ→ −∞. For this purpose, we consider a decreasing sequence of negative numbers
µn which converges to −∞, and we let (un, vn) be an arbitrary positive solution of
(1.2) with µ = µn. We show that the following result holds.

Theorem 2.7. Let (µn, un, vn) be as above. Then the following conclusions are
true.

(i) limn→∞ ‖un‖∞/|µn| = 1/d, limn→∞ ‖vn‖∞/|µn| = 0.
(ii) un/|µn| → 0 and vn → 0 uniformly on any compact subset of Ω \ Ω0.
(iii) limn→∞‖un‖L1(Ω)/|µn| > 0, limn→∞‖vn‖L1(Ω) < ∞, and when λ > λΩ0

1 ,
limn→∞‖vn‖L1(Ω) > 0.

(iv) If for some q > 1, {‖vn‖Lq(Ω)} is bounded, then subject to a subsequence,
un/‖un‖∞ → û weakly in H1

0 (Ω), vn → (λ/c)χ{û=1} weakly in Lq(Ω), where
û = 0 a.e. in Ω\Ω0 and û|Ω0 is a positive weak solution (with L∞ norm 1) of

−∆u = λχ{u<1}u, u|∂Ω0 = 0.(2.14)

Proof. From the equation for vn we obtain

µn > λΩ
1 − d‖un‖∞,(2.15)

for otherwise,

−∆vn ≤ λΩ
1 vn − v2

n,

which gives ∫
Ω

|∇vn|2dx < λΩ
1

∫
Ω

v2
ndx,

contradicting the variational characterization of λΩ
1 .

From (2.15) we see immediately that ‖un‖∞ → ∞ as n → ∞. We can now use
(2.4) with M = λ and argue as in the proof of Theorem 2.1 to conclude that subject to
a subsequence, ûn = un/‖un‖∞ → û weakly in H1

0 (Ω) and strongly in Lp(Ω) for any
p ≥ 1. Moreover, û = 0 a.e. in Ω+ and û has L∞ norm 1 over Ω. Furthermore, using
standard interior estimates in Ω+ and boundary estimates near ∂Ω for the equation
satisfied by ûn, one easily sees that ûn → 0 in C2(ω) for any compact subset ω of
Ω \ Ω0. We show next that

lim
n→∞µn/‖un‖∞ = −d.(2.16)

Since

−∆vn ≤ (µn + d‖un‖∞)vn − v2
n,
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an application of Lemma A.1 shows that

vn ≤ µn + d‖un‖∞.

It follows that

0 ≤ vn/‖un‖∞ ≤ d+
µn
‖un‖∞ ≤ d.(2.17)

By passing to a subsequence, we may assume that v̂n := vn/‖un‖∞ converges weakly
in L2(Ω) to v̂. The arguments in the proof of Theorem 2.1 which lead to (2.5) work
in the same way for our present situation, and hence we still have (2.5), i.e.,

ûv̂ = 0 a.e. in Ω0.

The identity (2.6) also remains valid and hence∫
Ω

[|∇φ|2 + (vn − dun)φ
2]dx ≥ µn

∫
Ω

φ2dx ∀φ ∈ H1
0 (Ω).

Dividing the above inequality by ‖un‖∞ we obtain, after a simple rearrangement of
terms, ∫

Ω

(
µn
‖un‖∞ + dûn − v̂n

)
φ2dx ≤

∫
Ω

|∇φ|2dx/‖un‖∞.

Letting n→∞ and denoting α = limn→∞µn/‖un‖∞, we obtain∫
Ω

(α+ dû− v̂)φ2dx ≤ 0.

It follows that

α ≤ −dû+ v̂ a.e. in Ω.

Since û = 0 a.e. in Ω+ and ûv̂ = 0 a.e. in Ω0 and ‖û‖∞ = 1, we deduce

α ≤ −d.
Combining this with (2.15) we find that (2.16) is proved. This finishes the proof of
the conclusions about un in (i) and (ii). Note that (2.16) holding for a subsequence
of an arbitrary subsequence implies that it holds for the entire original sequence.

The second part of (i) follows directly from the first conclusion in (i) and (2.17).
We now prove the conclusion about vn in (ii). By using [DH, Lemma 2.1] we see that
un ≤ Uλ, where Uλ is the minimal positive solution of (2.2). For small δ > 0, define

Dδ = {x ∈ Ω : d(x,Ω0) > δ}.
We find that

un(x) ≤ sup
x∈Dδ

Uλ(x) = Mδ <∞ ∀x ∈ Dδ.

It follows that

−∆vn ≤ (µn + cMδ)vn − v2
n, x ∈ Dδ.(2.18)
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Denote an = |µn + cMδ| and define

Wn =
β

an
d(x)−4,(2.19)

where d(x) is a smooth function on Dδ satisfying d(x) = 0 on ∂Dδ ∩Ω and is positive
elsewhere (this is possible if δ is small enough due to the smoothness of ∂Ω0), and
β > 0 is a constant to be determined later. We calculate

∆Wn + (µn + cMδ)Wn −W 2
n

=
β

an

(
20d(x)−6|∇d(x)|2 − 4d(x)−5∆d(x)

)
− βd(x)−4 − β2

a2
n

d(x)−8

=
βd(x)−6

an

(
20|∇d(x)|2 − 4d(x)∆d(x)− and(x)

2 − β

an
d(x)−2

)
≤ βd(x)−6

an

(
20|∇d(x)|2 − 4d(x)∆d(x)− 2

√
β
)
< 0 ∀x ∈ Dδ

if β is chosen large enough.
Thus for such choice of β, for all n ≥ 1,

−∆Wn ≥ (µn + cMδ)Wn −W 2
n ∀x ∈ Dδ.

As clearly Wn > vn on ∂Dδ, we can use (2.18) and Lemma A.1 to conclude that
vn ≤ Wn on Dδ. Since clearly Wn → 0 uniformly on D2δ, the same is true for vn.
This proves the second part of (ii).

We now consider (iii). If limn→∞‖un‖L1(Ω)/|µn| = 0, then, by passing to a subse-
quence, we may assume ‖un‖L1(Ω)/|µn| → 0. On the other hand, our previous proof of
(i) shows that by passing to a further subsequence, un/|µn| = ûn(‖un‖∞/|µn|)→ û/d
in Lp(Ω) for all p ≥ 1, and ‖û‖∞ = 1. In particular, ‖un‖L1(Ω)/|µn| → ‖û‖L1(Ω)/d >
0. This contradiction shows that we must have limn→∞‖un‖L1(Ω)/|µn| > 0.

If limn→∞‖vn‖L1(Ω) = ∞, then by passing to a subsequence, we may assume
that ‖vn‖L1(Ω) → ∞. As before, by passing to a further subsequence, we have ûn =
un/‖un‖∞ → û in Lp(Ω) for all p ≥ 1, and ‖û‖∞ = 1. Let φ be an arbitrary
nonnegative function in C2(Ω) with compact support in Ω. We multiply the equation
for un by φ/‖un‖∞ and integrate over Ω to obtain∫

Ω

ûn(−∆φ)dx =

∫
Ω

[λûn − b(x)unûn − cûnvn]φdx.

It follows that∫
Ω

ûnvnφdx ≤ (1/c)

∫
Ω

[λûnφ+ ûn(∆φ)]dx→ (1/c)

∫
Ω

(λûφ+ û∆φ)dx.

Therefore, we can find a positive constant C1 = C1(φ) such that∫
Ω

ûnvnφdx ≤ C1 ∀n ≥ 1.(2.20)

Multiplying the equation for vn by φ/|µn| and integrating over Ω, we obtain∫
Ω

vn
|µn| (−∆φ)dx = −

∫
Ω

vnφdx+
d‖un‖∞
|µn|

∫
Ω

ûnvnφdx−
∫

Ω

vn
|µn|vnφdx.



304 E. N. DANCER AND YIHONG DU

Using this identity, (i), and (2.20), we easily deduce

limn→∞
∫

Ω

vnφdx ≤ limn→∞
∫

Ω

ûnvnφdx ≤ C1.

Thus, there exists some positive constant C2 = C2(φ) such that∫
Ω

vnφdx ≤ C2 ∀n ≥ 1.

By (ii) we know that for any given small closed neighborhood N of ∂Ω in Ω, vn → 0
uniformly on N . If we choose a particular φ in the above discussion such that φ ≡ 1
on Ω \N , then we have ∫

Ω\N
vndx ≤

∫
Ω

vnφdx ≤ C2.

Therefore,

‖vn‖L1(Ω) =

∫
Ω

vndx =

∫
N

vndx+

∫
Ω\N

vndx ≤ C3 ∀n ≥ 1

for some positive constant C3. This contradicts our assumption that ‖vn‖L1(Ω) →∞.

Hence we must have limn→∞‖vn‖L1(Ω) <∞.

Suppose now λ > λΩ0
1 . To see that limn→∞‖vn‖L1(Ω) > 0, we argue indirectly.

Suppose this is not true. Then by passing to a subsequence, we may assume that
vn → 0 in L1(Ω). Note that on Ω0, it holds that

−∆ûn = (λ− cvn)ûn.

We have already proved that subject to a subsequence, ûn → û weakly in H1
0 (Ω),

strongly in Lp(Ω) for all p ≥ 1, and û ≡ 0 on Ω+, and that û is positive on a set of
positive measure in Ω0. Moreover, for any φ ∈ C2

c (Ω0),∣∣∣∣∫
Ω

vnûnφdx

∣∣∣∣ ≤ ‖φ‖∞ ∫
Ω

vndx→ 0.

Thus it is easily seen that û|Ω0 is a weak solution to

−∆u = λu, u|∂Ω0 = 0.

As û|Ω0 is nonnegative and not identically zero, we must have λ = λΩ0
1 , contradicting

our assumption. This finishes the proof for all conclusions in (iii).
It remains to prove (iv). Since by assumption {vn} is bounded in Lq(Ω), there

exists v ∈ Lq(Ω) such that, subject to a subsequence, vn → v weakly in Lq(Ω). As
before, by passing to a further subsequence, we may assume that ûn = un/‖un‖∞ → û
weakly in H1

0 (Ω) and strongly in Lp(Ω) for all p ≥ 1, and, moreover, û = 0 a.e. in
Ω \ Ω0 and ‖û‖∞ = 1. Let φ be an arbitrary nonnegative function in C2(Ω) with
compact support in Ω. Multiply the equation for vn by φ/|µn|, and integrating over
Ω, we deduce∫

Ω

vn
|µn| (−∆φ)dx = −

∫
Ω

vnφdx+
d‖un‖∞
|µn|

∫
Ω

ûnvnφdx−
∫

Ω

vn
|µn|vnφdx.
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Making use of (i) and letting n→∞, we obtain

0 = −
∫

Ω

vφdx+

∫
Ω

ûvφdx = −
∫

Ω

(1− û)vφdx.

As φ is arbitrary and 1− û ≥ 0 and v ≥ 0, the above identity implies that (1− û)v = 0
a.e. in Ω. Hence v = 0 a.e. in the set Ω1 := {x ∈ Ω : û(x) < 1}. Since û = 0 a.e. in
Ω \ Ω0, we find that Ω \ Ω0 ⊂ Ω1.

Multiplying the equation for un by an arbitrary ψ ∈ C2(Ω0) with compact support
in Ω0 and integrating over Ω0, we deduce∫

Ω0

∇un · ∇ψdx =

∫
Ω0

(λun − cunvn)ψdx.

Dividing this identity by ‖un‖∞ and letting n→∞, we obtain∫
Ω0

∇û · ∇ψdx =

∫
Ω0

(λ− cv)ûψdx.

This implies that û|Ω0 is a positive weak solution of the problem

−∆u = (λ− cv)u, u|∂Ω0
= 0.

Since (λ − cv)û ∈ Lq(Ω), standard elliptic regularity theory implies that û|Ω0 ∈
W 2,q(Ω0) and ∆û = 0 a.e. in the set {x ∈ Ω0 : û(x) = 1}. Hence v(x) = λ/c a.e.
in the set {x ∈ Ω0 : û(x) = 1}, which agrees with {û = 1} := {x ∈ Ω : û(x) = 1},
because û = 0 a.e. in Ω \ Ω0. Thus,

v = (λ/c)χ{û=1}, 1− cv = λ(1− χ{û=1}) = λχ{û<1},

and û|Ω0 is a positive weak solution to the problem

−∆u = λχ{u<1}u, u|∂Ω0
= 0.

This proves (iv) and hence finishes the proof of Theorem 2.7.
Remark 2.1.
(i) As

∫
Ω
udx and

∫
Ω
vdx represent the total population of u and v, respectively,

the conclusions in parts (i) and (iii) of Theorem 2.7 imply that, as µ→ −∞,
the total population of u blows up at the rate of |µ|, while the total population
of v stays bounded. Moreover, when λ > λΩ0

1 , the total population of v is
bounded from below by a positive constant independent of µ.

(ii) Note that when λ > λΩ0
1 , it is easily seen from (2.14) that |{û = 1}| > 0 in

part (iv) of Theorem 2.7. Hence û has a “flat core.” Conversely, if λ = λΩ0
1 ,

then the flat core has measure zero and û is the first normalized eigenfunction
on Ω0.

(iii) If {‖vn‖Lq} is bounded for some q > 1, then from (2.14) one sees that û ∈
C1(Ω0). It is easy to show that vn → 0 uniformly on any compact subset of
the set {û < 1}. However, we were unable to determine whether {‖vn‖Lq} is
always bounded for some q > 1.

(iv) Without the assumption that {‖vn‖Lq} is bounded for some q > 1, we can
still show that un/‖un‖∞ has a subsequence converging to some û weakly in
H1

0 (Ω) and that û is upper semicontinuous (and hence {û = 1} is closed)
by making use of [LL, Theorem 9.3]. Moreover, û = 0 a.e. in Ω \ Ω0, and
on Ω0, û solves −∆u = λχ{u<1}u − m, where m is a nonnegative measure
with support in the boundary of {û = 1}; subject to a subsequence, vn weak ∗
converges in C(Ω)∗ to (λ/c)χ{û=1} +m.
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(v) In a forthcoming paper [DD], we will show that m = 0 always, so û|Ω0
solves

(2.14). Moreover, we will show that (2.14) has a unique positive solution when
λ ≥ λΩ0

1 , and it has no positive solution otherwise. This implies that in part
(iv) above, the entire sequence un/‖un‖∞ converges to û weakly in H1

0 (Ω). A
similar comment applies to vn.

3. Degeneracy in the predator equation. In this section, we study (1.3).
Analogous to the case of (1.2), the semitrivial solutions are easily understood. Now
we have a unique semitrivial solution of the form (0, v) for every µ ∈ (λΩ

1 , λ
Ω0
1 ), namely,

(0, vµ), where vµ is the unique positive solution of

−∆v = µv − e(x)v2, v|∂Ω = 0;(3.1)

and for other values of µ, there is no semitrivial solution of this form.
When λ > λΩ

1 , (θλ, 0) is the unique semitrivial solution of the form (u, 0), and
there is no such semitrivial solution for other λ values.

Our later discussion will require an analysis of λΩ
1 (vµ) as a function of µ.

Let us recall the well-known facts that µ → vµ is a continuous and strictly in-

creasing function from (λΩ
1 , λ

Ω0
1 ) to C(Ω), vµ → 0 as µ → λΩ

1 , and as µ → λΩ0
1 , by

[DH], vµ →∞ uniformly on Ω0 and vµ → V
λ

Ω0
1

locally uniformly on Ω \Ω0, where Vλ

denotes the minimal positive solution of (2.2) with b(x) replaced by e(x).
It follows that

µ→ Λ(µ) := λΩ
1 (cvµ)

is a strictly increasing continuous function with Λ(λΩ
1 − 0) = λΩ

1 .
By [Du2, Lemma 3.1] (see Lemma A.2 in the appendix of this paper), we find that

lim
µ→λΩ0

1

Λ(µ) = λ∗ := λ
Ω+

1 (cV
λ

Ω0
1
).(3.2)

It follows that

λΩ
1 < Λ(µ) < λ∗ ∀µ ∈ (λΩ

1 , λ
Ω0
1 ).(3.3)

We will also need the following a priori estimates.
Theorem 3.1. Given any positive number ε, we can find a constant C, depending

only on ε, c, d, e, and Ω, such that if (u, v) is a positive solution of (1.3) with λ, µ
satisfying

|λ|+ |µ| ≤ ε−1, |µ− λΩ0
1 | ≥ ε,

then

‖u‖∞ + ‖v‖∞ ≤ C.

Proof. Suppose the conclusion is false. Then we can find some ε > 0 and λn, µn
satisfying

|λn|+ |µn| ≤ ε−1, |µn − λΩ0
1 | ≥ ε(3.4)

such that (1.3) with λ = λn and µ = µn has a positive solution (un, vn) which satisfies

‖un‖∞ + ‖vn‖∞ →∞ as n→∞.
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From the equation for un we find

−∆un ≤ ε−1un − u2
n.

Comparing un with v ≡ ε−1 and using Lemma A.1 results in the following:

un ≤ ε−1 ∀n ≥ 1 ∀x ∈ Ω.(3.5)

Therefore we necessarily have ‖vn‖∞ → ∞. Let v̂n = vn/‖vn‖∞. We find, by using
the equation for vn, (3.4), and (3.5), that

−∆v̂n ≤ (1 + d)ε−1v̂n, v̂n|∂Ω = 0.

That is, v̂n satisfies (2.4) with M = (1+ d)ε−1. Hence we can repeat the argument in
the proof of Theorem 2.1 to conclude that, subject to a subsequence, v̂n → v̂ weakly
in H1

0 (Ω) and strongly in Lp(Ω) for any p ≥ 1. Moreover, v̂ = 0 a.e. in Ω+ and v̂ > 0
in a set of positive measure in Ω0. To show the fact that v̂ = 0 a.e. in Ω+, we need
the following inequality:

−∆vn ≤ (1 + d)ε−1vn − e(x)v2
n.

Recall that by the smoothness of ∂Ω0, our above conclusions imply that w0 := v̂|Ω0 ∈
H1

0 (Ω0).
By (3.4) and the equation for un, we find that un satisfies an inequality of the

form (2.4), namely,

−∆un ≤ ε−1un.

Hence, due to (3.5), subject to a subsequence, un → u∗ weakly in H1
0 (Ω) and strongly

in Lp(Ω) for any p ≥ 1. It is unclear, however, whether u∗ = 0 a.e. in Ω.
Let φ ∈ C∞c (Ω0) and multiply the equation for vn by φ/‖vn‖∞ and integrate over

Ω0, producing ∫
Ω0

∇v̂n · ∇φdx = µn

∫
Ω0

v̂nφdx+ d

∫
Ω0

unv̂nφdx.

Without loss of generality, we may assume that µn → µ∗ as n → ∞. We now let
n→∞ in the above identity and deduce∫

Ω0

∇v̂ · ∇φdx =

∫
Ω0

(µ∗ + du∗)v̂φdx.

This implies that w0 := v̂|Ω0 ∈ H1
0 (Ω) is a weak solution to

−∆w = (µ∗ + du∗)w, w|∂Ω0
= 0.(3.6)

Since w0 is nonnegative and is positive on a set of positive measure, and since u∗ ∈
L∞(Ω), it follows from the Harnack inequality that w0 > 0 in Ω0.

Let ψ ∈ C∞c (Ω) and multiply the equation for un by ψ and integrate over Ω. We
obtain ∫

Ω

∇un · ∇ψdx =

∫
Ω

(λnun − u2
n)ψdx− c‖vn‖∞

∫
Ω

unv̂nψdx.
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It follows easily that ∫
Ω

u∗v̂ψdx = 0.

Since v̂|Ω0 = w0 > 0 in Ω0, we necessarily have u
∗ = 0 a.e. in Ω0. Thus (3.6) reduces to

−∆w0 = µ∗w0, w0|∂Ω0 = 0.

This implies that µ∗ = λΩ0
1 , contradicting (3.4).

The proof is complete.
We are now ready to discuss the set of positive solutions of (1.3). Again we will

fix λ and regard µ as the main bifurcation parameter. As before, it is easily seen
that when (1.3) has a positive solution, then necessarily, λ > λΩ

1 . It turns out that

the number λ∗ = λ
Ω+

1 (cV
λ

Ω0
1
) is critical in characterizing the behavior of (1.3). So we

divide our following discussion into two cases:

(i) λΩ
1 < λ < λ∗, (ii) λ ≥ λ∗.

In case (i), due to the properties of the function Λ(µ), we can find a unique
µ0 ∈ (λΩ

1 , λ
Ω0
1 ) such that

Λ(µ0) = λ.

A local bifurcation analysis then shows that a smooth curve of positive solutions of
(1.3), Γ′ = {(µ, u, v)}, bifurcates from the semitrivial solution curve

Γv := {(µ, 0, vµ) : λΩ
1 < µ < λΩ0

1 }
at exactly (µ0, 0, vµ0). As before, a global bifurcation consideration, together with an
application of the maximum principle, shows that Γ′ belongs to a global branch of
positive solutions of (1.3), to be denoted by Γ henceforth, which is either unbounded
or joins the other semitrivial solution branch

Γu := {(µ, θλ, 0) : µ ∈ (−∞,∞)}
at exactly the point (λΩ

1 (−dθλ), θλ, 0) ∈ Γu. Moreover, a local bifurcation analysis
shows that when the latter alternative occurs, then Γ consists of a smooth curve near
(λΩ

1 (−dθλ), θλ, 0).
To determine which alternative occurs for Γ, let us now consider the possible

range of µ where (1.3) can have a positive solution. If (u, v) is a positive solution of
(1.3), then by using [Du2, Theorem 2.2] for the equation satisfied by v, we deduce

λΩ
1 (−du) < µ < λΩ0

1 (−du) < λΩ0
1 .

Since u ≤ θλ, we deduce λΩ
1 (−du) ≥ λΩ

1 (−dθλ). Thus a necessary condition for (1.3)
to possess a positive solution is

λΩ
1 (−dθλ) < µ < λΩ0

1 .(3.7)

From the equation for u we obtain

λ = λΩ
1 (u+ cv).
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An application of Lemma A.1 for the equation of v gives v ≥ vµ, where we define
vµ = 0 for µ ≤ λΩ

1 . Therefore,

λ = λΩ
1 (u+ cv) > λΩ

1 (cvµ).

This implies µ < µ0, and hence the necessary condition (3.7) can be improved to

λΩ
1 (−dθλ) < µ < µ0.(3.8)

We can now apply Theorem 3.1 to conclude that Γ must be bounded. Hence, we have
the following result.

Theorem 3.2. When λΩ
1 < λ < λ∗, (1.3) has a positive solution if and only

if (3.8) holds. Moreover, there is a bounded connected set of positive solutions of
(1.3), Γ = {(µ, u, v)}, which joins the semitrivial solution branches Γu and Γv at
(λΩ

1 (−dθλ), θλ, 0) and (µ0, 0, vµ0), respectively.
The above result is clearly very similar to that for the classical case e(x) ≡ 1

obtained in [BB1, BB2] and [Da1, Da2]. We show in the following that for the case
λ ≥ λ∗, very different behavior arises for (1.3).

Suppose from now on that λ ≥ λ∗. A local and global bifurcation analysis
much as before shows that from the semitrivial solution curve Γu, a global bifur-
cation branch Γ = {(µ, u, v)} of positive solutions of (1.3) bifurcates from the point
(λΩ

1 (−dθλ), θλ, 0), and it is either unbounded or joins the semitrivial solution curve
Γv. In the latter case, we can find a sequence (µn, un, vn) ∈ Γ such that (µn, un, vn)→
(µ, 0, vµ) ∈ Γv in the space R × C(Ω) × C(Ω). Then, from the equation for un and
(3.3), we obtain

λ = λΩ
1 (un + cvn)→ λΩ

1 (cvµ) = Λ(µ) < λ∗.

This contradicts our assumption that λ ≥ λ∗. Therefore Γ must be unbounded.
One easily checks that the analysis leading to (3.7) is still valid for our present

situation. Hence, (3.7) is still a necessary condition and by Theorem 3.1, Γ contains
points (µn, un, vn) such that µn → λΩ0

1 . Summarizing, we obtain the following result.
Theorem 3.3. When λ ≥ λ∗, (1.3) has a positive solution if and only if (3.7)

holds. Moreover, there is an unbounded connected set of positive solutions of (1.3),
Γ = {(µ, u, v)}, which joins the semitrivial solution curve Γu at (λΩ

1 (−dθλ), θλ, 0) and
remains bounded until µ approaches λΩ0

1 , where it blows up. Γ does not join the other
semitrivial solution curve Γv.

To analyze the blow-up behavior of the positive solutions of (1.3) as µ→ λΩ0
1 , we

make the following further assumption on e(x):

lim
d(x,Ω0)→0

e(x)

d(x,Ω0)α
= c for some positive constants α and c.(3.9)

By [DH, Theorem 2.8], we know that (3.9) guarantees that problem (2.2) with b(x)
replaced by e(x) has a unique positive solution Vλ.

Suppose µn is an increasing sequence of positive numbers converging to λΩ0
1 as

n→∞, and (un, vn) is an arbitrary positive solution of (1.3) with µ = µn. We have
the following result which describes the asymptotic behavior of (un, vn).

Theorem 3.4. Suppose (3.9) holds and λ ≥ λ∗. Then the following are true.
(i) limn→∞ un = 0 uniformly on any compact subset of Ω0.
(ii) limn→∞ vn =∞ uniformly on Ω0.
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(iii) If λ = λ∗, then limn→∞(un, vn)|Ω+
= (0, V

λ
Ω0
1
) in the space C(Ω+)×C1

loc(Ω+∪
∂Ω), where C1

loc(Ω+∪∂Ω) = ∩DC1(D) with D running through all the closed
subsets of Ω+ ∪ ∂Ω.

(iv) If λ > λ∗, then, subject to a subsequence, limn→∞(un, vn)|Ω+
= (u∗, v∗) in

the space C1
loc(Ω+∪∂Ω)×C1

loc(Ω+∪∂Ω), where (u∗, v∗) is a positive solution
of the boundary blow-up problem

−∆u = λu− u2 − cuv,

−∆v = λΩ0
1 v − e(x)v2 + duv,

x ∈ Ω+,

u|∂Ω+ = 0, v|∂Ω = 0, v|∂Ω0 =∞.
(3.10)

Proof. Denote wn = vµn . Then it follows from

−∆vn ≥ µnvn − e(x)v2
n, vn|∂Ω = 0,

and [DH, Lemma 2.1] that wn ≤ vn. By [DH, Theorem 3.6], wn → ∞ uniformly on
Ω0. Hence so is vn. This proves (ii).

Denote ηn = minx∈Ω0
vn(x). The above proved conclusion (ii) implies that ηn →

∞ as n→∞. From the equation for un we find

−∆un ≤ (λ− ηn)un − u2
n ∀x ∈ Ω0.(3.11)

Let Wn be defined by (2.19) but with an = |λ − ηn| and Dδ replaced by Ω0. Then
the same calculation as in the proof of Theorem 2.7 shows

−∆Wn ≥ (λ− ηn)Wn −W 2
n ∀x ∈ Ω0,(3.12)

provided that β > 0 is chosen large enough.
By (3.11), (3.12), and Lemma A.1, we deduce that un ≤Wn and (i) follows.
Since un ≤ θλ, much as before, it follows from

−∆un ≤ λun, un|∂Ω = 0

that, subject to a subsequence, un → u∗ weakly in H1
0 (Ω) and strongly in Lp(Ω) for

any p ≥ 1. By conclusion (i) we see that u∗ = 0 a.e. in Ω0. It follows from the
smoothness assumption on ∂Ω0 that

u∗|Ω+ ∈ H1
0 (Ω+).(3.13)

To prove (iii), we assume now that λ = λ∗. We first show that u∗ = 0 a.e. in
Ω. Otherwise, due to (i), u∗ > 0 on a set of positive measure in Ω0. Recalling that
vn ≥ wn, we deduce from the equation of un that

λ = λΩ
1 (un + cvn) ≥ λΩ

1 (un + cwn).

Using the properties of wn and applying Lemma A.2 in the appendix, we deduce

λΩ
1 (un + cwn)→ λ

Ω+

1 (u∗ + cV
λ

Ω0
1
) > λ∗.

This implies that λ > λ∗, contradicting our assumption that λ = λ∗. This proves
u∗ = 0 a.e. in Ω. Hence un → 0 in Lp(Ω) for any p ≥ 1.

We claim further that un → 0 in L∞(Ω). Indeed, from −∆un ≤ un we deduce

0 ≤ un ≤ λ(−∆)−1un.
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By using the regularity of the operator (−∆)−1 repeatedly, we easily see from the
above inequality that un → 0 in Lp(Ω) for any p ≥ 1 implies that un → 0 in L∞(Ω).

Next we show that vn → V
λ

Ω0
1

in C1
loc(Ω+ ∪ ∂Ω). To this end, we consider a

sequence of enlarging smooth domains Ωn given by

Ωn = {x ∈ Ω0 : d(x, ∂Ω0) > δn},

where δn is a decreasing sequence of positive numbers converging to 0. We assume
that δ1 is small enough such that for each n ≥ 1, Ωn is not empty and ∂Ωn is as
smooth as ∂Ω0.

Let

en(x) = e(x) + d(x,Ωn), x ∈ Ω.

Clearly en(x) has the following properties:
(a) en → e in L∞(Ω),
(b) en(x) > 0 on Ω \ Ωn,
(c) en(x) = 0 on Ωn, and
(d) en(x) ≥ en+1(x) for all x ∈ Ω.
For fixed ε > 0, by [DH, Theorem 2.8], for each n there is a unique positive

solution Zn to the problem

−∆Z = (µn + ε)Z − en(x)Z
2 in Ω \ Ωn, Z|∂Ω = 0, Z|∂Ωn =∞.

By [DH, Lemma 2.1], we find that on Ω+, Zn increases with n, and hence Z∗(x) =
limn→∞ Zn(x) is well defined over Ω+. A simple regularity consideration reveals that
Z∗ is a solution to

−∆Z = (λΩ0
1 + ε)Z − e(x)Z2, Z|∂Ω = 0, Z|∂Ω0 =∞.

As V
λ

Ω0
1 +ε

is the unique positive solution to this problem, we must have Z∗ = V
λ

Ω0
1 +ε

,

that is,

lim
n→∞Zn(x) = V

λ
Ω0
1 +ε

(x) ∀x ∈ Ω+.(3.14)

Since ‖un‖∞ → 0 as n → ∞, for all large n, we obtain from the equation for vn
that

−∆vn = (µn + dun)vn − e(x)v2
n ≤ (µn + ε)vn − en(x)v

2
n.

Apply [DH, Lemma 2.1], we find vn ≤ Zn on Ω+ ⊂ Ω \ Ωn for all large n. Using
(3.14), we deduce

limn→∞vn(x) ≤ V
λ

Ω0
1 +ε

(x) ∀x ∈ Ω+.(3.15)

The uniqueness of Vλ implies that Vλ varies continuously with respect to λ in
the norm C1

loc(Ω+ ∪ ∂Ω), which follows from a simple regularity and compactness
consideration. As (3.15) holds for all small ε > 0, letting ε→ 0, we deduce

limn→∞vn(x) ≤ V
λ

Ω0
1
(x) ∀x ∈ Ω+.
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On the other hand, we already know that vn(x) ≥ wn(x) and wn(x) → V
λ

Ω0
1
(x),

so it follows that

limn→∞vn(x) ≥ V
λ

Ω0
1
(x) ∀x ∈ Ω+.

Therefore we must have

lim
n→∞ vn(x) = V

λ
Ω0
1
(x) ∀x ∈ Ω+.

By a simple regularity consideration, we find that vn → V
λ

Ω0
1

in C1
loc(Ω+ ∪ ∂Ω). This

finishes the proof of (iii).
Finally we consider the case λ > λ∗ and prove (iv). Our first observation is that

u∗ > 0 on a set of positive measure in Ω0. Otherwise, we can follow the argument
in the proof of (iii) above to conclude that un → 0 in L∞(Ω) and vn → V

λ
Ω0
1

in

C1
loc(Ω+ ∪ ∂Ω). Hence, by Lemma A.2,

λ = λΩ
1 (un + cvn)→ λ

Ω+

1 (cV
λ

Ω0
1
) = λ∗.

This contradicts our assumption that λ > λ∗.
If η > λΩ0

1 + d‖θλ‖∞, then
−∆vn = µn − e(x)v2

n + dunvn ≤ ηvn − e(x)v2
n.

Therefore we can use [DH, Lemma 2.1] to conclude that vn ≤ Vη on Ω+, where we
recall that Vη is the unique positive solution of (2.2) with λ = η and b(x) = e(x).
This implies that {vn(x)} is uniformly bounded on any compact subset of Ω+ ∪ ∂Ω.
Define Dn = {x ∈ Ω : d(x,Ω0) > δn}, where δn is a decreasing sequence of positive
numbers converging to 0; we easily see, using interior and boundary estimates on
DK+1, that {vn|Dk

} is compact in C1(Dk). Hence, by a standard diagonal process,
{vn|Ω+

} has a subsequence converging to some v∗ in C1
loc(Ω+ ∪ ∂Ω). Clearly v∗|∂Ω =

0. Since wn(x) ≤ vn(x) and wn(x) → V
λ

Ω0
1
(x) on Ω+, we deduce v∗ ≥ V

λ
Ω0
1

on

Ω+. Thus v∗ > 0 on Ω+ and v∗|∂Ω0
= ∞. By passing to the limit along a proper

subsequence in the equations for un and vn, it is now easily seen that (u∗, v∗)|Ω+

satisfies (3.10). By standard interior and boundary regularity, we find that u∗|Ω+

belongs to C1
loc(Ω+ ∪ ∂Ω), and by applying the Harnack inequality on each compact

subset of Ω+ ∪ ∂Ω, we find that u∗ > 0 in Ω+. This proves (iv) and hence completes
the proof of Theorem 3.4.

Theorem 3.4 implies that when the growth rate of the predator approaches a
certain critical positive value (i.e., λΩ0

1 ), then the predator population blows up in
the region Ω0 and the prey population vanishes in Ω0 due to the strong presence of
the predator in that region. Note, however, that the prey population survives in Ω+.
A positive growth rate of the predator implies that it has other food supplies apart
from the prey u, which seems reasonable in many practical situations.

Remark 3.1.
(i) As in the classical case, we suspect that for (1.2) and (1.3), there is at most

one positive solution, which is the global attractor of the positive solutions of
the corresponding parabolic system.

(ii) Our results are valid if Ω is a finite interval. In this case, Ω+ is no longer
connected; instead, it becomes the union of two disconnected intervals. Hence
(2.2) and (3.10) split into problems on these two subintervals. The conclusions
remain valid on each subinterval.
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(iii) A direct adaptation of the argument in [LP] shows that in the case Ω is a
finite interval, (1.2) and (1.3) have at most one positive solution. It follows
that the connected set of positive solutions, Γ, in Theorems 2.4, 2.6, 3.2, and
3.3 is a smooth curve and contains all the positive solutions.

(iv) All our existence results can be obtained by the fixed point index approach
developed in Dancer [Da1, Da2].

Appendix. For the convenience of the reader, we state precisely [DM, Lemma 2.1]
and [Du2, Lemma 3.1] here.

Lemma A.1 (see [DM, Lemma 2.1]). Suppose that Ω is a bounded domain in
RN , α(x) and β(x) are continuous functions on Ω with ‖α‖L∞(Ω) < ∞, and β(x) is
nonnegative and not identically zero. Let u1, u2 ∈ C2(Ω) be positive in Ω and satisfy

Lu1 + α(x)u1 − β(x)g(u1) ≤ 0 ≤ Lu2 + α(x)u2 − β(x)g(u2), x ∈ Ω,

and limx→∂Ω(u2−u1) ≤ 0, where Lu = Σij [aij(x)uxi ]xj is a uniformly elliptic operator
with smooth coefficients aij, and g(u) is continuous and such that g(u)/u is strictly
increasing for u in the range infΩ{u1, u2} < u < supΩ ‖u1, u2}. Then u2 ≤ u1 in Ω.

Note that the positive functions u1 and u2 may not be defined on ∂Ω. Therefore
this comparison result can be applied to solutions with boundary blow-ups. The
existence of such positive functions u1 and u2 has hidden restrictions on α(x) and β(x).

Let λω1 (φ) be as defined at the beginning of section 2, and let Ω, Ω0, and Ω+ be
the same as used in this paper. Then the following result holds.

Lemma A.2 (see [Du2, Lemma 3.1]). Suppose that φn ∈ C(Ω) and satisfies

(i) φn ≥ −M for some positive constant M , φn →∞ uniformly on Ω0 as n→∞,
and

(ii) φn → φ in Lp(Ω′) for all p > 1 and Ω′ ⊂⊂ Ω+, where φ ∈ C(Ω+ ∪ ∂Ω).

Then λΩ
1 (φn)→ λ

Ω+

1 (φ).
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Abstract. In this paper the transient Landau–Lifschitz equations coupled with Maxwell’s equa-
tions describing ferromagnetic media without exchange interaction are studied. The main goals are
existence of solutions and a quasi-stationary limit.
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1. Introduction. The paper is concerned with a nonlinear system consisting of
Maxwell’s equations

ε∂tE = curl H− σE− J, µ∂tH = −curl E− µ∂tM̃,(1.1)

on R
+ × R

3 coupled with the equation

∂tM = F (x,M) ·H + a(x,M)(1.2)

on R
+ ×G. Here G ⊂ R

3 is an open set. In (1.1) the function M̃ is the extension of
M on R

+×R
3 defined by zero on the set R

+× (R3 \G). This system, which describes
the propagation of electromagnetic waves in a ferromagnetic medium occupying the
set G, is supplemented by the initial conditions

E(0, x) = E0(x), H(0, x) = H0(x)(1.3)

and

M(0, x) = M0(x) on G.(1.4)

The unknown functions are the electric and magnetic field E,H, which depend on
the time t ≥ 0 and the space-variable x ∈ R

3, and the magnetization M defined on
R

+ ×G; see [2], [13], [20].
Furthermore, ε, µ ∈ L∞(R3) denote the dielectric and magnetic permittivities,

respectively, which are assumed to be bounded from below by a strictly positive
constant. The electrical conductivity is denoted by σ for which the set {σ > 0}
does not necessarily coincide with G. An external current J is also included. The
assumptions on the data E0,H0, and J are

J ∈ L1((0,∞), L2(R3)), E0,H0 ∈ L2(R3), M0 ∈ L2(G) ∩ L∞(G).(1.5)
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Furthermore, the initial state for the magnetic induction B0
def
= µ[H0+M̃0] is assumed

to be divergence-free, i.e.,

div (µ[H0 + M̃0]) = 0 on R
3.(1.6)

It is assumed that the nonlinear functions a : G× R
3 → R

3 and F : G× R
3 → R

3×3

satisfy

ma(x,m) ≤ 0 and m(F (x,m)h) = 0 for all x ∈ G,m ∈ R
3, and h ∈ R

3.(1.7)

Furthermore, they are assumed to be locally Lipschitz-continuous with respect to M;
i.e., for A ∈ (0,∞) there exists LA ∈ (0,∞) such that

|a(x, y)− a(x, z)|+ |F (x, y)− F (x, z)| ≤ LA|y − z|(1.8)

for all x ∈ G, y ∈ R
3, and z ∈ R

3 with |y|+ |z| ≤ A. Finally,

F (·, 0) ∈ L∞(G) and a(·, 0) ∈ L2(G) ∩ L∞(G).(1.9)

Here a(x,M) takes into account a possible anisotropy of the medium,
whereas F (x,M)H describes the interaction between the magnetic dipoles and the
magnetic field H. The dominant term is in most cases the torque M ∧H, which is
perpendicular to M. This motivates assumption (1.7). A physically relevant example
for F is

F (x,m)h = −γm ∧ h− α|m|−1m ∧ (m ∧ h)(1.10)

including a damping term αm ∧ (m ∧ h) with α ≥ 0.
The main topic of this paper is a proof of existence of solutions (E,H,M) of

problem (1.1)–(1.4) and a quasi-stationary limit.
In the case ε = µ = 1 on R

3, the existence of solutions has been proved in [11],
where the analysis is based on a compactness property of the commutator between PH
and smooth functions and also on a compensated compactness argument applied to
the divergence-free part of PH(Hn −H) for a suitable sequence {(En,Hn,Mn)}n∈N

of approximate solutions. Here PH denotes the orthogonal projector on the space
of all vector fields h ∈ L2(R3) with div (µh) = 0. In the case ε = µ = 1 on R

3,
Maxwell’s equations for the part PHH(·) can be reduced to an inhomogeneous scalar
wave equation and microlocal defect measures, and compensated compactness tech-
niques (see [6], [16]) can be applied. This reduction to the scalar wave equation is
no longer possible in the general case considered here, in which the coefficients ε, µ
are not smooth, which often occurs in real situations. Therefore, a new compactness
result for Maxwell’s equations (Lemma 3.4) concerning local compactness properties
of certain time averages of PHH is proved in section 3. For the proof of the existence
of solutions, in section 4 a sequence of approximate solutions {(En,Hn,Mn)}n∈N to
a regularized problem is constructed. The subtle part is, due to the nonlinearity
(1.2), the limit n → ∞ where the abovementioned compactness result for Maxwell’s
equations and a lemma concerning the commutator between the projector PH and
suitable weight functions are used. The main ingredient of the proof of the existence
of solutions is the strong convergence of {Mn}n∈N with respect to a weighted norm
introduced in [11] in order to deal with the difficulty that H is generally not bounded.
By a similar argument a weak convergence principle is obtained in section 5 which
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says that the weak limit of solutions to (1.1)–(1.4) is again a solution provided that
the initial data for M converge strongly.

Section 6 is concerned with the quasi-stationary limit which is of interest if the
size of the ferromagnetic medium is very small in comparison to the electromagnetic
wave length. After a suitable rescaling this corresponds to a high wave propagation
speed c = (εµ)−1/2. In this case one expects that the magnetic field is governed by
magnetostatics, which means that

curl H = J and div (µ[H + M̃]) = 0 on R
+ × R

3.

For this purpose the external current J is assumed to be divergence-free. The precise
statement concerning the quasi-stationary limit given in this paper is the following
theorem.

Theorem 1.1. Assume (1.5)–(1.9). Suppose that in addition

J = curl g0(1.11)

with some g0 ∈ L2
loc(R, Hcurl) ∩W 1,2

loc (R, L
2(R3)), in particular divJ = 0.

Let αn and βn be sequences of positive numbers such that αn
n→∞−→ 0, βn

n→∞−→ 0,
and αn/βn is bounded as n→∞. With

εn(x) = αnε(x) and µn(x) = βnµ(x)

let (En,Hn,Mn) be weak solutions of Landau–Lipschitz–Maxwell equations (1.1)–
(1.4), where ε and µ are replaced by εn and µn, respectively.

Then there exist M ∈ W 1,∞
loc ((0,∞), L2(G)) ∩ L∞((0,∞), L∞(G)) and a subse-

quence, (E(nm),H(nm),M(nm)), such that for all T > 0 and p ∈ (2,∞) one has

M(nm)
m→∞−→ M in L∞((0, T ), Lp(G)) strongly(1.12)

and

H(nm)
m→∞−→ H in L∞((0, T ), L2(R3)) weak ∗(1.13)

with

curl H = J and div
(
µ
[
H + M̃

])
= 0.(1.14)

Furthermore, M and H solve

∂tM = F (x,M) ·H + a(x,M) on R
+ ×G(1.15)

and

M(0) = M0.(1.16)

Here Lemma 3.4 is also applied. In the case where F is given by (1.10) with α = 0,
i.e., F (x,m)h = −γm∧h, the solution to problem (1.14)–(1.16) is unique and (1.12),
(1.13) hold for the whole sequence.

Existence and the quasi-stationary limit have been carried out in [3] for the
Landau–Lipschitz equation for the magnetic moment coupled with Maxwell’s equa-
tions including the exchange interaction [3], [17], which reads as

∂tM + M ∧ ∂tM = 2M ∧ (∆M + H) on R
+ ×G.
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The parabolic structure of this equation simplifies the quasi-stationary limit consid-
erably, since it provides an H1(G) estimate for the magnetic moment M. This H1

coercivity yields compactness properties of M, which lets one pass to the limit in the
nonlinear equations directly. Furthermore, it is shown in [3] and [4] that all points of
the weak ω-limit set are solutions of the corresponding stationary equations. This is
also a consequence of the H1 boundedness of M, which provides the compactness of
the orbit with respect to the strong topology. The spatially one-dimensional case is
studied in [12].

Other nonlinear models in electromagnetism have been studied, which involve
the dielectric polarization P instead of the magnetic moment M. In [8] and [10]
the anharmonic oscillator model is studied, whereas in [5] and [9] the Maxwell–Bloch
equations are considered.

2. Basic definitions and notation. Let G ⊂ R
3 be a nonempty open set.

The dielectric and magnetic susceptibilities ε, µ ∈ L∞(R3) are assumed to be
uniformly positive functions, which means that

ε(x), µ(x) ≥ a0 on R
3 with some a0 > 0.

Furthermore, let σ ∈ L∞(R3) be a nonnegative function.
Next, let Hcurl be the space of all E ∈ L2(R3,R3) with curl E ∈ L2(R3). Now,

the following operators are defined. As in [7] B is the skew self-adjoint operator

B(E,H)
def
= (ε−1curl H,−µ−1curl E) for (E,H) ∈ D(B)

def
= Hcurl ×Hcurl

in the Hilbert space X
def
= L2(R3,C6) endowed with the scalar product

〈(E,H), (F,G)〉X def
=

∫
R3

(
εE · F + µH ·G) dx.

The orthogonal decomposition (with respect to the L2 scalar product without weight)

L2(R3) = Hcurl,0 +Hdiv,0(2.1)

is well known, where Hcurl,0 and Hdiv,0 denote the spaces of all E ∈ L2(R3,R3) with
curlE = 0 and div E = 0, respectively. Let P with P (e,h) = (PEe, PHh) denote
the orthogonal projector on (ker B)⊥ = ran B (with respect to the weighted scalar
product in X), which means that (1 − P ) is the orthogonal projector on ker B. In
particular,

ran (1− PE) = ran (1− PH) = Hcurl,0.(2.2)

Since (f ,g) ∈ ker B for all f ,g ∈ Hcurl,0, a pair (e,h) ∈ L2(R3) belongs to (ker B)⊥ =
ran P if and only if ∫

R3

(εef + µhg)dx = 〈(e,h), (f ,g)〉X = 0

for all f ,g ∈ Hcurl,0. By (2.1) this means that εe ∈ Hdiv,0 and also µh ∈ Hdiv,0.
Hence

ran P = (ker B)⊥ = {(e,h) ∈ L2(R3) : div (εe) = div (µh) = 0}(2.3)
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in the sense of distributions. In particular,

ran PH = {h ∈ L2(R3) : div (µh) = 0}.(2.4)

Next, let Fσ : X → X and R : L2(G)→ X be defined by

(RM)(x)
def
= (0,M(x)) if x ∈ G and (RM)(x)

def
= 0 if x ∈ R

3 \G
and

Fσ(e,h)
def
=
(
ε−1σe, 0

)
.

The aim of section 4 is to prove the existence of weak solutions with the properties

(E,H) ∈ C([0,∞), X) and M ∈W 1,∞
loc ([0,∞), L2(G)) ∩ L∞loc([0,∞), L∞(G)).(2.5)

This means that (1.1) is fulfilled in the sense that

d

dt
〈(E(t),H(t)),u〉X = −〈(E(t),H(t)), Bu〉X(2.6)

− 〈R∂tM(t) + (ε−1J(t), 0) + Fσ(E(t),H(t)),u〉X for all u ∈ D(B).

This is equivalent to the variation of constant formula

(E(t),H(t)) = exp (tB)w0(2.7)

−
∫ t

0

exp ((t− s)B)
[R∂tM(s) + (ε−1J(s), 0) + Fσ(E(s),H(s))

]
ds,

where w0
def
= (E0,H0) ∈ X and J are as in (1.5) and (exp (tB))t∈R is the unitary

group generated by B; see [1], [7], and [14].

3. Some compactness results. One of the main goals of this section is to
prove a generalization of the compensated compactness argument in [11] for Maxwell’s
equations with nonsmooth coefficients (Lemma 3.4). First it is shown that the space
of all vector fields with divergence and curl in Lq(R3), q ∈ (6/5, 2], is compactly

embedded in L2(Br) for all r > 0, where Br
def
= {|x| < r}. Such a compactness result

is well known for q = 2; see [15], [18], and [19]. This is generalized to the case where
curlh ∈ Lq(R3) and div (µh) ∈ Lq(R3) for some q ∈ (6/5, 2]. Due to the fact that
µ may be nonsmooth this does not follow directly from the Sobolev’s compactness
theorem W 1,q(R3) ↪→ L2(Br) for q ∈ (6/5, 2].

Next, H
(q)
curl denotes for q ∈ [1, 2] the space of all h ∈ L2(R3) with curl h ∈

Lq(R3) + L2(R3); i.e., curl h admits a decomposition curl h = g1 + g2 with

g1 ∈ Lq(R3) and g2 ∈ L2(R3).

The space H
(q)
div is defined analogously. Now, a basic compactness lemma can be

proved.

Lemma 3.1. Let q ∈ (6/5, 2] and r > 0. Then the space of all h ∈ H
(q)
curl with

µh ∈ H
(q)
div is compactly embedded in L2(Br).
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Proof. Suppose that {hn}n∈N is a bounded sequence in Hcurl(q)∩µ−1H
(q)
div which

means that {hn}n∈N is bounded in L2(R3), whereas {curl hn}n∈N and {div [µhn]}n∈N

are bounded in Lq(R3) + L2(R3). Let

χ ∈ C∞0 (B(2r)) with χ = 1 on Br and Un
def
= χhn.

Then, since q ≤ 2 and supp χ is bounded, {curl Un}n∈N and {div [µUn]}n∈N are
bounded in Lq(R3) and supp Un ⊂ B(2r). Due to Poincaré’s inequality

‖ψ‖2H1(B(2r))
≤ K

∫
B(2r)

|∇ψ|2dx

on the space

Y
def
=

{
ψ ∈ H1(B(2r)) with

∫
B(2r)

ψdx = 0

}

there exists some ψn ∈ Y with∫
B(2r)

µ∇ψn∇ψdx =

∫
B(2r)

µUn∇ψdx for all ψ ∈ Y(3.1)

and, thus, for all ψ ∈ H1(B(2r)) (by adding a suitable constant). By taking ψ = ψn
in (3.1) it follows from the boundedness of Un in L2(R3) that

{ψn}n∈N is bounded in Y ⊂ H1(B(2r)).(3.2)

Next, define Bn ∈ L2(R3) by

Bn(x)
def
= µ(x)[Un(x)−∇ψn(x)] if x ∈ B(2r) and Bn(x)

def
= 0 if ∈ R

3 \B(2r).(3.3)

Then div Bn = 0 on R
3, since∫

R3

Bn∇ϕdx =

∫
B(2r)

µ(x)[Un(x)−∇ψn(x)]∇ϕdx = 0 for all ϕ ∈ C∞0 (R3)

by (3.1). Furthermore, Bn is bounded in L2(R3)∩L1(R3), and hence B̂n ∈ L2(R3)∩
L∞(R3), where ·̂ denotes Fourier-transform. Therefore,

gn(k)
def
= i|k|−2k ∧ B̂n(k) ∈ L2(R3).

Define An
def
= F−1gn ∈ L2(R3). Since div Bn = 0 one has k · B̂n(k) = 0 and thus

k ∧ gn(k) = −iB̂n(k). Hence

curl An = iF−1(k ∧ gn(k)) = Bn for all n ∈ N.(3.4)

Since

‖An‖H1(R3) = ‖(1 + |k|)gn‖L2(R3) ≤ C1‖(|k|−1 + 1)B̂n‖L2(R3)

≤ C2(‖B̂n‖L∞(R3) + ‖B̂n‖L2(R3)) ≤ C3(‖Bn‖L1(R3) + ‖Bn‖L2(R3)),
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it follows that

{An}n∈N is bounded in H1(R3).(3.5)

With supp Un ⊂ B(2r) one obtains from (3.3), (3.4), and Hölder’s inequality after
partial integration

c0‖Un −Um‖2L2(B(2r))
≤
∫
B(2r)

(Un −Um) · (µUn − µUm)dx

=

∫
B(2r)

(Un −Um)(curl An + µ∇ψn − curl Am − µ∇ψm)dx

=

∫
B(2r)

[(curl Un − curl Um)(An −Am)− div (µ[Un −Um])(ψn − ψm)]dx

≤ ‖curl (Un −Um)‖Lq(B(2r))‖An −Am‖L(q∗)(B(2r))

+ ‖div (µ[Un −Um])‖Lq(B(2r))‖ψn − ψm‖L(q∗)(B(2r))
.

Since q∗ < 6, the previous estimate, (3.2), (3.5), and Sobolev’s embedding theorem
H1(B2r) ↪→ L(q∗)(B2r) yield the precompactness of (Un)n∈N in L2(B2r), which com-
pletes the proof.

Now, one obtains from Lemma 3.1, (2.2), and (2.4) the following corollary.

Corollary 3.2. Let q ∈ (6/5, 2] and r > 0. Then (ran PH)∩H(q)
curl is compactly

embedded in L2(Br).
Corollary 3.3. Let χ ∈W 1,∞(R3). Then the commutators [χ, PE ] and [χ, PH ]

are compact operators from L2(R3) to L2(BR) for all R > 0.

Proof. Suppose h ∈ L2(R3). Then f
def
= χ · PHh− PH(χh) obeys, by (2.4),

div (µf) = div (χµPHh) = µ (PHh)∇χ ∈ L2(R3).(3.6)

Since f = χ · (PH − 1)h− (PH − 1)(χh), one obtains from (2.2)

curl f = ((1− PH)h) ∧∇χ ∈ L2(R3).

By (3.6) and Lemma 3.1 this completes the proof.
As a substitute for the compensated compactness argument in [11] the following

compactness result for Maxwell’s equations is proved.
Lemma 3.4. Suppose that {Gn}n∈N, and {Hn}n∈N are bounded sequences in

L∞((0, T ), L2(R3)), and {Dn}n∈N is bounded in L∞((0, T ), Lq(R3) + L2(R3)) with
some q ∈ (6/5, 2] such that

Hn
n→∞−→ 0 in L∞((0, T ), L2(R3)) weak ∗(3.7)

and curl Hn(t) = ∂tDn(t) on (0, T )× R
3 in the sense that∫

R3

Hn(t) · curl gdx =
d

dt

∫
R3

Dn(t) · gdx for all g ∈ C∞0 (R3).(3.8)
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In addition, assume that the sequence {Gn}n∈N is equicontinuous (from [0, T ] to
L2(R3)), i.e., for all θ > 0 there exists some δ > 0 such that

‖Gn(t)−Gn(s)‖L2(R3) ≤ θ for all n ∈ N and s, t ∈ (0, T ) with |s− t| ≤ δ.(3.9)

Then

sup
m∈N

∫ T

0

∫
Br

Gm(t) · PHHn(t)dxdt
n→∞−→ 0 for all radii r > 0.

Proof. The main ingredient of the proof is a local compactness property of certain
time averages of PHHn. For all χ ∈ C∞0 (0, T ) one obtains from the boundedness of
{Gn}n∈N and {PHHn(·)}n∈N in L∞((0, T ), L2(R3)) that∣∣∣∣∣
∫ T

0

∫
Br

Gm(t) · PHHn(t)dxdt−
∫ T

0

∫
Br

χ(t)Gm(t) · PHHn(t)dxdt

∣∣∣∣∣ ≤ C1

∫ T

0

|1−χ|dt

with some constant C1 independent of m,n ∈ N and χ. Thus, it suffices to show for
all χ ∈ C∞0 (0, T ) and r > 0

sup
m∈N

∫ T

0

∫
Br

χ(t)Gm(t) · PHHn(t)dxdt
n→∞−→ 0.(3.10)

Suppose χ ∈ C∞0 (0, T ) and let

F(h)
m (t, x)

def
= h−1

∫ h

0

χ(t+ s)Gm(t+ s, x)ds for h > 0 and m ∈ N.(3.11)

Since {χGn}n∈N is also equicontinuous, one obtains

sup
t∈(0,T ),m∈N

‖χ(t)Gm(t)− F(h)
m (t)‖L2(R3)

h→0−→ 0,

and hence

sup
m,n∈N

∣∣∣∣∣
∫ T

0

∫
Br

χ(t)Gm(t) · PHHn(t)dxdt(3.12)

−
∫ T

0

∫
Br

χ(t)Gm(t) · PHH(h)
n (t)dxdt

∣∣∣∣∣
= sup
m,n∈N

∣∣∣∣∣
∫ T

0

∫
Br

(
χ(t)Gm(t)− F(h)

m (t)
)
· PHHn(t)dxdt

∣∣∣∣∣ h→0−→ 0,

where

H(h)
n (t, x)

def
= h−1

∫ h

0

Hn(t− s, x)ds for h > 0, t ∈ supp χ, and n ∈ N.(3.13)
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Hence, it suffices to show that

sup
m∈N

∫ T

0

∫
Br

χ(t)Gm(t) · PHH(h)
n (t)dxdt

n→∞−→ 0 for all r > 0, h > 0.(3.14)

Let g ∈ C∞0 (R3). Then it follows from (2.2) and (3.8) that∫
R3

PHH(h)
n (t)curl gdx =

∫
R3

H(h)
n (t)curl gdx

= h−1

∫ h

0

∫
R3

Hn(t− s)curl gdxds = h−1

∫
R3

[Dn(t− h)−Dn(t)] · gdx.

Hence

curl PHH(h)
n (t) = h−1[Dn(t− h)−Dn(t)] ∈ Lq(R3) + L2(R3),

which implies by Corollary 3.2 and the boundedness of {Dn}n∈N in L∞((0, T ), Lq(R3)+
L2(R3)) that

{PHH(h)
n (t)}n∈N is precompact in L2(Br) for fixed t ∈ (0, T ).(3.15)

Since ∂tH
(h)
n (t) = h−1[Hn(t)−Hn(t−h)], it follows from the boundedness of {Hn}n∈N

in L∞((0, T ), L2(R3)) that {PHH
(h)
n }n∈N is bounded in W 1,∞((0, T ), L2(Br)). Hence

it follows from (3.15) and Arzela’s theorem that this sequence is precompact in
C([0, T ], L2(Br)) for all r > 0. Thus, (3.7) yields

‖PHH(h)
n (t)‖L2(Br)

n→∞−→ 0 uniformly on (0, T ),

which gives (3.14), since {Gn}n∈N is bounded in L∞((0, T ), L2(Br)).
In what follows the linear, symmetric regularization operator Rn : L2(R3) →

L2(R3) is defined by

(Rnf)(x)
def
=

∫
R3

f(y)ωn(x− y)dy, x ∈ R
3,(3.16)

where ωn ∈ C∞0 (R3) is a mollifier with supp ωn ⊂ B(1/n) and
∫

R3 ωndx = 1. Then Rn
has the following properties:

‖F −RnF‖L2(R3)
n→∞−→ 0, ‖RnF‖L2(R3) ≤ K‖F‖L2(R3),(3.17)

‖RnF‖L2(Br) ≤ K‖F‖L2(B(r+1)) and ‖RnF‖L2(R3\Br) ≤ K‖F‖L2(R3\B(r−1))(3.18)

for all r > 1 and F ∈ L2(R3) with some constant K independent of n, r, and F . For
all T > 0 and fδ ∈ C∞0 ((0, T )× R

3) the commutator between Rn and fδ obeys

sup
t∈(0,T )

‖[fδ(t), Rn]‖B(L2(R3),L2(R3))
n→∞−→ 0.(3.19)

For the proof of existence of solutions to (1.1)–(1.4) it is important that

RnF ∈ L∞(R3) and ‖RnF‖L∞(R3) ≤ Kn‖F‖L2(R3) for all F ∈ L2(R3)(3.20)
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with some constantKn independent of F but which may depend on n. Of course other
regularizations with the properties (3.17)–(3.20) are possible. The following lemma
concerns the commutator between the projector PH and suitable weight functions.
Beyond Lemma 3.4 it is also a main ingredient of the proof of the existence of solutions
to (1.1)–(1.4) as well as of the proof of Theorem 1.1.

Lemma 3.5. Suppose that {Fn}n∈N is a bounded sequence in W 1,∞((0, T ), L2(R3))
∩L∞((0, T ), L∞(R3)) with

Fn
n→∞−→ 0 in L∞((0, T ), L2(R3)) weak ∗ .(3.21)

Furthermore, let ρ ∈ L2((0, T ), L2(R3)) ∩ L∞((0, T ), L∞(R3)). Then∫ T

0

∥∥ρ(t)2Rn(1− PH)Fn(t)− ρ(t)Rn(1− PH) {ρ(t)Fn(t)}
∥∥
L1(R3)+L2(R3)

dt
n→∞−→ 0

and ∫ T

0

∥∥ρ(t)2(1− PH)Fn(t)− ρ(t)(1− PH) {ρ(t)Fn(t)}
∥∥
L1(R3)+L2(R3)

dt
n→∞−→ 0.

Proof. The idea is to approximate ρ by some smooth function f ∈ C∞0 ((0, T )×R
3)

in order to get suitable estimates for the commutator between f and PH and also for
the commutator between f and Rn, since ρ may be nonsmooth.

For all f ∈ C∞0 ((0, T ) × R
3) one obtains from the estimate in (3.17) and the

boundedness of the sequence {Fn}n∈N in L∞((0, T ), L2(R3)) ∩ L∞((0, T ), L∞(R3))
that ∫ T

0

‖ρ(t) [ρ(t)− f(t)]Rn(1− PH)Fn(t)‖L1(R3)+L2(R3) dt(3.22)

≤
∫ T

0

‖ρ(t) [ρ(t)− f(t)]Rn(1− PH)Fn(t)‖L1(R3) dt

≤
∫ T

0

‖ρ(t)‖L∞(R3)‖f(t)− ρ(t)‖L2(R3) ‖Rn(1− PH)Fn(t)‖L2(R3) dt

≤ C1

∫ T

0

‖f(t)− ρ(t)‖L2(R3) ‖Fn(t)‖L2(R3) dt

≤ C2‖f − ρ‖L2((0,T ),L2(R3))

and also ∫ T

0

‖ρ(t)Rn(1− PH) {[ρ(t)− f(t)]Fn(t)}‖L1(R3)+L2(R3) dt(3.23)

≤ C3

∫ T

0

‖(f(t)− ρ(t))Fn(t)‖L2(R3) dt
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≤ C3

∫ T

0

‖f(t)− ρ(t)‖L2(R3) ‖Fn(t)‖L∞(R3) dt

≤ C4‖f − ρ‖L2((0,T ),L2(R3))

with some constants C1, C3 independent of n.
Let δ > 0.
By the previous estimates there is some fδ ∈ C∞0 ((0, T )× R

3) such that∫ T

0

∥∥ρ(t)2Rn(1− PH)Fn(t)(3.24)

− ρ(t)Rn(1− PH){ρ(t)Fn(t)}‖L1(R3)+L2(R3) dt

≤ δ+

∫ T

0

‖ρ(t)fδ(t)Rn(1− PH)Fn(t)− ρ(t)Rn(1− PH) {fδ(t)Fn(t)}‖L1(R3)+L2(R3) dt.

Since fδ ∈ C∞0 ((0, T )×R
3), it follows from (3.19) and the boundedness of the sequence

{Fn}n∈N in L∞((0, T ), L2(R3)) again that we can choose some Nδ ∈ N such that for
all n > Nδ ∫ T

0

‖ρ(t)fδ(t)Rn(1− PH)Fn(t)(3.25)

− ρ(t)Rn {fδ(t)(1− PH)Fn(t)}‖L1(R3)+L2(R3) dt

≤
∫ T

0

‖ρ(t)[fδ(t), Rn](1− PH)Fn(t)‖L2(R3) dt

≤ C4‖[fδ(t), Rn]‖B(L2(R3),L2(R3)) ≤ δ.

And thus, by (3.18) and (3.24), for all radii r > 0∫ T

0

∥∥ρ(t)2Rn(1− PH)Fn(t)(3.26)

− ρ(t)Rn(1− PH){ρ(t)Fn(t)}‖L1(R3)+L2(R3) dt

≤ 2δ+

∫ T

0

‖ρ(t)Rn {fδ(t)(1− PH)Fn(t)} − ρ(t)Rn(1− PH) {fδ(t)Fn(t)}‖L1(R3)+L2(R3) dt

≤ 2δ +

∫ T

0

(‖ρ(t)Rn {[PH , fδ(t)]Fn(t)} ‖L2(Br)

+ ‖ρ(t)Rn {[PH , fδ(t)]Fn(t)} ‖L1(R3\Br)

)
dt
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≤ 2δ + C5

∫ T

0

(‖[PH , fδ(t)]Fn(t)‖L2(B(r+1))

+ ‖ρ(t)‖L2(R3\Br)‖Rn {[PH , fδ(t)]Fn(t)} ‖L2(R3)

)
dt

≤ 2δ + C6

∫ T

0

(‖[PH , fδ(t)]Fn(t)‖L2(B(r+1)) + ‖ρ(t)‖L2(R3\Br))dt

with some constant C6 independent of n > Nδ and r. Now, it follows from the
boundedness of the sequence {Fn}n∈N in L∞((0, T ), L2(R3)) and Corollary 3.3 that

{[PH , fδ(t)]Fn(t)}n∈N is precompact in L2(B(r+1)) for fixed t ∈ (0, T ).(3.27)

It follows from the boundedness of {Fn}n∈N in W 1,2((0, T ), L2(R3)) that the sequence
{[PH , fδ(·)]Fn(·)}n∈N is bounded in W 1,2((0, T ), L2(B(r+1))). Hence it follows from
(3.27) and Arzela’s theorem that this sequence is precompact in C([0, T ], L2(B(r+1)))
for all r > 0. Thus, (3.21) yields

‖[PH , fδ(t)]Fn(t)‖L2(B(r+1))
n→∞−→ 0 uniformly on (0, T )(3.28)

for all r > 0. Now, (3.26) and (3.28) give

lim sup
n→∞

∫ T

0

∥∥ρ(t)2Rn(1− PH)Fn(t)− ρ(t)Rn(1− PH) {ρ(t)Fn(t)}
∥∥
L1(R3)+L2(R3)

dt

≤ 2δ + C6

∫ T

0

‖ρ(t)‖L2(R3\Br)dt for all r > 0.

Since δ > 0 has been chosen arbitrarily, this completes the proof of the first assertion
by letting r →∞. The other one is proved analogously.

4. Existence of solutions. The main result of this section is the following
theorem.

Theorem 4.1. Assume (1.5)–(1.9). Then problem (1.1)–(1.4) admits a weak
solution (E,H,M) with the properties (2.5).

First a regularized problem is considered. Let

ε∂tEn = curl Hn − σEn − J, µ∂tHn = −curl En − µ∂tM̃n,(4.1)

on R
+ × R

3, coupled with the equation

∂tMn = F (x,Mn) ·Rn(Hn(·)) + a(x,Mn)(4.2)

on R
+ × G, with initial conditions (1.3) and (1.4). Here Rn is the regularization

operator in (3.16). Due to the fact that Rn maps L2(R3) to L∞(R3), problem (4.1)–
(4.2) can be solved using the contraction mapping principle. The difficult part is the
limit n→∞ where Lemmas 3.4 and 3.5 are used.

Suppose that f ∈ C0(R×R
3,R3) and let m be the solution to the ordinary initial

value problem

∂tm = F (x,m) · f + a(x,m)(4.3)
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(pointwise with respect to x) on R
+ ×G with initial condition (1.4). By assumption

(1.7) multiplication with m gives m∂tm ≤ 0, and hence

|m(t, x)| ≤ |M0(x)| ≤ C0.(4.4)

In particular, the ordinary initial value problem (4.3) and (1.4) admit a global solution
m ∈W 1,∞

loc ([0,∞), L2(G)) ∩ L∞loc([0,∞), L∞(G)) defined on (0,∞)×G.
Let T > 0 be arbitrary large and An : C([0, T ], X)→ C([0, T ], X) be defined by

(An(E,H))(t) = exp (tB)(E0,H0)

−
∫ t

0

exp ((t− s)B)
[R∂tM(s) + Fσ(E(s),H(s)) + (ε−1J(s), 0)

]
ds,

where M solves (4.3) with f(t)
def
= Rn(H(t)); i.e.,

∂tM = F (x,M) ·Rn(Hn(·)) + a(x,M)(4.5)

with initial condition (1.4). First, suppose that (E,H) ∈ C([0, T ], X) and let M
∈ W 1,2([0, T ], L2(G,R3)) be the solution to (4.5) and (1.4). Then (E,H,M) solves
(4.1), (4.2) on the interval [0, T ] with the initial conditions (1.3)–(1.4) (in the sense
of (2.7)) if and only if (E,H) ∈ C([0, T ], X) solves the fixed-point problem

An(E,H) = (E,H).(4.6)

Now suppose (E,H) ∈ C([0, T ], X) and (E(1),H(1)) ∈ C([0, T ], X) and let M and
M(1) be the corresponding solutions to (4.5) and (1.4). With Rn(H(·)) ∈ C([0,∞),
L2(R3) ∩L∞(R3)) by (3.20) one obtains from assumption (1.8), (1.9), the estimate
in (3.17), and (4.4) that

‖∂tM(t)‖L2(G) ≤ C1,n(1 + ‖Rn(H(t))‖L2(G)) ≤ C2,n(1 + ‖(E(t),H(t))‖X)(4.7)

and

‖∂tM(t)− ∂tM
(1)(t)‖L2(G) ≤ C3,n‖Rn(H(t))−Rn(H

(1)(t))‖L2(R3)(4.8)

+ C3,n‖M(t)−M(1)(t)‖L2(G)‖Rn(H(t))‖L∞(G) + C3,n‖M(t)−M(1)(t)‖L2(G)

≤ C4,n‖(E(t),H(t))− (E(1)(t),H(1)(t))‖X

+ C4,n‖M(t)−M(1)(t)‖L2(G)(1 + ‖(E(t),H(t))‖X).

The constants C1,n − C4,n are independent of (E,H), (E(1),H(1)), and t, but they
may depend on n at this stage. Note that such an estimate generally does not hold
for the original problem (1.1), (1.2) unless H /∈ L∞loc([0,∞), L∞(R3)). By (4.7), (4.8),
and the standard energy estimate for weak solutions to the linear inhomogeneous
Maxwell equations given by (2.7) it is now routine to show, by using the contrac-
tion mapping principle, that the fixed-point problem (4.6) has a unique fixed point
(E,H) ∈ C([0, T ], X). Hence problem (4.1), (4.2) has a unique solution on each finite
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time interval (0, T ) and, therefore, it has a unique global solution (En,Hn,Mn) on
(0,∞) the properties (2.5). It follows from (2.7) that

(1− P )(En(t),Hn(t)) = (1− P )(E0,H0)(4.9)

−
∫ t

0

(1− P )
[R∂tMn(s) + (ε−1J(s), 0) + Fσ(En(s),Hn(s))

]
ds.

In particular, by assumption (1.6) and (2.4),

(1− PH)
(
Hn(t) + M̃n(t)

)
= (1− PH)

(
H0 + M̃0

)
= 0,(4.10)

where M̃n(t) denotes the extension of Mn(t) by zero outside G. This means that the

divergence-free condition on B
def
= (µ[H + M̃]) is invariant under the nonlinear flow

governed by (1.1), (1.2).
From now on the constants Cj are independent of (E,H), t, and n ∈ N. By (4.4)

we have

Mn∂tMn ≤ 0 and |Mn(t, x)| ≤ |M0(x)| ≤ C0.(4.11)

Now it follows from (4.2), (4.11), and the assumptions on the nonlinear functions that

|∂tMn| ≤ C1|Rn(Hn(·))|+ C1|M0|,(4.12)

in particular, by the estimate in (3.17),

‖R∂tMn(t)‖X = ‖µ1/2∂tMn(t)‖L2(G)(4.13)

≤ C1(1 + ‖Rn(Hn(t))‖L2(G)) ≤ C2(1 + ‖(En(t),Hn(t))‖X).

On the other hand, one obtains from (2.7) the energy estimate

1

2

d

dt
‖(En(t),Hn(t))‖2X ≤ −〈R∂tMn(t) + (ε−1J(t), 0), (En(t),Hn(t))〉X(4.14)

= −
∫
G

µHn(t)∂tMn(t)dx−
∫

R3

En(t)J(t)dx

≤ ‖(En(t),Hn(t))‖2X + ‖(ε−1J(t), 0)‖2X + ‖R∂tMn(t)‖2X .
By (4.11), (4.13), and (4.14) and Gronwall’s lemma one obtains

‖(En,Hn)‖L∞((0,T ),X) + ‖Mn‖L∞((0,T ),L∞(G))(4.15)

+ ‖∂tMn‖L∞((0,T ),L2(G)) ≤ C3

with some constants C3 independent of n.
Hence there exists a subsequence {(Enm ,Hnm

,Mnm
)}m∈N such that

(Enm
,Hnm

)
m→∞−→ (E,H) in L∞((0, T ), X) weak ∗,(4.16)
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Mnm

m→∞−→ M in W 1,2((0, T ), L2(G)) weakly,(4.17)

and in L∞((0, T ), L∞(G)) weak ∗. Note that it follows from the boundedness of ∂tMn

in L2((0, T ), L2(G)) and initial condition (1.4) for Mn that M ∈W 1,2((0, T ), L2(G)) ⊂
C([0, T ], L2(G)) and M(0) = M0.

From (2.7), (4.1), (4.16), and (4.17) we obtain

(E,H) = exp (tB)(E0,H0)(4.18)

−
∫ t

0

exp ((t− s)B)
[R∂tM(s) + Fσ(E(s),H(s)) + (ε−1J(s), 0)

]
ds;

i.e., (E,H) ∈ C([0, T ], X) is the solution of the Maxwell system (1.1).
The aim of the following considerations is to show strong convergence of {Mnm}m∈N.

By assumption (1.8) and the uniform boundedness of {Mnm}m∈N in (4.11), there is
some L > 0 such that

|Fn(t, x)− Fm(t, x)| ≤ L|Mn(t, x)−Mm(t, x)|(4.19)

and |a(x,Mn)− a(x,Mm)| ≤ L|Mn(t, x)−Mm(t, x)| for all n,m ∈ N

with the abbreviation Fn(t, x)
def
= F (x,Mn(t, x)).

The main difficulty is that {Hnm}m∈N is not uniformly bounded in general. For
this purpose the weighted norm as in [11] is introduced. Let

ρ(t, x)
def
= ρ0(x) exp

(
−L

∫ t

0

|H(s, x)|ds
)

for t ∈ (0, T )(4.20)

with some arbitrarily chosen positive function ρ0 ∈ L2(R3) ∩ L∞(R3) and H as in
(4.16). Then (4.19) gives∫

G

ρ(t)2(Mnm(t)−Mnp(t)) ·
(
Fnm(t)− Fnp(t)

)
H(t)dx(4.21)

≤ L

∫
G

ρ(t)2|H(t)|(Mnm(t)−Mnp(t))
2dx.

Now, it follows from assumption (1.8), (4.2), (4.11), (4.20), and (4.21) that

1

2

d

dt
‖ρ(t)(Mnm

(t)−Mnp
(t))‖2L2(G)(4.22)

=

∫
G

ρ(t)2(Mnm(t)−Mnp(t))∂t(Mnm(t)−Mnp(t))dx

− L

∫
G

ρ(t)2|H(t)|(Mnm(t)−Mnp(t))
2dx

=

∫
G

ρ(t)2(Mnm(t)−Mnp(t)) ·
(
Fnm(t)Rnm(Hnm(t))− Fnp(t)Rnp(Hnp(t)

)
dx
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+

∫
G

ρ(t)2(Mnm(t)−Mnp(t)) ·
(
a(x,Mnm)− a(x,Mnp)

)
dx

− L

∫
G

ρ(t)2|H(t)|(Mnm(t)−Mnp(t))
2dx

≤
∫
G

ρ(t)2(Mnm
(t)−Mnp

(t)) · Fnm
(t) [Rnm

(Hnm
(t))−H(t)] dx

−
∫
G

ρ(t)2(Mnm
(t)−Mnp

(t)) · Fnp
(t)
[
Rnp

(Hnp
(t))−H(t)

]
dx

+ C3‖ρ(t)(Mnm(t)−Mnp(t))‖2L2(G)

≤ C3‖ρ(t)(Mnm(t)−Mnp(t))‖2L2(G) +

3∑
j=1

hj,m,p(t) +

3∑
j=1

hj,p,m(t).

Here

h1,m,p(t)
def
=

∫
G

ρ(t)2(Mnm
(t)−Mnp(t))(4.23)

· Fnm(t)RnmPH (Hnm(t)−H(t)) dx,

h2,m,p(t)
def
=

∫
G

ρ(t)2(Mnm
(t)−Mnp

(t))(4.24)

· Fnm
(t)Rnm(1− PH) (Hnm

(t)−H(t)) dx,

h3,m,p(t)
def
=

∫
G

ρ(t)2(Mnm
(t)−Mnp

(t))(4.25)

· Fnm(t) [Rnm(H(t))−H(t)] dx.

With (4.15) and the strong convergence in (3.17) it follows easily that∫ T

0

|h3,m,p(t)|dt m,p→∞−→ 0.(4.26)

In analogy to (4.10) it follows from (4.18) that

(1− PH)
(
H(t) + M̃(t)

)
= (1− PH)

(
H0 + M̃0

)
= 0,(4.27)

and hence

(1− PH) ((Hnm(t))−H(t)) = −(1− PH)
(
M̃nm(t)− M̃(t)

)
.
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This gives

h2,m,p(t) =

∫
G

ρ(t)2(Mnm(t)−Mnp(t)) · Fnm(t)Rnm(1− PH)
(
M̃− M̃nm(t)

)
dx

= −
∫

R3

[
M̃nm(t)− M̃np

(t)
]
· F̃nm

(t)ρ(t)2Rnm
(1− PH)

(
M̃(t)− M̃nm

(t)
)
dx.

The idea is to replace ρ(t)Rnm(1−PH)(M̃(t)−M̃nm
(t)) by Rnm(1−PH){ρ(t)(M̃(t)−

M̃nm(t))} in order to obtain an estimate of h2,m,p(t) in terms of the L2-norm of

ρ(t)(M̃(t)− M̃nm
(t)).

Let δ > 0.
By (4.15), (4.17), and Lemma 3.5 with

Fm(t)
def
= M̃(t)− M̃nm(t)

we can choose some Nδ ∈ N such that for all m, p > Nδ∫ T

0

∣∣∣∣h2,m,p(t)−
∫

R3

ρ(t)
[
M̃nm(t)− M̃np(t)

]
(4.28)

· F̃nm(t)Rnm(1− PH)
{
ρ(t)

(
M̃(t)− M̃nm

(t)
)}

dx

∣∣∣∣dt
≤
∫ T

0

∣∣∣∣ ∫
R3

F̃nm
(t)∗

[
M̃nm

(t)− M̃np
(t)
]
·
(
ρ(t)2Rnm

(1− PH)
(
M̃(t)− M̃nm

(t)
)

− ρ(t)Rnm(1− PH)
{
ρ(t)

(
M̃(t)− M̃nm(t)

)})
dx

∣∣∣∣dt
≤
∫ T

0

∥∥∥F̃nm(t)∗
[
M̃nm(t)− M̃np(t)

]∥∥∥
L∞(R3)∩L2(R3)

∥∥∥ρ(t)2Rnm(1− PH)
(
M̃(t)− M̃nm(t)

)

−ρ(t)Rnm(1− PH)
{
ρ(t)

(
M̃(t)− M̃nm(t)

)}∥∥∥
L1(R3)+L2(R3)

dt ≤ δ,

and hence ∫ t

0

|h2,m,p(s)|ds(4.29)

≤ δ +

∫ t

0

∣∣∣∣∫
R3

ρ(s)[M̃nm(s)− M̃np(s)]



332 FRANK JOCHMANN

· F̃nm
(s)Rnm

(1− PH)
{
ρ(s)

(
M̃(s)− M̃nm

(s)
)}

dx

∣∣∣∣ds
≤ δ + C7

∫ t

0

∥∥∥ρ(s) [M̃np
(s)− M̃nm

(s)
]∥∥∥
L2(R3)

∥∥∥Rnm(1− PH)
(
ρ(s)M̃nm(s)− ρ(s)M̃(s)

)∥∥∥
L2(R3)

ds

≤ δ + C8

∫ t

0

‖ρ(s)(Mnm
(s)−Mnp

(s))‖L2(G)‖ρ(s)(Mnm
(s)−M(s))‖L2(G)ds

with some constant C8 independent of t, δ and m, p > Nδ.
It remains to estimate h1,m,p(t). Let

Gm,p(t)
def
= Rnm

{
ρ(t)2F̃nm

(t)∗
[
M̃nm(t)− M̃np(t)

]}
.(4.30)

By (4.23) one has

h1,m,p(t) =

∫
R3

Gm,p(t) · PH (Hnm(t)−H(t)) dx

from which one obtains by (3.18) and (4.15) for all radii r > 1,∣∣∣∣∫ t

0

h1,m,p(s)ds

∣∣∣∣ ≤ ∣∣∣∣∫ t

0

∫
Br

Gm,p(s) · PH (Hnm(s)−H(s)) dxds

∣∣∣∣(4.31)

+

∫ T

0

‖Gm,p(s)‖L2(R3\Br)‖PH (Hnm
(s)−H(s)) ‖L2(R3\Br)ds

≤
∣∣∣∣∫ t

0

∫
Br

Gm,p(s) · PH (Hnm
(s)−H(s)) dxds

∣∣∣∣
+ C10

∫ T

0

∥∥∥ρ(s)2F̃nm(s)∗
[
M̃nm(s)− M̃np(s)

]∥∥∥
L2(R3\Br−1)

ds

≤
∣∣∣∣∫ t

0

∫
Br

Gm,p(s) · PH (Hnm(s)−H(s)) dxds

∣∣∣∣+ C11

∫ T

0

‖ρ(s)2‖L2(R3\B(r−1))ds

with some constant C11 independent of m, p > Nδ and r. By (4.1), (2.6), and (4.18),
i.e., (1.1), one has∫

R3

(Hnm
(t)−H(t)) · curl gdx =

d

dt

∫
R3

Dnm
(t) · gdx(4.32)

for all g ∈ C∞0 (R3) with

Dn(t)
def
= ε (En(t)−E(t)) +

∫ t

0

σ (En(s)−E(s)) ds.



QUASI-STATIONARY LIMIT IN FERROMAGNETISM 333

By assumption (1.8), (1.9), (4.15), and (4.30) the functions {M̃nm
}m∈N and

{ρ2F̃ ∗nm
}m∈N are bounded in L∞((0, T ), L∞(R3)), whereas their time derivatives are

bounded in L∞((0, T ), L2(R3)). Hence, by (3.17), there exists some constant K such
that

‖Gm,p(t)−Gm,p(s)‖L2(R3) ≤
∥∥∥ρ(t)2F̃nm

(t)∗
[
M̃nm(t)− M̃np(t)

]

− ρ(s)2F̃nm
(s)∗

[
M̃nm(s)− M̃np(s)

] ∥∥∥
L2(R3)

≤ K|s− t| for all s, t ∈ (0, T ),

which means that the sequence {Gm,p}m∈N is equicontinuous. Therefore, it follows
from (4.16), (4.32), and Lemma 3.4 that∫ t

0

∫
Br

Gm,p(s) · PH (Hnm(s)−H(s)) dxds
m,p→∞−→ 0 for all r > 1.(4.33)

Now, (4.31) and (4.33) give

lim sup
m,p→∞

∣∣∣∣∫ t

0

h1,m,p(s)ds

∣∣∣∣ ≤ C11

∫ T

0

‖ρ(s)2‖L2(R3\B(r−1))ds for all r > 1,

which implies that ∫ t

0

h1,m,p(s)ds
m,p→∞−→ 0 for all t ∈ [0, T ].(4.34)

It follows from (3.17), (4.15), and (4.23) that the functions h1,m,p are uniformly

bounded, and hence the functions h̃1,m,p(t)
def
=
∫ t
0
h1,m,p(s)ds are equicontinuous on

[0, T ]. Therefore, the convergence in (4.34) is uniform with respect to t ∈ [0, T ]. By
(4.22), (4.26), (4.29), and (4.34) there is some mδ > Nδ such that

1

2
‖ρ(t)(Mnm(t)−Mnp

(t))‖2L2(G)(4.35)

≤
3∑
j=1

∫ t

0

hj,m,p(s)ds+

3∑
j=1

∫ t

0

hj,p,m(s)ds

+ C3

∫ t

0

‖ρ(s)(Mnm(s)−Mnp(s))‖2L2(G)ds

≤ 6δ + C3

∫ t

0

‖ρ(s)(Mnm(s)−Mnp(s))‖2L2(G)ds

+ C8

∫ t

0

‖ρ(s)(Mnm(s)−Mnp(s))‖L2(G)

(‖ρ(s)(Mnm(s)−M(s))‖L2(G) + ‖ρ(s)(Mnp(s)−M(s))‖L2(G)

)
ds
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≤ 6δ +
C9

6

∫ t

0

(‖ρ(s)(Mnm(s)−Mnp(s))‖2L2(G) + ‖ρ(s)(Mnm(s)−M(s))‖2L2(G))ds

for all t ∈ (0, T ) and m, p > mδ. Using the elementary inequality

exp (−C9t)C9

∫ t

0

f(s)ds ≤ sup
s∈(0,t)

[exp (−C9s)f(s)] ≤ sup
s∈(0,T )

[exp (−C9s)f(s)]

for all nonnegative functions f ∈ C[0, T ] this gives

sup
t∈(0,T )

[
exp (−C9t)‖ρ(t)(Mnm(t)−Mnp(t))‖2L2(G)

]
(4.36)

≤ 18δ +
1

2
sup

t∈(0,T )

[
exp (−C9t)‖ρ(t)(Mnm(t)−M(t))‖2L2(G)

]
.

Letting p→∞ it follows from (4.17) and (4.36) that

exp (−C9t)‖ρ(t)(Mnm(t)−M(t))‖2L2(G)(4.37)

≤ lim sup
p→∞

exp (−C9t)‖ρ(t)(Mnm(t)−Mnp(t))‖2L2(G)

≤ 18δ +
1

2
sup

t∈(0,T )

[
exp (−C9t)‖ρ(t)(Mnm(t)−M(t))‖2L2(G)

]
.

This estimate gives

‖ρ[Mnm −M]‖L∞((0,T ),L2(R3))
m→∞−→ 0.(4.38)

Let Ak
def
= {(t, x) ∈ (0, T )×G : ρ(t, x) > 1/k}. By (4.11) one obtains

‖Mnm −M‖L2((0,T ),L2(G)) ≤ ‖Mnm −M‖L2(Ak) + ‖2M0‖L2([(0,T )×G]\Ak)

≤ k‖ρ[Mnm
−M]‖L2((0,T ),L2(R3)) + ‖2M0‖L2([(0,T )×G]\Ak).

Now (4.38) yields

lim sup
m→∞

‖Mnm
−M‖L2((0,T ),L2(R3)) ≤ ‖2M0‖L2([(0,T )×G]\Ak) for all k ∈ N.

Since (0, T )×G =
⋃∞
k=1 Ak, this gives

‖Mnm
−M‖L2((0,T ),L2(R3))

m→∞−→ 0.(4.39)

By (3.17), (4.2), and (4.16) it follows from this strong convergence that (E,H,M)
also satisfies (1.2). Since T can be chosen arbitrarily large this completes the proof
of the existence of solutions.
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5. A weak convergence principle. The following theorem says that the weak
limit of solutions to (1.1)–(1.4) is again a solution provided that the initial data for
M converge strongly. It will also be used in section 6.

Theorem 5.1. Assume (1.7)–(1.9). Suppose that {Hn}n∈N is a bounded sequence
in L∞((0, T ), L2(R3)), and let {Mn}n∈N be a bounded sequence in W 1,∞((0, T ), L2(G))
∩L∞((0, T ), L∞(G)), such that

Hn
n→∞−→ H in L∞((0, T ), L2(R3)) weak ∗,(5.1)

Mn
n→∞−→ M in L∞((0, T ), L∞(G)) weak ∗,(5.2)

and

Mn(0)
n→∞−→ M0 in L2(G) strongly .(5.3)

Furthermore, assume that

(1− PH)Hn(t) = (1− PH)M̃n(t),(5.4)

∂tMn = F (x,Mn) ·Hn + a(x,Mn) on R
+ ×G,(5.5)

and ∫
R3

Hn(t) · curl gdx =
d

dt

∫
R3

Dn(t) · gdx for all g ∈ C∞0 (R3),(5.6)

where {Dn}n∈N is a bounded sequence in L∞((0, T ), Lq(R3) + L2(R3)) for some q ∈
(6/5, 2]. Then

‖Mn −M‖L∞((0,T ),Lp(G))
n→∞−→ 0 for all p ∈ [2∞),(5.7)

∂tM = F (x,M) ·H + a(x,M) on R
+ ×G,(5.8)

and

M(0) = M0.(5.9)

Proof. The basic idea is to show strong convergence of {Mnm}m∈N by using
similar arguments as in the proof of Theorem 4.1.

Let Fn(t, x)
def
= F (x,Mn(t)) and ρ be as in (4.20) with H as in (5.1). As in (4.22)

one obtains

1

2
‖ρ(t)(Mn(t)−Mm(t))‖2L2(G) ≤

1

2
‖ρ(t)(Mn(0)−Mm(0))‖2L2(G)(5.10)

+ C1

∫ t

0

‖ρ(s)(Mn(s)− M̃m(s))‖2L2(G)ds

+

∫ t

0

(g1,n,m(s) + g2,n,m(s) + g1,m,n(s) + g2,m,n(s)) ds.
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Here

g1,n,m(t)
def
=

∫
G

ρ(t)2[Mn(t)−Mm(t)] · Fn(t)PH (Hn(t)−H(t)) dx,(5.11)

g2,n,m(t)
def
=

∫
G

ρ(t)2[Mn(t)−Mm(t)] · Fn(t)(1− PH) (Hn(t)−H(t)) dx(5.12)

= −
∫

R3

ρ(t)
[
M̃n(t)− M̃m(t)

]
· F̃n(t)ρ(t)(1− PH)

(
M̃(t)− M̃n(t)

)
dx,

by 5.4, where M̃(t) denotes the extension of M(t) by zero outside G. The estimate of
g2,n,m(t) can be arranged as in the proof of Theorem 4.1 using (5.2) and Lemma 3.5.

In order to estimate g1,n,m(t) let

Gn,m(t)
def
= ρ(t)2F̃n(t)

∗
[
M̃n(t)− M̃m(t)

]
.(5.13)

By (5.11) one has

g1,n,m(t) =

∫
R3

Gn,m(t) · PH (Hn(t)−H(t)) dx.

In analogy to (4.31) and (4.33) it suffices to show that∫ t

0

∫
Br

Gn,m(s) · PH (Hn(s)−H(s)) dxds
m,n→∞−→ 0(5.14)

for all t ∈ [0, T ] and r > 0.
It follows from the boundedness of {Dn}n∈N there exists some D ∈ L2((0, T ),

Lq(R3) + L2(R3)) and a subsequence {Dnm
}m∈N such that

Dnm

m→∞−→ D in L∞((0, T ), Lq(R3) + L2(R3)) weak − ∗.(5.15)

By (5.1), (5.6), and (5.15) one obtains∫
R3

H(t) · curl gdx =
d

dt

∫
R3

D(t) · gdx,

and hence, by (5.6),∫
R3

(Hn(t)−H(t)) · curl gdx =
d

dt

∫
R3

(Dn(t)−D(t)) · gdx(5.16)

for all g ∈ C∞0 (R3). From (1.8), (1.9), and the boundedness of {Mn}n∈N in

W 1,∞((0, T ), L2(G)) ∩ L∞((0, T ), L∞(G))

one obtains the equicontinuity of the family {Gn,m}n,m∈N required for Lemma 3.4.
Hence (5.14) follows from (5.1), (5.16), and Lemma 3.4. Proceeding as in the proof of
Theorem 4.1 one gets (5.7) for p = 2. By the uniform boundedness of {Mn}n∈N (5.7)
also holds for all p ∈ [2,∞). By (5.1), (5.5) it follows from this strong convergence
that (E,H,M) satisfies (5.8).
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6. The quasi-stationary limit. In what follows let αn and βn be sequences of
positive numbers with

αn
n→∞−→ 0, βn

n→∞−→ 0, and αn/βn ≤ K

with some constant K independent of n. Furthermore, let (En,Hn,Mn) be a weak
solution to (1.1)–(1.4) where ε and µ are replaced by εn = αnε and µn = βnµ,

respectively. Setting hn
def
= Hn − g0 with g0 as in (1.11) these equations read as

αnε∂tEn = εn∂tEn = curl Hn − σEn − J = curl hn − σEn,(6.1)

βnµ∂thn = µn∂tHn − βnµ∂tg0 = −curl En − βnµ∂tM̃n − βnµ∂tg0,(6.2)

on R
+ × R

3 coupled with the equation

∂tMn = F (x,Mn) ·Hn + a(x,Mn)(6.3)

on R
+ ×G, with initial conditions (1.3) and (1.4).
Proof of Theorem 1.1. Let T > 0 be arbitrary large. From (6.1) and (6.2) one

obtains the energy balance

1

2

d

dt
‖(α1/2

n En(t), β
1/2
n hn(t))‖2X(6.4)

= −
∫

R3

En(t)σEn(t)dx− βn

∫
G

µhn(t)∂tM(t)dx− βn

∫
R3

µhn(t)∂tg0(t)dx.

This gives

1

2
‖(α1/2

n β−1/2
n En(t),hn(t))‖2X(6.5)

≤ 1

2
‖(α1/2

n β−1/2
n E0,h0)‖2X − β−1

n

∫ t

0

∫
R3

En(s)σEn(s)dxds

+

∫ t

0

(
‖µ1/2hn(s)‖2L2(R3) + ‖µ1/2∂tMn(s)‖2L2(G) + ‖µ1/2∂tg0(s)‖2L2(R3)

)
ds.

From (1.5), (4.4) one obtains the following bound on Mn:

‖Mn‖L∞((0,T ),L∞(G)) + ‖Mn‖L∞((0,T ),L2(G)) ≤ C1.(6.6)

By assumption (1.8), (1.9), (6.3), and (6.6) one obtains∫ t

0

‖µ1/2∂tMn(s)‖2L2(G)ds ≤ C2

∫ t

0

(1 + ‖F (x,Mn(s))‖L∞(G)‖µ1/2Hn(s)‖L2(R3))
2ds

≤ C3

(
1 +

∫ t

0

‖µ1/2hn(s)‖2L2(R3)ds

)
.
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Next, (6.5) and this estimate yield ‖(α1/2
n β

−1/2
n En(t),hn(t))‖2X ≤ C4, and hence

αn‖En‖L∞((0,T ),L2(R3)) ≤ C5α
1/2
n β1/2

n , ‖Hn‖L∞((0,T ),L2(R3)) ≤ C5(6.7)

and

‖σEn‖L2((0,T ),L2(R3)) ≤ C5β
1/2
n .

Furthermore, assumption (1.8), (1.9), (6.3), (6.6), and (6.7) also give

‖∂tMn‖L∞((0,T ),L2(G)) ≤ C5(6.8)

with some constant C5 independent of n.

By (6.6) and (6.7) there exists a subsequence {(Enm ,Hnm ,Mnm)}m∈N such that

Hnm

m→∞−→ H in L∞((0, T ), L2(R3)) weak ∗,(6.9)

Mnm

m→∞−→ M in L∞((0, T ), L∞(G)) weak ∗,(6.10)

and in W 1,2((0, T ), L2(G)) weakly.

By (2.4), assumption (1.6), (2.6), and (6.2) one has

(1− PH)
(
Hnm

(t) + M̃nm
(t)
)
= (1− PH)

(
H0 + M̃0

)
= 0.(6.11)

Next, (6.1) and (6.7) imply that

curl Hn − J = αnε∂tEn + σEn
n→∞−→ 0 in D′ ((0,∞)× R

3
)
.

Hence, one obtains from (6.9)–(6.11) that

curl H = J and div
(
µ
[
H + M̃

])
= 0 on (0,∞)× R

3.(6.12)

Now, Theorem 5.1 will be applied. By (6.9), (6.10), and (6.11) the conditions (5.1)–
(5.4) are fulfilled, and by (6.1) and (2.6) one has∫

R3

Hnm(t) · curl gdx =
d

dt

∫
R3

Dnm(t) · gdx for all g ∈ C∞0 (R3),

with

Dn(t)
def
= αnεEn(t) +

∫ t

0

(σEn(s) + J(s)) ds,

which is bounded in L∞((0, T ), L2(R3)) by (6.7). Thus, assumption (5.6) is also
satisfied. Finally, the assertion follows from (6.12) and Theorem 5.1.

Remark 1. By (2.2), (2.4), and (1.11) it follows that (1.14) is fulfilled if and only
if

H(t)
def
= PHg0(t)− (1− PH)M̃(t) for all t ∈ (0,∞).(6.13)
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Lemma 6.1. Suppose that in addition F is given by

F (x,m)h = −γ(x)m ∧ h for all x ∈ G,m ∈ R
3 and h ∈ R

3(6.14)

with some function γ ∈ L∞(G). The solution to problem (1.14)–(1.16) is unique and
(1.12), (1.13) hold for the whole sequence.

Proof. Suppose that (H(1),M(1)) and (H(2),M(2)) are the solution to problem
(1.14)–(1.16). Then, it follows from the boundedness of M(j) and assumption (1.8)
that

1

2

d

dt
‖M(1)(t)−M(2)(t)‖2L2(G)(6.15)

= −
∫
G

γ(M(1)(t)−M(2)(t)) · (M(1)(t) ∧H(1)(t)−M(2)(t) ∧H(2)(t))dx

+

∫
G

(M(1)(t)−M(2)(t)) · (a(x,M(1)(t))− a(x,M(2)(t)))dx

≤ −
∫
G

γ(M(1)(t)−M(2)(t)) ·M(1)(t) ∧ (H(1)(t)−H(2)(t))dx

+ C1‖M(1)(t)−M(2)(t)‖2L2(G)

≤ C2‖M(1)(t)−M(2)(t)‖2L2(G) + C2‖H(1)(t)−H(2)(t)‖2L2(G).

Invoking Remark 1 and (1.14) one obtains

H(1)(t)−H(2)(t) = −(1− PH)
(
M̃(1)(t)− M̃(2)(t)

)
,

in particular

‖H(1)(t)−H(2)(t)‖2L2(R3) ≤ C3‖M(1)(t)−M(2)(t)‖2L2(G).(6.16)

Finally, it follows from (6.15) and (6.16) that M(1) = M(2) and also H(1) = H(2) by
(1.14) again.
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THE 2-DIMENSIONAL RIEMANN PROBLEM
FOR A 2× 2 HYPERBOLIC CONSERVATION LAW
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Abstract. We construct the solutions for a two-dimensional (2-D) Riemann problem for a
2 × 2 hyperbolic nonlinear system based upon the Keyfitz–Kranzer–Isaacson–Temple model. The
system is applicable to polymer flooding of an oil reservoir; the parameterization can be adjusted to
model either isotropic or anisotropic media. For isotropic media, the solutions are obtained by two
methods. The first method utilizes a transformation into a one-dimensional (1-D) Cauchy problem.
Such a transformation requires conformity of the x- and y-directional fluxes in the system. The
second method involves a 2-D constructive technique which can be used more generally for solving
systems. For the isotropic media case, we explicitly construct solutions for the so-called single and
four quadrant Riemann problems by both methods and demonstrate the equality of the solutions.
This has relevance as a test for the 2-D solution method, as existence and uniqueness results for
solutions of systems in 1-D are known, whereas no such results exist for systems in 2-D.

Key words. Riemann problems, hyperbolic systems, conservation law
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1. Introduction. The existence and uniqueness theory for the scalar hyper-
bolic equation in multiple space dimensions is largely complete [4, 15, 26, 27]. The
theory gives little insight into the form of the solutions which (e.g., [31, 24]) can
possess interesting qualitative behavior. Since the solutions to multidimensional Rie-
mann problems are also important for numerical computation, recent literature has
concentrated on finding the solution to the general Riemann problem in two space
dimensions. As no general theory exists for systems in multiple space dimensions,
the two-dimensional (2-D) Riemann problem for systems must be computed on a case
by case basis. Thus, our general interest is the achievement of a 2-D constructive
technique which would be generally applicable for systems.

The study of the 2-D Riemann problem was initiated by Guckenheimer [10].
Further analyses of the 2-D scalar conservation law (1.1),

st + f(s)x + h(s)y = 0,(1.1)

have appeared in [17, 18, 28, 31, 32, 33]. In a 2-D Riemann problem, the initial data
is piecewise constant in wedge-shaped regions surrounding the origin. Wagner [28]
constructed the solution for the four quadrant (90 degree regions) Riemann problem
in the case of f ≡ h, where f, h are convex. Lindquist [17] showed that unique solu-
tions to the arbitrary wedge problems are piecewise smooth when f ≡ h and f has at
most one inflection point. In a companion work [18], Lindquist outlined a systematic
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method for construction of such solutions in terms of 2-D nonlinear waves. Zhang and
Zheng [33] constructed the solution for the four quadrant Riemann problem under the
extended condition fss �= 0, hss �= 0, and ∂s (fss/hss) �= 0. Chen, Li, and Tan [3]
studied the dependence of the structure of the solution on the initial data values as
well as wedge angles for the particular case of Riemann data arranged in three wedges.

A body of work has also developed for the important case of the Euler sys-
tem of conservation laws modeling gas dynamics in two dimensions. A good sum-
mary is provided in the book by Chang (Zhang) and Hsiao [1]. Glimm et al. [6]
presented a list of generic, steady (in some reference frame) waves (referred to as
“nodes” by the authors) expected in 2-D Riemann problem solutions of the Euler
equations. In [34], Zhang and Zheng presented conjectures on the classification and
structure of the 2-D solutions to the four quadrant Riemann problem for the Euler
equations of gas dynamics with a polytropic equation of state. In preparatory work
for this conjecture, Tan and Zhang [22, 23] constructed analytic solutions for the
simplified model

ut + (u2)x + (uv)y = 0,(1.2)

vt + (uv)x + (v2)y = 0.(1.3)

Yang and Zhang [29] verified the analytic solutions for (1.2), (1.3) numerically us-
ing the maximum-minimum bounds (MmB) preserving scheme. In [19], Schulz-
Rinne presented a correction to the conjectured classification for the Euler equations.
He showed that one of the solutions classified from the conjecture [34] is impos-
sible. Schulz-Rinne, Collins, and Glaz [20] computed numerical Riemann problem
solutions to the Euler equations in gas dynamics using the second order Godunov
method and confirmed that, with the exception of one case, the conjectured solu-
tions agree closely with the numerical results. Chang (Zhang), Chen, and Yang
[2] performed numerical simulation for the Euler equations in gas dynamics with
the MmB scheme to check the conjecture [34]. Lax and Liu [16] demonstrated
that the numerical solution for the Euler equations obtained with their positive
scheme are strikingly consistent with calculations by Schulz-Rinne, Collins, and Glaz
[20]. Zhang and Zheng [35] obtained exact spiral solutions of the 2-D Euler equa-
tions. Zhang, Li, and Zhang [30] considered the 2-D Riemann problem for the
pressure-gradient equations of the Euler system in the case of four quadrant
initial data.

Other related work on Riemann problems has provided qualitative insights on 2-D
wave interactions [5]; introduced a new type of nonlinear hyperbolic wave, a delta-
shock wave, which is a Dirac delta function supported on a shock [24]; solved the
2-D Riemann problem for the transportation equations in the case of four quadrant
initial data [21]; studied the solution of the 2-D Riemann problem of Hamilton Jacobi
equations[7]; and examined Riemann problems in higher dimensions [8, 9].

In this paper and in part II [11], our interest is twofold.

The first is to develop the solutions to a class of 2-D Riemann problems for a 2×2
hyperbolic system based upon the Keyfitz–Kranzer–Isaacson–Temple model [14, 12,
25] which provides a model for polymer flood recovery in an oil reservoir with either
an isotropic or anisotropic medium. This 2× 2 system exhibits the distinctive feature
that, regardless of the flux function, the second wave family is linearly degenerate,
exhibiting only contact discontinuities and constant states. In this sense the system
is the “simplest 2× 2 system” beyond a scalar equation.
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Fig. 1. General 2-D Riemann problem initial data.

Our second interest is the continued development of a 2-D Riemann problem
solution constructive technique which has been generalized from that used in [18] for
scalar equations. Recently, Zhang and Zhang [31] have classified the shock (S) and
rarefaction (R) elementary waves into four types, S+, S−, R+ and R−, discussed the
allowed interactions amongst them, and generalized the characteristic based solution
construction method. The constructive method is based upon the existence of base
points and base curves in the space of variables ξ = x/t, η = y/t which govern the
location of shocks, rarefactions and contact discontinuities in the self-similar growth of
the 2-D Riemann problem solution. In part II of this paper [11] we show the existence
of both flux function dependent and flux function independent relationships among
these points and curves. In this paper, our interest in the constructive technique is to
show, by example, that the technique is capable of providing correct, unique solutions
(when they exist) to a 2× 2 system Riemann problem.

For the isotropic media parameterization of our model, solutions can be obtained
by two methods. The first method utilizes a transformation into a one-dimensional
(1-D) Cauchy problem. (Such a transformation requires conformity of the x- and
y-directional fluxes in the system.) The second method is via the 2-D constructive
technique. For the isotropic media case, we construct solutions by both methods and
demonstrate equality. This provides a test for the 2-D solution method, as existence
and uniqueness results for solutions of systems in one dimension are known, whereas
no such results exist for systems in two dimensions.

The Riemann problem in two spatial dimensions for a system of n conservation
laws is the problem

Ut + F (U)x + H(U)y = 0,(1.4)

with solution and flux vectors U = (u1, u2, . . . , un), F = (f1(U), f2(U), . . . , fn(U)),
H = (h1(U), h2(U), . . . , hn(U)), and initial data that is piecewise constant on a finite
number r of wedges centered on the origin x = 0, y = 0 as shown in Figure 1; i.e.,

U(0, x, y) = Ui, i = 1, . . . , r,

where, for each i, x and y lie in the wedge between the half lines determined by the
parametric equations[

xi = τ cos(θi), yi = τ sin(θi)
xi+1 = τ cos(θi+1), yi+1 = τ sin(θi+1)

]
, 0 ≤ τ <∞, r + 1 ≡ 1

for r ordered, counterclockwise positive angles 0 ≤ θ1 < θ2 < · · · < θr < 2π . Of
particular interest is the four wedge problem with wedges corresponding to the four
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quadrants (θ1 = 0, θ2 = π/2, θ3 = π, θ4 = 3π/2) of the spatial plane, since such initial
data is pertinent to numerical finite difference schemes. We also consider the “single
quadrant” Riemann problem having θ1 = π/2, θ2 = π. (The choice of the quadrant is
discussed in section 3.1.)

In much of the work on systems [16, 19, 20, 21, 22, 23, 24, 29, 30, 34, 35], the initial
Riemann data is restricted so that the presence of a single wave is always guaranteed
to develop from each initial discontinuity. This has some physical justification, in that
the majority of physical observations involve the study of a single propagating wave
type. It is, nonetheless, a restrictive assumption when considering wave interactions,
which in general, for an n×n system, would produce n postinteraction waves. For this
reason we make no such restriction on the initial Riemann data in the development
of our solutions.

In section 2, we present the specifics of our 2 × 2 system. In section 3, we
consider 2-D Riemann problems for (1.4) for the isotropic media parameterization
of our model: H(U) = αF (U), where α is a constant. Both single quadrant and
four quadrant initial Riemann data are considered. Solutions are developed by both
methods and compared.

2. The model. The Keyfitz–Kranzer–Isaacson–Temple 2× 2 system of conser-
vation laws in one space dimension is

st + f(s, c)x = 0,(2.1)

(cs)t + (cf(s, c))x = 0,(2.2)

where the physical state variables U = (s, c) are

s = water saturation, 0 ≤ s ≤ 1,

c = concentration of polymer, 0 ≤ c ≤ 1.

This system models the polymer flooding of an oil reservoir by generalizing the
Buckley–Leverett equation which models a two phase water-flood process. In the
polymer flood, a (generally small) amount of polymer is added to the water to in-
crease the sweep efficiency of oil production. The model assumes the polymer is
completely miscible in the water phase and undergoes no mass transfer into the oil
phase. See [12] for details of the model.

Regardless of the form of f , this model contains two families of waves, a c-family
consisting of a contact discontinuity, and an s-family identical to the scalar family
(2.1) with c held a constant. The functional forms for f(·, ·) commonly used with
this model in enhanced oil recovery [12, 13] and elasticity [14] studies contain a single
inflection point, and the s-family thus consists of compound waves composed of a Lax
shock and a rarefaction fan.

In order to partially eliminate the complexity introduced by the compound waves
in the s-family, we simplify to a convex function f . A representative example for f is

f(s, c) = s2[1 + A(1− c)(1− s)], 0 < A < 1/2, 0 ≤ s, c ≤ 1,(2.3)

having the form shown in Figure 2.
In analyzing the solutions to (2.1), (2.2) it is convenient to introduce the change

of variables

s, c→ s, b ≡ sc,



2-D RIEMANN PROBLEM FOR ISOTROPIC MEDIA 345

0.0 s 1.0

0.0

1.0

c=0.0

c=1.0

c=0.5

f(s,c)
A

Fig. 2. The flux function for the model.

and introduce

g ≡ f(s, c)/s.

For smooth solutions to (2.1), (2.2) the eigenvalues, right eigenvectors, and Riemann
invariants for the two families of waves are

λs = fs, λc = g,

rs = (s, b), rc = (−gb, gs),
W s = c, W c = g,

independent of the form of f [12]. The Rankine–Hugoniot relations, also independent
of the form of f , are

cl = cr, gl = gr,

σs =
[f ]

[s]
, σc = gl = gr.

For convex functions such as (2.3), the system remains strictly hyperbolic; the eigen-
values of the two families coinciding only on the axis s = 0. For a strictly hyperbolic
system, Figure 3 shows the Hugoniot/rarefaction solution curves for the four general
cases of a 1-D Riemann problem UL → URi . UMj denotes the intermediate state in
each solution.

We extend the model (2.1), (2.2) to two space dimensions in a manner that has
physical relevance. For spatially isotropic media, the extension is

H(U) = αF (U), F (U) ≡ (f, cf),(2.4)

with α = constant. For anisotropic media, having principle axes aligned in the x
and y directions, F (U) and H(U) would most likely differ in the value of one or more
physical parameters, for example, in the value of A in (2.3). Our model for anisotropic
media is then

st + fA(s, c)x + fB(s, c)y = 0,(2.5)

(cs)t + (cfA(s, c))x + (cfB(s, c))y = 0,(2.6)
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Fig. 3. The Hugoniot and rarefaction curves for the four general solution cases to the 1-D
Riemann problem in the model.

where

fA(s, c) = s2[1 + A(1− c)(1− s)], with 0 < A < 1/2,

fB(s, c) = s2[1 + B(1− c)(1− s)], with 0 < B < 1/2.
(2.7)

s and c have the same range of values as in the 1-D model.

There are several reasons for considering this model. One is physical, its relevance
for flow in porous media. The remainder are mathematical. Note that system (2.5),
(2.6) can be written

st + (sgA(s, b))x + (sgB(s, b))y = 0,(2.8)

bt + (bgA(s, b))x + (bgB(s, b))y = 0,(2.9)

with gα(s, b) ≡ fα(s, b)/s, α = A,B. Any system of this form remains hyperbolic
in any spatial direction regardless of the form of the (real-valued) functions gA and
gB ! The model can be viewed as the simplest extension from a scalar equation to
a hyperbolic system in the sense that the second family of waves introduced (the c-
wave family) is linearly degenerate, producing only contact discontinuity waves. The
restrictions (2.7) on the flux functions guarantee fAss �= 0, fBss �= 0 and ∂

∂s (fAss/f
B
ss) �= 0

for any s ∈ (0, 1], c ∈ [0, 1]. This in turn guarantees [33] that the s-wave family
is genuinely nonlinear in all spatial directions except one (along which it becomes
linear).

As we shall see, a result of the linear degeneracy of the second wave family is a
division of the solution space t, x, y into regions where the solution is governed by a
scalar equation, the boundary between these regions being the contact discontinuity.
This will ultimately guarantee the computation of globally unique solutions.

As the 2-D Riemann problem is self-similar, the solution needs to be constructed
only in a single t = const plane; the usual choice is t = 1. The construction
method developed in [18, 31] assembles the global solution in this plane by “join-
ing together” elementary waves (shocks, rarefactions, their composite waves, and
contacts). For scalar equations in two dimensions, global uniqueness of the solu-
tion results implicitly by ensuring the elementary waves obey local entropy conditions
due to Vol’pert [27] or Kruzkov [15]. For systems, no such general local entropy
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conditions exist and global uniqueness becomes an issue. In particular, no gen-
eral uniqueness theory exists that is applicable to the system under consideration
here.

The 2-D Riemann problem for the case of isotropic media (2.4) is the B → A
limiting case of anisotropic media. We deal with the isotropic case separately in this
paper since it provides information both as to the form and uniqueness of the global
solutions for the more general anisotropic problem.

The isotropic case is amenable to two solution methods. Under rotation by
θ = tan−1 α, the 2-D problem converts into uncoupled, 1-D Cauchy problems

Ut + sec(θ)F (U)ξ = 0, (x, y)→ (ξ, η),(2.10)

whose initial data can be described as interacting Riemann problems [17, 18]. Ex-
istence and uniqueness for this system in one dimension is known [12]. Thus com-
parison of the rotated 1-D and direct 2-D construction methods is a check that the
direct 2-D construction method is producing the correct unique global solution. In
fact, as we shall see for this system, all 2-D solutions consist of two separate solu-
tion regions whose common boundary is a contact discontinuity. In each of these
two regions the variable c is constant in value; in each region the solution reduces
to that of a scalar Riemann problem, to which the existence and uniqueness condi-
tions of Vol’pert and Kruzkov can be applied. The comparison with the rotated 1-D
solution thus provides verification that this spatial decomposition into two regions sep-
arated by the contact discontinuity is unique. This uniqueness is exploited in part II
of this paper [11].

3. Isotropic media. We consider the system

st + f(s, c)x + αf(s, c)y = 0,(3.1)

(cs)t + (cf(s, c))x + α(cf(s, c))y = 0(3.2)

with the form of f consistent with the behavior of example (2.3). Without loss of
generality, we take α = 1. Under the transformation

ξ = (x + y)/2, η = (y − x)/2

(a rotation of π/4 = tan−1(1) combined with a dilation by a factor of
√

2), the system
(3.1), (3.2) becomes

st + f(s, c)ξ = 0,(3.3)

(cs)t + (cf(s, c))ξ = 0.(3.4)

From (3.3), (3.4) we see that the solution can be obtained in each (ξ, η = const, t)
plane independent of other η. In particular, this implies the solutions obtained in
the η < 0 half-space can be obtained independently of the solutions in the η > 0
half-space. The catalog of solutions in both half-spaces is the same; for any particular
2-D Riemann problem, the solutions in the two half-spaces join in a consistent manner
along the η = 0 axis [17, 18]. We therefore restrict our discussion to the half-space
η > 0 (y > x).

Solution topology depends on initial data values in the Riemann problem wedges.
We present the complete catalog of solution topologies for the single and four quadrant
Riemann problems in section 3.1 and section 3.2, respectively.
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Fig. 4. The single quadrant Riemann problem: (a) the initial Riemann data; (b) the wedge
geometry; (c) the initial 1-dim Cauchy data along a line η = η0; (d) the solution wave curves for
the transition (s1, c1)→ (·, c2) producing the intermediate state (s2∗ , c2).

3.1. The single quadrant Riemann problem. For the single quadrant prob-
lem the wedge angles are θ1 = π/2 and θ2 = π. The initial Riemann problem data
is shown in Figure 4(a) and the rotated (ξ, η) coordinate system is sketched in Fig-
ure 4(b). Figure 4(c) shows the initial 1-D Cauchy data along a line η = η0. Number-
ing the four quadrants clockwise from the negative y-axis (see Figure 9(a)) we note
that of the four possible single quadrant choices, choosing 2 or 4 will produce equiv-
alent solutions; choosing 1 or 3 leads to trivial solutions as either quadrant choice
results in two initial data discontinuities, one above and one below the η = 0 plane.
In this case waves emanating from the discontinuity in the η > 0 plane propagate
independently of those emanating from the discontinuity in the η < 0 plane.

Avoiding the choice c1 = c2 which reverts to the scalar problem, there are four
possible classes of initial data U1 and U2 for the single quadrant problem:

case 1 c1 > c2, s2∗ ≥ s2;
case 2 c1 > c2, s2∗ < s2;
case 3 c1 < c2, s2∗ ≥ s2;
case 4 c1 < c2, s2∗ < s2,

where the intermediate state U2∗ = (s2∗ , c2) is defined in Figure 4(d). Only the
first two cases lead to topologically distinct solutions; cases 1 and 3 have the same
structure as cases 2 and 4. We label the two distinct topologies by their structure “at
spatial infinity” (i.e., R → ∞, R2 ≡ x2 + y2). Thus case 1 (and case 3) topology is
characterized by a contact and a shock wave propagating in the y-direction, a contact
and rarefaction wave propagating in the x-direction. This topology is labeled CSCR.
Case 2 (and case 4) topology is reversed and is labeled CRCS.

3.1.1. The single quadrant CSCR solution. We first present the solution
obtained by rotating into a 1-D Cauchy problem. We will be brief in our discus-
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Fig. 5. CSCR solution of the single quadrant Riemann problem: (a) wave curves in phase
space for the Riemann problems at ξ = ±η0 (C, S, and R represent contact discontinuity, shock, and
rarefaction wave, respectively); (b) the solution construction on the flux functions for the Riemann
problems at ξ = ±η0 and for the shock separating the states U1∗ and U1; (c) the solution in the
t, ξ, η0 plane.

sion of the solution as it involves well-known general 1-D Cauchy problem solution
construction methods based upon the particular Riemann problem solution for this
model [12].

On the line η = η0, the initial data discontinuities are positioned at ξ = ±η0. The
U1 → U2 transition at ξ = −η0 results in a contact (speed g1) and shock (speed σ2∗,2)
wave and an intermediate state U2∗ . The U2 → U1 transition at ξ = η0 results in a
contact (speed g2) and rarefaction (characteristic speeds between f ′(s1∗) and f ′(s1))
fan and an intermediate state U1∗ . Figure 5(a) shows the phase space solution for
these two separate Riemann problems. Details on solving for the states U1∗ = (s1∗ , c1)
and U2∗ = (s2∗ , c2) are given in the appendix.

The shock emanating from ξ = −η0 and the contact from ξ = η0 interact at a later
time, resulting in a Riemann problem between the states U2∗ and U1∗ . This Riemann
problem produces a contact (speed g1) and a shock σ1∗,1. Figure 5(b) presents the
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solution construction on the flux functions for the Riemann problems at ξ = ±η0 for
this contact-shock interaction.

The shock of speed σ1∗,1 interacts with the rarefaction fan. As a result the shock
speed increases, approaching an asymptotic speed of f ′(s1). Figure 5(c) shows the
entire solution in the t, ξ, η0 plane. The solution in any other plane t, ξ, η > 0 is
self-similar to this.

Basic principles for the direct 2-D Riemann problem solution construction method
are outlined in [18, 31]. (The terminologies are slightly different.) The 2-D solution
method is discussed fully in part II of this paper [11] for application to the anisotropic
medium model. This discussion carries over to the isotropic model by setting B = A.
With a view to introducing necessary notation, the relevant principles in the con-
struction method, specialized to the isotropic medium model, are briefly stated here.
• The construction is performed in the t = 1, x, y plane. For brevity, we henceforth

suppress the t = 1 label for points in this plane.
• If p is a point (in this x, y plane) on a c-family contact discontinuity separating

the two states (sl, cl) and (sr, cr), the tangent line to the contact discontinuity at p
passes through the two contact base points gl and gr having coordinate values

gl = (g(sl, cl), g(sl, cl)) and gr = (g(sr, cr), g(sr, cr)).(3.5)

From the contact discontinuity Rankine–Hugoniot conditions, these two points are
identical, gl = gr.
• If p is a point on an s-family shock separating the two states (sl, c) and (sr, c),

the tangent line to the shock at p passes through the shock base point σlr having
coordinate values

σlr = (σ(sl, sr), σ(sl, sr)),(3.6)

where

σ(sl, sr) ≡ f(sl)− f(sr)

sl − sr
.(3.7)

• s-family shocks develop in regions of constant c, i.e., in regions where the prob-
lem reduces to being scalar. Thus Kruzkov’s entropy conditions are applicable, these
are shown in [11] to reduce to familiar Lax shock conditions and become easily veri-
fiable angle restrictions in the case of the isotropic model.
• An s-family level curve (i.e., characteristic in an s-family rarefaction fan) hav-

ing state value (sp, cp) is a straight line segment whose tangent passes through the
characteristic base point f ′(p) having coordinate values

f ′(p) = (fs(sp, cp), fs(sp, cp)),(3.8)

where the subscript represent the differentiation with respect to s.
The 2-D construction of solutions for the case of an isotropic medium simplifies

since all base points lie along the line y = x in the t = 1 plane. (This is not true in
the anisotropic medium case.)

Figure 6 displays the solution obtained by the 2-D construction method in the
t = 1, x, y plane. The solution for any other t > 0 is self-similar to this. Con-
stant states and relevant base points on the line y = x are labeled. As stated, our
interest in this paper is to verify that the 2-D construction method produces the cor-
rect globally unique solution by comparing against the rotated 1-D solutions. Thus
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Fig. 6. Direct 2-D construction of the CSCR solution of the single quadrant Riemann problem
in the t = 1, x, y plane.

it is necessary to compare the solution in Figure 5(c) (which is self-similar in η)
to the solution in Figure 6 (which is self-similar in t). While a mapping between
these two solutions can be formally derived [17], examination of qualitative features
of this map are enough to determine that the two solutions are indeed identical.
First, a cut through the solution in Figure 6 along the line y = x + 2η0 should
be identical to a t = 1 cut through the solution in Figure 5. A cut through the
solution in Figure 6 along any line y = x + 2η for η < η0 should correspond to
a constant t cut through the solution in Figure 5 for some t > 1. As the value
of η → 0, the corresponding value for t → ∞. Similarly, a cut through the so-
lution in Figure 6 along any line y = x + 2η for η > η0 should correspond to a
constant t cut through the solution in Figure 5 for some t < 1. As the value of
η → ∞, the corresponding value for t → 0. Comparison of such qualitative fea-
tures between the two figures easily verifies the identical nature of the two solu-
tions.

3.1.2. The single quadrant CRCS solution. Figure 7(a)–(c) presents the
analogous 1-D rotated solution construction for the CRCS topology solution. Figure 8
presents the direct 2-D solution construction. Again, qualitative comparison reveals
that the direct construction is computing the globally unique solution.

We draw attention to an important characteristic feature of the solutions in Fig-
ures 6 and 8. The continuous contact discontinuity wave divides the solution into
two regions, each region having constant concentration value c. In each such re-
gion, the solution is governed by a scalar equation in two dimensions. Existence and
uniqueness of the construction of the solution in these regions should be governed by
multidimensional scalar theory, i.e., by the work of Vol’pert and Kruzkov, and hence
the direct construction method employed, which is based upon the Rankine–Hugoniot
and entropy conditions of this work, should produce a unique solution in each region.

It is also interesting to note the physical diffraction present in the solution in Fig-
ure 8. The contact discontinuity separates regions of different polymer concentration.
The polymer concentration is acting like an index of refraction. Rarefaction waves
emerging from one region into the other are diffracted according to a “Snell’s law.”
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Fig. 7. CRCS solution of the single quadrant Riemann problem: (a) wave curves in phase
space for the Riemann problems at ξ = ±η0 (C, S, and R represent contact discontinuity, shock, and
rarefaction wave, respectively); (b) the solution construction on the flux functions for the Riemann
problems at ξ = ±η0 and for the shock separating the states U1∗ and U1; (c) the solution in the
t, ξ, η0 plane.

The situation is dynamic, however, in that the interaction of the rarefaction waves
with the contact also dynamically determines not only the strength of the diffraction
but the boundary position at which the diffraction occurs.

3.2. The four quadrant Riemann problem. We now turn to the problem of
initial data specified in the four quadrants (Figure 9(a)). We will present the solution
in the t = 1, x, y plane as computed by the direct 2-D solution method. For brevity,
we do not show the 1-D rotated solutions; they are identical to those constructed
directly in two dimensions.

As noted previously, we need only catalog the solution forms in the half-space
y ≥ x (η ≥ 0) as this produces the same catalog of solutions as in the half-space
y ≤ x. Thus we need not consider data in quadrant 4. Given initial data U1 = (s1, c1),
U2 = (s2, c2), U3 = (s3, c3), we consider only the cases in which c1, c2, and c3 all
differ. There are 36 possible orderings of the initial data U1, U2, U3, but only four
topologically distinct solutions for the isotropic model. The four distinct cases, again
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labeled by the waves which appear “at spatial infinity,” are

case CRCR c1 < c2 < c3, s1 ≤ s1∗∗ , s3∗∗ ≤ s3;
case CSCS c3 < c2 < c1, s3 ≤ s3∗∗ , s1∗∗ ≤ s1;
case CSCR c2 < c1 ≤ c3, s2 ≤ s2∗∗ , s3∗∗ ≤ s3;
case CRCS c1 ≤ c3 < c2, s1 ≤ s1∗∗ , s2∗∗ ≤ s2,

where, for ci < cj < ck, the states Ui∗∗ , Uj , Uk∗∗ lie on the c-family Hugoniot locus
passing through state Uj as shown in Figure 9(b).

The phase space portrait of the Hugoniot and rarefaction curves for case CRCR
are shown in Figure 10(a); relevant wave speed computations are shown in Fig-
ure 10(b). The solution in the t = 1, x, y plane, showing constant states and relevant
base points, is given in Figure 10(c). The intermediate state saturation values s2∗ ,
s3∗ , and s3∗∗ are found using the same procedure given in the appendix.
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Fig. 10. CRCR solution of the four quadrant Riemann problem: (a) wave curves in phase space
and (b) solution construction on the flux functions for the relevant Riemann problems encountered in
the solution; (C, S, and R represent contact discontinuity, shock, and rarefaction wave, respectively);
(c) the solution in the t = 1, x, y plane.

Similar plots for the CSCS, CSCR, and CRCS cases are given, respectively, in
Figures 11, 12, and 13.

If the y < x solution half of the solution is included, then in the general case
where c1, c2, c3, and c4 are all different in value, the solution will consist of four
distinct regions in each of which c remains at the initial concentration value. These
regions are separated by a piecewise smooth contact discontinuity boundary. In each
region the solution is governed by a scalar equation, and the solution constructed
by the direct 2-D method utilizing Rankine–Hugoniot and entropy conditions due to
Kruzkov will be unique.

4. Discussion. We have verified that the 2-D Riemann problem construction
method outlined in [11] produces the globally unique solution to the isotropic medium
model (3.1), (3.2) for single and four quadrant initial data.

From the phase space constructions we note that, in this model, there is no
method for introducing values of concentration that are not present in the initial



2-D RIEMANN PROBLEM FOR ISOTROPIC MEDIA 355

c

c

c

2 2 2 2

** ***

* ***

* **

C

C

S

S

1

3
3

1 1

3

1

3

g
3

g
2

g
1

s

f

**

***

2

2

2

*

*

**

***

3

3

3

1

1

1

f(s,c1)

f(s,c2)

f(s,c3)

g
3

g
2

g1

(a) (b)

g

U

U

U

U

U

1

***

***

** U

g
2

σ
σ

σ

3

3

3

**

***

***

3

3

3**

σ
2*** 2

1

2 3

2

3

3

,
,

,

,

(c)

Fig. 11. CSCS solution of the four quadrant Riemann problem: (a) wave curves in phase space
and (b) solution construction on the flux functions for the relevant Riemann problems encountered in
the solution; (C, S, and R represent contact discontinuity, shock, and rarefaction wave, respectively);
(c) the solution in the t = 1, x, y plane.

data; similarly, there is no mechanism for eliminating a concentration value present
in the initial data. This observation would hold for a Riemann problem consisting of
a general (finite) number of wedges. Thus the general wedge 2-D Riemann problem
solution must consist of r different regions of constant concentration, where r is the
number of different concentrations in the initial data. These r regions will be joined
by piecewise smooth contact discontinuities. The solution within each region will
be governed by a scalar equation, and the solution constructed by the direct 2-D
method utilizing Rankine–Hugoniot and entropy conditions due to Kruzkov will be
unique.

5. Appendix. Computation of s1∗ . The saturation value for the intermedi-
ate state U1∗ in the single quadrant CSCR topology is computed as follows. For given
values s2, c1 and c2, s1∗ can be computed from the Rankine–Hugoniot relation

gA(s1∗ , c1) = gA(s2, c2).(A.1)
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Fig. 12. CSCR solution of the four quadrant Riemann problem: (a) wave curves in phase space
and (b) solution construction on the flux functions for the relevant Riemann problems encountered in
the solution; (C, S, and R represent contact discontinuity, shock, and rarefaction wave, respectively);
(c) the solution in the t = 1, x, y plane.

Let gA2 ≡ gA(s2, c2). Solving (A.1) for s1∗ produces the quadratic

A1(s1∗)2 − (1 + A1)s1∗ + gA2 = 0,(A.2)

where A1 ≡ A(1 − c1). The quadratic has two solutions s+, s− where s+ > s−. As
s+ > 1 and s− ∈ (0, 1), the appropriate value for s1∗ is s−.

Computation of s2∗. Computation of s2∗ proceeds as for s1∗ using the relation

gA(s2∗ , c2) = gA(s1, c1).(A.3)

Solving for s2∗ again results in a quadratic with the appropriate solution value being
the unique root lying in the range (0, 1).
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Fig. 13. CRCS solution of the four quadrant Riemann problem: (a) wave curves in phase space
and (b) solution construction on the flux functions for the relevant Riemann problems encountered in
the solution; (C, S, and R represent contact discontinuity, shock, and rarefaction wave, respectively);
(c) the solution in the t = 1, x, y plane.

REFERENCES

[1] T. Chang and L. Hsiao, The Riemann Problem and Interaction of Waves in Gas Dynamics,
Pitman Monogr. Surveys Pure Appl. Math. 41, Longman Scientific and Technical, Harlow,
UK, 1989.

[2] T. Chang, G. Chen, and S. Yang, On the Riemann problem for 2-D compressible Euler
equations I. Interaction of shocks and rarefaction waves, Discrete Contin. Dynam. Systems,
1 (1995), pp. 555–584.

[3] G. Chen, D. Li, and D. Tan, Structure of Riemann solutions for 2-dimensional scalar con-
servation laws, J. Differential Equations, 127 (1996), pp. 124–147.

[4] E. Conway and J. Smoller, Global solutions of the Cauchy problem for quasi-linear first order
equations in several space variables, J. Comm. Pure Appl. Math., 19 (1966), pp. 95–105.

[5] J. Glimm, The interaction of nonlinear hyperbolic waves, Comm. Pure Appl. Math., 41 (1988),
pp. 569–590.

[6] J. Glimm, C. Klingenberg, O. McBryan, B.Plohr, D. Sharp, and S. Yaniv, Front tracking
and two-dimensional Riemann problems, Adv. Appl. Math., 6 (1985), pp. 259–290.

[7] J. Glimm, H.C. Kranzer, D. Tan, and F.M. Tangerman, Wave fronts for Hamilton-Jacobi
equations: The general theory, Comm. Math. Phys., 187 (1997), pp. 647–677.



358 WOONJAE HWANG AND W. BRENT LINDQUIST

[8] J. Glimm and D. Sharp, An S matrix theory for classical nonlinear physics, Found. Phys.,
16 (1986), pp. 125–141.

[9] J. Glimm and D. Sharp, Elementary Waves for Hyperbolic Equations in Higher Dimensions:
An Example from Petroleum Reservoir Modeling, Contemp. Math. 60, AMS, Providence,
RI, 1987, pp. 35–41.

[10] J. Guckenheimer, Shocks and rarefactions in two space dimensions, Arch. Ration. Mech.
Anal., 59 (1975), pp. 281–291.

[11] W. Hwang and W. B. Lindquist, The 2-dimensional Riemann problem for a 2× 2 hyperbolic
conservation law II. Anisotropic media, SIAM J. Math. Anal., 34 (2002), pp. 359–384.

[12] E. Isaacson, Global Solution of a Riemann Problem for a Non-Strictly Hyperbolic System
of Conservation Laws Arising in Enhanced Oil Recovery, preprint, The Rockefeller
University, New York, 1980.

[13] T. Johansen and R. Winther, The solution of the Riemann problem for a hyperbolic system of
conservation laws modeling polymer flooding, SIAM J. Math. Anal., 19 (1988), pp. 541–566.

[14] B. Keyfitz and H. Kranzer, A system of non-strictly hyperbolic conservation laws arising
in elasticity theory, Arch. Rational Mech. Anal., 72 (1980), pp. 219–241.

[15] S. N. Kruzkov, First order quasilinear equations in several independent variables, J. Mat.
USSR-Sb., 10 (1970), pp. 217–243.

[16] P. D. Lax and X.-D. Liu, Solution of two-dimensional Riemann problems of gas dynamics
by positive schemes, SIAM J. Sci. Comput., 19 (1998), pp. 319–340.

[17] W. B. Lindquist, The scalar Riemann problem in two spatial dimensions: Piecewise smooth-
ness of solutions and its breakdown, SIAM J. Math. Anal., 17 (1986), pp. 1178–1197.

[18] W. B. Lindquist, Construction of solutions for two-dimensional Riemann problems, Comput.
Math. Appl. Part A, 12 (1986), pp. 615–630.

[19] C. W. Schulz-Rinne, Classification of the Riemann problem for two-dimensional gas
dynamics, SIAM J. Math. Anal., 24 (1993), pp. 76–88.

[20] C. W. Schulz-Rinne, J. P. Collins, and H. M. Glaz, Numerical solution of the Riemann
problem for two-dimensional gas dynamics, SIAM J. Sci. Comput., 14 (1993), pp.
1394–1414.

[21] W. Sheng and T. Zhang, The Riemann Problem for the Transportation Equations in Gas
Dynamics, Mem. Amer. Math. Soc. 137, AMS, Providence, RI, 1999.

[22] D. Tan and T. Zhang, Two-dimensional Riemann problem for a hyperbolic system of nonlin-
ear conservation laws (I): Four-J cases, J. Differential Equations, 111 (1994), pp. 203–254.

[23] D. Tan and T. Zhang, Two-dimensional Riemann problem for a hyperbolic system of
nonlinear conservation laws (II): Initial data consists of some rarefaction, J. Differential
Equations, 111 (1994), pp. 255–283.

[24] D. Tan, T. Zhang, and Y. Zheng, Delta-shock waves as limits of vanishing viscosity for
hyperbolic system of conservation laws, J. Differential Equations, 112 (1994), pp. 1–32.

[25] B. Temple, Global solution of the Cauchy problem for a class of 2 × 2 nonstrictly hyperbolic
conservation laws, Adv. in Appl. Math., 3 (1982), pp. 335–375.

[26] Y. Val’ka, Discontinuous solutions of a multidimensional quasilinear equation (numerical
experiments), U.S.S.R. Comput. Math. and Math. Phys., 8 (1968), pp. 257–264.

[27] A. I. Vol’pert, The spaces BV and quasilinear equations, J. Mat. USSR-Sb., 2 (1967), pp.
225–267.

[28] D. H. Wagner, The Riemann problem in two space dimensions for a single conservation law,
SIAM J. Math. Anal., 14 (1983), pp. 534–559.

[29] S. Yang and T. Zhang, The MmB difference solutions to the Riemann problem for a 2-D
hyperbolic system of nonlinear conservation laws, Impact Comput. Sci. Engrg., 3 (1991),
pp. 146–180.

[30] P. Zhang, J. Li, and T. Zhang, On two-dimensional Riemann problem for pressure-gradient
equations of the Euler system, Discrete Contin. Dynam. Systems, 4 (1998), pp. 609–634.

[31] P. Zhang and T. Zhang, Generalized characteristic analysis and Guckenheimer structure, J.
Differential Equations, 152 (1999), pp. 409–430.

[32] T. Zhang and G. Chen, Some fundamental concepts about systems of two spatial dimensions
conservation laws, Acta Math. Sinica, 6 (1986), pp. 463–474.

[33] T. Zhang and Y. Zheng, Two dimensional Riemann problem for a single conservation law,
Trans. Amer. Math. Soc., 312 (1989), pp. 589–619.

[34] T. Zhang and Y. Zheng, Conjecture on structure of solutions of the Riemann problem for
two-dimensional gas dynamics systems, SIAM J. Math. Anal., 21 (1990), pp. 593–630.

[35] T. Zhang and Y. Zheng, Exact spiral solutions of the two dimensional compressible Euler
equations, Discrete Contin. Dynam. Systems, 3 (1997), pp. 117–133.



THE 2-DIMENSIONAL RIEMANN PROBLEM FOR A 2× 2
HYPERBOLIC CONSERVATION LAW II. ANISOTROPIC MEDIA∗

WOONJAE HWANG† AND W. BRENT LINDQUIST‡

SIAM J. MATH. ANAL. c© 2002 Society for Industrial and Applied Mathematics
Vol. 34, No. 2, pp. 359–384

Abstract. We construct the solutions to a two-dimensional (2-D) Riemann problem for a 2 × 2
hyperbolic nonlinear system which models polymer flooding in an anisotropic oil reservoir. The
construction demonstrates the importance of the shock, rarefaction, and contact “base points” and
“base curves” in the determination of the solutions for 2-D Riemann problems. In particular, we
establish some new relations between these. While specific details of the base points and curves are
applicable only to this model, the existence of the curves and the existence of relationships between
these curves are general features to be exploited for any hyperbolic system.
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1. Introduction. Early work [1, 17, 8, 9, 21, 22] in two dimensions devel-
oped fundamental concepts for Riemann problem solutions for scalar equations. A
by-product of this work was the development of a constructive technique for two-
dimensional (2-D) Riemann problem solutions. Elements of this technique are still
being refined concurrent with its use to obtain and examine solutions for systems
where, in contrast to scalar hyperbolic equations, no general existence and unique-
ness theory exists in multiple space dimensions. Spearheaded largely by the work
of T. Zhang and collaborators, a body of work [7, 10, 11, 12, 13, 14, 18, 19, 23, 24]
has since developed for the solution of 2-D Riemann problems for systems, specifi-
cally for the Euler system modeling gas dynamics and for simpler gas-dynamics-like
models. In this work we consider a 2× 2 system which is a 2-D generalization of the
one-dimensional (1-D) Keyfitz–Kranzer–Isaacson–Temple model [4, 5, 15], which has
been used in studies of material elasticity and flow in porous media. In addition to the
particular solutions developed for this system, our emphasis here is on the construc-
tive technique, in particular the fundamental role played by rarefaction, shock, and
contact “base points” and “base curves,” and the relationship between these elements.

In this and part I of this paper [3] we consider the 2× 2 system

st + f
A(s, c)x + f

B(s, c)y = 0,(1.1)

(cs)t + (cfA(s, c))x + (cfB(s, c))y = 0.(1.2)

An attractive feature of this model is that, regardless of the form of the flux functions
fA and fB , the wave family associated with the variable c is always linear, i.e.,
produces only states of constant c-value separated by contact discontinuities. The
other family, associated with the variable s, is identical to the scalar family obtained
from (1.1) with c held constant.
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The presence of the linear c-family is important in guaranteeing solution unique-
ness within a regularity class of functions. Recall [8] that initial data for a 2-D Rie-
mann problem consists of piecewise constant data given on a finite number of wedges
centered at the origin. As noted in part I of this paper [3], the system (1.1), (1.2) has
no mechanism to remove (create) any constant concentration value c̄ which is (is not)
in the initial data. Consequently, only regions of constant concentration value exist
in the self-similar Riemann problem solution, and these must correspond in an iden-
tifiable fashion with each region of constant concentration value in the initial data.
These constant concentration regions must be delineated by contact discontinuities
of the c-family. Furthermore, the solution within each region of constant concentra-
tion is determined by the scalar equation (1.1) for which uniqueness and existence of
solutions within the function classes of bounded variation [16] and piecewise smooth
[6] have been determined. Thus the only nonuniqueness possible in the solutions may
arise from the pattern of contact discontinuities in a solution. As we show in section 4,
the Rankine–Hugoniot conditions for the degenerate family lead to a unique pattern
of contact discontinuity. The construction method used for the 2-D solutions employs
the existence and uniqueness conditions of [6]. Thus within the class of piecewise
smooth solutions (in the sense of Kruzkov), the solutions we generate are unique.

Complexity of the solution is governed by the form of the flux functions fA and
fB and by the number of initial data wedges considered. To minimize complexity, we
choose particular forms for the flux functions and limit the number of wedges. Our
choice of flux function form is determined by application to flow in porous media. We
consider the functions

fA(s, c) = s2[1 +A(1− c)(1− s)], 0 < A < 1/2,
fB(s, c) = s2[1 +B(1− c)(1− s)], 0 < B < 1/2,

(1.3)

where the physical state variables are

s = water saturation, 0 ≤ s ≤ 1,
c = concentration of polymer, 0 ≤ c ≤ 1.

This system models polymer flooding of an oil reservoir [4]. In a polymer flood, a
small amount of polymer is added to the water to increase the sweep efficiency of
oil production. The model assumes the polymer is completely miscible in the water
phase and undergoes no mass transfer into the oil phase. In part I of this paper [3] we
have developed the solution of this model for the case A ≡ B (i.e., fA ≡ fB), which
is applicable to isotropic media.

In this paper, we develop solutions for the case A �= B. The directional fluxes
fA and fB differ in those terms of order higher than s2, as may be appropriate for
anisotropic media. In order to restrict the complexity introduced by compound waves
in the s-family we simplify to a convex form for the flux functions. The restriction
0 < A < 1/2 guarantees that the x-direction flux function fA remains convex for
allowed values of s ∈ [0, 1] and c ∈ [0, 1], similarly for the y-direction flux fB . The
following lemma impacts the form of the effective flux function f n̂s ≡ n̂ · (fAs , fBs )
governing flow in an arbitrary 2-D direction n̂.

Lemma 1.1 (see [22]). For fixed c, if fAss �= 0, fBss �= 0, and ∂
∂s (f

A
ss/f

B
ss) �= 0 for

any s then, for any n̂, f n̂ has at most one inflection point.
Lemma 1.1 holds under either the restriction 0 < B < A < 1/2 or 0 < A < B <

1/2; without loss of generality we will consider the case 0 < A < B < 1/2.
The 2-D Riemann problem studies for gas dynamics models have involved initial

data on four wedges corresponding to the four quadrants in the plane, as this is
pertinent to typical data encountered in 2-D finite difference methods. For general
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Riemann data, n waves emerge from an initial discontinuity for an n×n system. The
work on gas dynamics models has typically added an additional restrictive assumption
on the initial data values to ensure that only a single wave evolves from each initial
discontinuity. In this paper, we relax the single wave restriction; however, we do
restrict the initial data to two wedges defined by the angles π/2 and π (Figure 4.1(a)).
As the smaller wedge agrees with one of the quadrants in the plane, we refer to this
as a single quadrant Riemann problem.

To analyze system (1.1), (1.2) it is convenient to introduce the change of variables
s, c → s, b ≡ sc. The eigenvalues, right eigenvectors, and Riemann invariants for the
two families of waves are, respectively,

λs = f n̂s , where f n̂s ≡ n̂ · (fAs , fBs ),
λc = gn̂, where gn̂ ≡ n̂ · (gA, gB), gα ≡ fα/s, α = A,B,
rs = (s, b), rc = (−gn̂b , gn̂s ),
W s = c, W c = gn̂.

Here, n̂ ≡ (µ, ν) denotes a direction vector and subscripts represent partial differen-
tiation.

The solution construction method developed in [1, 9, 17, 22] relies heavily on
the existence of so-called base points and curves. We review these in section 2 and
establish some new relations between these. While specific details of the base points
and curves are applicable only to this model, the existence of the curves and the
existence of relationships between these curves are general features to be exploited for
any hyperbolic system. In particular, the geometrical nature of the Kruzkov entropy
condition (Figure 2.3) and the relationships between the shock and rarefaction base
curves place regional restrictions on the allowed s-family waves. This is discussed for
this model in section 3. A topological classification of the solutions and a discussion of
the generic solution form for the single quadrant Riemann problem for our system is
presented in section 4. In section 5 we present the unique canonical Riemann problem
solution in each class.

2. Base curves. As the solution to a Riemann problem is self-similar, direct
construction of a 2-D Riemann problem solution is done in the plane defined by the
self-similar coordinates ξ = x/t, η = y/t (i.e., in the plane t = 1, x, y). Positioning
of shock, rarefaction, and contact discontinuity waves in this plane is related to the
existence of rarefaction and shock base curves and contact base points. Furthermore,
shock and rarefaction waves are each classifiable into two types [22], and possible
interactions among the types are limited.

The existence of base points and curves, the existence of relations between them,
and the shock and rarefaction wave classifications are general. However, the form of
base curves and position of base points depend on the particular choice of flux func-
tions. The flux functions in the model studied here have the following characteristics.
For any fixed value of c ∈ [0, 1] (recall we have chosen A < B),

fα(0, c) = 0, fα(1, c) = 1, α = A,B;(2.1)

fα(s, c) is convex (i.e., fs > 0, fss > 0 for s ∈ [0, 1]), α = A,B;(2.2)

fAs < f
B
s for s ∈ [0, sAB), fBs < f

A
s for s ∈ (sAB , 1];(2.3)

gα(0, c) = 0, gα(1, c) = 1, α = A,B;(2.4)

gA(s, c) < gB(s, c) for s ∈ [0, 1];(2.5)

gα(s, c) ≤ fαs (s, c) for s ∈ [0, 1], α = A,B, with equality holding only(2.6)

for s = 0.
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For any fixed value of s ∈ [0, 1],

fα(s, c1) > f
α(s, c2) for c1 < c2, α = A,B;(2.7)

gα(s, c1) > g
α(s, c2) for c1 < c2, α = A,B.(2.8)

2.1. Rarefaction base curves and wave classification. Consider the scalar
equation (1.1) with c = c0 (c0 a constant).

st + f
A(s, c0)x + f

B(s, c0)y = 0.(2.9)

Under the change of variables ξ = x/t, η = y/t, (2.9) has the self-similar form

−ξsξ − ηsη + fA(s, c0)ξ + fB(s, c0)η = 0,(2.10)

where now s = s(ξ, η). For s ∈ C1, (2.10) becomes(
fAs (s, c0)− ξ)sξ + (fBs (s, c0)− η

)
sη = 0(2.11)

whose characteristic form is given by

dη(ξ)/dξ = (fBs (s, c0)− η)/(fAs (s, c0)− ξ),
ds(ξ, η(ξ))/dξ = 0.

(2.12)

From (2.12), the characteristic lines are defined by

η − fBs (s, c0)

ξ − fAs (s, c0)
= const, s = const.(2.13)

Remark 2.1. From (2.13) we note that an s-family level curve with s = s1, c = c0
is a straight line segment whose tangent passes through the characteristic base point
fs(s1; c0) in the ξ, η plane having coordinates

fs(s1; c0) ≡ (fAs (s1, c0), f
B
s (s1, c0)),(2.14)

as illustrated in Figure 2.1(a). We refer to the curve

fs(s; c0) ≡ (fAs (s, c0), f
B
s (s, c0)), 0 ≤ s ≤ 1,(2.15)

as the rarefaction base curve for c0.
As a consequence of Remark 2.1, (i) if a single point on a characteristic in a

rarefaction wave is known the characteristic can be extended locally as a straight line
segment, or (ii) if the direction of a characteristic wave is known the wave can be
locally located (as a straight line segment) in the (ξ, η) plane.

For a model with the characteristics (2.1)–(2.2) it is easy to show that the rarefac-
tion base curve is a monotonic increasing, concave curve segment in the (ξ, η) plane
extending between the points (ξ = 0, η = 0) and (ξ = fAs (1, c), η = f

B
s (1, c)). For the

fluxes (1.3) used here, the value sAB in (2.3) is independent of the value of c, A, or
B; thus all rarefaction base curves pass through the point (fAs (sAB , c), f

B
s (sAB , c)) =

(4/3, 4/3). Two example rarefaction base curves are shown in Figure 2.1(b). The
upper termination point (2 − A(1 − c), 2 − B(1 − c)) of any rarefaction base curve
must lie within the triangular region delimited by the dotted lines.

Rarefaction waves can be classified [20] according to the direction of the gradient
of s across the wave relative to the direction toward the base curve.
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Fig. 2.1. (a) A rarefaction base curve fs(s) ≡ (fAs (s), fBs (s)) and rarefaction waves R+, R−
(sl > sr). (b) Example plots of two rarefaction base curves.

Definition 2.1 (see [20]). Classify a rarefaction wave as R+ (R−) if ∇ξ,ηs and
the direction toward the base curve of the characteristic lines of the wave form a right-
(left-) hand system.

R+ and R− rarefaction waves are indicated in Figure 2.1(a). If (sl, c) and (sr, c)
are the bounding characteristics of a rarefaction wave, the wave will be labeled R+

l,r

or R−l,r as appropriate.

2.2. Shock base curves and wave classification. From (2.10) we have the
Rankine–Hugoniot condition for a piecewise smooth shock curve η = η(ξ),

dη

dξ
=
η − σB(sl, sr; c0)
ξ − σA(sl, sr; c0) ,(2.16)

where

σα(sl, sr; c0) ≡ f
α(sl, c0)− fα(sr, c0)

sl − sr , α = A,B.(2.17)

Remark 2.2. From (2.16) we see that any s-family shock point D in the (ξ, η)
plane separating (sl, c0) and (sr, c0) lies on a curve segment whose tangent at D passes
through the shock base point σ(sl, sr; c0) in the ξ, η plane having coordinates

σ(sl, sr; c0) ≡ (σA(sl, sr; c0), σ
B(sl, sr; c0)).(2.18)

The notations σ(sl, sr; c) and σ(sr, sl; c) specify the same base point. The curve
of base points

σ(s, sr; c0) ≡ (σA(s, sr; c0), σ
B(s, sr; c0)), 0 ≤ s ≤ 1,(2.19)

is denoted the shock base curve for the state (sr, c0).
Shock base points are used analogously to rarefaction base points to locally po-

sition shocks involving the states sr, c0 and sl, c0. For our model with A < B any
shock base curve σ(s, sr; c0) is monotonic increasing and concave in the (ξ, η) plane.
A shock base curve σ(s, sr; c0) is sketched in Figure 2.2(a).

Definition 2.2. For a point D on a shock separating sl and sr, the direction of
the normal vector n̂ ≡ (µ, ν) at D is defined as pointing from the side having larger
to the side having smaller value of s; i.e., if sl > sr, n̂ points from sl to sr.
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Fig. 2.2. (a) Illustration of the shock base curve σ(s, sr; c) and S+ and S− shock waves. Sketch
of the Kruzkov entropy condition for (b) general and (c) convex flux functions. S(·) and λ(·) refer
to the slopes of indicated lines.

Let

S(sl, sr; c) ≡ n̂ · (σA(sl, sr; c), σB(sl, sr; c))
= µσA(sl, sr; c) + νσ

B(sl, sr; c).(2.20)

The Kruzkov entropy condition for a shock whose normal has the direction (µ, ν) is
given by

S(sl, sr; c) ≤ S(sl, s; c) for all s ∈ (sr, sl).(2.21)

This entropy condition for a flux function f n̂(s, c) of general shape is illustrated in
Figure 2.2(b); it is the familiar Oleinik construction. If f n̂ is convex over the domain
(sr, sl), the entropy condition reduces to

λ(sr, c) < S(sl, sr; c) < λ(sl, c),(2.22)

i.e.,

n̂ · (fAs , fBs )
∣∣∣
sr
< n̂ · (σA, σB) < n̂ · (fAs , fBs )

∣∣∣
sl
.(2.23)

This convex form of the entropy condition is illustrated in Figure 2.2(c) and is the
well-known Lax entropy condition. As shown in Figure 2.3, the Lax entropy inequality
(2.23) is equivalent to comparing the lengths of the projections on the direction n̂ of
the vectors from the origin of the ξ, η plane to the respective rarefaction and shock
base points fs(sr; c), σ(sl, sr; c), and fs(sl; c).

A shock wave can be classified [22] according to the relative direction of the shock
normal and tangent vectors at each point.

Definition 2.3 (see [22]). A shock wave is classified as S+ (S−) if at each point
the normal and tangent (pointing towards the shock base point) vectors of the shock
form a right-hand (left-hand) system.

The two shock types are also illustrated in Figure 2.2(a). If (sl, c) and (sr, c) are
the states bounding the shock, the shock will be labeled S+

l,r or S
−
l,r as appropriate.
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Fig. 2.4. (a) The tangent (dotted line) to a contact discontinuity point D must pass through
two appropriate contact base points (gA(sl, cl), g

B(sl, cl)) and (gA(sr, cr), gB(sr, cr)) as illustrated.
(b) Illustration of coordinate curves which cover the region of contact base points. Here s = 0.5
refers to the coordinate curve (gA(0.5, c), gB(0.5, c)), while c = 0 refers to the coordinate curve
(gA(s, 0), gB(s, 0)), etc.

2.3. Contact discontinuity base points. Let D be a point on a c-family
contact discontinuity curve segment separating the states (sl, cl) and (sr, cr). The
Rankine–Hugoniot condition across a smooth c-family contact discontinuity curve
having normal vector n̂ = (µ, ν) at D is

gn̂(sl, cl) = g
n̂(sr, cr),(2.24)

where gn̂ ≡ µgA + νgB .
Remark 2.3. As a consequence of (2.24) a contact discontinuity point D lies on

a curve segment whose tangent must pass through the two contact base points,

(gA(sl, cl), g
B(sl, cl)) and (gA(sr, cr), g

B(sr, cr)),(2.25)

as illustrated in Figure 2.4(a).
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For a model with the characteristics (2.4), (2.5) any contact base point must lie
within a region ΩA,B of the ξ, η plane bounded between the concave curve segments
(gA(s, 1), gB(s, 1)) and (gA(s, 0), gB(s, 0)), both of which terminate at the points (0,
0) and (1, 1). An example region Ω0.1,0.4 for the model studied here is shown in
Figure 2.4(b). In this case (gA(s, 1), gB(s, 1)) is the straight line segment between
(0,0) and (1,1). The set of curve segments (gA(s, c = const), gB(s, c = const))
and the set (gA(s = const, c), gB(s = const, c)) form a coordinate system over
this region. (Thus the contact base point (gA(sl, cl), g

B(sl, cl)) occurs at the in-
tersection of the (gA(s, cl), g

B(s, cl)) and (gA(sl, c), g
B(sl, c)) coordinate curves.) The

(gA(s = const, c), gB(s = const, c)) coordinate curves are straight lines, with slope
B/A. A few coordinate curves are also sketched in Figure 2.4(b).

2.4. Relation between rarefaction and shock base curves. For a fixed
value of c = c0 and any s1 ∈ (0, 1), the shock and rarefaction base curves σ(s1, s; c0)
and fs(s; c0) are related as indicated in the following two lemmas.

Lemma 2.4.

d

ds
σ(s1, s; c0) =

1

(s− s1)
[
fs(s; c0)− σ(s1, s; c0)

]
.(2.26)

Proof. We prove (2.26) componentwise. Consider the ξ-component

d

ds
σA(s1, s; c0) ≡ d

ds

(
fA(s, c0)− fA(s1, c0)

s− s1

)
=

1

(s− s1)
(
fAs (s, c0)−

fA(s, c0)− fA(s1, c0)
s− s1

)
=

1

(s− s1)
(
fAs (s, c0)− σA(s1, s; c0)

)
.

The computation is identical for the η-component.
Lemma 2.5.

dσB(s1, s; c0)

dσA(s1, s; c0)
=
fBs (s, c0)− σB(s1, s; c0)
fAs (s, c0)− σA(s1, s; c0)

.(2.27)

Proof. The proof follows immediately from Lemma 2.4 using the fact that s1 and
c0 are constant, i.e.,

dσB(s1, s; c0)

dσA(s1, s; c0)
=
dσB(s1, s; c0)/ds

dσA(s1, s; c0)/ds
.

Remark 2.4. Two shock base curves σ(s, sr; c) and σ(sl, s; c) pass through each
shock base point σ(sl, sr; c). Lemma 2.5 states that the tangent to the shock base
curve σ(s, sr; c) at the shock base point σ(sl, sr; c) also passes through the rarefaction
base curve at the point fs(sl; c). Equivalently, the tangent to the shock base curve
σ(sl, s; c) at the shock base point σ(sl, sr; c) passes through the rarefaction base curve
at the point fs(sr; c). These tangent lines (dashed lines) are shown in Figure 2.5(a).

As a consequence of Remark 2.4, the rarefaction and shock base points fs(sr; c)
and σ(sr, sr; c) are coincident and the shock σ(s, sr; c) and the rarefaction fs(s; c) base
curves meet tangentially at this common point (i.e., at the parameter value s = sr).
This is also illustrated in Figure 2.5(a).
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Fig. 2.5. Illustration of (a) the relation between the rarefaction and shock base curves. The
dashed lines indicate tangents to the two shock base curves at σ(sr, sl; c); (b) the convex hull property
of shock base points relative to the rarefaction base curve.

Lemmas 2.4 and 2.5 and Remark 2.4 hold for any scalar equation with flux func-
tions having sufficient continuity. The following remark is pertinent to the model
studied here.

Remark 2.5. The rarefaction fs(s; c) and shock σ(s1, s; c) base curves have the
same curvature sign. This property follows from Remark 2.4

Lemma 2.6. For our model, the shock base point σ(sl, sr; c) lies within the convex
hull of fs(s; c) between the rarefaction base points fs(sr; c) and fs(sl; c) as shown in
Figure 2.5(b). We refer to this as the convex hull property of the rarefaction base
curve relative to shock base points.

Proof. As a consequence of Remark 2.5, the larger of the two angles between the
two tangent lines in Remark 2.4 must be less than π.

2.5. Relation between rarefaction and contact base coordinate curves.
Following a proof analogous to that for Lemma 2.5, we have the fundamental relation
between the rarefaction base curve for c0 and the c = c0 contact base coordinate
curve.

Lemma 2.7.

dgB(s, c0)

dgA(s, c0)
=
fBs (s, c0)− gB(s, c0)
fAs (s, c0)− gA(s, c0)

.(2.28)

Note that this lemma depends only on the definition g(s, c) ≡ f(s, c)/s and not
on the form of f(·).

Remark 2.6. Lemma 2.7 states that the tangent to the contact base point co-
ordinate curve (gA(s, c0), g

B(s, c0)) at the contact base point (gA(s1, c0), g
B(s1, c0))

passes through the rarefaction base curve at the base point fs(s1; c0).
Remark 2.7. Further, in this model it is easy to show the following.
1. Both the rarefaction base curve fs(s; c0) and contact base point coordinate

curve (gA(s, c0), g
B(s, c0)) have the same curvature sign. For A < B the

curvature is negative.
2. For A < B and s ∈ (0, 1], the coordinate curve (gA(s, c0), g

B(s, c0)) lies below
the rarefaction base curve fs(s; c0).

3. The base points (gA(0, c0), g
B(0, c0)) and fs(0; c0) are identical, and the con-

tact base coordinate curve and the rarefaction base curve meet tangentially
at this common point (which is in fact the point (ξ = 0, η = 0)).
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Fig. 2.6. Illustration of the relationship between the rarefaction base curve fs(s; c0) (up-
per), the contact base coordinate curve (gA(s, c0), gB(s, c0)) (lower), and the shock base curve
σ(s1, s; c0) (dashed). The straight dashed line is tangent to the contact base coordinate curve at
(gA(s, c0), gB(s, c0)).

Figure 2.6 shows a rarefaction base curve and the corresponding contact base
point coordinate curve.

2.6. Relation between shock base curves and contact base points. The
following lemma establishes a useful relationship between shock base curves and con-
tact base points.

Lemma 2.8.

gα(s0, c0) = σ
α(s0, 0; c0),

gα(s0, c0) < σ
α(s0, s; c0), s ∈ (0, 1],

}
α = A,B.(2.29)

Proof. The equality in the lemma follows from the definitions of gα and σα.
The inequality is easily shown geometrically given that the function fα(s, c0) is
convex.

From Lemma 2.8 we see that the contact base point (gA(s0, c0), g
B(s0, c0)) is the

“lower” termination point of the shock base curve σ(s0, s; c0). This relationship is
also sketched in Figure 2.6.

3. Entropy restrictions for s-family shocks. The geometrical nature of the
entropy condition (Figure 2.3) and the relationships between the shock and rarefaction
base curves place the following regional restrictions on the allowed s-family waves in
the ξ, η plane.

Consider a pointD on a curve of discontinuity separating states sl, c and sr, c with
sl > sr. Assume at D that the normal and tangent (pointing toward the appropriate
shock base point) form a right-handed system. If D lies in the lower right, wedge
shaped region of the ξ, η plane labeled S+

l,r in Figure 3.1(a) (this region is centered
on the shock base point σ(sl, sr; c), is bounded above by the half line starting from
this shock base point and passing through the rarefaction base point fs(sl; c), and is
bounded to the left by the half line starting from the shock base point and passing
through the rarefaction base point fs(sr; c)), then the local solution to this Riemann
problem is an s-family shock of type S+

l,r.
It is an easy geometrical exercise to verify the entropy condition for this shock.

The verification is sketched in Figure 3.2(a). The projection lengths (2.22) are seen
to have the correct ordering along the normal direction n̂.
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Fig. 3.1. Regional entropy restrictions for s-family waves. Here sl > sr.
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Fig. 3.2. (a) Detail verifying the Lax entropy condition for an S+ shock in the S+
l,r

region.

(b) Detail verifying the Lax entropy condition for the composite S+R− wave shock in the S+
l,∗R

−
∗,r

region.

If D lies in the region labeled S+
l,∗R

−
∗,r (lower left) in Figure 3.1(a), with the

orientation of sl and sr (sl > sr) as indicated, the local Riemann problem solution
will consist of a composite wave consisting of an S+

l,∗ shock and an R−∗,r rarefaction
fan. Here ∗ denotes the intermediate state common to one side of the shock and
the rarefaction fan. The region is bounded by the three dark dashed lines shown in
Figure 3.2(b). (The lower dashed line is the extension of the line segment from the
shock base point σ(sl, sr; c) to the rarefaction base point fs(sr; c). The middle dashed
line is tangent to the rarefaction base curve at fs(sr; c). The upper is tangent to the
rarefaction base curve at fs(sl; c).)

Lemma 3.1. There is a unique base point σ(sl, s∗; c), with s∗ < sl, on the shock
base curve σ(sl, s; c) such that the line segment from D to σ(sl, s∗; c) is tangent to the
shock base curve. This line also passes through a rarefaction base point fs(s∗; c) such
that σ(sl, s∗; c) lies in the convex hull of fs(s∗; c) and fs(sl; c).
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Proof. The existence of the unique shock base point σ(sl, s∗; c) follows by requir-
ing D to remain within the region bounded by the indicated lines and by noting that
the shock base curve is concave down. The relations between rarefaction and shock
base curves noted in section 2.4 imply that this tangent line passes through the rar-
efaction base curve fs(s; c) twice, at base points fs(s

∗; c) and fs(s∗∗; c) as indicated
in Figure 3.2(b). However, only for the smaller (s∗) of the values s∗ and s∗∗ does
σ(sl, s∗; c) lie in the convex hull of fs(s; c) between fs(sl; c) and fs(s∗; c).

Thus the unique local entropy solution of the Riemann problem at D consists of
a shock between the state sl and the state s∗ followed by a rarefaction wave R−∗,r.
The tangent (and hence normal) to the shock direction at D is determined by the
shock base point σ(sl, s∗; c). The characteristics in the rarefaction fan must point to
the appropriate rarefaction base points corresponding to values of s lying in the range
[s∗, sr] as sketched in the Figure 3.2(b). Again it is easy to geometrically verify the
entropy condition

n̂ · (fAs , fBs )
∣∣∣
s∗

= n̂ · (σA, σB)
∣∣∣
l,∗
< n̂ · (fAs , fBs )

∣∣∣
sl

(3.1)

for the S+
l,∗ shock, as illustrated in Figure 3.2(b).

If D lies in the region labeled R−l,r (upper left) in Figure 3.1(a), the local Riemann

problem solution will consist of an R−l,r rarefaction fan. If D lies in the region labeled

R−l,∗S
+
∗,r (upper right) in Figure 3.1(a), the local Riemann problem solution will consist

of a composite wave consisting of an R−l,∗ rarefaction fan followed by an S+
∗,r shock.

The detailed analysis of the composite wave in this region follows analogously to that
for the S+

l,∗R
−
∗,r region.

If sl and sr are switched so that now the normal and tangent vectors at D form
a left-handed system, four different solution regions in the ξ, η plane develop. These
are indicated in Figure 3.1(b).

Note in Figure 3.1 that the occurrence of D in the shaded regions is not investi-
gated. This shaded region is dynamic, depending on the left and right states on each
side of the discontinuity. Solutions are constructed by “tracing waves in from infin-
ity.” We observe one of two events occurring as a shock point D is “traced in” and
approaches the shaded region; either D separates two constant states, in which case
the shock remains a straight line with unchanging entropy condition, or the change
in saturation s across the shock weakens, and the dynamic shaded region shrinks in
a manner that D never reaches it.

4. Solution classification and generic form. A 2-D Riemann problem so-
lution can be partly classified by its solution at infinity in the (ξ, η) plane where it
consists of noninteracting 1-D solutions. For the single quadrant problem Figure 4.1(a)
investigated here, the solution form at infinity is sketched in Figure 4.1(b). In each
direction the solution consists of a contact discontinuity followed by an s-family wave
(which cannot be composite as the flux functions fA(s, c) and fB(s, c) are convex).
It is therefore natural to label the solution behavior at infinity as CWyCWx, where
Wy and Wx denote the s-family wave type (either S or R) in the y and x direction,
respectively. Given s1, c1 there are four cases for the solution at infinity (labeled
CSCS, CSCR, CRCS, and CRCR) determined by the location of s2, c2 in one of four
regions in phase space. These four regions are indicated in Figure 4.2(a). The re-
gions are bounded by the two curves cα(s) defined implicitly by gα(s, c) = gα1 , where
gα1 ≡ fα(s1, c1)/s1, α = A,B.
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Fig. 4.1. (a) The initial data for the single quadrant Riemann problem. (b) The solution at
infinity.
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Fig. 4.2. (a) Phase space classification of the solution at infinity. (b) The generic form of the
single quadrant Riemann problem solution.

As discussed earlier, the single quadrant Riemann problem solution must contain
a “single” contact discontinuity wave which divides the solution into two separate
scalar regions. This contact discontinuity provides the only mechanism for the c2 → c1
transition required in the solution. Given this and the solution structure at infinity,
all solutions must have the generic form shown in Figure 4.2(b). The existence of
the constant state se, c1 is a consequence of the required transition across the contact
discontinuity CPQ. Whereas Q and R may denote either an interaction point or
interaction region in the solution, P is always an interaction point (since the contact
discontinuities CPQ and Cy must meet at P ). In fact, P is the contact base point
(gA(s2∗ , c2), g

B(s2∗ , c2)).
In the rest of this section we discuss the interactions in regions Q and P . In

section 5 we discuss the interaction in region R in the context of completing the
entire solution.
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Fig. 4.3. Illustration of construction in region Q for (a) CSCWx and (b) CRCWx cases. The
lighter dashed lines in (b) illustrate the behavior of the tangents to the contact discontinuity.

Interaction at Q. The wave WQR is of the same type as Wy. The direction of
WQR is determined by the appropriate shock or rarefaction base curve. Our discus-
sion therefore concentrates on the contact discontinuity segment CPQ (Figure 4.2(b))
separating the constant states s2∗ , c2 and se, c1. Let n̂ = (µ, ν) be the normal to CPQ
pointing from the side s2∗ , c2 to se, c1. Let θµν ≡ tan−1(ν/µ) be the angle associated
with the normal.

Lemma 4.1. For solutions in which Wy is an s-family shock, 0 < θµν < π/2.
Proof. When Wy is an s-family shock, Q in Figure 4.2(b) is a single point.

Figure 4.3(a) illustrates the detail of the construction of this interaction. As Wy

and Cy are horizontal lines, the y coordinate of point P is less than that of point
Q. The x coordinates of Q and P are, respectively, gA(s2, c2) ≡ fA(s2, c2)/s2 and
gA(s2∗ , c2) ≡ fA(s2∗ , c2)/s2∗ . As Wy is a shock, we have s2 < s2∗ . Since fA(s, c) is
convex, it follows that gA(s2, c2) < g

A(s2∗ , c2). Thus the components µ and ν of the
normal vector are both positive.

Lemma 4.2. For solutions in which Wy is an s-family rarefaction, −π/2 <
θµν < 0.

Proof. Since Wy is an s-family rarefaction wave, Q in Figure 4.2(b) corresponds
to a region over which the contact discontinuity Cx interacts with Wy. Figure 4.3(b)
illustrates the details of the construction of this interaction. As Wy is a rarefaction,
s2 > s2∗ and gA(s2, c2) > gA(s2∗ , c2). Given that the (gA(s, c2), g

B(s, c2)) contact
base coordinate curve is monotonic increasing, concave down, it is clear from the
construction in Figure 4.3(b) that the normal to the straight segment of the contact
discontinuity separating s2∗ , c2 from se, c1 obeys −π/2 < θµν < 0.

Figures 4.3(a) and 4.3(b) also indicate how the saturation values s1∗ , se and, in
the CRCWx cases, the saturation values in the rarefaction fan WQR are found as cross-
ing points of the appropriate contact discontinuity tangent line with the (gA(s, c1),
gB(s, c1)) contact base coordinate curve. (Figures 4.3(a) and 4.3(b) demonstrate this
for the case c1 > c2. For c1 < c2 the computation is the same.) Lemma 4.3 addresses
the computation of these saturation values.

Lemma 4.3. s1∗ is always the smaller root of the quadratic equation

A1(s1∗)2 − (1 +A1)s1∗ + gA2 = 0,(4.1)

where gA2 ≡ gA(s2, c2) and A1 ≡ A(1− c1). s2∗ and se are computed analogously.
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Proof. For given values of s2, c1, and c2, the saturation s1∗ is obtained using the
Rankine–Hugoniot relation

gA(s1∗ , c1) = g
A(s2, c2).(4.2)

We easily get the quadratic equation (4.1) from this relation. There are two solutions,
s+, s− (s+ > s−), for s1∗ . As s+ > 1 and s− ∈ (0, 1), the correct choice is s1∗ = s−.
s2∗ can be computed analogously from the Rankine–Hugoniot relation

gB(s2∗ , c2) = g
B(s1, c1)(4.3)

for given values of s1, c1, and c2.
To compute se, let n̂ = (µ, ν) denote the normal direction to the contact discon-

tinuity CPQ. Given s2∗ , c1, and c2, the value of se is determined from the Rankine–
Hugoniot relation

gn̂(se, c1) = g
n̂(s2∗ , c2),(4.4)

where gn̂ = µgA + νgB . Again (4.4) produces a quadratic equation for se with two
solutions s+, s−. As s+ ∈ (−∞, 0) ∪ (1,∞) and s− ∈ (0, 1), the correct solution is
se = s−.

The uniqueness of these saturation values follows from the following remark.
Remark 4.1. The tangent lines of the contact discontinuity CPQ in Figure 4.3

cutting the c2 contact base coordinate curve also cut the c1 contact base coordinate
curve exactly once. This follows immediately from Lemma 4.3, since there is always
a unique s ∈ (0, 1) which satisfies the Rankine–Hugoniot relation (4.4).

Interaction at P . The s-family wave WPR is required to provide the transition
from the “intermediate state” se, c1 to the initial data state s1, c1. We now discuss the
determination of this wave type. The wave type depends on the position of the point
P , which depends on the relative magnitudes of se and s1, which (Proposition 4.5
below), depends only on the relative magnitudes of c1 and c2. We develop first a
preparatory lemma needed to prove Proposition 4.5.

Let s0, c0 be a fixed state value, n̂ = (µ, ν) be a unit vector, and θµν = tan−1(ν/µ)
as before. Consider the curve in phase space defined by the condition

gn̂(s, c) = gn̂(s0, c0).(4.5)

Using the form for gα, α = A,B, specific to our model, the curve defined by (4.5) can
be rewritten explicitly as a function of s,

cµ,ν0 (s) ≡ s(µ+ ν + (µA+ νB)(1− s))− (µgA0 + νgB0 )

(µA+ νB)s(1− s) .(4.6)

Note that c1,01 (s) and c0,11 (s) correspond, respectively, to the terse notation cA1 (s) and
cB1 (s) introduced earlier. For our model it is easy to show that cα0 (s), α = A,B, is
monotonic increasing on s ∈ (0, 1) for any constant c0. As noted in Figure 4.2(a), the
curves cA1 (s) and c

B
1 (s) divide phase space into the four regions displaying different

behaviors at infinity. We consider the relationship between the curves cA0 (s), c
µ,ν
0 (s),

and cB0 (s).
Lemma 4.4.
1. If 0 < θµν < π/2, then cA0 (s) > cµ,ν0 (s) > cB0 (s) when s > s0; c

A
0 (s) <

cµ,ν0 (s) < cB0 (s) when s < s0.
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Fig. 4.4. (a) The behavior of the curve cµ,ν
0 (s) (dashed curves) relative to cA0 (s) and cB0 (s)

for the three cases of Lemma 4.4. (b) Behavior of the location of the state se, c1 (open points) for
c2 > c1 and c2 < c1.

2. If −π/2 < θµν < 0 and µA + νB > 0, then cµ,ν0 (s) > cA0 (s) > c
B
0 (s) when

s > s0; c
B
0 (s) > c

A
0 (s) > c

µ,ν
0 (s) when s < s0.

3. If −π/2 < θµν < 0 and µA + νB < 0, then cµ,ν0 (s) > cB0 (s) > c
A
0 (s) when

s < s0; c
A
0 (s) > c

B
0 (s) > c

µ,ν
0 (s) when s > s0.

Proof. These conclusions follow easily from examination of the equations

cB0 (s)− cµ,ν0 (s) =
(A−B)µ

Bs(1− s)(µA+ νB)
(s− s0),(4.7)

cµ,ν0 (s)− cA0 (s) =
(B −A)ν

As(1− s)(µA+ νB)
(s− s0),(4.8)

and noting 0 < A < B < 1/2, s ∈ (0, 1).
The results of Lemma 4.4 are summarized in Figure 4.4(a).
Proposition 4.5. If c2 > c1, then se > s1; if c2 < c1, then se < s1.
Proof. The proof follows from the application of Lemma 4.4 with s0, c0 = s2∗ , c2.

Construction of the contact discontinuity Cy requires cB1 (s) = cBs∗2
(s) as shown in

Figure 4.4(b). Thus if c2 > c1, all possible locations for the state se, c1 lie to the
right of s1, c1; if c2 < c1, all possible locations for the state se, c1 lie to the left of
s1, c1.

We now address the nature of the WPR wave.
Proposition 4.6. For c2 > c1, WPR is an S+ shock.
Proof. The proof relies on the relationship between the shock base curves and

the contact base coordinate lines. Since c2 > c1, by Proposition 4.5 se > s1. Con-
sider Figure 4.5 which shows the rarefaction base points (fs(s1; c1), fs(se; c1)), the
shock base point σ(se, s1; c1), and the shock base curve σ(s, s1; c1). This shock base
curve ends at the contact base point (gA(s1, c1), g

B(s1, c1)) which lies on the c = c1
contact base coordinate curve. The c-family contact discontinuity separating the
states s1, c1 and s2∗ , c2 is a horizontal line (since this Riemann problem is “at in-
finity”) and must pass through the contact base points (gA(s1, c1), g

B(s1, c1)) and
(gA(s2∗ , c2), g

B(s2∗ , c2)). Since c2 > c1 the c = c2 contact base coordinate curve
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Fig. 4.5. For c2 > c1 (i.e., se > s1) the contact base point (gA(s2∗ , c2), gB(s2∗ , c2))
which is the point P in Figure 4.2(b) must lie below and to the right of the contact base point
(gA(s1, c1), gB(s1, c1)). Consequently, WPR must be an S+ shock.

must lie to the right of the c = c1 contact base coordinate curve. Hence the con-
tact base point (gA(s2∗ , c2), g

B(s2∗ , c2)) must lie at the intersection of the horizontal
line through (gA(s1, c1), g

B(s1, c1)) and the c = c2 contact base coordinate curve.
However, (gA(s2∗ , c2), g

B(s2∗ , c2)) is just the point P in Figure 4.2(b). Part of the
boundary of the S+

se,s1 region is formed by the half line beginning at σ(se, s1; c1) and
passing through the rarefaction base point fs(s1; c1) (light dashed line in Figure 4.5).
The relation (see section 2.4) between the rarefaction fs(s; c1) and shock base curve
σ(s, s1; c1) guarantees that (g

A(s1, c1), g
B(s1, c1)) lies to the right of this boundary.

Consequently, P also lies to the right of this boundary, i.e., P lies within the S+
se,s1

region.
Proposition 4.7. For c2 < c1, WPR is either (i) an R+ rarefaction, (ii) an

S−R+ composite, or (iii) an S− shock.
Proof. As c2 < c1, by Proposition 4.5 se < s1. The resolution of the discontinuity

between the states se, c1 and s1, c1 involves Figure 3.1(b) where s1, se and c1 corre-
spond, respectively, to the values sl, sr and c in Figure 3.1(b). If gB(s2∗ , c2) (which is
the y coordinate of point P ) is less than fBs (se, c1) (which is the y coordinate of the
rarefaction base point denoted fs(sr; c) in Figure 3.1(b)), clearly point P can lie only
in the R+, S−R+, or S− regions indicated in the figure.

We need therefore consider only the case fBs (se, c1) < g
B(s2∗ , c2). Since c2 < c1,

the contact base coordinate curve g(s; c2) lies above the curve g(s; c1). The contact
discontinuity CPQ crosses the contact base coordinate curve g(s; c2) at the base
point P = (gA(s2∗ , c2), g

B(s2∗ , c2)) and the curve g(s; c1) at the contact base
point (gA(se, c1), g

B(se, c1)). The horizontal contact Cy passes through the base
points P and (gA(s1, c1), g

B(s1, c1)). Since the tangent to g(s; c1) at the base point
(gA(se, c1), g

B(se, c1)) has to meet the rarefaction base curve fs(s; c1) at the base
point (fAs (se, c1), f

B
s (se, c1)), and since both the rarefaction and contact base coordi-

nate curves are concave down, this rarefaction base point (fAs (se, c1), f
B
s (se, c1)) has

to be on a segment of the rarefaction base curve fs(s; c1) lying inside the “triangular”
region having vertices P , (gA(se, c1), g

B(se, c1)) and (gA(s1, c1), g
B(s1, c1)) as shown

in Figure 4.6. (Note that we are considering the case fBs (se, c1) < g
B(s2∗ , c2).) Since

the rarefaction base curve is concave down, point P is located left of the tangent
line to the rarefaction base curve fs(s; c1) at the point (fAs (se, c1), f

B
s (se, c1)).
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This figure is for the CSCWx case; the CRCWx case has a similar “triangular” region.
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Fig. 4.7. Identity of the s-family wave WPR as a function of the location in phase space of
(s2, c2) relative to (s1, c1).

This implies point P can lie only in the S−R+ or S− regions indicated in Fig-
ure 3.1(b).

Figure 4.7 summarizes the results for the identity of the s-family wave WPR

according to the location of the initial state s2, c2 relative to s1, c1 in phase space.
There are 12 regions formed by the combined classification of the solution behavior
at infinity and the WPR wave type.

This classification is generic with the following exception. Due to the finite limits
on the values of s and c in the model, as the value of c1 is lowered, the S− and
S−R+ regions in Figure 4.7 will vanish. Additionally, the width of the S−R+ region
varies with c1, increasing in width as c1 decreases. As c1 → 1, the S−R+, R+,
and S+ regions shrink to zero area. These observations are based upon numerical
computations designed to identify the phase space boundaries of the S+, R+, S−R+,
and S− regions. The numerical computations vary s1, c1 over their full range of values
and for each fixed pair s1, c1 perform the classification for a extensive choice of values
of s2, c2 covering phase space on a fine grid (∆s = 2 · 10−4, ∆c = 1 · 10−4). An
illustration of the results for six choices of s1, c1 (s1 = 0.59 held fixed, and c1 varying
over the range [0.4,0.95]) is given in Figure 4.8.
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Fig. 4.8. Due to the finite range of c and s, certain realizations of the wave type WPR may
not appear for all values of s1, c1.

5. Solution construction for the single quadrant Riemann problem. In
this section, we present the detailed solutions for each of the 12 solution types in
Figure 4.7 and discuss the final wave interaction in region R for each case.

For each solution construction the same general steps are used. With reference
to Figure 4.2(b), they are as follows:

• From separate 1-D Riemann problems, determine the states s1∗ and s2∗ (Lemma 4.3)
and the s-family waves Wx, Wy “at infinity.”

• The interaction at Q of the s-family wave Wy (separating state (s2, c2) and (s2∗ , c2))
with the contact discontinuity Cx separating state (s2, c2) and (s1∗ , c1) is resolved.

• The location of the point P of intersection of the contact discontinuities Cy and
CPQ is determined. It has coordinates P = (gA(s2∗ , c2), g

B(s2∗ , c2)).

• The direction of the contact discontinuity CPQ separating constant states s2∗ , c2
and se, c1 is determined.

• The value of the intermediate state saturation se is determined (Lemma 4.3).

• The s-family wave WQR separating constant states (s1∗ , c1) and (se, c1) is resolved.

• The s-family wave WPR separating constant states (s1, c1) and (se, c1) is resolved.

• The interaction involving the s-family waves Wx, WQR, and WPR is resolved in the
region R.

We present each solution for all 12 cases. However, due to space limitations, we
display only simplified figures of each solution in Figure 5.1. For complete figures, we
refer to [2]. We focus our discussion on the region R.

5.1. CSCS. The solution contains only contact discontinuities (dashed lines)
and s-family shocks (solid). Each contact discontinuity is a straight line whose tan-
gent passes through the two relevant contact base points. Each shock separates two
constant states and is therefore a straight line whose tangent passes through the
appropriate shock base point. Wy and WQR are S− shocks. (The shock-contact in-
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Fig. 5.1. All 12 solutions in the (ξ, η) plane.

teraction at the point Q preserves shock type.) The shock Wx and the short third
shock emerging from the WQR, Wx interaction point are also of type S−. WPR is a
shock of type S+ by Proposition 4.6.

5.2. CSCR. The CSCR case breaks into four subcases, one for c2 > c1 and
three for c2 < c1.

5.2.1. c2 > c1. As for the CSCS case, the waves Wy and WQR are S− type
shocks; WPR is always a shock of type S+ by Proposition 4.6. Wx is a rarefaction
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Fig. 5.2. CSCR solution: Details of the WQR and WPR wave interaction at point R for CSCR
solutions when the WPR wave is of type (a) S+, (b) R+, (c) S−R+.

fan of type R−. Each characteristic wave in the R− fan is a straight half line whose
tangent passes through to the appropriate rarefaction base point. Details of the
interaction are given in Figure 5.2(a). The interaction of the S− shock WQR and the
R− rarefaction fan results in a continuously curving shock of decaying strength. As
se > s1, the S

− shock interacts with the R− fan and “emerges” from this interaction
with a straight segment that ends at the shock base point σ(se, s1; c1). The S

+ shock
WPR also terminates at this shock base point.

5.2.2. c2 < c1. There are three different cases, labeled by the possible type for
the WPR wave.

R+. For a range of values of c2, WPR is an R+ rarefaction fan centered at the
point P . (P is the contact base point (gA(s2∗ , c2), g

B(s2∗ , c2)).) Wy and WQR are
S− shocks, and Wx is an R− rarefaction fan. Details of the Wx, WQR and WPR

interaction are given in Figure 5.2(b). Upon interacting with the R− rarefaction, the
S− shock begins to curve and weaken. One edge of the R+ rarefaction fan centered at
P also meets the S− shock at this base point. Over the range of state values (se, c1)
to (s1, c1) the characteristic lines of both R

+ and R− rarefaction fans meet along the
section of the rarefaction base curve between the base points fs(se; c1) and fs(s1; c1).

This WQR ↔Wx wave interaction is of the type S− ↔ R−. Theorem 1 of Zhang
and Zhang [20], based upon analysis of the four quadrant Riemann problem for a
single conservation law, states that either “the S− shock will penetrate the R− wave
completely” or “during the penetration, an R+ wave will form having the S− shock
as an envelope of characteristic lines of the R+ (i.e., an S−R+ composite wave is
formed).” In our entropy obeying solution, however, the S− shock terminates with
zero strength at the rarefaction base point fs(se; c1) and neither “complete penetra-
tion” nor “composite wave formation” occurs. It is currently unclear as to whether
the presence of the WPR R

+ wave emanating from P is the reason for the behav-
ioral difference between our observed solution and the Zhang–Zhang theorem. (We
do, however, find composite waves occurring in S− ↔ R− interactions in our S−R+

labeled subcases of CSCR, CRCS, and CRCR.)

S−R+. For a range of values of c2, WPR becomes an S−R+ composite wave with
the R+ fan centered at the point P (the contact base point (gA(s2∗ , c2), g

B(s2∗ , c2)).
The S−R+ composite wave WPR is very narrow; Figure 5.2(c) gives an enlarged
sketch of this wave and the interaction region of the waves WQR, Wx, and WPR. The
straight S− shock begins to curve upon interaction with the upper R− rarefaction
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Fig. 5.3. Details of the WQR and WPR wave interaction at point R for the CSCR solution
with c2 < c1. (The WPQ wave is of type S−.)

fan. At point A it also interacts with the S− shock from the lower S−R+ composite
wave. The resultant shock (curve segment AB) of S− type separates the R− and
R+ rarefaction fans. At point B a characteristic of the R+ fan meets this S− shock
tangentially. On the segment AB the effective flux function n̂ · (fA, fB), where n̂ is
normal to the shock, remains convex. On the segment BC the effective flux develops
a single inflection point and a composite S−R+ wave forms with the characteristics
of this R+ wave “emerging” tangentially from the S− shock. This second R+ fan
“merges” continuously with the remainder of the R+ fan centered on point P . At C
the S− shock decays to zero strength (the characteristic state (s∗, c1) on both sides of
the shock is the same) and meets the rarefaction base curve at the base point fs(s

∗; c1).
Over the segment of rarefaction base curve from C to fs(s1; c1) the characteristics of
the upper R− and lower R+ rarefaction waves meet continuously. Composite waves
of the type generated over the segment BC have been seen in the work of Zhang and
Zheng [22] and even as early as the work by Wagner [17]. In these earlier works,
however, one side of the “precursor” shock segment (i.e., the shock segment AB) was
always a constant state. In our case the state on both sides of the precursor segment
is changing continuously.

S−. For the final range of values of c2 < c1, WPR is an S− shock, WQR is an S−

shock, and Wx is an R− rarefaction.
The following lemma shows that the WQR S

− shock must interact with the WPR

S− shock before WQR has “completed” its interaction with the Wx R
− rarefaction.

Lemma 5.1. The WPR and WQR S
− shock waves must interact when the state

on the upper side of WPR has a saturation value lying in the range (s1∗ , se).
Proof. The proof is geometrical. Figure 5.3 shows the rarefaction base curve,

the base points fs(s1; c1), fs(se; c1), and the shock base point σ(s1, se; c1) which lies
in their convex hull. As WPR is an S− shock, the point P must lie to the left
of the straight dashed line which passes through the two base points fs(s1; c1) and
σ(s1, se; c1). Assume the S− shock WQR does not interact with WPR but only with
the R− rarefaction fan Wx. Then, as shown in Figure 5.3, the shock WQR must end
at zero strength at the rarefaction base point fs(se; c1). However, we see that this is
geometrically impossible without an interaction with the WPR shock. Hence the two
shocks WPR and WQR must interact as claimed.
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Fig. 5.4. Details of the WQR and WPR wave interaction at point R for CRCS solutions when
the WPR wave is of type (a) R+, (b) S−R+, (c) S−.

The shocks WPR and WQR must interact at a point A. From A to fs(s1; c1) an
S− shock separates the R− rarefaction from the constant state (s1, c1). This shock
ends with zero strength at the base point fs(s1; c1).

5.3. CRCS. The CRCS case also breaks into four subcases, one for c2 > c1 and
three for c2 < c1.

5.3.1. c2 > c1. Wy and WQR are R− rarefaction fans; WPR is an S+ shock by
Proposition 4.6; Wx is an S− shock. We note that, as in the isotropic case [3], the
contact-rarefaction interaction produces a dynamic diffraction of the WQR rarefaction
fan, in this case focusing the fan. The S− shock interacts with the WQR fan; both
S+ and S− shocks meet at the shock base point σ(s1, se; c1).

5.3.2. c2 < c1. There are three different cases, again labeled by the possible
type for the WPR wave. In all cases the Wy and WQR waves are rarefactions; inter-
action with the Cx contact discontinuity produces diffraction of the WQR fan.

R+. For a range of values of c2 < c1, a centered R+ rarefaction fan forms at the
point P . Details of the Wx, WQR and WPR interaction are given in Figure 5.4(a).
The saturations se, s1 and s1∗ are ordered se < s1 < s1∗ . Wx is an S− shock. Due
to the relative ordering of se, s1 and s1∗ , Wx interacts with WQR until it decays to
zero strength at the rarefaction base point fs(s1; c1). The remainder of the WQR

rarefaction and WPR meet continuously along the rarefaction base curve between the
points fs(s1; c1) and fs(se; c1).

S−R+. For the next lowest range of values of c2 < c1, the WPR wave becomes
an S−R+ composite wave with the R+ fan centered at the point P . Details of the
interaction is given in Figure 5.4(b). Wx interacts with the WQR fan and terminates
tangentially, at zero strength, at the base point fs(s1; c1). The S− shock in the
composite WPR wave interacts with the WQR fan at A. It curves as a result of the
interaction; over a segment (AB in Figure 5.4(b)) the effective flux function n̂·(fA, fB)
continues to have an inflection point and a composite S−R+ wave continues to form
with the characteristics of the R+ fan “emerging” tangentially from the shock along
the segment AB. This fan merges continuously with the R+ fan centered on point P .
The point B is a rarefaction base point fs(s̄; c1) for some saturation s̄ in the interval
(se, s1). Between the respective characteristics (s̄, c1) and (s1, c1) the WQRR

− and
the R+ rarefaction fans meet continuously along the rarefaction base curve.
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Fig. 5.5. Details of the WQR and WPR wave interaction at point R for the CRCR solutions
when the WPR wave is of type (a) R+, (b) S−R+.

S−. For the lowest range of values of c2, WPR is an S− shock. The S− shocks Wx

and WPR interact separately with either end of the R− rarefaction WQR. Both shocks
meet tangentially at the rarefaction base point fs(s1; c1), decaying to zero strength
at this point. Details of the interaction are given in Figure 5.4(c).

5.4. CRCR. In this case, c2 < c1. We have the state ordering se < s1∗ < s1.
Wy, WQR, and Wx are all R− rarefaction fans. Again there are three possibilities for
WPR.

R+. For a range of values of c2 < c1, a centered R+ rarefaction fan forms at the
point P . Details of the Wx, WQR and WPR interaction are given in Figure 5.5(a).
All rarefaction fans meet continuously along the rarefaction base curve between the
base points fs(se; c1) and fs(s1; c1). There are no s-family shocks in the solution.

S−R+. For the next range of values of c2 < c1, WPR forms an S−R+ composite
wave with the R+ fan centered at the point P . The WPR R

+ rarefaction meets the
upper part of the WQR R

− rarefaction continuously along the rarefaction base curve
between the base points fs(s1∗ ; c1) and fs(s1; c1). The interaction of the composite
wave WPR and the lower part of the WQR R

− rarefaction is given in Figure 5.5(b)
and is the same as in Figure 5.4(b).

S−. For the lowest range of values of c2 < c1, WPR forms an S− shock. It
interacts separately with the Wx and WQR rarefaction fans, meeting the base curve
tangentially at the base point fs(s1; c1) where it decays to zero strength.

6. Discussion. It is tempting to comment on the generalizability of the con-
struction technique utilized here to Riemann problems involving systems in R2. In
R2 the integral curves (characteristic lines) for the ith family are given by (see, e.g.,
(2.12) of this paper, or (2.5) and following in [12])

∂η(ξ)

∂ξ
= λi =

η −Ri,η(U)
ξ −Ri,ξ(U) .(6.1)

Here U = (u1, . . . , un) denotes the solution. The rarefaction base points associated
with this family are the points (Ri,ξ(U), Ri,η(U)). An ith family integral curve having
state value U0 must have a tangent line passing through the rarefaction base point
(Ri,ξ(U0), Ri,η(U0)).
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If the jth family is a contact discontinuity, the contact base points are similarly
defined:

∂η(ξ)

∂ξ
= λj =

η − Cj,η(U)
ξ − Cj,ξ(U) ;(6.2)

the contact base points associated with this family are the points (Cj,ξ(U), Cj,η(U)).
Such a contact discontinuity separating two states Ul and Ur must satisfy λj(Ul) =
λj(Ur); the tangent line to the contact discontinuity must pass through the two contact
base points (Cj,ξ(Ul), Cj,η(Ul)) and (Cj,ξ(Ur), Cj,η(Ur)).

Finally a (smooth) discontinuity for the ith family satisfies a Rankine–Hugoniot
condition

∂η(ξ)

∂ξ
= σi =

η − Si,η(Ul, Ur)
ξ − Si,ξ(Ul, Ur) .(6.3)

(See, e.g., (2.16) of this paper, or (2.8.2) in [12].) The shock base points associated
with this family are the points (Si,ξ(Ul, Ur), Si,η(Ul, Ur)); a shock discontinuity sep-
arating states Ul and Ur must have a tangent line passing through this shock base
point.

Base points provide ODE integration (tangent) directions for the characteristic
curves and smooth discontinuity curves, enabling the tracing of such curves in the ξ, η
plane. Constant state conditions on characteristic curves or changing state conditions
on each side of discontinuity curves implicitly define a (presumably) continuous path
through a relevant set of base points. In this paper, the second state variable u2 = c
is a Riemann invariant for the s-family of waves, and the rarefaction base points form
curves (parametrized by values of c) vastly simplifying characteristic curve tracing.
A simplifying organization of the set of shock base points also follows from the same
invariance.

It is, however, the development of relationships between base points of different
types (i.e., between the functions Ri, Ci, and Si above) that seems to be critical in
achieving “analytic” solution. The critical question is whether one can find general
relationships that hold independent of the model under consideration. It is encour-
aging that equations such as (2.26) and (2.27) between the R and S functions for the
same wave family are somewhat general relationships which hold in any scalar region
of the solution and are independent of the form of the flux function f . (By scalar
region we mean any region in which the variables associated with all but one wave
family are constant.)
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Abstract. We introduce a discrete network approximation to the problem of the effective
conductivity of the high contrast, highly packed composites in which inclusions are irregularly (ran-
domly) distributed in a hosting medium so that a significant fraction of them may not participate
in the conducting spanning cluster. For this class of spacial arrays of inclusions we derive a discrete
network approximation and obtain its a priori error estimate. We obtained an explicit dependence
of the network approximation and its error on the irregular geometry of the inclusions’ array. We
use variational techniques to provide rigorous mathematical justification for the approximation and
its error estimate.

Key words. effective conductivity, discrete network, error estimate, variational bounds
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1. Introduction. We study the effective properties such as the effective con-
ductivity or the effective dielectric constant of composite materials in which a large
number of inclusions are irregularly (randomly) distributed in a homogeneous hosting
medium (matrix). For ease of presentation and clarity we concentrate here on the
effective conductivity. We are particularly interested in the case of the high contrast,
highly packed particulate composites, that is, when the conductivity of the inclu-
sions is much larger than the conductivity of the hosting medium and the volume
fraction of the inclusions is very high. High contrast composites are extremely at-
tractive for the design of new materials with physical properties better than those of
their constituents. The case when the concentration of the filling inclusions is high is
particularly relevant to polymer/ceramic composites, because a polymer matrix com-
pensates for the brittle nature of ceramics which is their main weakness. A survey on
the relevant engineering problems in two and three dimensions (fibers and particles
in a matrix) can be found in [3].

Our main tool is (a modification of) the discrete network approximation (DNA)
of [3] for a two-dimensional composite, where the inclusions are modeled as identical
disks. We focus on the two key issues arising for this approximation. The first is the
explicit error estimate of the DNA to the continuum problem of effective conductivity.
The second is a quantitative estimate on how the connectivity patterns for various
irregular distributions of the inclusions affect the effective conductivity.

The main advantage of our DNA is that it is easy to implement numerically and at
the same time it captures geometric patterns of the location of inclusions in the matrix.
The importance of the geometric patterns in evaluation of the effective properties of
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high contrast composites can be seen in the analysis of periodic structures. It was
observed that for such periodic composites of moderate volume fraction, that is, away
from the almost touching situation, the effective conductivity is of the order of the
conductivity of the matrix (see, for example, [2], [16], [17], and references therein).
In other words, the filler has almost no effect on the effective conductivity. However,
in the case of almost touching inclusions, the effective conductivities of two periodic
structures with different locations of inclusions in the matrix can be significantly
different for the same volume fraction. For example, if the contrast ratio of the
constituents is assumed to be ∞, then for the same volume fraction of disks (equal to
π/4) for the hexagonal lattice, the effective conductivity â = O(1) (see [4]), while for
the square lattice â =∞ (see [13]).

The case of irregularly distributed inclusions is not as well understood as the
periodic case. Since the volume fraction of the inclusions is high, the irregular con-
nectivity patterns in the whole composite (percolation effects) determine the behavior
of the effective properties. Moreover, it was observed that the irregular connectiv-
ity patterns of conducting inclusions can greatly increase the effective conductivity.
Therefore, there is a need for a simple model that is still able to capture percolation
effects. Also, while for a given periodic structure the volume fraction of the inclusions
uniquely determines the distances between the inclusions, this is no longer true for
irregular structures, and one should search for a model with a new parameter which
describes the local geometry when the inclusions are close to touching. Such a model
(the network approximation) was proposed in [3] in two dimensions. The notion of
the interparticle distance parameter for closely packed (“randomized” hexagonal) pat-
terns, based on the Voronoi tessellation, was introduced there. In the present work we
generalize this notion for a broad class of geometrical patterns. This is important in
practical applications, because in real composites the array of the inclusions is often
highly nonuniform due to the manufacturing process.

Our new approach allows us to derive an explicit error estimate for the DNA.
Since most of the existing estimates provide an order of the magnitude of the error
only, such explicit estimates are rare in homogenization theory. The class of geomet-
rical patterns that can be handled by our approach includes a nonuniform irregular
distribution, when a significant fraction of the inclusions does not participate in the
conducting spanning cluster. This approach allows us to relax the close packing con-
dition of [3] so that not all the “neighboring” inclusions (disks) are closely spaced.
More specifically, we introduce and study the δ −N close packing condition, which
loosely speaking allows for “holes” with the perimeter of order NR in the conducting
spanning cluster. Here R is the radius of the inclusions, and N is the number of in-
clusions in the perimeter of the largest hole in the conducting cluster (see Figure 1.1).
Thus we account quantitatively for the presence of these holes in the composite.

The question of error estimates was raised by I. Babuska, because the analysis
of [3] is asymptotic in the interparticle distance parameter and does not provide an
error estimate. The analysis in the present paper does not use asymptotics, and it
holds for any (small) finite value of the relative interparticle distance parameter. This
enables us to prove the following error estimate for the effective conductivity â:

|â− I|
I

≤ C(N)
√
δ

R
,(1.1)
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(a) Black disks form the conducting cluster.
Hatched disks do not participate in the cluster.

8−gon

9−gon

5−gon

10−gon

11−gon

15−gon

3−gon

(b) The graph that corresponds to the conducting cluster in (a). An N-gon N ≥ 4
corresponds to a “hole” of size N.

Fig. 1.1. The conducting cluster in a composite with “holes”.
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where I is the value of effective conductivity provided by the network approximation,
δ/R is the relative interparticle distance, and for the constant C(N) we provide an
upper bound C(N) ≤ 2.56N4.

The discrete network models for various high contrast composites have been used
extensively in the physics literature (see [1], [11], [12], [14], [18], [19]); however, the
relation between the network and the underlying continuum problem was not studied
there. In [15], high contrast conductivity problems were first formulated and analyzed
using variational methods. There the high contrast field was of the form

eS(x)/ε(1.2)

with a smooth function S(x). In particular, the asymptotic analysis in the high
contrast ratio parameter ε has been carried out in [15] for a random checkerboard
model.

For the Kozlov’s function (1.2) a network asymptotic approximation in the high
contrast parameter ε was developed in [6], [7], [8], [9]. It was rigorously proved in [8]
that the network approximates the original continuum problem. The analysis of [8]
was carried out for high contrast continuum problems arising in imaging, when the
materials’ properties are not known and it is convenient to model the high contrast
in a simple geometric manner by (1.2). In this model the key parameter, which
determines the conductivity of the edges in the network, is

√
k+/k−, where k+ and

k− are the principal curvatures at the saddle points of S(x).
Our analysis applies to a class of physical problems where S(x) is not smooth. In

our case S(x) is the characteristic function of the disks, S(x) = 1, S(x) = 0, on the
inclusions and in the matrix, respectively (see Figure 2.1). Furthermore, in our case
the high contrast parameter ε = 0 and the analysis is carried out when the relative
interparticle distance parameter is sufficiently small. In other words, we consider the
infinite contrast material with ideally conducting inclusions. This assumption is valid
for a variety of particulate composites (particles or fibers in a matrix), and it is in
agreement with bounds [10] which imply that if the contrast ratio is greater than
several hundred, then for practical purposes it can be taken to be infinite.

The paper is organized as follows. In section 2 we give the formulation of the
problem and construct the modified DNA. In section 3 we formulate and prove the
main result: an explicit analytical a priori error estimate for this approximation. We
also present there numerical a posteriori error estimates.

2. Formulation.

2.1. Mathematical model. Consider a two-dimensional rectangular two-phase
composite that consists of a matrix filled by a large number of inclusions. The in-
clusions are ideally conducting. Assume that all the inclusions are identical nonover-
lapping disks. The centers of the disks are irregularly distributed in the rectangular
domain. The distribution of the disks is dense; that is, the characteristic distance
between two neighbors is much smaller compared to the radius of the disks.

Denote the domain occupied by the composite by Π = [−L,L] × [−1, 1] (Fig-
ure 2.1). Denote the disks that model the inclusions by Di, i = 1, . . . , N , where N is
the total number of disks. Then

Qp = Π\ ∪Ni=1 Di(2.1)
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Fig. 2.1. The composite.

is the matrix. The potential φ(x, y) = φ(x),x = (x, y) satisfies

(a) ∆φ = 0 in Qp,

(b)
∂φ(±L, y)

∂n
= 0,

(c)

∫
∂Di

∂φ/∂n dx = 0 for all i,(2.2)

(d) φ(x) = ti in ∂Di,

(e) φ(x,±1) = ±1.
We apply the potential ±1 to the boundaries y = ±1 (respectively, (2.2)(e)) and

assume insulating boundary conditions on the vertical boundaries (2.2)(b). The as-
sumption that the disks are ideally conducting implies (2.2)(c–d), where the constants
ti in (2.2)(d) are arbitrary and they should be determined by solving the system (2.2).
The integral condition (2.2)(c) means that the total flux through any disk is zero. If
φ satisfies (2.2), then the effective conductivity â is defined by

â =
1

4L

∫
Qp

|∇φ|2dx,(2.3)

or (see [3])

â =
1

2L

∫
y=1

∇φ · n dx− 1

2L

∫
y=−1

∇φ · n dx− 1

4L

∫
Qp

|∇φ|2dx,(2.4)

because ∫
y=1

∇φ · n dx−
∫
y=−1

∇φ · n dx =
∫
Qp

|∇φ|2dx,(2.5)
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where n is the normal to the boundary y = ±1 and ∫
y=±1

∇φ ·n dx are fluxes through
the horizontal boundaries y = ±1, respectively.

There are two variational definitions (see [3]) of the effective conductivity â. The
first one is given by a minimization problem for the Dirichlet integral

â =
1

4L
min
φ̃∈Vp

∫
Qp

|∇φ̃|2dx,(2.6)

where the minimum is taken over a class of all piecewise differentiable potentials
φ(x, y) ∈ Vp, where Vp is defined by

Vp = {φ ∈ H1(Qp) : φ(x) = ti on Di, φ(x,±1) = ±1}.(2.7)

The Euler–Lagrange equations of the minimization problem (2.6), (2.7) are (2.2). The
second variational formulation is given using the dual formulation (2.4):

â =
1

2L
max
ṽ∈Wp

{∫
y=1

ṽ · n dx−
∫
y=−1

ṽ · n dx− 1
2

∫
Qp

ṽ2dx

}
,(2.8)

where the minimum is taken over a class of all fluxes (see [3] for details)

Wp =

{
v ∈ L2(Qp) : v(±L, y) · n = 0,

∫
∂Di

v · n dx = 0, ∇ · v = 0
}
.(2.9)

Hence for any φ ∈ Vp and v ∈Wp we have bounds

1

2L

[∫
y=1

v · n dx−
∫
y=−1

v · n dx− 1
2

∫
Qp

v2dx

]
≤ â ≤ 1

4L

∫
Qp

|∇φ|2dx.(2.10)

Moreover, if v = ∇φ, then the upper bound equals the lower bound in (2.10).
2.2. Discrete network. Following [3], we construct the discrete network us-

ing the notion of the Voronoi tessellation. We partition the matrix Qp into simple
nonoverlapping geometric figures—necks and triangles. This triangle-neck partition is
an auxiliary construction, which is used in section 3 as a convenient and efficient tool
for the construction of the trial functions for the error estimates.

Consider the set of centers xi, i = 1, 2, . . . , N , of all disks Di and construct the
Voronoi tessellation for the vertices xi, i = 1, 2, . . . , N .

Definition 2.1. For a given distribution of vertices xi, i = 1, . . . , N , in the two-
dimensional rectangular domain Π the Voronoi cell Vi associated with xi is a polygon
that consists of all the points in Π at least as close to xi as to any other vertex. The
set of all such Voronoi cells Vi is the Voronoi tessellation of Π.

Also construct the Delaunay graph (triangulation) dual to the Voronoi tessella-
tion, that is, connect every pair of vertices xi and xj by the line segment (edge) eij if
their respective cells share a common edge in the Voronoi tessellation (see Figure 2.2).

Definition 2.2. Any two disks Di and Dj are said to be neighbors if their
centers xi and xj are connected by the edge eij.

Consider any two neighbors Di and Dj with the centers xi and xj , respectively
(see Figure 2.3(a)). Denote by On and Op the endpoints of the common edge of their
Voronoi cells Vi and Vj . Then connect the center xj with all the vertices of its Voronoi
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(a) Voronoi tessellation (b) Delaunay graph

Fig. 2.2.

cell Vj by auxiliary line segments (dotted lines in Figure 2.3(a)). Denote by Ajn the
intersection of the line segment xjOn with the circumference of the disk Dj . Finally,
define similarly points Ain and Akn and connect the points Ain, Ajn, and Akn.

Definition 2.3. The neck Πij between the neighbors Di and Dj is the curvilinear
quadrangle AinAipAjpAjn, bounded by the two line segments AinAjn and AipAjp and
the two arcs AinAip and AjnAjp.

When we apply this algorithm to all neighbors, in general, all these line segments
AinAjn partition the domain Qp into necks Πij between neighboring disks and trian-
gles ∆ijk. In exceptional cases, instead of triangles we obtain polygons (for example,
quadrangle AipAlpAmpAkp in Figure 2.3(b)) which can be further partitioned into
triangles by drawing auxiliary diagonal lines.

The situation at the boundary needs special treatment. For the construction of
the partition of Qp near the boundary ∂Π we use reflections about all four parts
of ∂Π. Without loss of generality we assume that all the centers xi of the disks
lie inside the domain Π, and hence the centers of the reflected disks will always lie
outside the domain Π. (The case when the disks lie outside the boundary can also be
treated by the model by adding simple but cumbersome modifications.) Consider, for
example, the left boundary x = −L. The algorithm is shown in Figure 2.4. We reflect
symmetrically along the line x = −L all the disks, including the disks that intersect
the boundary. The latter disks partially overlap with the “ghost” disks (dotted disks
in Figure 2.4) which are their mirror images. For the distribution of original disks and
the ghost disks we can still apply the Voronoi tessellation and the algorithm proposed
for the interior disks. For uniformity of presentation we use, as in [3], a notion of a
quasidisk.

Definition 2.4. A quasidisk Di′′ , is the part of a neck Πii′ that lies on the
boundary of Π. The radius of a quasidisk is ∞.
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(a) Voronoi tessellation

(b) Triangle-neck partition

Fig. 2.3. Decomposition of a Voronoi cell.
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Fig. 2.4. Vertical boundary.

An example is the line segment CD ≡ Di′′ in Figure 2.4. This notion allows us
to treat the quasidisks and the original disks uniformly as disks of different radii. In
particular, for a quasidisk the definition of a neighbor (Definition 2.2) applies.

Definition 2.5. The triangle-neck partition P = P(Qp) of the domain Qp is the
set of necks Πij and triangles ∆ijk.

The triangle-neck partition is unique up to partitioning of degenerate (excep-
tional) polygons into triangles. Typically, a neck Πij is not symmetric with respect to
the line connecting the centers of the disks Di and Dj . An example of a neck is given
in Figure 2.5, where we used the local coordinate system when the centers of the both
disks lie on the y-axis. In this coordinate system the width of the left half-neck is |S1|,
S1 < 0, and the width of the right half-neck is |S2|, S2 > 0. Note that inequalities
S1 < 0, S2 > 0 are not true in general, but S1 ≤ S2 always by our construction.
For uniformity of presentation we view auxiliary diagonals as necks with width zero
S1 = S2. For example, the line segment AiB in Figure 2.4 corresponds to such a neck.

Definition 2.6. The maximal and the minimal relative half-neck widths are
defined by

(2.11)

βmax
ij = max

( |S1|
R
,
|S2|
R

)
, βmin

ij = min

( |S1|
R
,
|S2|
R

)
, 0 ≤ βmin

ij ≤ βmax
ij < 1.
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Fig. 2.5. The hatched region is the neck between two neighbors.

We use the relative half-neck widths βmax
ij and βmin

ij in the error estimates in
section 3.

Using the triangle-neck partition we decompose the Dirichlet integral (2.3) into
integrals over necks and triangles:

â =
1

4L

∫
Qp

|∇φ|2dx = 1

4L

∑
Πij

∫
Πij

|∇φ|2dx+ 1

4L

∑
∆ijk

∫
∆ijk

|∇φ|2dx.(2.12)

The DNA of the effective conductivity is based on the observation in [13] that for
high concentration of the disks the fluxes ∇φ are significant only in necks Πij between
closely spaced disks, ∑

∆ijk

∫
∆ijk

|∇φ|2dx�
∑
Πij

∫
Πij

|∇φ|2dx,(2.13)

and in these necks the fluxes can be easily computed (as in [13]) by the linear inter-
polation between the values of the potentials on the disks. More specifically, if we
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align the neck Πij between two neighbors Di and Dj with the vertical direction as
indicated in Figure 2.5, then by the linear interpolation the local flux in Πij satisfies

∇φ =
(
0,
ti − tj
H(x)

)
,(2.14)

H(x) =

{
δij + 2R− 2

√
R2 − x2 for disks,

δij +R−
√
R2 − x2 for quasidisks,

where δij is given by the following definition.
Definition 2.7. The length δij of a neck Πij is

δij =

{
dij − 2R if Di and Dj are disks,
dij −R if one of Di is a quasidisk,

(2.15)

where dij = |xi − xj | is the (Euclidean) distance between xi and xj.
Using (2.14)∫

Πij

|∇φ|2dx =
∫ S2

S1

(ti − tj)2
H2(x)

H(x)dx = gij(ti − tj)2,(2.16)

where

gij =

∫ S2

S1

dx

H(x)
,(2.17)

and ti, tj are potentials onDi, Dj , respectively, and S1, S2 are as defined in Figure 2.5.
If we use (2.16) with (2.17) for all neighbors, then observation (2.13) would imply

â ≡ 1

4L
min
φ∈Vp

∫
Qp

|∇φ|2dx ∼ I ≡ 1

4L
min

t

∑
Πij

gij(ti − tj)2,(2.18)

where t = (t1, t2, . . . , tN ).
This is our modified network approximation. The energy of the discrete network

I =
1

4L
min

t

∑
Πij

gij(ti − tj)2(2.19)

is determined by the choice of the specific fluxes gij . Following [13] they were chosen
in [3] to be

gij = π

√
2RiRj

Ri +Rj

/√
δij(2.20)

for closely spaced disks and zero otherwise. Both formulas (2.20) and (2.17) give the
same leading term in the power expansion in δij → 0 (see [3], [4] for details), and
hence these formulas are asymptotically equivalent as δij → 0. We propose here
to use (2.17), instead of (2.20), and use it for all neighbors not necessarily closely
spaced. Such modified choice of the specific fluxes allows us to derive tight variational
bounds for the relative error of our modified network approximation. The choice
(2.17) validates the approximation (2.18) for much more general nonuniform irregular
distributions, when a significant fraction of the inclusions does not participate in the
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conducting spanning cluster, whereas in [3] it was shown that (2.20) validates the
approximation (2.18) only for arrays of inclusions in which all neighbors are closely
spaced (“randomized hexagonal arrays”). The main goal of this paper is to give
sufficient conditions for these nonuniform irregular distributions, under which (2.18)
is a valid approximation, and provide a rigorous a priori estimate on the relative error
of this approximation. The full details of our construction of the modified network
approximation can be found in [4].

The relation (2.18) is a DNA, because we approximate the continuum minimiza-
tion problem with a discrete minimization problem of a quadratic form (2.19). The
unknowns of the minimization problem are the values of the discrete potentials ti on
the interior disks, and the quadratic form is defined on a graph (network) where the
vertices xi are the centers of the disks Di and the edges eij are the necks Πij . This
graph is the Delaunay triangulation for the centers of the disks, modified by an addi-
tional construction at the boundaries. The construction is as follows. If for a vertex
xi its Voronoi cell Vi is adjacent to the boundary (that is, one of the sides of Vi lies
on the boundary of Π) and the radius of the disk Ri = R is smaller than the distance
from xi to this boundary, then connect xi with this boundary by the perpendicular
line. Denote the intersection of this perpendicular and the boundary by xi′′ , i

′′ > N ,
and the line segment between xi and xi′′ by the edge eii′′ . This modification added
vertices xi′′ , i

′′ > N , that lie on the boundary of Π (see Figure 2.4). These vertices
are in one-to-one correspondence with quasidisks in the triangle-neck partition.

The discrete potentials t̃i at the “boundary” vertices xi, are prescribed on the
horizontal boundaries by

t̃i = ±1 for xi ∈ S±,(2.21)

where S± are the upper/lower boundary vertices defined as follows.
Definition 2.8. A vertex xi is an upper (lower/left/right) boundary vertex, if xi

lies on the upper (lower/left/right) boundary (an added vertex xi′′ , i
′′ > N) or xi is

the center of the disk Di, that intersects the upper (lower/left/right) boundary. The
set S+ (S−/Sl/Sr) is the set of upper (lower/left/right) boundary vertices.

The minimization problem (2.19)–(2.21) amounts to solving the corresponding
linear algebraic system that determines the discrete potentials t̃i at the “interior”
vertices xi ∈ I , I = {xi, i = 1, . . . , N} \ (S+ ∪ S−). A discrete version of insulating
boundary conditions on Sl∪Sr can be formulated as follows. If a vertex of the discrete
network xi′′ �∈ I ∪ (S+ ∪ S−), then xi′′ must be a center of a quasidisk that lies on
the left or the right boundary xi′′ ∈ Sl ∪ Sr. For such vertices t̃i′′ = t̃i, where t̃i
and t̃i′′ are the values of the potential on the disks Di ∈ I ∪ (S+ ∪ S−) and Di′′ ,
respectively, where Di is the uniquely determined disk connected with Di′′ (e.g., in
Figure 2.4 Di′′ ≡ CD). Therefore,∑

Πik,i′′ fixed

gi′′k(ti′′ − tk) = gi′′i(ti′′ − ti) = 0 for all xi′′ �∈ I ∪ (S+ ∪ S−).(2.22)

Definition 2.9. For a given distribution of disks Di with centers xi, i =
1, . . . , N , the discrete network D is a set of vertices xi, i = 1, . . . ,M , M ≥ N ,
and edges eij between neighbors xi and xj of the modified Delaunay graph.

By [3] a necessary condition for the validity of (2.18) is the existence of a con-
ducting spanning cluster.
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Definition 2.10. For any discrete network D (or any subgraph D
′ of it) a

spanning cluster is the (unique) connected component of D (or D
′) that contains at

least one path that connects the S+ and S− and at least one path that connects Sl

and Sr.
The spanning cluster is conducting if the distance δij between every two consecu-

tive vertices of this graph δij ≤ δ, where δ is sufficiently small. A sufficient condition
for the existence of the conducting spanning cluster is the δ-N connectedness property
of the discrete network D which can be formulated in terms of δ-subgraphs of D.

Definition 2.11. For any δ > 0 the δ-subgraph Dδ of the discrete network
(graph) D is the subset of edges eij and their incident vertices xi and xj of D such
that their length δij ≤ δ. For any subgraph a vertex is incident if it is an end-vertex
of one of its edges.

The δ-N connectedness property of D is used extensively in this paper; therefore,
for completeness, in the rest of this section we give the precise graph-theoretical
definitions related to this notion. Most of them are taken from [5].

Definition 2.12. A path of a graph D from x0 to xn is an alternating sequence
of

x0, e01, x1, e12, x2, e23, . . . , xn−1, en−1n, xn

of distinct vertices xi and edges eij. Such a path has size n, and the vertices x0 and
xn are said to be the end-vertices. The vertices x1, . . . , xn−1 are said to be the interior
vertices.

Conventionally (see [5]), the size of a path is called its length. Here we do not
use this standard notation, because the following definition of the length of a path is
more natural in our setting (due to Definition 2.7).

Definition 2.13. The length of a path is the sum of lengths of its edges eij. The
length of an edge eij is the length of the corresponding neck Πij as in Definition 2.7.

Definition 2.14. An internal cycle C of D is an alternating sequence of

x0, e01, x1, e12, x2, e23, . . . , xn, en0, x0

of vertices and edges, such that

x0, e01, x1, e12, x2, e23, . . . , xn

is a path, and en0 connects the vertices x0 and xn. Such a cycle has size n+ 1.
Definition 2.15. A boundary cycle C of D is a path

x0, e01, x1, e12, x2, e23, . . . , xn

such that the end-vertices x0 and xn lie on the boundary of the domain Π. Such a
boundary cycle has size n.

Note that the end-vertices x0 and xn of a boundary cycle may belong to different
boundaries, for example S− and Sl, respectively.

Definition 2.16. A minimal cycle Cmin is an (internal or boundary) cycle such
that for any two vertices xi and xj of this cycle the shortest path from xi to xj is a
subset of the cycle Cmin. If the cycle Cmin is a boundary cycle, we also require that
for any interior point xi of this cycle the shortest path from to xi to any point xk on
the boundary is a subset of the cycle Cmin.

Note that we require for a minimal boundary cycle an additional condition. This
condition guarantees that a boundary cycle cannot be shortened by connecting an
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interior point of this cycle with the boundary. Definition 2.16 is a formalization of an
intuitive notion of a hole in a composite. Each hole in a composite is surrounded by
a loop of conducting disks (see Figure 1.1(a)). On the modified Delaunay graph this
loop corresponds to an N-gon, which is a minimal cycle of this graph.

Definition 2.17. The size N of the largest minimal cycle of a (sub)graph Dδ is
the upper bound on the size of all its minimal cycles; that is,

N = max
Cmin⊂Dδ

size(Cmin),(2.23)

where Cmin is a minimal cycle.
The interior of a cycle C, denoted IntC , is a (closed) polygon having the cycle

C as its boundary; that is, ∂IntC = C. However, the definition of the interior of a
boundary cycle requires an additional technical construction. Naturally, the interior
of a boundary cycle can be defined as a (closed) polygon having the cycle C and some
parts of the boundary of the domain Π as its boundary. However, there are exactly
two such polygons such that their union is the whole domain Π. Among these two
polygons we choose for the interior the one with the smallest area.

The degree of the connectedness of the whole graph D can now be quantified in
terms of the two parameters, δ and N, and an a priori relative error estimate for the
DNA D is determined in terms of these parameters only.

Definition 2.18. For a fixed δ a discrete network (graph) D is δ-N connected if
(i) the δ-subgraph Dδ contains the spanning cluster as in Definition 2.10,
(ii) the size of the largest minimal cycle of Dδ is N.
In this paper we are interested in δ-N connected discrete networks such that the

size of the composite is large, compared to the perimeter of the largest minimal cycle:

(2R+ δ)N < min(2, 2L).(2.24)

If (2.24) holds, then (i) is equivalent to the following:
(i’) For every point y of the domain Π there exists a minimal cycle Cmin of the δ-

subgraph Dδ such that y ∈ IntCmin ; and if this minimal cycle is a boundary cycle, then
its end-vertices either lie on the same (left/right/upper/lower) part of the boundary
∂Π or they lie on two adjacent parts of ∂Π, e.g., left and upper.

The condition (i’) is technical, but in the proofs of our main results we use (i’)
instead of (i). Thus, let us show that these conditions are equivalent. To argue by
contradiction we assume that (2.24) holds, but there are no paths on the graph Dδ

that connect S+ and S−. Then there exists a path in the whole domain Π that
connects Sl and Sr and does not intersect Dδ. The length of this path, on the one
hand, must be larger than the distance between the left and the right boundaries; on
the other hand, it cannot be larger than the diameter of the largest minimal cycle.
Recall that the distance between any two vertices in D does not exceed 2R + δ, and
hence the inequality 2L ≤ (2R + δ)N must hold which contradicts (2.24). Suppose
now (i) holds. Then the spanning cluster partitions Π into polygons (“holes in the
cluster”). Therefore, every point y ∈ Π lies in one of them. These polygons can be
chosen to be nonoverlapping and so that their boundaries are interior minimal cycles
of Dδ, or boundary minimal cycles of Dδ and some parts of ∂Π. Hence it is left to
check that every boundary minimal cycle satisfies the condition that its end-vertices
either lie on the same part of the boundary ∂Π or they lie on two adjacent parts of
∂Π. This follows from (2.24).

Finally, we note that the existence of a path connecting S+ and S− implies the
existence of a path connecting Sl and Sr. Indeed, suppose (2.24) holds, but there is
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no path in Dδ that connects S
l and Sr. Then the connected component of Dδ that

contains the path from S+ to S− is not connected to one of the boundaries Sl or Sr.
Then there exists a boundary minimal cycle in Dδ that connects S

+ and S−. On the
one hand, its length is at most (2R + δ)N; on the other hand, it must exceed 2, the
distance between the upper and the lower boundaries. This is impossible, because it
contradicts (2.24).

2.3. Properties of the discrete network. Here we collect some results on
the properties of the discrete network. The first lemma gives an upper bound on
the number of necks and triangles that lie in the interior of any minimal cycle of the
δ-subgraph in terms of the size of largest minimal cycle N. Consider a δ-N connected
discrete network D (Definition 2.18). Let us now consider a minimal cycle Cmin of
the δ-subgraph Dδ. Denote by #∆Cmin the number of the triangles ∆ijk that lie in
the interior of this minimal cycle ∆ijk ⊂ IntCmin

. Similarly, #ΠCmin
is the number of

the necks Πij that lie in the interior of this minimal cycle Πij ⊂ IntCmin
, and #xCmin

is the number of the vertices (centers of disks) xi such that xi ⊂ IntCmin .
Lemma 2.19. Suppose the discrete network D is δ-N connected. Then for any

minimal cycle Cmin of the δ-subgraph Dδ the number of triangles #∆Cmin
, and the

number of necks #ΠCmin
that lie in the interior of Cmin, satisfy the bounds

#∆Cmin ≤ 2
(
N+

2

π
√
3
N2

)
, #ΠCmin ≤ 3

(
N+

2

π
√
3
N2

)
.(2.25)

The proof is basically the isoperimetric inequality together with the Euler’s for-
mula. For details see [4].

Lemma 2.20. There is a unique solution t = {ti|xi ∈ I} of the discrete mini-
mization problem (2.19)–(2.21). This solution satisfies a discrete analogue of Euler–
Lagrange equations (compare to (2.2))∑

Πik,i fixed

gik(ti − tk) = 0 for all xi ∈ I.(2.26)

Proof. A solution that satisfies (2.26) exists, because the quadratic form (2.19) is
positive definite. The discrete network is a connected graph in the sense that there is
a path between each vertex xi and a boundary vertex xj ∈ S±. This implies that the
solution is unique.

Similar to the fluxes through the horizontal boundaries on the right-hand side of
(2.4), denote by P+ and P− the discrete fluxes through the boundaries S+ and S−,
respectively;

P+ ≡
∑

Πij ,xi∈S+

gij(ti − tj), P− ≡
∑

Πij ,xi∈S−
gij(ti − tj).(2.27)

Then

1

4L
(P+ − P−) = 1

4L

∑
Πij

gij(ti − tj)2 ≡ I(t).(2.28)

Formula (2.28) is a discrete analogue of (2.5). For the proof see [3].
Lemma 2.21 (discrete maximum principle). Suppose t = {t1, t2, . . . , tM} is the

solution of the D problem (2.19)–(2.21). For any (internal or boundary) cycle C of D

define

tmax = max(ti), xi ∈ C, tmin = min(ti), xi ∈ C.
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Then for any vertex xk with potential tk such that xk ∈ IntC , that is, xk belongs to
the interior of the cycle C (as in Definition 2.18), we have

tmin ≤ tk ≤ tmax.

The proof of the discrete maximum principle is by contradiction; it is fairly stan-
dard and it could be found in [3]. As a corollary of the discrete maximum principle
we have the following lemma.

Lemma 2.22. If the discrete network D is δ-N connected, then for any minimal
cycle Cmin of the δ-subgraph Dδ and a vertices xk ∈ IntCmin

and xl ∈ IntCmin we have

(tk − tl)2 ≤ N
∑

Πij∈Cmin

(ti − tj)2.(2.29)

Proof. By the discrete maximum principle

(tk − tl)2 ≤ (tmax − tmin)
2,(2.30)

where

tmax = max(ti), xi ∈ Cmin, tmin = min(ti), xi ∈ Cmin.

Suppose the maximum tmax and the minimum tmin are achieved at the vertices x
′ ∈

Cmin and x
′′ ∈ Cmin, respectively. Since both vertices belong to the minimal cycle

Cmin, there is a part of this minimal cycle which is a path with the size ≤ N that
connects them. Therefore, by the triangle inequality for the values of the potentials
ti, xi ∈ C

(tmax − tmin)
2 ≤ N

∑
Πij∈Cmin

(ti − tj)2

which inserted in (2.30) yields (2.22).
Lemma 2.23. Suppose

|g0ij − gij | ≤ C0 as δij → 0,(2.31)

and I0(t0) is another DNA with the specific fluxes g0ij and the energy I0. Then the

bound |â−I|I ≤ C1

√
δ/R implies |â−I

0|
I0 ≤ C2

√
δ/R, where C2 depends on C0 and C1

only.
Lemma 2.23 gives an equivalence of the energy I(t) to the energy of any other

discrete network that uses a set of specific fluxes g0ij that satisfies (2.31). Since (see
derivation in [4]) both formulas (2.20) and (2.17) give the same leading term in the
power expansion in δij → 0, the previous lemma implies that for the purpose of esti-
mating the effective conductivity of a composite where inclusions are almost touching
our model and the model introduced in [3] are equivalently good as δ → 0. For the
proof see [4], which, in particular, shows that under the δ-N packing condition the
relative error of the discrete network I0 introduced in [3] (when (2.17) are replaced
by (2.20)) satisfies

|â− I0|
I0

≤ 9.82N4

√
δ

R
.
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3. Variational error estimates.

3.1. The lower bound. Following [3] the test function v for the lower bound is
chosen to be zero everywhere except the necks Πij between adjacent disks; however,
in our case for the specific fluxes we use (2.17) instead of (2.20).

Proposition 3.1. The lower bound on â in terms of gij and the parameters of
the solution of the discrete minimization problem is

I(t) =
1

4L

∑
Πij

gij(ti − tj)2 ≤ â,(3.1)

where t = {t1, t2, . . . , tM} are the values of the discrete potentials of the solution of
the discrete minimization problem (2.19)–(2.21).

The left-hand side in (3.1) is always positive, which reflects the physics of the
problem. The analogous lower bound in Proposition 2.1 in [3] is positive and suffi-
ciently tight for the δ-3 close packing condition only. Our bound allows us to handle
general distribution of disks that satisfy the δ-N close packing condition for any N.

Proof. Consider two neighbors centered at xi and xj . Suppose the potentials ti
and tj on the disks Di and Dj are the solutions to the minimization problem (2.19)–
(2.21). Rotate the domain so that in the local coordinates the neck between them is
aligned with the direction of the y-axis (as in Figure 2.5). Define

v =

{
(0,

ti−tj
H(x) ) in the neck Πij ,

(0, 0) otherwise,
(3.2)

where H(x) is the distance between the disks. Since for a piecewise constant function
the divergence-free condition amounts to checking that the normal components of v
match along the discontinuity, we see that our trial function v is divergence-free. The
matching condition

∫
∂Di

v · ndx = 0 is satisfied (as in [3]) due to (2.17) and (2.26).

The insulating condition v(±L, y) · n = 0 at the vertical boundary is satisfied by
(2.22). Hence v ∈ Wp. Observe that for the trial function (3.2) the fluxes through
the upper and the lower boundary of Π are exactly the discrete fluxes P+ and P−:

P+ =

∫
y=1

v · n dx, P− =
∫
y=−1

v · n dx.

Following [3] we have ∫
Qp

v2dx =
∑
Πij

gij(ti − tj)2,

because v ≡ 0 on every triangle and the Dirichlet integral over a neck∫
Πij

v2dx = (ti − tj)2
∫ S2

S1

dx

H(x)
= gij(ti − tj)2.

Using (2.28) we have

1

2L

[∫
y=1

v · n dx−
∫
y=−1

v · n dx− 1
2

∫
Qp

v2dx

]
= I(t).

By the first inequality in (2.10) we have (3.1).
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3.2. The upper bound.
Proposition 3.2. The upper bound on â in terms of gij and the parameters of

the solution of the discrete minimization problem is

â ≤ 1

4L

∑
Πij

[gij + Cij ](ti − tj)2 = I(t) + 1

4L

∑
Πij

Cij(ti − tj)2,(3.3)

where all Cij = Cij(β
max
ij ) depend only on the relative neck thicknesses βmax

ij defined
(2.11). Moreover, if

βmax
ij ≤ β < 1,(3.4)

then Cij ≤ C with some C = C(β).
It was shown in [4] that

Cij ≤
| ln(1− βmax

ij )|+ π + ln 2
6

+
4√

1− [βmax
ij ]2

.

Proof. Consider a piecewise continuous test function φ. Similar to [3], the function
φ is linear in y in the neck Πij with the values ti and tj on the boundary of the disks
∂Di and ∂Dj (Figure 2.5). Then on the neck Πij

φ(x, y) = ti +
(tj − ti)(y +H(x)/2)

H(x)
= ti + (tj − ti)

[
y

H(x)
+
1

2

]
for y ∈

[
−H(x)

2
,
H(x)

2

]
.(3.5)

The function φ is linear in the ∆ijk (see Figure 3.1) with the values t
0
i , t

0
j , and t

0
k

at the vertices of ∆ijk. In Figure 3.1 these vertices are the points A, B, and C,
respectively. In a neck Πij∫

Πij

(∂φ/∂y)2dxdy =

∫ S2

S1

(tj − ti)2
H2(x)

H(x)dx = (tj − ti)2gij(3.6)

and ∫
Πij

(∂φ/∂x)2dxdy =

∫
Πij

(t0j − t0i )2
[
yH ′(x)
H2(x)

]2
dxdy

=
1

12
(t0j − t0i )2

∫ S2

S1

(H ′)2(x)
H(x)

dx.

Since H(x) = δ + 2R− 2√R2 − x2, therefore H ′(x) = 2x√
R2−x2

, and

H ′2(x)
H(x)

=
2R

R2 − x2
+

2√
R2 − x2

.

Hence as in [3] ∫
Πij

(∂φ/∂x)2dxdy ≤ C(βmax
ij )(tj − ti)2 ≤ C(tj − ti)2(3.7)
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Fig. 3.1. Typical ∆ABC ≡ ∆ijk; half-necks are hatched.

if βij ≤ β < 1. Each triangle is bounded by three necks. In Figure 3.1 we show
a typical case with three disks centered at xi, xj , and xk, three half-necks, and the
∆ABC ≡ ∆ijk bounded by these half-necks. Suppose in ∆ABC the side |AC| is the
longest, and the side |BC| is the shortest. Then (see details in [4])∫

ABC

|∇φ|2dx ≤ 2

sin(∠BAC)
(
(ti − tj)2 + (tk − ti)2

)
.

Since

1

sin(∠BAC) =
1

sin(π/2− ∠xkxjO)
≤ 1√

1− (βmax
jk )2

,

therefore∫
ABC

|∇φ|2dx ≤ C(βmax
jk )((ti − tj)2 + (tk − ti)2) ≤ C((ti − tj)2 + (tk − ti)2)(3.8)

if βmax
jk ≤ β < 1. Combining (3.6), (3.7), (3.8) and summing over all necks and

triangles we have (3.3).
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3.3. The error estimate.
Theorem 3.3. If for a distribution of disks Di, i = 1, . . . , N, its discrete network

is δ-N connected, then the relative error

|â− I|
I

≤ C(N)
√
δ

R
,(3.9)

where â, I are defined in (2.3), (2.19), respectively, and

C(N) ≤ 2.56N4.(3.10)

Inequality (3.10) is a very rough upper bound, and it could be significantly im-
proved by more careful analysis. In particular, if N = 3, then C(3) ≤ 3.84; if N = 4,
then C(4) ≤ 12.73. For simplicity of presentation we do not specify our numerical
estimate (3.10). For more details see [4].

Proof. As δij → 0, we know that gij = O(δ−1/2) and therefore if there is a
conducting spanning cluster, then (see [3]) I(t) = O(δ−1/2). Hence (3.10) will follow
if we can “absorb” all the O(1) terms in (3.3) as the “smaller order corrections” into

O(
√

R
δ ) terms and derive an estimate

I(t) ≤ â ≤ I(t) +O(1) ≤ I(t)
(
1 + C

√
δ

R

)
,(3.11)

where the first inequality in (3.11) follows from (3.1). The second inequality is also
immediate if all necks are short: δij ≤ δ. If not all the necks are short, then gij = O(1)
and therefore Cij in (3.3) are compatible in magnitude with gij . Here we use the
assumption that our discrete network is δ-N connected. The key observation here is
that the centers of any two neighbors Dk and Dl must lie inside a minimal cycle Cmin.
Therefore, by Lemma 2.22 the values of the potentials tk and tl at these disks satisfy

(tk − tl)2 ≤ N
∑

Πij∈Cmin

(ti − tj)2.

By Lemma 2.19 we have a bound, that depends on N only, on the total number of
vertices, necks, and triangles that lie inside any minimal cycle Cmin. Therefore, for our
trial function φ for the upper bound, the Dirichlet integral over the all the triangles
and necks that lie inside any Cmin is a smaller order correction to the energy of the
minimal cycle Cmin: ∑

Πij ,eij∈Cmin

gij(ti − tj)2.

Thus we have

â ≤ 1

4L

∑
Πij

[gij + C](ti − tj)2 ≤ 1

4L

∑
Πij ,eij 
∈Dδ

gij(ti − tj)2

+
1

4L

∑
Πij ,eij∈Dδ

[gij + C(N)](ti − tj)2 ≤ 1

4L

∑
Πij ,eij 
∈Dδ

gij(ti − tj)2

+
1

4L

∑
Πij ,eij∈Dδ

gij

(
1 + C(N)

√
δ

R

)
(ti−tj)2 ≤

(
1 + C(N)

√
δ

R

)
1

4L

∑
Πij

gij(ti−tj)2.

Hence we have proved (3.11).
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3.4. A posteriori numerical error. The main goal of this paper is to give
a rigorous quantitative justification of discrete network model (2.18) by means of a
priori error estimates. However, the use of our trial functions for the upper and the
lower bounds also provides us with a numerical a posteriori error. We must solve
the discrete network problem (2.19)–(2.21), construct the trial functions φ ∈ Vp (see
section 3.1) and v ∈Wp (see section 3.2), and evaluate explicitly the left-hand side and
the right-hand side of the upper and lower bound (2.10). The evaluation of this dual
bound is not computationally expensive, because we use simple trial functions—they
are given by explicit analytic formulas in the necks (for derivation see [4]):

gij =

∫ S2

S1

dx

H(x)

=

−α+ 2 δij +R√
δ2ij + 2Rδij

arctan


√
δ2ij + 2Rδij tan(α/2)

δij

∣∣∣∣∣∣
arcsin(S2/R)

arcsin(S1/R)

,

and they are linear interpolations on the triangles. Also the use of the a posteriori error
widens the range of the characteristic distance δ, where the discrete network gives a
good approximation. This section implements this idea for numerical simulations of
a randomized hexagonal lattice. For details see [4].

Our numerical experiments consist of three parts: numerical simulations of a ran-
domized hexagonal distribution of disks; numerical evaluations of the dual variational
bounds; and the statistics.

The distribution of disks is implemented by randomization of a periodic hexagonal
lattice of disks of equal radii Ri = R = 0.02 on a square domain [−1, 1]× [−1, 1], with
a volume fraction f , and then removal of some fraction fr of these disks from this
distribution. For fixed f and fr this algorithm creates a distribution of disks with the
volume fraction f0 = f − fr.

For a given distribution of disks we compute I = I(t) (formula (2.19)), the
energy of the discrete network. After the energy I is computed, we also compute
the trial function φ for the upper bound as in section 3.2, and then we compute
Iφ =

1
4L

∫
Qp
|∇φ|2dx for this trial function. Therefore, by construction in sections 3.1

and 3.2 we have I ≤ â ≤ Iφ. Hence I and Iφ are a posteriori lower and upper bounds,
respectively, for the effective conductivity of a composite with a given distribution of
disks.

The simulations are done with the 0.05 increments of fr. For fixed f and fr there
were 80 simulations. For the mean we use the notation E(I) = 1/n

∑n
k=1 I

k, where
Ik is the result of kth simulation with fixed f and fr and the number of simulations
n = 80. Here we present the results of the numerical simulations that show the
dependence of the effective conductivity on the presence of holes in the matrix.

In Figure 3.2 we plot E(I) (solid lines) and E(Iφ) (dotted lines) as functions of
the volume fraction f0 = 0.105, . . . , 0.905. For the lower two lines the volume fraction
of removed disks fr = 0 is fixed, for the upper two lines the initial volume fraction
f = 0.905 is fixed, and fr = f − f0. If the total volume fraction of the inclusions
is fixed, then the increase of the volume fraction of holes in the material implies
that the interparticle distance δ decreases. Hence the percolation effects play a more
significant role. Indeed, we observe that for the same volume fraction f0 = 0.605 a
distribution of disks with holes has the effective conductivity at least two times larger
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Fig. 3.2. E(I) (solid lines) and E(Iφ) (dotted lines) as functions of the volume fraction f0 =
0.105, . . . , 0.905. Lower two lines for the case with no holes. Upper two lines for the case with holes.

than a distribution of disks without holes. (The lower bound in the first case is more
than two times larger than the upper bound in the composite with no holes.)

When f0 ≤ .35 the effective conductivities of a material with holes and of a
material without holes are numerically very close, at least the computed a posteriori
error does not allow us to distinguish between these composites. For such volume
fractions there are no percolation effects in both cases.

Observe that in the presence of holes the a posteriori error of the network ap-
proximation Iφ − I is significantly larger than in the case when there are no holes.
For example, when f0 = .5 in the presence of holes the a posteriori error is 3.5 times
larger than the error in the case when there are no holes; however, for the same volume
fraction of inclusions the relative a posteriori error estimate is better in the presence
of holes. For example, when f = .6 the relative a posteriori error estimate in the
presence of holes in the conducting cluster is up to 8 times better than for uniformly
highly packed composites. Hence, we observe numerically that our network approxi-
mation works better for irregular geometric patterns, which are not quasi-hexagonal,
that is, when a typical number of nearest neighbors can vary significantly.

Finally, let us compare the a posteriori error estimates discussed in this section
and the a priori error estimates given in section 3.3 for a quasi-hexagonal case, N = 3.
Since C(3) ≤ 3.84 in (3.9), a straightforward calculation shows that 10% accuracy is
achieved when δ is about 1500 and 250 times smaller than the disk’s radius R for the
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a priori and a posteriori estimates, respectively.

4. Conclusions. In this paper we introduced and justified the modified network
approximation which generalizes the network approximation from [3]. This modified
network approximation is no longer asymptotic in nature. We decompose the Dirichlet
integral (2.6) for the effective conductivity into two parts: the network approximation,
which is a quadratic form, and the error term. Our modified network approximation
accounts for all fluxes between the neighboring particles, where neighbors are defined
via Voronoi tessellation. If the fluxes are small (neighbors are not closely spaced),
then the corresponding coefficients in the modified network approximation gij are not
significant, but unlike [3] we do not need to introduce any cut-off distance in the
numerical implementation. For the network approximation the error term is explic-
itly estimated based on the construction of the trial functions using the triangle-neck
partition of the domain. The approach developed in this paper allowed us to consider
generic geometrical arrays of the particles which satisfy the so-called δ-N close packing
condition. This condition allows for strongly nonuniform geometrical arrays when a
significant fraction of the particles does not participate in the conducting cluster. We
have shown numerically how such nonuniformity affects the error estimate and there-
fore the quality of the approximation. We observe that irregularity in the geometrical
distribution of the inclusions in all simulations consistently lead to a significant (up
to 10 times) increase in the effective conductivity at the same total volume fraction
of the inclusions.

Thus we conclude that our approximation provides a very efficient computational
tool for evaluation of the effective properties of high contrast composites, which is
capable of capturing the effects of irregular geometrical arrays with a good control of
the approximation error. We expect that the method developed in this work will be
generalized for more complicated problems of highly packed elastic and fluid compos-
ites.

Acknowledgment. We are grateful to Ivo Babuska for raising the question of
the error estimate.
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Abstract. This paper introduces a combined one-dimensional model for thermoviscoplastic be-
havior under solid-solid phase transformations that incorporates the occurrence of hysteresis effects in
both the strain-stress law and the phase transition described by the evolution of a phase-field (which
is usually closely related to an order parameter of the phase transition). Hysteresis is accounted for
using the mathematical theory of hysteresis operators developed in the past thirty years. The model
extends recent works of the first two authors on phase-field models with hysteresis to the case when
mechanical effects can no longer be ignored or even prevail. It leads to a strongly nonlinear coupled
system of partial differential equations in which hysteresis nonlinearities occur at several places, even
under time and space derivatives. We show the thermodynamic consistency of the model, and we
prove its well-posedness.

Key words. phase-field systems, phase transitions, hysteresis operators, thermoviscoplasticity,
thermodynamic consistency
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1. Introduction and physical motivation. In this paper, we study initial-
boundary value problems for systems of partial differential equations of the form

ρutt − µuxxt = σx + f(x, t) a.e. in ΩT ,(1.1)

σ = H1[ux, w] + θH2[ux, w] a.e. in ΩT ,(1.2)

(
CV θ + F1[ux, w]

)
t
− κθxx = µu2

xt + σuxt + g(x, t, θ) a.e. in ΩT ,(1.3)

νwt = −ψ a.e. in ΩT ,(1.4)

ψ = H3[ux, w] + θH4[ux, w] a.e. in ΩT ,(1.5)

u(·, 0) = u0, ut(·, 0) = u1, θ(·, 0) = θ0, w(·, 0) = w0 a.e. in Ω,(1.6)

u(0, t) = 0, µ uxt(1, t) + σ(1, t) = 0, θx(0, t) = θx(1, t) = 0
(1.7)

a.e. in (0, T ),
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where Ω := (0, 1), T > 0 denotes some final time, and where Ωt := Ω × (0, t) for
t ∈ (0, T ].

The system (1.1)–(1.7) constitutes a model for the one-dimensional thermo-
mechanical developments in a linearly viscous piece of wire of unit length in which
a solid-solid phase transition takes place. In this connection, the unknowns u, θ, σ,
w, ψ denote displacement, absolute (Kelvin) temperature, elastoplastic stress, phase
variable (usually a so-called generalized freezing index; cf. [15]), and the thermody-
namic force driving the phase transition, respectively. The positive physical constants
ρ, µ, CV , κ, ν denote mass density, viscosity, specific heat, heat conductivity, and a
relaxation coefficient, in that order. For the sake of notational convenience, we will
always assume without loss of generality that ρ = µ = CV = κ = ν = 1. Finally, the
expressions Hj , 1 ≤ j ≤ 4, and F1 are nonlinearities of hysteresis type (to be specified
below).

The equations (1.1), (1.3), (1.4) represent the equation of motion, the balance of
internal energy, and the phase evolution equation, in that order (see below); equation
(1.2) is the constitutive law relating strain and phase variable to the elastoplastic
stress, and (1.4) expresses that the phase variable evolves into the opposite direction
of the thermodynamic force driving the phase transition. In addition, the boundary
conditions (1.7) indicate that the wire is thermally insulated at both ends, fixed at
x = 0, and stress-free at x = 1.

The motivation to study systems of the above type is twofold. On the one hand,
it is well known that for many materials the macroscopic strain-stress (ε-σ, where
ε = ux is the linearized strain and u is the displacement) relations measured in
uniaxial load-deformation experiments strongly depend on the absolute (Kelvin) tem-
perature θ and, at the same time, exhibit a strong elastoplasticity witnessed by the
occurrence of hysteresis loops that are rate-independent, i.e., independent of the speed
with which there are traversed. Due to the hysteresis, which reflects the presence of a
rate-independent memory in the material, the stress-strain relation can no longer be
expressed in terms of a simple single-valued function. Among the materials showing
very strong temperature-dependent hysteretic effects are the so-called shape memory
alloys (see Figure 1 below and Chapter 5 in [2]); but even quite ordinary steels are
well known to exhibit this kind of behavior (cf. [21]), although to a smaller extent.

Fig. 1. Schematic load-deformation curves in shape memory alloys, with temperature increasing
from left to right.

Usually the occurrence of a hysteresis in the macroscopic stress-strain relations
is accompanied (or even triggered) by changes between different configurations of
the crystal lattice within the solid. It thus makes sense to complement macroscopic
equations of thermoelastoplasticity by field equations accounting for such phase trans-
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formations on the micro- and/or mesoscales.
On the other hand, phase transition phenomena are often accompanied by macro-

scopic hysteresis effects that are caused by thermal and/or mechanical stresses acting
on the micro- and/or mesoscales. It then makes sense to complement the field equa-
tions describing the macroscopic phase transition by equations modeling such micro-
or mesoscopic stresses.

A classical approach to such problems would be the following. One first tries to
construct a local free energy function of the form

F (ε, w, θ) = θ(1− log(θ)) + F1(ε, w) + θ F2(ε, w)(1.8)

in such a way that the experimentally observed ε-σ and/or w-ψ hysteresis loops are
approximately matched using the relations

σ =
∂F

∂ε
(ε, w, θ), ψ =

∂F

∂w
(ε, w, θ),(1.9)

then determines the corresponding internal energy U and entropy S,

U(ε, w, θ) := F (ε, w, θ)− θ
∂F

∂θ
(ε, w, θ) = θ + F1(ε, w),

(1.10)

S(ε, w, θ) := −∂F

∂θ
(ε, w, θ) = log(θ)− F2(ε, w),

and finally inserts these expressions in the governing field equations: equation of
motion,

utt − σ̃x = f (σ̃ = total stress = σ + viscous stress),(1.11)

balance of internal energy,

Ut − θxx = σ̃uxt + g (U = internal energy),(1.12)

and phase evolution equation (1.4).
We then obtain (1.1), (1.3), (1.4) if we put

H1[ε, w] :=
∂F1

∂ε
(ε, w), H2[ε, w] :=

∂F2

∂ε
(ε, w),

H3[ε, w] :=
∂F1

∂w
(ε, w), H4[ε, w] :=

∂F2

∂w
(ε, w),(1.13)

F1[ε, w] := F1(ε, w).

In order that an ε-σ (or w-ψ, respectively) hysteresis be modeled by (1.9), F (·, w, θ)
(F (ε, ·, θ), respectively) needs to be a nonconvex function within the range of inter-
esting temperatures.

This approach has advantages: if the nonlinearities involved in (1.1)–(1.7) are
smooth functions, then the vast literature on one-dimensional thermoviscoelasticity
(we just refer to the fundamental papers [4], [5]) can be applied to derive results
concerning well-posedness and asymptotic behavior. However, while this approach is
capable of correctly predicting many of the experimentally observed phenomena, it
also has certain disadvantages from the phenomenological (engineering) point of view:
the use of a nonconvex free energy does not guarantee that a hysteresis actually occurs;
one only observes that unstable branches are traversed with a very high speed, which
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may look like a hysteresis if the speed is interpreted as infinite. For the moment, there
is no mathematical theory which would allow us to rigorously justify this singular
transition and give a correct account of the inherent memory structures that are
responsible for the complicated loopings in the interior of the external hysteresis loops
that are observed in experiments.

To avoid these difficulties, the first two authors have recently proposed a differ-
ent approach using the theory of hysteresis operators developed in the past thirty
years (let us at least refer to the monographs [8], [20], [22], [2], [9] devoted to this
subject). In this approach, we replace the relations (1.9) by the identities (1.2),
(1.5), where the expressions Hj , 1 ≤ j ≤ 4, and F1 are no longer real-valued
functions but hysteresis operators acting between suitable function spaces. This
approach has been successfully carried out for the two cases when either we have
one-dimensional thermoelastoplastic hysteresis without the order parameter evolu-
tion (that is, we have (1.1)–(1.3) with no dependence on w; cf. the papers [10], [11])
or we have a multidimensional phase transition without mechanical effects (that is, we
have (1.3)–(1.5) with no dependence on u, σ; see [7], [12], [13], [14], [15], [16], [17]).
In this paper, we want to extend some of these results to the fully coupled problem.

At this point we remark that in [10], [11] a more general constitutive law than
(1.2) has been treated in that there the hysteresis operators could also depend on θ.
However, no dependence on w was admitted in [10], [11]. It is in fact this additional
dependence that forces us to assume σ in the form (1.2) which, on the other hand,
is quite typical in the Landau theory of phase transitions (cf. Chapter 4 in [2]). The
extension of the results of this paper to more general temperature-dependent hysteresis
operators seems to be a very difficult unsolved problem.

We also note that in [18] the present authors have studied a related version of
system (1.1)–(1.7): there, an additional curvature term was added on the left of (1.1),
and the boundary conditions for u were of the form u(0, t) = u(1, t) = uxx(0, t) =
uxx(1, t) = 0. Let us stress the fact that the mathematical analysis carried out in [18]
differs considerably from that used in this paper. In fact, the problem investigated
here is more difficult than that studied in [18]: if the smoothing term γuxxxx is present
in (1.1), then already the first a priori estimate (see below) yields an L∞(L2)-bound
for the strain gradient uxx and thus an L∞(L∞)-bound for ux. This means that the
Andrews transformation (see (3.1) below) used in this paper to eventually bound ux
is not needed. As a consequence, the solution established in this paper enjoys less
smoothness than that in [18]. On the other hand, our analysis does not apply to
the case when (1.1) is complemented with zero boundary conditions at both ends of
the wire: we have to assume a stress-free regime at one of the ends in order to take
advantage of the Andrews transformation.

Let us now recall some basic facts about the notion of hysteresis operators (for
details, we refer to the monographs mentioned above). Let T > 0 denote some (final)
time. A mapping H from the set Map[0, T ] := {w : [0, T ] → R} into itself is called a
hysteresis operator if it is causal, that is, if for all w1, w2 ∈ Map[0, T ] and t ∈ [0, T ]
we have the implication

w1(τ) = w2(τ) ∀ τ ∈ [0, t] ⇒ H[w1](t) = H[w2](t),

and if it is rate-independent, that is, if for every w ∈ Map[0, T ] and every continuous
increasing mapping α of [0, T ] onto [0, T ] we have

H[w ◦ α](t) = H[w](α(t)) ∀ t ∈ [0, T ].
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In the case of partial differential equations, when the input functions not only depend
on a time variable t ∈ [0, T ] but also on a space variable x ∈ [0, 1], it is necessary
to extend the above notion. In this situation, it is natural to associate with a hys-
teresis operator H defined on Map[0, T ] in the above sense an operator Ĥ acting on
Map([0, 1]× [0, T ]) by simply putting

Ĥ[w](x, t) := H[w(x, ·)](t).(1.14)

It is customary to identify the operators H and Ĥ. The hysteresis operators appearing
in (1.1)–(1.7) have to be understood in this way.

The advantage of this approach is that an operator equation like (1.2), (1.5),
is suited much better than a relation like (1.9) to keep track of the memory effects
imprinted on the material in the past history. In fact, the output at any time t ∈ [0, T ]
may depend on the whole evolution of the input in the time interval [0, t]. Observe
that the rate-independence implies that the hysteresis behavior cannot be expressed
in terms of an integral operator of convolution type; i.e., we are not dealing with a
model with fading memory.

Unfortunately, there are also disadvantages: the input-output behavior of hys-
teresis operators usually cannot be described explicitly, and they have, as a rule, only
very restricted smoothness properties. In fact, nontrivial hysteresis operators are, as
a rule, not differentiable, but at best only (possibly locally) Lipschitz continuous in
suitable function spaces; in addition, they carry a nonlocal memory with respect to
time.

Both nondifferentiability and presence of a memory are unpleasant features from
the mathematical point of view. For instance, the classical method of deriving higher
order a priori estimates for w (namely, differentiation of (1.4) with respect to t and
testing with wt) does not immediately work, since there is no chain rule for the
hysteretic nonlinearities; also, we may not simply differentiate (1.2) or (1.5) with
respect to x. These facts result in a lack of compactness and thus in difficulties in
existence proofs.

However, hysteresis operators usually dissipate energy which typically is propor-
tional to the area of closed traversed loops in the hysteresis diagram. Let us explain
this fact for one fundamental hysteresis operator which plays a most prominent role
in the theory, namely the so-called stop operator or Prandtl’s normalized elastic–
perfectly plastic element. To this end, let r > 0 (the yield limit) and σ0

r ∈ [−r, r] (the
initial stress) be given. For any input function ε ∈ W 1,1(0, T ), we define the output
σr ∈W 1,1(0, T ) as the solution to the variational inequality (the index t denotes time
differentiation)

σr(t) ∈ [−r, r] ∀ t ∈ [0, T ], σr(0) = σ0
r ,(1.15)

(εt(t)− σr,t(t))(σr(t)− η) ≥ 0 ∀ η ∈ [−r, r] a.e. in (0, T ).(1.16)

In Figure 2, the typical input-output behavior is depicted.

It can easily be proved (see, for instance, [9], where also the multidimensional
case is treated) that (1.15)–(1.16) admits a unique solution σr ∈W 1,1(0, T ) for every
ε ∈W 1,1(0, T ) and σ0

r ∈ [−r, r]. The corresponding solution operator

sr : [−r, r]×W 1,1(0, T )→W 1,1(0, T ) : (σ0
r , ε) �→ σr(1.17)
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Fig. 2. Prandtl’s normalized elastic–perfectly plastic element.

is just the stop operator. It has the well-known property (cf. [2], [9]) that for any
r1, r2 ∈ [0,+∞), σ0

rj ∈ [−rj ,+rj ], j = 1, 2, t ∈ [0, T ], and ε1, ε2 ∈ C[0, T ], it holds
that ∣∣sr1 [σ0

r1 , ε1](t)− sr2 [σ0
r2 , ε2](t)

∣∣
(1.18)

≤ |ε1(t)− ε2(t)|+ max
{
|r1 − r2|+ max

0≤τ≤t
|ε1(τ)− ε2(τ)|, ∣∣σ0

r1 − σ0
r2

∣∣}.
In addition, it holds for any ε ∈W 1,1(0, T ) that∥∥sr[σ0

r , ε]
∥∥
∞ ≤ r, sr[σ

0
r , ε]t(t) = εt(t) if

∣∣sr[σ0
r , ε](t)

∣∣ < r,(1.19) ∣∣sr[σ0
r , ε]t

∣∣2 = sr[σ
0
r , ε]tεt a.e. in (0, T ).(1.20)

For each fixed initial condition σ0
r , the stop operator is a hysteresis operator in

the sense of the above definition, where the value of σ0
r accounts for some previous

memory. On the other hand, the value at t = 0 of the output of any rate-independent
operator can be represented as a function of the initial value of the input. For the
operators occurring in our model, we will not make any special assumptions about
their initial configurations, except for those that follow from the general analytic
conditions imposed below in hypothesis (H4), like, e.g., Lipschitz continuous input-
output relation.

We now describe the intrinsic dissipation property of the stop operator. It results
if we insert η = 0 in (1.16). We then obtain that the energy Pr := 1

2s
2
r of the stop

element satisfies the inequality

d

dt
Pr[σ0

r , ε](t) ≤ sr[σ
0
r , ε](t) εt(t) a.e. in (0, T )(1.21)

for all (σ0
r , ε) ∈ [−r, r]×W 1,1(0, T ), and the difference between the right and the left

of (1.21) is the dissipated energy. Equation (1.21) can also be interpreted as a chain
rule inequality for the energy operator Pr where the stop operator sr plays the role
of the “derivative” of Pr with respect to ε (only formally, since Pr is certainly not
differentiable with respect to ε).
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Chain rule inequalities of the form (1.21) have proven to be crucial for a successful
study of differential equations with hysteresis (for this, see the cited literature). In the
case of system (1.1)–(1.7), an appropriate form of such a condition is to postulate the
existence of a further hysteresis operator F2 such that for any (ε, w) ∈ W 1,1(0, T ) ×
W 1,1(0, T ) it holds, for a.e. t ∈ (0, T ), that

d

dt
F1[ε, w](t) ≤ H1[ε, w](t) εt(t) +H3[ε, w](t)wt(t),

(1.22)
d

dt
F2[ε, w](t) ≤ H2[ε, w](t) εt(t) +H4[ε, w](t)wt(t).

We then can associate with system (1.1)–(1.7) free energy, entropy, and internal energy
hysteresis operators by putting (compare (1.8), (1.10))

F [ε, w, θ] := θ(1− log(θ)) + F1[ε, w] + θF2[ε, w],

S[ε, w, θ] := log(θ)−F2[ε, w],(1.23)

U [ε, w, θ] := θ + F1[ε, w],

where [ε, w, θ] ∈ Map[0, T ]×Map[0, T ]× (0,+∞). Indeed, if we associate σ and ψ as
given by (1.2) and (1.5), respectively, with the “derivatives” of F with respect to ε and
w (only formally, as they do not exist), respectively, then we arrive at system (1.1)–
(1.5) as field equations. It will turn out later that the validity of (1.22) (rather, of a
generalized version thereof; see below) will guarantee the thermodynamic consistency
of the model, that is, the temperature stays positive during the evolution, and the
Clausius–Duhem inequality, which in view of (1.12) can be written in the form

θ
d

dt
S[ε, w, θ]− d

dt
U [ε, w, θ] ≥ −σ̃εt a.e. in ΩT ,(1.24)

where σ̃ = σ + εt again denotes the total stress, will be satisfied.
The rest of the paper is organized as follows: In section 2, we give a detailed

statement of the mathematical problem and of the main mathematical result. Section
3 brings the proof of local existence and global uniqueness, and in the concluding
section 4 we prove global existence for system (1.1)–(1.7).

In what follows, the norms of the standard Lebesgue spaces Lp(Ω) for 1 ≤ p ≤ ∞
will be denoted by ‖ · ‖p. Finally, we shall use the usual denotations Wm,p(Ω) and
Hm(Ω), m ∈ N, 1 ≤ p ≤ ∞, for the standard Sobolev spaces.

2. Statement of the problem. We make the following general assumptions on
the data of the system.

(H1) u0 ∈ H2(Ω), u1 ∈ H1(Ω), θ0 ∈ H1(Ω), w0 ∈ H1(Ω), it holds that θ0(x) ≥
δ > 0 for all x ∈ Ω̄, and the compatibility condition u0(0) = u1(0) = 0 is satisfied.

(H2) It holds that f ∈ H1(0, T ;L2(Ω)).
(H3) We assume that g : Ω × (0, T ) × R → R is a Carathéodory function such

that

∃ g0 ∈ L∞(ΩT ) : θ ≤ 0 ⇒ g(x, t, θ) = g0(x, t),(2.1)

∃K1 > 0 : |g(x, t, θ1)− g(x, t, θ2)| ≤ K1|θ1 − θ2| for a.e.
(2.2)

(x, t) ∈ Ω× (0, T ) and ∀θ1, θ2 ∈ R,
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g0(x, t) ≥ 0 a.e. in ΩT .(2.3)

(H4) The operators Hj , 1 ≤ j ≤ 4, and F1 are causal and map C[0, T ]× C[0, T ]
continuously into C[0, T ], and W 1,1(0, T ) ×W 1,1(0, T ) into W 1,1(0, T ). In addition,
the following conditions are satisfied:

(i) ∃K2 > 0 : ∀ ε, w ∈ C[0, T ] it holds that

max
j∈{2,4}

‖Hj [ε, w]‖∞ ≤ K2, F1[ε, w](t) ≥ −K2 ∀ t ∈ [0, T ].(2.4)

(ii) ∃K3 > 0 : ∀ ε, w ∈W 1,1(0, T ) it holds, for a.e. t ∈ (0, T ), that

max
1≤j≤4

|Hj [ε, w]t(t)|+ |F1[ε, w]t(t)| ≤ K3

(
|εt(t)|+ |wt(t)|

)
.(2.5)

(iii) ∃K4 > 0 : ∀ ε1, w1, ε2, w2 ∈ C[0, T ] it holds, for every t ∈ [0, T ], that

max
1≤j≤4

|Hj [ε1, w1](t)−Hj [ε2, w2](t)|
(2.6)

≤ K4 max
0≤r≤t

(
|ε1(r)− ε2(r)|+ |w1(r)− w2(r)|

)
,

and ∀ ε1, w1, ε2, w2 ∈W 1,1(0, T ) it holds, for every t ∈ [0, T ], that

|F1[ε1, w1](t)−F1[ε2, w2](t)| ≤ K4

[
|ε1(0)− ε2(0)|+ |w1(0)− w2(0)|

(2.7)

+

∫ t

0

(
|ε1,t(r)− ε2,t(r)|+ |w1,t(r)− w2,t(r)|

)
dr
]
.

(H5) There exist causal operators F2 : W 1,1(0, T )×W 1,1(0, T )→W 1,1(0, T ), G :
W 1,1(0, T ) → W 1,1(0, T ), and a constant K5 > 0 such that the following conditions
are satisfied:

(i) For every ε, w ∈W 1,1(0, T ) it holds that

F1[ε, w]t ≤ εtH1[ε, w] + G[w]tH3[ε, w] a.e. in (0, T ),(2.8)

F2[ε, w]t ≤ εtH2[ε, w] + G[w]tH4[ε, w] a.e. in (0, T ).(2.9)

(ii) For every w ∈W 1,1(0, T ) it holds that

|G[w]t(t)|2 ≤ K5wt(t)G[w]t(t) for a.e. t ∈ (0, T ).(2.10)

Remark 1. Owing to (H4)(iii) we have, in particular, that for any ε, w ∈ H1(0, T )
and t ∈ [0, T ] the following holds:

|H1[ε, w](t)|+ |H3[ε, w](t)|
≤ |H1[ε, w](0)|+ |H3[ε, w](0)|+ 2K4 max

0≤r≤t
(|ε(r)− ε(0)|+ |w(r)− w(0)|)

(2.11)

≤ |H1[ε, w](0)|+ |H3[ε, w](0)|+ 2K4

∫ t

0

(
|εt(r)|+ |wt(r)|

)
dr

≤ |H1[ε, w](0)|+ |H3[ε, w](0)|+ 2K4

√
t

(∫ t

0

(
|εt(r)|2 + |wt(r)|2

)
dr

)1/2

.
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In addition, a linear growth of H1 and H3 with respect to both ε and w is admitted,
which, in particular, includes the case of simple linear elasticity. It also follows that
for any ε, w ∈ H1(Ω;C[0, T ]) it holds, for a.e. (x, t) ∈ ΩT , that

max
1≤j≤4

∣∣∣(Hj [ε, w]
)
x
(x, t)

∣∣∣ ≤ K4 max
0≤r≤t

(
|εx(x, r)|+ |wx(x, r)|

)
.(2.12)

Indeed, we only have to apply (2.6) with ε1(x, t) := ε(x + h, t), ε2(x, t) := ε(x, t),
w1(x, t) := w(x + h, t), w2(x, t) := w(x, t), with some h > 0, and then let h ↘ 0.
Consequently, we may consider first order spatial derivatives of Hj [ε, w], and we have
(Hj [ε, w])x ∈ L2(ΩT ), 1 ≤ j ≤ 4.

Remark 2. A typical example where (H4), (H5) are fulfilled is given by Prandtl–
Ishlinskii operators of the form

Hj [ε, w] :=

∫ ∞
0

ϕj(r) sr
[
σ0,j
r , ε

]
dr, j = 1, 2,

(2.13)

Hj [ε, w] :=

∫ ∞
0

ϕj(r) sr
[
σ0,j
r , w

]
dr, j = 3, 4,

where σ0,j
r ∈ [−r,+r], 1 ≤ j ≤ 4, are given initial values for the operators sr defined

in (1.17), and the weight functions ϕj are nonnegative on [0,+∞) and satisfy

max
1≤j≤4

∫ ∞
0

(1 + r2)ϕj(r) dr < +∞.(2.14)

Indeed, defining the (energy) operators

F1[ε, w] :=
1

2

∫ ∞
0

(
ϕ1(r) s2

r

[
σ0,1
r , ε

]
+ ϕ3(r) s2

r

[
σ0,3
r , w

])
dr,

(2.15)

F2[ε, w] :=
1

2

∫ ∞
0

(
ϕ2(r) s2

r

[
σ0,2
r , ε

]
+ ϕ4(r) s2

r

[
σ0,4
r , w

])
dr,

choosing G[w] = w, and invoking the properties (1.21)–(1.24) of the stop operators
sr, we easily verify the validity of (H4), (H5). Other examples, where the dependence
on ε, w is no longer decoupled as in (2.13), can be constructed using multidimensional
stop operators as basic elements (cf. [15], [16]). For examples where the Hj are not
Prandtl–Ishlinskii operators and G differs from the identity operator, we refer to [14],
[15].

We can now formulate the main result of this paper.
Theorem 2.1. Suppose that the hypotheses (H1) to (H5) are satisfied. Then the

system (1.1)–(1.7) admits a unique strong solution (u, θ, w) such that (1.1)–(1.5) hold
a.e. in ΩT , and such that

u ∈ H2(0, T ;L2(Ω)) ∩H1(0, T ;H2(Ω)), w ∈ H2(0, T ;L2(Ω)) ∩H1(0, T ;H1(Ω)),

θ ∈ H1(0, T ;L2(Ω)) ∩ L2(0, T ;H2(Ω)).(2.16)

In addition, with the finite norms β1 := ‖uxt‖L1(0,T ;L∞(Ω)) and β2 := ‖wt‖C(ΩT ) it

holds that

θ(x, t) ≥ δe−((K1+K2K5β2)t+K2β1) ∀(x, t) ∈ ΩT .(2.17)

Remark 3. We note at this point that Theorem 2.1 also implies that the second
principle of thermodynamics is satisfied for the system (1.1)–(1.7). Indeed, we have
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θ > 0 in ΩT , and the validity of the Clausius–Duhem inequality (1.24) follows from
the simple calculation

θ S[ε, w, θ]t − U [ε, w, θ]t + σ̃εt = −θF2[ε, w]t −F1[ε, w]t + σεt + ε2
t

≥ −
(
H1[ε, w] + θH2[ε, w]

)
εt −

(
H3[ε, w] + θH4[ε, w]

)
G[w]t + σεt + ε2

t(2.18)

≥ ε2
t + wt G[w]t ≥ 0 a.e. in ΩT ,

where F , S, U are given by (1.23). We may therefore claim that our system is thermo-
dynamically consistent.

The proof of Theorem 2.1 will be given in the following sections. During its
course, we will make repeated use of Young’s inequality,

ab ≤ δ

2
a2 +

1

2δ
b2 ∀ a, b ∈ R, δ > 0,(2.19)

of the elementary inequality,

|z(t)|2 ≤ 2|z(0)|2 + 2t

∫ t

0

z2
t (r) dr ∀ t ∈ (0, T ) ∀ z ∈ H1(0, T ),(2.20)

and of the one-dimensional Gagliardo–Nirenberg inequality,

‖w‖p ≤ K0

(
‖w‖1−ωq ‖wx‖ωr + ‖w‖q

)
∀w ∈W 1,r(Ω) ∩ Lq(Ω),(2.21)

where K0 > 0 is a constant depending only on p, q, r, and where

1 ≤ r ≤ +∞, 1 ≤ q ≤ p ≤ +∞, ω

(
1

q
− 1

r
+ 1

)
=

1

q
− 1

p
.(2.22)

3. Local existence. We rewrite the system (1.1)–(1.7), using the transforma-
tion due to Andrews [1],

ux = p + q, where p(x, t) :=

∫ x

1

ut(ξ, t) dξ.(3.1)

We easily find that (1.1)–(1.6) is equivalent to the system

pt − pxx = σ +

∫ x

1

f(ξ, t) dξ,(3.2)

p(1, t) = px(0, t) = 0, p(x, 0) =

∫ x

1

u1(ξ) dξ,(3.3)

σ = H1[p + q, w] + θH2[p + q, w],(3.4)

qt = −σ −
∫ x

1

f(ξ, t) dξ,(3.5)

q(x, 0) = u′0(x)−
∫ x

1

u1(ξ) dξ,(3.6)
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θ + F1[p + q, w]

)
t
− θxx = p2

xx + σpxx + g(x, t, θ),(3.7)

wt = −ψ,(3.8)

ψ = H3[p + q, w] + θH4[p + q, w],(3.9)

θ(x, 0) = θ0(x), w(x, 0) = w0(x), θx(0, t) = θx(1, t) = 0.(3.10)

Let V0 := {z ∈ H1(Ω); z(1) = 0}, and let V ∗0 denote its dual space. We are going
to show the following result.

Theorem 3.1. Suppose that the hypotheses (H1) to (H4) are fulfilled. Then
there is some τ̂ > 0 such that the initial-boundary value problem (3.2)–(3.10) admits
a unique solution quadruple (p, q, θ, w) on Ω̄× [0, τ̂ ] satisfying

p ∈ H2(0, τ̂ ;V ∗0 ) ∩H1(0, τ̂ ;H1(Ω)) ∩ L2(0, τ̂ ;H3(Ω)),(3.11)

q, w ∈ H2(0, τ̂ ;L2(Ω)) ∩H1(0, τ̂ ;H1(Ω)) ∩ C1([0, τ̂ ];C(Ω̄)),(3.12)

θ ∈ H1(0, τ̂ ;L2(Ω)) ∩ L2(0, τ̂ ;H2(Ω)) ∩ C(Ωτ̂ ),(3.13)

θ(x, t) ≥ δ

2
> 0 for every (x, t) ∈ Ω̄× [0, τ̂ ].(3.14)

Proof of Theorem 3.1. We divide the proof of Theorem 3.1 into several steps,
each formulated as a separate lemma. The existence part of the proof is based on the
following special case of the Schauder–Tikhonov fixed point principle (cf., for instance,
Theorem 3.6.1 in [6]).

Lemma 3.2. Let the operator T map the nonempty, closed, convex, and weakly
compact subset M of the separable Hilbert space X into itself, and suppose that T is
weakly sequentially continuous on M; that is, it holds that T (vn) → T (v) weakly in
X whenever vn → v weakly in X for some sequence {vn} ⊂ M. Then T has a fixed
point in M.

We aim to apply Lemma 3.2 to the following setting. Consider for τ ∈ (0, T ] the
separable Hilbert spaces

Pτ := H2(0, τ ;V ∗0 ) ∩H1(0, τ ;H1(Ω)) ∩ L2(0, τ ;H3(Ω)),

Qτ := H2(0, τ ;L2(Ω)) ∩H1(0, τ ;H1(Ω)),

Zτ := H1(0, τ ;L2(Ω)) ∩ L2(0, τ ;H2(Ω)),(3.15)

Wτ := H2(0, τ ;L2(Ω)) ∩H1(0, τ ;H1(Ω)),

Xτ := Pτ ×Qτ × Zτ ×Wτ

and introduce the sets

Mτ :=

{
(p, q, θ, w) ∈ Xτ ; (3.3), (3.6), (3.10) hold, pt + qt = pxx a.e. in Ωτ ,∫ τ

0

∫
Ω

(
θ2
t + θ2

xx

)
dx dt + max

0≤t≤τ

∫
Ω

|θx(x, t)|2 dx ≤M1,(3.16)

max
(x,t)∈Ωτ

|θ(x, t)| ≤M2,(3.17)

max
0≤t≤τ

∫
Ω

(
|qt(x, t)|2 + |wt(x, t)|2

)
dx ≤M3,(3.18)
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0

∫
Ω

(
q2
xt + w2

xt

)
dx dt ≤M4,(3.19) ∫ τ

0

∫
Ω

(
p2
t + p2

xx

)
dt + max

0≤t≤τ

∫
Ω

|px(x, t)|2 dx ≤M5,(3.20)

max
0≤t≤τ

∫
Ω

(
|qx(x, t)|2 + |wx(x, t)|2

)
dx ≤M6,(3.21)

‖pt‖2H1(0,τ ;V ∗
0 ) +

∫ τ

0

∫
Ω

p2
xt dx dt + max

0≤t≤τ

∫
Ω

|pt(x, t)|2 dx ≤M7,(3.22)

max
0≤t≤τ

∫
Ω

|pxx(x, t)|2 dx ≤M8,(3.23) ∫ τ

0

∫
Ω

p2
xxx dx dt ≤M9,(3.24) ∫ τ

0

∫
Ω

(q2
tt + w2

tt) dx dt ≤M10,(3.25)

min
(x,t)∈Ωτ

θ(x, t) ≥ δ

2
> 0

}
,(3.26)

where the positive constants Mi, i = 1, . . . , 10, will have to be specified later. Ob-
viously, Mτ is a nonempty, closed, convex, and bounded (hence weakly compact)
subset of the separable Hilbert space Xτ .

Next, we introduce the operator T on Mτ by T (p̄, q̄, θ̄, w̄) := (p, q, θ, w), where
for (p̄, q̄, θ̄, w̄) ∈ Mτ the quadruple (p, q, θ, w) is the unique solution to the linear
initial-boundary value problem

pt − pxx = σ̄ +

∫ x

1

f(ξ, t) dξ,(3.27)

p(1, t) = px(0, t) = 0, p(x, 0) =

∫ x

1

u1(ξ) dξ,(3.28)

σ̄ = H1[p̄ + q̄, w̄] + θ̄H2[p̄ + q̄, w̄],(3.29)

qt = −σ̄ −
∫ x

1

f(ξ, t) dξ,(3.30)

q(x, 0) = u′0(x)−
∫ x

1

u1(ξ) dξ,(3.31)

θt − θxx = −F1[p̄ + q̄, w̄]t + p̄2
xx + σ̄p̄xx + g(x, t, θ̄),(3.32)

wt = −ψ̄,(3.33)

ψ̄ = H3[p̄ + q̄, w̄] + θ̄H4[p̄ + q̄, w̄],(3.34)

θ(x, 0) = θ0(x), w(x, 0) = w0(x), θx(0, t) = θx(1, t) = 0.(3.35)
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We have the following result.
Lemma 3.3. There exist τ̂ ∈ (0, T ] and positive constants Mi, i = 1, . . . , 10, such

that T (Mτ ) ⊂Mτ for any τ ∈ (0, τ̂ ].
Proof. Let τ ∈ (0, T ] be given. Without loss of generality, we may assume that

τ ≤ 1. We have pt + qt = pxx a.e. in Ωτ , and we infer from the general hypotheses
that pt, pxx, qt, wt, θt, θxx ∈ L2(Ωτ ). Therefore, θ ∈ Zτ . Also, since (p̄, q̄, θ̄, w̄) ∈ Mτ ,
it follows from Remark 1 that the right-hand sides of both (3.30) and (3.33) belong
to H1(Ωτ ) so that q ∈ Qτ and w ∈Wτ .

Next, we consider the parabolic initial-boundary value problem

zt − zxx = v := σ̄t +

∫ x

1

ft(ξ, t) dξ,(3.36)

zx(0, t) = z(1, t) = 0, z(x, 0) = u′1(x) + σ̄(0) +

∫ x

1

f(ξ, 0) dξ.(3.37)

Since z(·, 0) ∈ L2(Ω), and since the right-hand side v of (3.36) belongs to L2(Ωτ ),
it follows from general linear parabolic theory (cf. Lions and Magenes [19]) that
(3.36)–(3.37) admits a unique weak solution z ∈ L2(0, τ ;H1(Ω)) ∩ H1(0, τ ;V ∗0 ) ∩
C([0, τ ];L2(Ω)), and there is some constant Ĉ > 0, not depending on τ ∈ (0, T ], such
that

‖z‖2H1(0,τ ;V ∗
0 ) +

∫ τ

0

∫
Ω

z2
x dx dt + max

0≤t≤τ

∫
Ω

|z(x, t)|2 dx
(3.38)

≤ Ĉ

(∫
Ω

|z(x, 0)|2 dx +

∫ τ

0

∫
Ω

v2 dx dt

)
.

Invoking the compatibility condition u1(0) = 0, we easily verify that

p(x, t) =

∫ x

1

u1(ξ) dξ +

∫ t

0

z(x, r) dr,(3.39)

so that p ∈ H2(0, τ ;V ∗0 ) ∩ H1(0, τ ;H1(Ω)) ∩ C1([0, τ ];L2(Ω)), and (3.38) holds for
z = pt. Hence, using (3.27), we can conclude that pxxx ∈ L2(Ωτ ), and also pxx ∈
C([0, τ ];L2(Ω)). In conclusion, p ∈ Pτ , and we have shown that T (Mτ ) ⊂ Xτ .

Now let (p, q, θ, w) = T (p̄, q̄, θ̄, w̄) for some (p̄, q̄, θ̄, w̄) ∈Mτ , where the constants
M1, . . . ,M10 and τ ∈ (0, T ] are assumed to be fixed. We are going to derive a number
of estimates for (p, q, θ, w) in terms of M1, . . . ,M10 and of the data of the system. In
what follows, we denote by Ci, i ∈ N ∪ {0}, positive constants which may depend on
the given data u0, u1, θ0, w0, f , g0, and on the constants Ki, 0 ≤ i ≤ 4, but neither
on τ nor on M1, . . . ,M10.

At first, we conclude from (2.11), (2.4), and (2.5) that∫
Ω

(
|σ̄|2 + |ψ̄|2

)
(x, t) dx

≤ 2

∫
Ω

(
H2

1[p̄ + q̄, w̄] +H2
3[p̄ + q̄, w̄] + θ̄2(H2

2[p̄ + q̄, w̄] +H2
4[p̄ + q̄, w̄])

)
(x, t) dx

(3.40)

≤ 4K2
2M

2
2 + C0

[
1 + t

∫ t

0

∫
Ω

(
p̄2
t + q̄2

t + w̄2
t

)
dx dr

]
≤ 4K2

2M
2
2 + C0

(
1 + t(M3 + M7)

)
∀t ∈ [0, τ ],
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|σ̄t|+ |ψ̄t| ≤ 2K3(1 + M2)(|p̄t|+ |q̄t|+ |w̄t|) + 2K2|θ̄t| a.e. in Ωτ .(3.41)

Also, it follows from (2.12) that for 1 ≤ i ≤ 4 and a.e. (x, t) ∈ Ωτ we have∣∣∣(Hi[p̄ + q̄, w̄]
)
x
(x, t)

∣∣∣ ≤ K4 max
0≤r≤t

(
|p̄x(x, r)|+ |q̄x(x, r)|+ |w̄x(x, r)|

)
.(3.42)

In addition, owing to (2.5),

|F1[p̄ + q̄, w̄]t| ≤ K3(|p̄t|+ |q̄t|+ |w̄t|) a.e. in Ωτ ,(3.43)

as well as, by virtue of (H3),

|g(x, t, θ̄(x, t))| ≤ g0(x, t) + K1M2.(3.44)

Now multiply (3.32) first by θt and then by −θxx; add the resulting equations
and integrate over Ω× [0, t] for any t ∈ (0, τ ]. Using Young’s inequality and invoking
(3.40), (3.43), and (3.44), we find that∫ t

0

∫
Ω

(
θ2
t + θ2

xx

)
dx dr +

∫
Ω

|θx(x, t)|2 dx

≤ C1

[
1 + tM2

2 +

∫ t

0

∫
Ω

(
p̄2
t + q̄2

t + w̄2
t

)
dx dr(3.45)

+

∫ t

0

∫
Ω

p̄4
xx dx dr +

∫ t

0

∫
Ω

σ̄2 p̄2
xx dx dr

]
.

Invoking the Gagliardo–Nirenberg inequality (2.21) for p = +∞, q = r = 2, ω = 1/2,
we infer that∫ t

0

‖p̄xx(·, r)‖2∞ dr ≤ 2K2
0

(∫ t

0

∫
Ω

p̄2
xx dx dr

+ max
0≤r≤t

‖p̄xx(·, r)‖2
∫ t

0

‖p̄xxx(·, r)‖2 dr
)

(3.46)

≤ 2K2
0

(
tM8 +

√
M8

√
t
√

M9

)
≤ 2K2

0

√
t
(
M8 +

√
M8M9

)
.

It follows that ∫ t

0

∫
Ω

p̄4
xx dx dr ≤ max

0≤r≤t
‖p̄xx(·, r)‖22

∫ t

0

‖p̄xx(·, r)‖2∞ dr

(3.47)
≤ 2K2

0

√
t
(
M2

8 + M
3/2
8

√
M9

)
.

In addition, by (3.40),∫ t

0

∫
Ω

σ̄2p̄2
xx dx dr ≤ max

0≤r≤t
‖σ̄(·, r)‖22

∫ t

0

‖p̄xx(·, r)‖2∞ dr

(3.48)
≤ 2K2

0

√
t
(
M8 +

√
M8M9

)(
4K2

2M
2
2 + C0(1 + t(M3 + M7))

)
.

In conclusion, we have shown the estimate∫ τ

0

∫
Ω

(
θ2
t + θ2

xx

)
dx dr + max

0≤t≤τ

∫
Ω

|θx(x, t)|2 dx

≤ C2

[
1 +
√
τ
(
M2

2 + M3 + M7 + M2
8 + M

3/2
8 M

1/2
9(3.49)

+
(
M8 + M

1/2
8 M

1/2
9

)(
1 + M2

2 + M3 + M7

))]
.
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Next, we consider (3.30) and (3.33). By the general hypotheses and (3.40), we have

max
0≤t≤τ

∫
Ω

(
|qt(x, t)|2 + |wt(x, t)|2

)
dx ≤ C3

(
1 + M2

2 + t(M3 + M7)
)
.(3.50)

Now differentiate (3.30) and (3.33) with respect to x. Then, by (3.42),

|σ̄x(x, t)|+|ψ̄x(x, t)| ≤ 2K2|θ̄x(x, t)|+2K4(1+M2) max
0≤r≤t

(
(|p̄x|+|q̄x|+|w̄x|)(x, r)

)
(3.51)
for a.e. (x, t) ∈ Ωτ . Therefore, using (2.20), we can conclude that∫ τ

0

∫
Ω

(
q2
xt + w2

xt

)
dx dt ≤ C4

(
1 +

∫ τ

0

∫
Ω

(
|σ̄x|2 + |ψ̄x|2

)
dx dt

)
≤ C5

[
1 + M2

2 +

∫ τ

0

∫
Ω

|θ̄x|2 dx dt + (1 + M2
2 )τ

∫ τ

0

∫
Ω

(
p̄2
xt + q̄2

xt + w̄2
xt

)
dx dt

]
≤ C5

(
1 + M2

2 + τ
(
M1 + (1 + M2

2 )(M4 + M7)
))

.

(3.52)

But then also

max
0≤t≤τ

∫
Ω

(
|qx(x, t)|2 + |wx(x, t)|2

)
dx

(3.53)
≤ C6

(
1 + M2

2 + τ
(
M1 + (1 + M2

2 )(M4 + M7)
))

.

Next, we consider the linear parabolic system (3.27)–(3.28). Standard parabolic
estimates, using the general hypotheses and (3.40), yield that∫ τ

0

∫
Ω

(
p2
t + p2

xx

)
dx dt ≤ C7

(
1 +

∫ τ

0

∫
Ω

|σ̄|2 dx dt
)

(3.54)
≤ C8

(
1 + τ(M2

2 + M3 + M7)
)
.

Moreover, since (3.38) is valid for z = pt, we can infer from (H2) and from (3.41) that

‖p‖2H2(0,τ ;V ∗
0 ) +

∫ τ

0

∫
Ω

p2
xt dx dt + max

0≤t≤τ

∫
Ω

|pt(x, t)|2 dx

≤ C9

(
1 +

∫ τ

0

∫
Ω

(
θ̄2
t + (1 + M2

2 )
(
p̄2
t + q̄2

t + w̄2
t

))
dx dt

)
(3.55)

≤ C9

(
1 + M1 + τ(1 + M2

2 )(M3 + M7)
)
.

But then we obtain from (3.27), also using (3.29) and (H2), that

max
0≤t≤τ

∫
Ω

|pxx(x, t)|2 dx ≤ 2 max
0≤t≤τ

∫
Ω

|pt(x, t)|2 dx + 2C10

(
1 + max

0≤t≤τ

∫
Ω

|σ̄(x, t)|2 dx
)

≤ C11

(
1 + M1 + M2

2 + τ(1 + M2
2 )(M3 + M7)

)
.(3.56)

In addition, employing (3.51) and (3.55), and arguing as in the derivation of (3.52),
we can deduce the estimate∫ τ

0

∫
Ω

p2
xxx dx dt ≤ 2

∫ τ

0

∫
Ω

p2
xt dx dt + 2

∫ τ

0

∫
Ω

|σ̄x + f |2 dx dt

≤ C12

(
1 + M1 + M2

2 + τ(M1 + (1 + M2
2 )(M3 + M4 + M7))

)
.(3.57)
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Next, we differentiate (3.30) and (3.33), respectively, with respect to t, and invoke
(H2) and (3.41) to obtain the bound∫ τ

0

∫
Ω

(q2
tt + w2

tt) dx dt ≤ C13(1 + (1 + M2
2 )(M3 + M5) + M1).(3.58)

Finally, since Ω is one-dimensional, H1(0, τ ;L2(Ω)) ∩ L2(0, τ ;H2(Ω)) is continuously
imbedded in C(Ωτ ). Hence, there is some C14 > 0 such that

max
(x,t)∈Ωτ

|θ(x, t)| ≤ C14

(
1 +

√
M̂1

)
,(3.59)

where M̂1 is equal to the expression on the right-hand side of (3.49).
Now, we can define the constants M1 . . . ,M10. We make the choices

M1 := 2C2, M2 := C14

(
1 +

√
M̂1

)
, M3 := 2C3 + C3M

2
2 ,

M4 := 2C5 + C5M
2
2 , M5 := 2C8, M6 := 2C6 + C6M

2
2 ,

(3.60)

M7 := 2C9 + C9M1, M8 := 2C11 + C11(M1 + M2
2 ),

M9 := 2C12 + C12(M1 + M2
2 ), M10 := C13(1 + (1 + M2

2 )(M3 + M5) + M1).

It then follows from the estimates (3.49)–(3.50), (3.52)–(3.57), and (3.59) that there
exists some τ0 ∈ (0, T ] such that the inequalities (3.16)–(3.27) are fulfilled for any
τ ∈ (0, τ0]. In particular, (3.16) implies that the assumptions of Lemma 3.2.2 in [2]

are satisfied. Therefore, we have θ ∈ C
1
2 ,

1
6 (Ωτ0), and there is some constant C15 > 0,

depending only on M1 and τ0, such that for every (x, t), (y, s) ∈ Ωτ0 it holds that

|θ(x, t)− θ(y, s)| ≤ C15

(
|t− s|1/6 + |x− y|1/2

)
.(3.61)

Consequently, for sufficiently small τ̂ ∈ (0, τ0],

θ(x, t) ≥ θ0(x)− |θ(x, t)− θ0(x)| ≥ δ − C15t
1/6 ≥ δ

2
(3.62)

for all (x, t) ∈ Ω× [0, τ̂ ]. With this, the proof of the lemma is complete.
Lemma 3.4. The operator T is weakly sequentially continuous in Mτ̂ .
Proof. Suppose a sequence {(p̄n, q̄n, θ̄n, w̄n)} ⊂ Mτ̂ is given such that

(p̄n, q̄n, θ̄n, w̄n)→ (p̄, q̄, θ̄, w̄) weakly in Xτ̂ as n→∞.(3.63)

Since Mτ̂ is weakly closed, it holds that (p̄, q̄, θ̄, w̄) ∈Mτ̂ . Now, let

(pn, qn, θn, wn) := T (p̄n, q̄n, θ̄n, w̄n), n ∈ N, (p, q, θ, w) := T (p̄, q̄, θ̄, w̄).(3.64)

We have to show that

(pn, qn, θn, wn)→ (p, q, θ, w) weakly in Xτ̂ as n→∞.(3.65)

Clearly, as (pn, qn, θn, wn) ∈ Mτ̂ for all n ∈ N, we have, on a subsequence which is
again indexed by n,

(pn, qn, θn, wn)→ (p̂, q̂, θ̂, ŵ) weakly in Xτ̂ as n→∞(3.66)
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for some (p̂, q̂, θ̂, ŵ) ∈ Mτ̂ . It remains to show that (p̂, q̂, θ̂, ŵ) = (p, q, θ, w). The
uniqueness of the limit point then entails that (3.66), and thus (3.65) holds for the
entire sequence. To this end, note that we have the convergences

θ̄n,t → θ̄t, θ̄n,xx → θ̄xx, p̄n,t → p̄t, p̄n,xx → p̄xx, p̄n,xxx → p̄xxx, p̄n,xt → p̄xt,

w̄n,t → w̄t, w̄n,xt → w̄xt, q̄n,t → q̄t, q̄n,xt → q̄xt, all weakly in L2(Ωτ̂ ).(3.67)

By compact imbedding, we may also assume that

θ̄n → θ̄, p̄n,x → p̄x, both uniformly in Ωτ̂ ,(3.68)

p̄n → p̄, q̄n → q̄, w̄n → w̄, all strongly in L2(Ω;C[0, τ̂ ]).(3.69)

But then, owing to (H4), it follows that

σ̄n → σ̄, ψ̄n → ψ̄, F1[p̄n + q̄n, w̄n]→ F1[p̄ + q̄, w̄],
(3.70)

all strongly in L2(Ω;C[0, τ̂ ]),

where σ̄n, ψ̄n have obvious meaning. Also,

g(·, ·, θ̄n)→ g(·, ·, θ̄) strongly in L∞(Ωτ̂ ),(3.71)

σ̄np̄n,xx → σ̄p̄xx weakly in L2(Ωτ̂ ).(3.72)

In addition, owing to (3.18), (3.22), and (3.43), the sequence {F1[p̄n + q̄n, w̄n]t} is
bounded in L∞(0, τ̂ ;L2(Ω)), so that we may assume that

F1[p̄n + q̄n, w̄n]t → y weakly-star in L∞(0, τ̂ ;L2(Ω))(3.73)

for some y ∈ L∞(0, τ̂ ;L2(Ω)). But then it follows from (3.70) that y = F1[p̄ + q̄, w̄]t.
Finally, we conclude from (3.67) and (3.68) that

p̄2
n,xx → p̄2

xx weakly in L2(Ωτ̂ ).(3.74)

Indeed, we have for any test function η ∈ C∞0 (Ωτ̂ ) that

lim
n→∞

∫ τ̂

0

∫
Ω

p̄2
n,xxη dx dt

= − lim
n→∞

∫ τ̂

0

∫
Ω

(
p̄n,xxxp̄n,xη + p̄n,xxp̄n,xηx

)
dx dt(3.75)

= −
∫ τ̂

0

∫
Ω

(
p̄xxxp̄xη + p̄xxp̄xηx

)
dx dt =

∫ τ̂

0

∫
Ω

p̄2
xxη dx dt.

Since C∞0 (Ωτ̂ ) is a dense subset of L2(Ωτ̂ ), and since {p2
n,xx} is bounded in L2(Ωτ̂ )

(cf. (3.47)), we conclude (3.74) from the Banach–Steinhaus theorem.
Now observe that (3.66) implies, in particular, the convergences

θn,t → θ̂t, θn,xx → θ̂xx, pn,t → p̂t, pn,xx → p̂xx, qn,t → q̂t, wn,t → ŵt,(3.76)

all weakly in L2(Ωτ̂ ). Combining all the above convergences, and letting n → ∞,

we finally can infer that (p̂, q̂, θ̂, ŵ) = T (p̄, q̄, θ̄, w̄). This concludes the proof of the
lemma.
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By virtue of Lemmas 3.3 and 3.4, we deduce from Lemma 3.2 that T has a fixed
point in Mτ̂ which then is a solution to the system (3.2)–(3.10). To conclude the
proof of Theorem 3.1, we still need to show the uniqueness. We achieve this through
the following result, which even shows global uniqueness.

Lemma 3.5. Let the assumptions of Theorem 3.1 be fulfilled, and let τ ∈ (0, T ]
be arbitrary. Then the system (3.2)–(3.10) has at most one solution in Xτ .

Proof. Suppose that (pi, qi, θi, wi) ∈ Xτ , i = 1, 2, are two solutions to (3.2)–(3.10)
on Ωτ for some τ ∈ (0, T ]. Let p := p1 − p2, q := q1 − q2, θ := θ1 − θ2, w := w1 −w2,
and put σi := H1[pi+qi, wi]+θiH2[pi+qi, wi], ψi := H3[pi+qi, wi]+θiH4[pi+qi, wi]
for i = 1, 2. Then it holds that

pt − pxx = σ1 − σ2,(3.77)

qt = σ2 − σ1,(3.78)

θt − θxx = −F1[p1 + q1, w1]t + F1[p2 + q2, w2]t + p2
1,xx − p2

2,xx
(3.79)

+σ1p1,xx − σ2 p2,xx + g(x, t, θ1)− g(x, t, θ2),

wt = ψ1 − ψ2,(3.80)

with corresponding zero initial and boundary conditions. Owing to (H4)(iii), we have
for every (x, t) ∈ Ωτ

max{|σ1(x, t)− σ2(x, t)|, |ψ1(x, t)− ψ2(x, t)|}
≤ C1

(
|θ(x, t)|+ max

0≤r≤t
(|p(x, r)|+ |q(x, r)|+ |w(x, r)|)

)
(3.81)

≤ C1

(
|θ(x, t)|+

∫ t

0

(
|pt(x, r)|+ |qt(x, r)|+ |wt(x, r)|

)
dr

)
,

where by Ci, i ∈ N, we denote positive constants that depend only on the data of
the system and on the Xτ -norms of (pi, qi, θi, wi), i = 1, 2. Hence, we may multiply
(3.77) by pt, and by −pxx, respectively, (3.78) by qt, and (3.80) by wt, respectively,
add the four resulting equations, integrate over space and time, and apply Young’s
inequality appropriately to arrive at the estimate∫ t

0

∫
Ω

(
p2
t + p2

xx + q2
t + w2

t

)
dx ds ≤ C2

∫ t

0

∫ s

0

∫
Ω

(
p2
t + q2

t + w2
t

)
dx dr ds

+C3

∫ t

0

∫
Ω

θ2 dx ds.(3.82)

Next, we integrate (3.79) over [0, s] for some s > 0. We obtain

θ −
∫ s

0

θxx dr = −F1[p1 + q1, w1] + F1[p2 + q2, w2] +

∫ s

0

(
p2
1,xx − p2

2,xx

)
dr

+

∫ s

0

(
σ1p1,xx − σ2p2,xx

)
dr +

∫ s

0

(
g(x, r, θ1)− g(x, r, θ2)

)
dr.(3.83)
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Our aim is to multiply (3.83) by θ, and integrate over Ω × [0, t] for some t ∈ [0, τ ].
In what follows, we first estimate the terms resulting from the right-hand side indi-
vidually. To this end, let γ > 0 (to be specified later). First, we note that for a.e.
(x, t) ∈ Ωτ it holds that

|F1[p1+q1, w1](x, t)−F1[p2+q2, w2](x, t)| ≤ C4

∫ t

0

(
|pt|+|qt|+|wt|

)
(x, r) dr,(3.84)

so that, using Young’s inequality,∫ t

0

∫
Ω

|θ(x, s)| |F1[p1 + q1, w1](x, s)−F1[p2 + q2, w2](x, s)| dx ds

(3.85)

≤ γ

2

∫ t

0

∫
Ω

θ2 dx ds +
C5

2γ

∫ t

0

∫ s

0

∫
Ω

(
p2
t + q2

t + w2
t

)
dx dr ds.

Moreover, owing to (H3), we have∫ t

0

∫
Ω

|θ(x, t)|
∫ s

0

|g(x, r, θ1(x, r))− g(x, r, θ2(x, r)| dr dx ds

≤ C6

∫ t

0

∫
Ω

|θ(x, t)|
∫ s

0

|θ(x, r)| dr dx ds(3.86)

≤ γ

2

∫ t

0

∫
Ω

θ2 dx ds +
C6

2γ

∫ t

0

∫ s

0

∫
Ω

θ2 dx dr ds.

Next, we estimate ∫ t

0

∫
Ω

|θ(x, s)|
∫ s

0

|σ1p1,xx − σ2p2,xx|(x, r) dr dx ds

≤
∫ t

0

∫
Ω

|θ(x, s)|
∫ s

0

|σ2(x, r)| |pxx(x, r)| dr dx ds

(3.87)

+

∫ t

0

∫
Ω

|θ(x, s)|
∫ s

0

(
|p1,xx| |σ1 − σ2|

)
(x, r) dr dx ds

=: B1 + B2.

By the boundedness of σ2,

B1 ≤ γ

2

∫ t

0

∫
Ω

θ2 dx ds +
C7

2 γ

∫ t

0

∫ s

0

∫
Ω

p2
xx dx dr ds.(3.88)

Next, we employ the Gagliardo–Nirenberg inequality (2.21) with p = +∞, q = r = 2,
ω = 1/2, to conclude that, for i = 1, 2 and every x ∈ Ω̄,∫ s

0

|pi,xx(x, r)|2 dr ≤
∫ s

0

‖pi,xx(·, r)‖2∞ dr

≤ 2K2
0

∫ s

0

(
‖pi,xx(·, r)‖22 + ‖pi,xx(·, r)‖2‖pi,xxx(·, r)‖2

)
dr

(3.89)

≤ C8 max
0≤r≤s

‖pi,xx(·, r)‖22 + C9 max
0≤r≤s

‖pi,xx(·, r)‖2
(∫ s

0

∫
Ω

|pi,xxx|2 dx dr

)1/2

≤ C10.
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Hence, we have∫ s

0

(
|σ1 − σ2| |p1,xx|

)
(x, r) dr ≤

(∫ s

0

|(σ1 − σ2)(x, r)|2 dr
)1/2(∫ s

0

|p1,xx(x, r)|2 dr
)1/2

≤
√

C10

(∫ s

0

|(σ1 − σ2)(x, r)|2 dr
)1/2

,(3.90)

so that, by virtue of (3.81) and of Young’s inequality,

B2 ≤ γ

2

∫ t

0

∫
Ω

θ2 dx ds +
C11

2γ

∫ t

0

∫ s

0

∫
Ω

|σ1 − σ2|2 dx dr ds

(3.91)

≤ γ

2

∫ t

0

∫
Ω

θ2 dx ds +
C12

2γ

∫ t

0

∫ s

0

∫
Ω

(
θ2 + p2

t + q2
t + w2

t

)
dx dr ds.

Finally, using (3.89), we estimate∫ t

0

∫
Ω

|θ(x, s)|
∫ s

0

(
p2
1,xx − p2

2,xx

)
(x, r) dr dx ds

≤
∫ t

0

∫
Ω

|θ(x, s)|
∫ s

0

(
|pxx| |p1,xx + p2,xx|

)
(x, r) dr dx ds

≤
∫ t

0

∫
Ω

|θ(x, s)|
(∫ s

0

|pxx(x, r)|2dr
)1/2(∫ s

0

|(p1,xx + p2,xx)(x, r)|2dr
)1/2

dx ds(3.92)

≤ C13

∫ t

0

∫
Ω

|θ(x, s)|
(∫ s

0

|pxx(x, r)|2 dr
)1/2

dx ds

≤ γ

2

∫ t

0

∫
Ω

θ2 dx ds +
C14

2γ

∫ t

0

∫ s

0

∫
Ω

p2
xx dx dr ds.

Now, we multiply (3.83) by θ and integrate over Ω×[0, t] for some t ∈ [0, τ ]. Combining
the estimates (3.85)–(3.92) and choosing γ > 0 appropriately small, we obtain the
inequality∫ t

0

∫
Ω

θ2 dx ds ≤ C15

∫ t

0

∫ s

0

∫
Ω

(
θ2 + p2

xx + p2
t + q2

t + w2
t

)
dx dr ds.(3.93)

Consequently, combining inequalities (3.82) and (3.93), we have finally shown that∫ t

0

∫
Ω

(
θ2 + p2

t + p2
xx + q2

t + w2
t

)
dx ds

(3.94)

≤ C16

∫ t

0

∫ s

0

∫
Ω

(
θ2 + p2

t + p2
xx + q2

t + w2
t

)
dx dr ds,

whence, by Gronwall’s lemma, pt = qt = wt = θ = 0 a.e. in Ωτ , so that the assertion
follows. With this, the proof of Theorem 3.1 is complete.

4. Global existence. Suppose now that the hypotheses (H1) to (H5) hold so
that (3.2)–(3.11) has a unique solution (p, q, θ, w) on Ωτ̂ which satisfies (3.11)–(3.14).
Using the compatibility condition u0(0) = 0, we then easily verify that (u, θ, w), where

u(x, t) =

∫ x

0

(
p(ξ, t) + q(ξ, t)

)
dξ,(4.1)
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solves (1.1)–(1.7) on Ωτ̂ and satisfies (2.16). Now let τ ∈ (0, T ] be arbitrary such that
(u, θ, w) can be extended to a solution of (1.1)–(1.7) on Ωτ and satisfies θ(x, t) ≥ θ̄
for some θ̄ > 0, as well as the smoothness properties (2.16). Owing to the global
uniqueness result of Lemma 3.5, this solution is unique. We are now going to derive
a number of global a priori estimates. To this end, we denote by Ci, i ∈ N, positive
constants which may depend on the given data of system (1.1)–(1.7), but neither on
τ nor on the lower bound θ̄ for the temperature. For notational convenience, we put
ε := ux.

First estimate. We multiply (1.1) by ut, add the result to (1.3), and then
integrate over Ωt, t ∈ (0, τ ], and by parts. In light of (H1), we have

1

2

∫
Ω

u2
t (x, t) dx +

∫
Ω

(
θ(x, t) + F1[ε, w](x, t)

)
dx

≤ C1 +

∫ t

0

∫
Ω

g(x, r, θ(x, r)) dx dr +

∫ t

0

∫
Ω

fut dx dr.(4.2)

Invoking (2.2), (2.4), (H2), (H4)(i), the positivity of θ, and Gronwall’s lemma, we find
that

max
0≤t≤τ

(
‖θ(·, t)‖1 + ‖ut(·, t)‖2

)
≤ C2.(4.3)

Second estimate. We multiply (1.3) by −θ−1 and integrate over Ωt, t ∈ (0, τ ].
(Note that θ−1 is actually bounded, since θ ≥ θ̄ > 0.) It follows that∫ t

0

∫
Ω

(
θ2
x

θ2
+

ε2
t

θ

)
dx dr ≤ C3 +

∫ t

0

∫
Ω

1

θ

(
F1[ε, w]t − σεt − g(x, r, θ)

)
dx dr

+

∫
Ω

log(θ(x, t)) dx.(4.4)

In light of (4.3) and of the elementary inequality log(θ) ≤ θ for θ > 0, the second
integral on the right-hand side is bounded. Also, we obtain from (1.2), (1.4), (H3),
(H5), and Young’s inequality that a.e. in Ωτ it holds that

F1[ε, w]t − σεt − g(x, r, θ) ≤ H3[ε, w]G[w]t − θH2[ε, w] εt − g0(x, r) + K1θ

≤ −(θH4[ε, w] + wt)G[w]t + K2θ|εt|+ K1θ ≤ K1θ + K2θ|εt|+ K5

4
K2

2θ
2.

(4.5)

Therefore, using (4.3), we find from Young’s inequality that∫ t

0

∫
Ω

1

θ

(
F1[ε, w]t − σεt − g(x, r, θ)

)
dx dr ≤ C4

(
1 +

∫ t

0

∫
Ω

|εt| dx dr
)

≤ C5 +
1

2

∫ t

0

∫
Ω

ε2
t

θ
dx dr.(4.6)

In conclusion, we have shown the estimate∫ τ

0

∫
Ω

(
θ2
x

θ2
+

ε2
t

θ

)
dx dt ≤ C6.(4.7)



430 P. KREJČÍ, J. SPREKELS, AND U. STEFANELLI

But then, using Schwarz’s inequality for a fixed t ∈ (0, τ),∫
Ω

∣∣∣(√θ)
x

∣∣∣ (x, t) dx =

∫
Ω

∣∣∣∣∣ θx(x, t)

2
√

θ(x, t)

∣∣∣∣∣ dx
(4.8)

≤ 1

2

(∫
Ω

θ(x, t) dx

)1/2(∫
Ω

θ2
x(x, t)

θ2(x, t)
dx

)1/2

,

whence, using the Gagliardo–Nirenberg inequality (2.21) with w =
√
θ, p = +∞,

q = 2, r = 1, and ω = 1, and invoking (4.3), we obtain∫ τ

0

‖θ(·, t)‖∞ dt ≤ C7 + C8

∫ τ

0

∫
Ω

θ2
x

θ2
dx dt ≤ C9.(4.9)

Hence, ∫ τ

0

∫
Ω

θ2 dx dt ≤ max
0≤t≤τ

‖θ(·, t)‖1
∫ τ

0

‖θ(·, t)‖∞ dt ≤ C10.(4.10)

Third estimate. We now exploit the decomposition (3.1). We have ux = ε =
p + q, where, owing to (4.3), ‖p‖L∞(Ωτ ) ≤ C11. Therefore, invoking (H4) and (2.11),

it holds that for every (x, t) ∈ Ωτ ,

|σ(x, t)|+ |ψ(x, t)| ≤ C12 + 2K2 θ(x, t) + 2K4 max
0≤r≤t

(
|q(x, r)|+ |w(x, r)|

)
.(4.11)

Now multiply (3.5) by q, and (3.8) by w, respectively, add the resulting equations,
and integrate over [0, t], where t ∈ (0, τ ]. Using Young’s inequality and invoking (4.9),
we obtain from (4.11) the estimate

1

2

(
q2(x, t) + w2(x, t)

)
≤ C13

[
1 + max

0≤r≤t

(
|q(x, r)|+ |w(x, r)|

)(
1 +

∫ t

0

(
|q(x, r)|+ |w(x, r)|

)
dr

)]
(4.12)

≤ C14 +
1

4
max
0≤r≤t

(
q2(x, r) + w2(x, r)

)
+ C15

∫ t

0

(
q2(x, r) + w2(x, r)

)
dr.

Taking the maximum with respect to t on both sides, we obtain from Gronwall’s
lemma that

‖q‖L∞(Ωτ ) + ‖w‖L∞(Ωτ ) ≤ C16,(4.13)

whence also

‖ε‖L∞(Ωτ ) + max
j∈{1,3}

‖Hj [ε, w]‖L∞(Ωτ ) ≤ C17,(4.14)

and we obtain from (3.5) and (3.8), using (4.9)–(4.11), that

‖qt‖L1(0,τ ;L∞(Ω))∩L2(Ωτ )∩L∞(0,τ ;L1(Ω))
(4.15)

+ ‖wt‖L1(0,τ ;L∞(Ω))∩L2(Ωτ )∩L∞(0,τ ;L1(Ω)) ≤ C18.

Moreover, (4.10) and (4.14) imply that the right-hand side of (3.2) is bounded in
L2(Ωτ ); hence, using standard parabolic estimates, we can conclude that

‖p‖H1(0,τ ;L2(Ω))∩L2(0,τ ;H2(Ω))∩C([0,τ ];H1(Ω)) ≤ C19,(4.16)

which yields, in particular, that uxt = pxx is bounded in L2(Ωτ ).
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Fourth estimate. In the next step, we perform a classical estimate (cf. [5]);
namely, we multiply (1.3) by −θ−1/3 and integrate over Ωt for t ∈ (0, τ ]. It then
follows from (4.5) that∫ t

0

∫
Ω

(
θ−4/3θ2

x + θ−1/3ε2
t

)
dx dr ≤ C20

(
1 +

∫
Ω

θ2/3(x, t) dx +

∫ t

0

∫
Ω

θ2/3 dx dr

)
+C21

(∫ t

0

∫
Ω

θ2/3|εt| dx dr +

∫ t

0

∫
Ω

θ5/3 dx dr

)
.(4.17)

Owing to (4.3) and (4.10), the first, second, and fourth integrals on the right of (4.17)
are bounded, and the remaining expression is estimated as follows:∫ t

0

∫
Ω

θ2/3|εt| dx dr =

∫ t

0

∫
Ω

θ5/6θ−1/6|εt| dx dr

(4.18)

≤ 1

2

∫ t

0

∫
Ω

θ−1/3ε2
t dx dr +

1

2

∫ t

0

∫
Ω

θ5/3 dx dr.

Since the second summand on the right of (4.18) is again bounded, we have shown
the estimate ∫ τ

0

∫
Ω

(
θ−4/3θ2

x + θ−1/3ε2
t

)
dx dt ≤ C22.(4.19)

But then θ1/3 is bounded in L∞(0, τ ;L3(Ω)) ∩ L2(0, τ ;H1(Ω)), and the Gagliardo–
Nirenberg inequality (2.21), with p = +∞, r = 2, q = 3, and ω = 2/5, yields that∫ τ

0

‖θ(·, t)‖5/3∞ dt ≤ C23,(4.20)

whence, using (4.3) once more, we obtain∫ τ

0

∫
Ω

θ8/3 dx dt ≤ C24.(4.21)

Thus, the right-hand sides of (3.2), (3.5), and (3.8), respectively, are bounded in
L8/3(Ωτ ), and we can infer from standard parabolic estimates, using εt = pxx, that

‖pt‖L8/3(Ωτ ) + ‖εt‖L8/3(Ωτ ) + ‖qt‖L8/3(Ωτ ) + ‖wt‖L8/3(Ωτ ) ≤ C25.(4.22)

Fifth estimate. We now turn our attention to (1.3). By virtue of (4.21) and
(4.22), and invoking (2.5), we easily verify that F1[ε, w]t and the right-hand side of
(1.3) are bounded in L4/3(Ωτ ). Therefore, multiplying (1.3) by θ, integrating over Ωτ
for t ∈ (0, τ ], and applying Young’s inequality and (4.3), we see that for any γ > 0 it
holds that

‖θ(·, t)‖22 +

∫ t

0

∫
Ω

θ2
x dx dr ≤ C26

(
1 + γ−1

)
+ γ

∫ t

0

∫
Ω

θ4 dx dr

(4.23)

≤ C27

(
1 + γ−1 + γ

∫ t

0

‖θ(·, r)‖3∞ dr

)
.

Now we use (4.3) and the Gagliardo–Nirenberg inequality (2.21) with p = +∞, q = 1,
r = 2, and ω = 2/3 in order to obtain that∫ t

0

‖θ(·, r)‖3∞ dr ≤ C28

(
1 +

∫ t

0

∫
Ω

θ2
x dx dr

)
.(4.24)
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Hence, choosing γ > 0 small enough, we have shown the estimate

‖θ‖L∞(0,τ ;L2(Ω))∩L2(0,τ ;H1(Ω)) ≤ C29,(4.25)

whence, using interpolation once more, we obtain

‖θ‖L6(Ωτ ) ≤ C30.(4.26)

Thus, just as in the derivation of (4.22), we have

‖pt‖L6(Ωτ ) + ‖εt‖L6(Ωτ ) + ‖qt‖L6(Ωτ ) + ‖wt‖L6(Ωτ ) ≤ C31.(4.27)

But then F1[ε, w]t and the right-hand side of (1.3) are bounded in L2(Ωτ ), and stan-
dard parabolic estimates, also using the continuous imbeddings H1(0, τ ;L2(Ω)) ∩
L2(0, τ ;H2(Ω)) ↪→ C([0, τ ];H1(Ω)) ↪→ C(Ωτ ), yield that

‖θ‖H1(0,τ ;L2(Ω))∩L2(0,τ ;H2(Ω))∩C([0,τ ];H1(Ω))∩C(Ωτ ) ≤ C32.(4.28)

This implies, in particular, that σt and ψt are bounded in L2(Ωτ ), so that

‖qtt‖L2(Ωτ ) + ‖wtt‖L2(Ωτ ) ≤ C33.(4.29)

In addition, we may argue as in the derivation of (3.38) to conclude that also

‖p‖H2(0,τ ;V ∗
0 )∩H1(0,τ ;H1(Ω)) ≤ C34.(4.30)

Sixth estimate. In light of the above estimates, we have, for a.e. (x, t) ∈ Ωτ ,

|σx(x, t)|+ |ψx(x, t)| ≤ C35

(
|θx(x, t)|+ max

0≤r≤t
((|px|+ |qx|+ |wx|)(x, r))

)
(4.31)

≤ C36

(
1 + |θx(x, t)|+

∫ t

0

(
|pxt(x, r)|+ |qxt(x, r)|+ |wxt(x, r)|

)
dr

)
.

Hence, differentiating (3.5) and (3.8), respectively, with respect to x, and invoking
the estimates (4.28) and (4.30), we easily derive the estimate

‖qxt‖L2(Ωt) + ‖wxt‖L2(Ωt) ≤ C37

(
1 +

∫ t

0

(
‖qxt‖L2(Ωr) + ‖wxt‖L2(Ωr)

)
dr

)
,(4.32)

whence, using Gronwall’s lemma, we have

‖qxt‖L2(Ωτ ) + ‖wxt‖L2(Ωτ ) ≤ C38.(4.33)

Finally, we conclude from the above estimates that also

‖pxxx‖L2(Ωτ ) ≤ C39.(4.34)

In conclusion, combining all previously shown estimates, we have shown that

‖(p, q, θ, w)‖Xτ ≤ C40,(4.35)

where Xτ is the space introduced in (3.15).
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Conclusion of the proof of Theorem 2.1. So far we have shown that (4.35)
holds as long as there is some θ̄ > 0 such that θ ≥ θ̄ on Ωτ . To conclude the proof of
the assertion, we still have to prove the validity of (2.17). To this end, first observe
that we have shown above that εt = pxx is bounded in L6(Ωτ ) ∩ L2(0, τ ;H1(Ω)). In
particular, there is some β1 > 0, independent of τ , such that∫ t

0

‖εt(·, r)‖∞ dr ≤ β1 ∀t ∈ (0, τ ].(4.36)

Besides, there is some β2 > 0, independent of τ , such that

max
(x,t)∈Ωτ

|wt(x, t)| ≤ β2.(4.37)

Now test (1.3) with an arbitrary function z ∈ H1(Ωτ ) satisfying z ≤ 0 a.e. in Ωτ . In
view of (2.10), (4.5), and (4.37) it follows, for a.e. t ∈ (0, T ), that∫

Ω

(
zθt + zxθx

)
(x, t) dx ≤

∫
Ω

|z(x, t)|
(

(F [ε, w]t − σεt − g(·, ·, θ))(x, t)
)
dx

≤
∫

Ω

|z(x, t)|
(

(−θH4[ε, w]− wt)G[w]t + K2θ|εt|+ K1θ
)

(x, t) dx

(4.38)

≤
(
K1 + K2K5β2 + K2‖εt(·, t)‖∞

)∫
Ω

|z(x, t)| θ(x, t) dx

≤ ϕ(t)

∫
Ω

|z(x, t)| θ(x, t) dx,

where ϕ(t) := (K1 + K2K5β2 + K2‖εt(·, t)‖∞) is by (4.36) bounded in L1(0, τ) by a
constant which does not depend on τ ∈ (0, T ]. Now, put

z(x, t) := −
(
δ exp

(
−
∫ t

0

ϕ(s) ds

)
− θ(x, t)

)+

for (x, t) ∈ Ωτ .(4.39)

Then it follows from inequality (4.38) that∫
Ω

(
z

(
z + δ exp

(
−
∫ t

0

ϕ(s) ds

))
t

+ z2
x

)
(x, t) dx

(4.40)

≤ ϕ(t)

∫
Ω

|z|
(
|z|+ δ exp

(
−
∫ t

0

ϕ(s) ds

))
(x, t) dx.

This yields, in particular,

1

2

d

dt

∫
Ω

z2(x, t) dx +

∫
Ω

z2
x(x, t) dx ≤ ϕ(t)

∫
Ω

z2(x, t) dx.(4.41)

Therefore, by Gronwall’s lemma, z = 0, and thus

θ(x, t) ≥ δe−((K1+K2K5β2)t+K2β1) ∀(x, t) ∈ Ωτ .(4.42)

Therefore, we can claim that τ = T , and the assertion of Theorem 2.1 is completely
proved.

Remark 4. It does not present any major difficulties to extend the above proof
to the more general case when H3 and H4 are vector hysteresis operators and, ac-
cordingly, (1.4) is a vector differential equation (then, of course, the hypotheses (H4)
and (H5) have to be appropriately modified).
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Remark 5. It is easy to see that the solution (u, θ, w) depends Lipschitz continu-
ously on the data of the system. Indeed, a closer look at the proof of Lemma 3.5 reveals
that L2(Ω)-variations of u0, u1, θ0, w0 and L2(ΩT )-variations of f lead to Lipschitz
variations of (p, q, θ, w) in the norm of the space (H1(0, T ;L2(Ω))∩L2(0, T ;H2(Ω)))×
H1(0, T ;L2(Ω))× L2(ΩT )×H1(0, T ;L2(Ω)). A similar result holds for variations of
g. As the line of arguments should be clear, we leave the explicit formulation and the
proof of the corresponding result to the reader.

Remark 6. It seems natural to discuss the asymptotic behavior of system (1.1)–
(1.7) as µ ↘ 0. As our method of proof strongly relies on the presence of the viscous
term −µuxxt in (1.1), our analysis does not cover this problem, which seems to be
very difficult.
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1. Introduction. This paper is concerned with the initial value problem (IVP)
for the general quasi-linear Schrödinger equation in one space dimension

∂tu = ia(u, ū, ∂xu, ∂xū)∂
2
xu+ ib(u, ū, ∂xu, ∂xū)∂

2
xū

+ c(u, ū, ∂xu, ∂xū)∂xu+ d(u, ū, ∂xu, ∂xū)∂xū+ f(u, ū),

u(x, 0) = u0(x),

(1.1)

where u = u(x, t), (x, t) ∈ R
2, a, b, c, d : C

4 → C, and f : C
2 → C are smooth functions

with a(·) a real-valued function. We shall assume the following ellipticity condition:
for any R > 0, there exists λ = λ(R) > 0 such that if

‖(z1, z2, z3, z4)‖ =
(

4∑
j=1

|zj |2
) 1

2

≤ R,

then ± a(z1, z2, z3, z4)− |b(z1, z2, z3, z4)| ≥ λ.

(1.2)

Our goal is to establish a local theory (including existence and uniqueness) in the
classical Sobolev spaces Hs(R) or its weighted version Hs(R)∩L2(|x|rdx), depending
on the degree of nonlinearity of a, b, c, d.

Equations of this kind arise in several fields in physics (see [1], [2], and references
therein) and have received considerable attention in recent publications.

In [2], de Bouard, Hayashi, and Saut proved local wellposedness for the IVP
associated with the equation

∂tu = i∆u− 2iuh′(|u|2)∆(h(|u|2)) + iug(|u|2)(1.3)

in space dimensions n = 1, 2, 3 corresponding to small data u0 in H6(R). They also
deduced in dimensions n = 2, 3 sufficient conditions of the data u0 which guarantee
that the local solution extends to a global one.
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In [18], Poppenberg studied the IVP for the equation of the form

∂tu = i(∆− V (x))u+ iuh′(|u|2)∆(h(|u|2)) + iug(|u|2).(1.4)

Under certain conditions on the potential V and on h and g, he showed that the
corresponding IVP is locally wellposed in H∞(Rn) for any dimension n. His proof is
based on the Nash–Moser implicit function theorem.

In [5] and [6], Colin removed the smallness condition on the data assumed in [2]
to establish the local wellposedness of the IVP for (1.4) in any dimension in Hs(Rn),
s ≥ s0(n).

For the one dimensional case, Poppenberg [19] showed that the IVP associated
with the fully nonlinear Schrödinger equation{

i∂tu = F (t, x, u, ū, ux, ūx, uxx, ūxx),

u(x, 0) = u0(x)
(1.5)

is locally wellposed in H∞(R), under appropriate assumptions on F . As in [18], the
proof in [19] is based on the Nash–Moser implicit function theorem, which allows it
to overcome “the loss of derivatives” introduced by the nonlinearity.

The assumptions in [19] include ellipticity and a “cubic” character of the nonlin-
earity. For example, the assumptions in [19] exclude equations of the form

(a) F = uxx + uux or (b) F = (1 + |u|2)uxx + iRe(u)ux.(1.6)

The case (a) above was considered by Ozawa [17]. The implicit “cubic” assumption
on the nonlinearity in [19] can be explained by the Mizohata condition [16] which we
now describe.

It was shown in [16] that for the local wellposedness of{
∂tu = i∆u+�b(x) · �u, x ∈ R

n, t ∈ R,

u(x, 0) = u0(x) ∈ L2(Rn)
(1.7)

the following condition is necessary:

sup
x∈Rn,ω∈Sn−1

∣∣∣∣∫ ∞
0

Im �b(x+ sω) · ωds
∣∣∣∣ <∞.(1.8)

In the one dimensional case, the condition (1.8) applied to the equations in (1.6) (a)
suggests that u(·, t) ∈ L1(R) for t ∈ [0, T ]. However, this does not follow directly from

the initial data since even the group {eit∂2
x : t ∈ R} does not preserve the L1-class.

Notice that when the “nonlinearity” is “cubic,” e.g., F = uxx+u
2ux, the condition

(1.8) is “fulfilled” if u(·, t) ∈ L2(R).
To state our result, we first need some definition. Let µj , j = 1, 2, 3, 4, be the

smallest integer such that
∂αz a(0, 0, 0, 0) �= 0, 0 < |α| ≤ µ1,
∂βz b(0, 0, 0, 0) �= 0, 0 < |β| ≤ µ2 if b �≡ 0,
∂γz c(0, 0, 0, 0) �= 0, c(0, 0, 0, 0) = 0, 0 < |γ| ≤ µ3 if c �≡ 0,
∂σz d(0, 0, 0, 0) �= 0, d(0, 0, 0, 0) = 0, 0 < |σ| ≤ µ4 if d �≡ 0,
f(0, 0) = 0,

(1.9)
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where a = a(z1, z2, z3, z4), similarly for b, c, d and z = (z1, z2, z3, z4). Let

µ = min{µ1, µ2, µ3, µ4}.(1.10)

Thus the case µ = 1 corresponds to the “quadratic” case in (1.1) and µ ≥ 2 to at
least the cubic case in (1.1). Consider the following examples:
Example 1. a = 1 + z2

1 + z2
2 + z2

3z
2
4 , b = z1z2, c = z1 + z2

2 , d = z1 + z1z2z3; then
µ1 = µ2 = 2, µ3 = µ4 = 1, so µ = 1, which is a quadratic case.

Example 2. a = 1 + Re u+ (Re u)2, b = c = d = 0 is “quadratic,” i.e., µ = 1.
Example 3. a = 1 + |ux|2, b = c = d = 0 is “cubic,” i.e., µ = 2.

Theorem 1. Assuming (1.2) and (1.9) with µ ≥ 2, there exists k ∈ Z
+ such that

for any u0 ∈ Hk(R) there exist T = T (‖u0‖Hk) and a unique solution u = u(x, t) of
the IVP (1.1) on the time interval [−T, T ] such that

u ∈ C([−T, T ] : Hk−1(R)) ∩ C1([−T, T ] : Hk−3(R)).

Theorem 2. Assuming (1.2) and (1.9) with µ = 1, there exist k, r ∈ Z
+ such

that the condition of Theorem 1 holds in the space Hk−1(R) ∩ L2(|x|rdx) instead of
Hk−1(R).

Remarks.
1. It will follow from our proof that under appropriate assumptions the same

results apply to the IVP for the fully nonlinear Schrödinger equation

∂tw = iF (w, w̄, wx, w̄x, wxx, w̄xx).(1.11)

One has to observe that just by taking derivative in (1.11) and using the
notation u = ∂xw, one gets an equation similar to (1.1).
The same applies to the more general form

F = F (x, t, w, w̄, wx, w̄x, wxx, w̄xx).(1.12)

2. As mentioned above, Theorem 2 deals with quadratic nonlinearity for which
one “needs” the weighted Sobolev spaces to handle the integrability conditions
in (1.8).

3. Our ellipticity assumption (1.2) allows us to consider equations of the form

a(·) = 1
1+|u|2 = 1 − |u|2

1+|u|2 , b = c = d = f = 0 which are not “uniformly

elliptic.”
4. Once the results in Theorem 1 and 2 are established, one can obtain the

persistence property by combining these results with those found in [15]. The
solution u in Theorems 1 and 2 satisfies u ∈ C([−T, T ] : Hk(R)), and some
kind of stability (continuous dependence of the solution upon the initial data)
can be established. However, to simplify the exposition, we shall not pursue
these results here.

5. We do not attempt to get the optimal value of the parameter s (in Hs) and
r (in L2(|x|rdx)) in Theorems 1 and 2 provided by our arguments below.

Our method of proof consists of several steps.
First we differentiate j times the equation in (1.1) to obtain an equation for

vj = ∂jxu = ∂ju
∂xj , j = 0, 1, . . . , k− 1, whose coefficients for the second order derivatives

are similar to those in (1.1).
We perform energy estimates in these equations which depend on one higher

derivative, i.e., vj+1 = ∂j+1
x u. To close the estimate we need to bound vk = ∂kxu. To
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do this, we shall use the “gauge transformation” introduced by Hayashi and Ozawa in
[11]. However, this process presents the difficulty of working with φ∂kxu instead of ∂kxu,
where φ is the factor arising from the “gauge transformation” which has exponential
form and depends only on some derivatives ∂jxu, j = 0, 1, 2, 3.

To overcome this difficulty, we used φ as part of our unknown and show that both
norms for φ∂kxu and ∂kxu are equivalent in some time interval.

Putting all these together we get an a priori estimate of the form

d

dt
h(t) ≤ ((h(t))2 + (h(t))l

)
e(h(t))

2+(h(t))l ,(1.13)

at least the cubic case (Theorem 1), with l depending on the highest nonlinearity
considered.

From (1.13) it follows that there exists T = T (‖u0‖Hk) > 0 such that, for t ∈
[0, T ], h(t) ≤ 100h(0) and in this time interval h(t) ∼= ‖u(t)‖Hk . This provides to the
norm an a priori estimate.

To prove existence we rely on the artificial viscosity method, so we need to check
that the previous argument is preserved for the one parameter family of parabolic
equations whose solutions converge as the parameter defining the parabolic character
goes to zero.

At this point we explain the restriction of the dimension. In [14], Kenig, Ponce,
and Vega established the local wellposedness of the IVP associated with the equation

∂tu = i∆u+ P (u, ū,�xu,�xū),(1.14)

where P : C
2n+2 → C is a polynomial without constant or linear terms, under the

smallness assumption for the data. In [11], Hayashi and Ozawa used a gauge trans-
formation to remove in one dimension the smallness assumption on the data in [14].

In [3] and [4], using ideas due to Doi [8], Chihara was able to remove the smallness
condition in [14] in any dimension. Roughly speaking, in [4], Chihara relied on a sym-
metrization process based on the ellipticity of the dispersive factor in (1.14) and the
gauge transformation, which in the case n ≥ 2 involves pseudodifferential operators.
In the one dimensional case, this symmetrization process is not necessary. Also the
fact that the “gauge transformation” is exact, i.e., it does not involve pseudodifferen-
tial operator, is crucial in our result. The results of Chihara in [4] have been improved
by Hayashi and Kaikina [10].

The proof in [14] is based on the following smoothing effects of the solution of the
lineal IVP: {

∂tu = i∆u+ f(x, t),

u(x, 0) = u0(x).

If f ≡ 0, then ∫ T

0

∫
Rn

|D1/2
x eit∆u0|2λ(x)dxdt ≤ c‖u0‖L2 ,(1.15)

and if u0 ≡ 0, then∫ T

0

∫
Rn

∣∣∣∣∣∂x
∫ t

0

ei(t−t
′)∆f(·, t′)dt′

∣∣∣∣∣
2

λ(x)dxdt ≤ c

∫ T

0

∫
Rn

|f(x)|2λ−1(x)dxdt,(1.16)
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where λ(x) is a weight with appropriate decay at∞. The inequality (1.15) was proved
simultaneously in [7], [20], [21], and (1.16) in [13].

We do not need to establish the smoothing effect in our solutions as part of
the proof to get the existence of solutions. The fact that the solutions provided by
Theorems 1 and 2 satisfy the “smoothing effect” of the kind described in (1.13)–
(1.14) (gain 1

2 -derivative with respect to the initial data and 1-derivative with respect
to the inhomogeneous part) follow immediately by the results in [15]; see also [8],
[9]. The main point is that once the existence of a (smooth enough) solution has
been established, the proof of the corresponding smoothing effect reduces to a linear
problem treated in [8], [9], and [15].

The rest of this paper is organized as follows. We will prove Theorem 1 in section
2 and Theorem 2 in section 3. The appendix includes some technical details. All
the integrations are with respect to x and over the whole real line R unless otherwise
mentioned.

2. Proof of Theorem 1. We shall divide the proof in several steps.

2.1. Step 1: Formal energy estimate for lower derivatives. Consider the
general quasi-linear Schrödinger equation

∂tu = ia(u, ū, ∂xu, ∂xū)∂
2
xu+ ib(u, ū, ∂xu, ∂xū)∂

2
xū

+ c(u, ū, ∂xu, ∂xū)∂xu+ d(u, ū, ∂xu, ∂xū)∂xū+ f(u, ū),

u(x, 0) = u0(x) ∈ Hk(R),

(2.1)

where u = u(x, t), (x, t) ∈ R
2. We recall our hypotheses:

1. a, b, c, d, f are smooth functions of its arguments.
2. a is a real-valued function.
3. For any λ > 0, there exist m1,M1 > 0 such that if ‖(z1, z2, z3, z4)‖ ≤ λ, then

we have

m1 ≤ a(z1, z2, z3, z4)− |b(z1, z2, z3, z4)| ≤M1,

thus there existm2,M2 > 0 such thatm2 ≤ 1
a±|b| ≤M2. (It will be clear from

the proof below that the case −a(z1, z2, z3, z4)− |b(z1, z2, z3, z4)| is similar.)
4. a(z1, z2, z3, z4) − a(0, 0, 0, 0) = O(|z1|α + |z2|α + |z3|α + |z4|α), α ≥ µ ≥ 2,

similarly for b(z1, z2, z3, z4)− b(0, 0, 0, 0), c(z1, z2, z3, z4), d(z1, z2, z3, z4).
5. We consider only the case t ∈ [0, T ]. (The case t < 0 follows by a similar

argument.)
To perform the energy estimate on ∂jxu, we need to take the jth derivative of

(2.1), j = 0, 1, . . . , k. With the notation ∂jxu = vj , we have from (4.8) (Appendix 1)
that (2.1) is rewritten as

∂tvj = ia∂2
xvj + ib∂2

xv̄j + cj∂xvj + dj∂xv̄j + fj ,(2.2)

where a′j = ∂zja(z1, z2, z3, z4), similarly for b′j , c
′
j , d
′
j , j = 1, 2, 3, 4; a′ = ∂x(a) = ∂a

∂x ,
where a = a(u(x, t), ū(x, t), ∂xu(x, t), ∂xū(x, t)) is implicitly a function of x, t, similarly
for b′, c′, d′ and 

cj = ija′ + ia′3v2 + ib′3v̄2 + c+ c′3v1 + d′3v̄1,
dj = ijb′ + ia′4v2 + ib′4v̄2 + d+ c′4v1 + d′4v̄1,
fj = faj + fbj + fcj + fdj + ∂jxf,

(2.3)
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where faj , fbj , fcj , fdj are described in (4.7) and depend only on at most jth derivatives
of the unknown u, i.e., on v0, v̄0, . . . , vj , v̄j . Thus,

cj = cj(v0, v̄0, v1, v̄1, v2, v̄2),

dj = dj(v0, v̄0, v1, v̄1, v2, v̄2),

fj = fj(v0, v̄0, v1, v̄1, . . . , vj , v̄j).

(2.4)

Notice that cj and dj depend on j only as a multiplicative constant.
For j ≤ k − 1, we perform the standard energy estimate on (2.2), i.e., multiply

the equation by v̄j , integrate with respect to x over R, and take the real part of the
result. After integration by parts, we have

d

dt

∫
|vj |2dx = i

∫
a(v̄j∂

2
xvj − vj∂2

xv̄j)dx+ i

∫
(v̄jb∂

2
xv̄j − vj b̄∂2

xvj)dx

+

∫
(cj v̄j∂xvj + c̄jvj∂xv̄ + dj v̄j∂xv̄j + d̄jvj∂xvj)dx+

∫
(vjfj + v̄j f̄j)dx

= − 2iRe

∫
v̄ja
′vj+1dx− 2iRe

∫
b(v̄j+1)

2dx+ iRe

∫
b′′v̄2

jdx(2.5)

+ 2Re

∫
cj v̄jvj+1dx− Re

∫
d′j v̄

2
jdx+ 2Re

∫
vjfjdx.

Thus, we obtain the following estimate:

d

dt
‖vj‖2L2 ≤ 2‖b‖L∞‖vj+1‖2L2 + 2(‖a′‖L∞ + ‖cj‖L∞)‖vj‖L2‖vj+1‖L2(2.6)

+ (‖b′′‖L∞ + ‖d′j‖L∞)‖vj‖2L2 + 2‖fj‖L2‖vj‖L2 .

We shall use that a′ = a′1∂xu+ a′2∂xū+ a′3∂
2
xu+ a′4∂

2
xū can be viewed as a first order

polynomial of u, ū, ∂xu, ∂xū, ∂
2
xu, ∂

2
xū, i.e., v0, v̄0, v1, v̄1, v2, v̄2; similarly, cj , dj , and b′′

can be viewed as first and second order polynomials of v0, v̄0, v1, v̄1, v2, v̄2. Observe
that the estimate in (2.6) depends on vj+1. However, for j = k, d

dt

∫ |vk|2dx depends
on vk+1. To have the estimate close within Hk(R), we need to consider a gauge
transformation.

2.2. Step 2: Estimate for vk = ∂k
xu, the gauge transformation. In this

section, we will use a gauge transformation to get the desired estimate for vk = ∂kxu.
It is performed as follows: consider the kth derivative of the quasi-linear Schrödinger
equation (1.1) and its conjugate as a system and rewrite them in a matrix form.
The ellipticity (1.2) a2 − |b|2 > 0 will guarantee the nonsingularity of the matrix
A =

(
a b
−b̄ −a

)
. The equation is rewritten in the form which after introducing a weight

function φ we are able to close the estimate within Hk(R) with some equivalent
“norm.”

From (2.2) with j = k and its conjugate, we get{
∂tvk = ia∂2

xvk + ib∂2
xv̄k + ck∂xvk + dk∂xv̄k + fk,

∂tv̄k = −ia∂2
xv̄k − ib̄∂2

xvk + c̄k∂xv̄k + d̄k∂xvk + f̄k,
(2.7)

which can be written as the system

∂t

(
vk
v̄k

)
= i

(
a b
−b̄ −a

)
∂2
x

(
vk
v̄k

)
+

(
ck dk
d̄k c̄k

)
∂x

(
vk
v̄k

)
+

(
fk
f̄k

)
.(2.8)
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Let

A =

(
a b
−b̄ −a

)
, ã = a

a2−|b|2 , b̃ = b
a2−|b|2

so A−1 =

(
ã b̃

−¯̃b −ã

)
.

(2.9)

Notice that ellipticity guarantees that a2 − |b|2 > 0.
So (2.8) is equivalent to

A−1∂t

(
vk
v̄k

)
= i∂2

x

(
vk
v̄k

)
+A−1

(
ck dk
d̄k c̄k

)
∂x

(
vk
v̄k

)
+A−1

(
fk
f̄k

)
.(2.10)

Write 
A−1

(
ck dk
d̄k c̄k

)
=

(
ãck + b̃d̄k ãdk + b̃c̄k

−¯̃bck − ãd̄k −¯̃bdk − ãc̄k

)
=

(
αk11 αk12
αk21 αk22

)
,

A−1

(
fk
f̄k

)
=

(
ãfk + b̃f̄k

−¯̃bfk − ãf̄k

)
=

(
Fk
−F̄k

)
.

(2.11)

Thus (2.10) becomes(
ã b̃

−¯̃b −ã

)
∂t

(
vk
v̄k

)
= i∂2

x

(
vk
v̄k

)
+

(
αk11 αk12
αk21 αk22

)
∂x

(
vk
v̄k

)
+

(
Fk
F̄k

)
.(2.12)

Since ck, dk depend on k only as a multiplicative constant, then αkmn, m,n = 1, 2,
depend on k also as a multiplicative constant.

We now apply a gauge transformation to (2.12), i.e., multiply a function φ (which
will be determined later) to the system (2.12) and write the system in the following
form: (

ã b̃

−¯̃b −ã

)[
∂t

(
vkφ
v̄kφ

)
− ∂tφ

(
vk
v̄k

)]
= i∂2

x

(
vkφ
v̄kφ

)
− 2i∂xφ∂x

(
vk
v̄k

)
(2.13)

− i∂2
xφ

(
vk
v̄k

)
+

(
αk11 αk12
αk21 αk22

)
φ∂x

(
vk
v̄k

)
+ φ

(
Fk
F̄k

)
.

Consider the first equation of (2.13),

ã∂t(vkφ) + b̃∂t(v̄kφ)− ∂tφ(ãvk + b̃v̄k) = i∂2
x(vkφ)− 2i∂xφ∂xvk(2.14)

− i(∂2
xφ)vk + (αk11∂xvk + αk12∂xv̄k)φ+ φFk,

which is equivalent to

ã∂t(vkφ) + b̃∂t(v̄kφ) = i∂2
x(vkφ) + (−2i∂xφ+ αk11φ)∂xvk(2.15)

+ αk12φ∂xv̄k + ∂tφ(ãvk + b̃v̄k)− i(∂2
xφ)vk + φFk.

We want to eliminate the term having ∂xvk as a factor so we can perform an appro-
priate energy estimate. Hence we should choose φ such that

−2i∂xφ+ αk11φ = 0.
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Thus

φ = φ(x, t) = exp

(
1

2i

∫ x

0

(
αk11
)
(x′, t)dx′

)
= exp

(
1

2i

∫ x

0

(
ãck + b̃d̄k

)
(x′, t)dx′

)
= exp

{
1

2i

∫ x

0

(
ã(ika′ + ia′3v2 + ib′3v̄2 + c+ c′3v1 + d′3v̄1)(2.16)

+ b̃(−ia′4v̄2 − ikb̄′ − ib̄′4v2 + c̄′4v̄1 + d̄+ d̄′4v1)
)
(x′, t)dx′

}
.

Observe the following:
1. φ = φ(v0, v̄0, v1, v̄1, v2, v̄2), since a, b, c, d are functions of v0, v̄0, v1, v̄1, v2, v̄2

and the expression in the exponential involves only one derivative.
2. φ = φk depends on k only as a multiplicative constant.
3. φ−1 = 1

φ .

4. If b ≡ 0, then φ = e
1
2i

∫ x
0 (

ck
a )(x′,t)dx′ .

5. φ = e
1
2i

∫ x
0 (ãck+b̃dk)(x′,t)dx′ = eρ+iν , which gives |φ̄φ−1| = |φφ̄−1| = 1.

6. For µ ≥ 2, ãck + b̃dk is at least quadratic, which means

|φ| ≤ eC
∫ |ãck+b̃dk|dx ≤ eC(‖u‖2

H3+‖u‖l
H3 ),

where l depends on the order of a, b, c, d.
With this choice of φ, (2.15) is reduced to

ã∂t(vkφ) + b̃∂t(v̄kφ) = i∂2
x(vkφ) + αk12φ∂xv̄k + ∂tφ(ãvk + b̃v̄k)(2.17)

− i(∂2
xφ)vk + φFk.

We rewrite (2.17) in the following form:

ã∂t(vkφ) + b̃∂t(v̄kφ) = i∂2
x(vkφ) + αk12φφ̄

−1∂x(v̄kφ̄) + (∂tφ)ãφ
−1(vkφ)(2.18)

+ (∂tφ)b̃φ̄
−1(v̄kφ̄)− αk12φφ̄−2∂xφ̄(v̄kφ̄)

− i(∂2
xφ)φ

−1(vkφ) + φFk.

Performing the energy estimate on (2.18), i.e., multiplying (2.18) by v̄kφ̄, integrating
with respect to x over R, and taking the real part, we have∫

[2ã∂t(|vkφ|2) + b̃(v̄kφ̄)∂t(v̄kφ) +
¯̃
b(vkφ)∂t(vkφ̄)]dx

=

∫
i
[
(v̄kφ̄)∂

2
x(vkφ)− (vkφ)∂

2
x(v̄kφ̄)

]
dx

+

∫ [
αk12φφ̄

−1(v̄kφ̄)∂x(v̄kφ̄) + ᾱk12φ̄φ
−1(vkφ)∂x(vkφ)

]
dx(2.19)

+ 2Re

∫
∂tφ

[
ãφ−1(v̄kφ̄)(vkφ) + b̃φ̄−1(v̄kφ̄)(v̄kφ̄)

]
dx

− 2Re

∫
αk12φφ̄

−2∂xφ̄(v̄kφ̄)(v̄kφ̄)dx

− 2Re

∫ [
i(∂2

xφ)φ
−1(v̄kφ̄)(vkφ) + φ(v̄kφ̄)Fk

]
dx.
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Using that

b̃(v̄kφ̄)∂t(v̄kφ) = b̃φ̄φ−1(v̄kφ)∂t(v̄kφ) =
b̃φ̄φ−1

2
∂t
(
(v̄kφ)

2
)
,

¯̃
b(vkφ)∂t(vkφ̄) =

¯̃
bφφ̄−1

2
∂t
(
(vkφ̄)

2
)
,

the left-hand side of (2.19) becomes∫ [
ã∂t(|vkφ|2) + b̃(v̄kφ̄)∂t(v̄kφ) +

¯̃
b(vkφ)∂t(vkφ̄)

]
dx

=

∫ [
ã∂t(|vkφ|2) + b̃φ̄φ−1

2
∂t
(
(v̄kφ)

2
)
+

¯̃
bφφ̄−1

2
∂t
(
(vkφ̄)

2
)]

dx(2.20)

=
d

dt

∫ [
ã(|vkφ|2) + Re[b̃φ̄φ−1(v̄kφ)

2]
]
dx

−
∫
(∂tã|vkφ|2 +Re[∂t(b̃φ̄φ

−1)(v̄kφ)
2])dx.

Combining (2.20) and integration by parts on the right-hand side of (2.19), it follows
that

d

dt

∫ [
ã|vkφ|2 +Re(b̃φ̄φ−1(v̄kφ)

2)
]
dx = −Re

∫ [
∂x
(
αk12φφ̄

−1
)
(v̄kφ̄)

2
]
dx

+ 2Re

∫
∂tφ

[
ãφ−1|vkφ|2 + b̃φ̄−1(v̄kφ̄)

2
]
dx

− 2Re

∫
αk12φφ̄

−2∂xφ̄(v̄kφ̄)
2dx(2.21)

− 2Re

∫ [
i(∂2

xφ)φ
−1|vkφ|2 + φ(v̄kφ̄)Fk

]
dx

+

∫
∂tã|vkφ|2dx+Re

∫
∂t(b̃φ̄φ

−1)(v̄kφ)
2dx.

Note that ∂ta, ∂tb, ∂tb̄ can be expressed in terms of a, b, c, d, f , their first order deriva-
tives (i.e., a′1, a

′
2, a
′
3, a
′
4, and so on), and their conjugates. Also, observe that ∂ta, ∂tb, ∂tb̄

depend only on v0, v̄0, . . . , v3, v̄3 (Appendix 2). Thus we have the following estimate:

d

dt

∫ [
ã|vkφ|2 +Re[b̃φ̄φ−1(v̄kφ)

2]
]
dx ≤ 2

{
‖∂x

(
αk12φφ̄

−1
) ‖L∞

+ ‖∂tφãφ−1‖L∞ + ‖∂tφb̃φ̄−1‖L∞ + ‖αk12φφ̄−2∂xφ̄‖L∞

+ ‖(∂2
xφ)φ

−1‖L∞ + ‖∂t
(
bφ̄φ−1

) ‖L∞ +
1

2
‖∂tã‖L∞

}
‖vkφ‖2L2(2.22)

+ 2

∫
|φFkv̄kφ̄|dx

= J1‖vkφ‖2L2 .

The expressions for J1 depend only on vj , v̄j for j ≤ 5 and |φ| which depend only on
v0, v̄0, v1, v̄1, v2, v̄2 (Appendix 2); this guarantees an appropriate boundedness of J1

since |φ| ≤ eC(‖u‖2
H3+‖u‖l

H3 ). Thus, with these properties, we consider the expression

‖|v‖|2 =

k−1∑
j=0

‖vj‖2L2 +

(∫ [
ã|vkφ|2 +Re(b̃φ̄φ−1(v̄kφ)

2)
]
dx

)
.(2.23)
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From our hypothesis m2 ≤ 1
a±|b| ≤ M2, as long as ‖(z1, z2, z3, z4)‖ ≤ λ with λ =

100‖u0‖Hk , using that |φ̄φ−1| = 1, we have∫ [
ã|vkφ|2 +Re(b̃φ̄φ−1(v̄kφ)

2)
]
dx ≥

∫ [
ã|vkφ|2 − |b̃||vkφ|2

]
dx(2.24)

=

∫
a− |b|
a2 − |b|2 |vkφ|

2dx ≥ m2

∫
|vkφ|2dx = m2‖vkφ‖2L2 .

Collecting (2.6), (2.22)–(2.24), we conclude that

d

dt
‖|v‖| ≤ C(‖|v‖|2 + ‖|v‖|l)eC(‖|v‖|2+‖|v‖|l),(2.25)

which shows that there exists T = T (‖u0‖Hk) > 0 such that

‖|v(t)‖| ≤ 100‖|v(0)‖|,
and, within this range,

‖| · ‖| ∼ ‖ · ‖Hk .(2.26)

At this point, we have only established an a priori estimate for the L2-norm
of v0, v1, . . . , vk. We shall obtain the existence of v0, v1, . . . , vk by introducing two
viscosity terms to our IVP (1.1). This will be done in the next section.

2.3. Step 3: Estimate for vk in the equation with viscosity. To establish
the local existence of (1.1) inHk(R), we shall consider first a parabolic version of (1.1).
The energy estimate for this new equation can be obtained using an argument similar
to that provided above. So we should consider only the additional terms coming from
the added parabolic part.

To show existence, we need to introduce a modified version of (1.1) with two
viscosity terms: for ε ∈ (0, 1],{

∂tu = −ε∂4
xu+ εδ∂2

xu+ ia∂2
xu+ ib∂2

xū+ c∂xu+ d∂xū+ f,

u(x, 0) = u0(x),
(2.27)

where δ > 0 will be determined.
As before, to establish the energy estimate within Hk(R), we need to take the

jth derivative of (2.27) to get the same expression as in (2.2) with two extra terms:

∂tvj = −ε∂4
xvj + εδ∂2

xvj + ia∂2
xvj + ib∂2

xv̄j + cj∂xvj + dj∂xv̄j + fj .(2.28)

For j ≤ k−1, perform the energy estimate for (2.27): take the jth derivative of (2.27),
multiply by v̄j , integrate with respect to x, and take the real part:

d

dt

∫
|vj |2dx = −ε

∫
(v̄j∂

4
xvj + vj∂

4
xv̄j)dx+ εδ

∫
(v̄j∂

2
xvj + vj∂

2
xv̄j)dx

− 2iRe

∫
v̄ja
′vj+1dx− 2iRe

∫
b(v̄j+1)

2dx+ iRe

∫
b′′v̄2dx

+ 2Re

∫
cj v̄jvj+1dx− Re

∫
d′j v̄

2
jdx+ 2Re

∫
vjfjdx(2.29)

=− ε
∫
(v̄j∂

4
xvj + vj∂

4
xv̄j)dx+ εδ

∫
(v̄j∂

2
xvj + vj∂

2
xv̄j)dx+ Pj .
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We have already discussed all the terms in Pj in (2.6), so we just need to consider
the first two terms in the right-hand side of (2.29). After integration by parts, (2.29)
becomes

∂t

∫
|vj |2dx =− 2ε

∫
|∂2
xvj |2dx− 2εδ

∫
|∂xvj |2dx+ Pj .(2.30)

Since −2ε ∫ |∂2
xvj |2dx − 2εδ

∫ |∂xvj |2dx ≤ 0, the estimate for the jth equations, for
j ≤ k − 1, can be handled exactly as in (2.5)–(2.6). For j = k, again, we need to
consider other alternatives: we will rewrite the equation for j = k and its conjugate
in matrix form and again use a gauge transformation to get the desired estimate.

Consider (2.28) when j = k and its conjugate,
∂tvk = −ε∂4

xvk + εδ∂2
xvk + ia∂2

xvk + ib∂2
xv̄k

+ ck∂xvk + dk∂xv̄k + fk,

∂tv̄k = −ε∂4
xv̄k + εδ∂2

xv̄k − ia∂2
xv̄k − ib̄∂2

xvk

+ c̄k∂xv̄k + d̄k∂xvk + f̄k.

(2.31)

Rewrite the equations in matrix form by using (2.9)–(2.11):(
ã b̃

−¯̃b −ã

)
∂t

(
vk
v̄k

)
=

(
ã b̃

−¯̃b −ã

)
(−ε∂4

x + εδ∂2
x)

(
vk
v̄k

)
(2.32)

+ i∂2
x

(
vk
v̄k

)
+

(
αk11 αk12
αk21 αk22

)
∂x

(
vk
v̄k

)
+

(
Fk
−F̄k

)
.

Consider the first equation of (2.32):

ã∂tvk + b̃∂tv̄k = ã(−ε∂4
x + εδ∂2

x)vk + b̃(−ε∂4
x + εδ∂2

x)v̄k

+ i∂2
xvk + (αk11∂xvk + αk12∂xv̄k) + Fk.

Using gauge transformation with the same φ as in (2.16), we have

ã∂t(vkφ) + b̃∂t(v̄kφ) = φã(−ε∂4
x + εδ∂2

x)vk + φb̃(−ε∂4
x + εδ∂2

x)v̄k(2.33)

+ i∂2
x(vkφ) + αk12φ∂xv̄k + ∂tφ(ãvk + b̃v̄k)− i(∂2

xφ)vk + φFk.

Perform the energy estimate on the last equation (in divergent form): multiplying by
v̄kφ̄, integrating with respect to x over R and taking the real part, we have

d

dt

∫ [
ã|vkφ|2 +Re(b̃φ̄φ−1(v̄kφ)

2)
]
dx = 2Re

∫
(v̄kφ̄)ã(−εφ∂4

xvk + εδφ∂2
xvk)dx

+ 2Re

∫
(v̄kφ̄)b̃(−εφ∂4

xv̄k + εδφ∂2
xv̄k)dx− Re

∫ [
∂x
(
αk12φφ̄

−1
)
(v̄kφ̄)

2
]
dx

+ 2Re

∫
∂tφ

[
ãφ−1|vkφ|2 + b̃φ̄−1(v̄kφ̄)

2
]
dx− 2Re

∫
αk12φφ̄

−2∂xφ̄(v̄kφ̄)
2dx(2.34)

− 2Re

∫ [
i(∂2

xφ)φ
−1|vkφ|2 + φ(v̄kφ̄)Fk

]
dx+

∫
∂tã|vkφ|2dx

+Re

∫
∂t

(
b̃φ̄φ−1

)
(v̄kφ)

2dx.
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Only the terms

2Re

∫
(v̄kφ̄)ã(−εφ∂4

xvk + εδφ∂2
xvk)dx+ 2Re

∫
(v̄kφ̄)b̃(−εφ∂4

xv̄k + εδφ∂2
xv̄k)dx

need to be considered since the other terms have been dealt with in (2.6) and (2.22).
It can be shown (Appendix 3) that with an appropriate choice of δ, the terms in (2.34)
generated by the two viscosity terms can be absorbed into the energy estimate. Thus
we have the following proposition.

Proposition 2.1. There exist δ = δ(‖u0‖Hk) > 0, C = C(δ, ‖u0‖Hk) such that
for ε ∈ (0, 1]

2Re

∫
(v̄kφ̄)ã(−εφ∂4

xvk + εδφ∂2
xvk)dx(2.35)

+ 2Re

∫
(v̄kφ̄)b̃(−εφ∂4

xv̄k + εδφ∂2
xv̄k)dx ≤ C‖vkφ‖2L2 .

Gathering (2.6), (2.22), and Proposition 2.1, we have the a priori estimate of
the norm ‖| · ‖| similar to (2.26) for the solution uε of (2.27); i.e., there exists T =
T (‖u0‖Hk) > 0 such that if uε ∈ C([0, T ] : Hk(R)) is a solution of (2.27), then
‖uε(t)‖Hk ≤ 100‖u0‖Hk for t ∈ [0, T ].

2.4. Step 4: The local existence of a solution with viscosity terms. With
the a priori estimate discussed above, we are ready to show the local existence and
uniqueness of the IVP (2.27). Consider

∂tu = −ε∂4
xu+ εδ∂2

xu+ ia∂2
xu+ ib∂2

xū+ c∂xu+ d∂xū+ f(2.36)

= (−ε∂4
x + εδ∂2

x)u+ F (u, ū, ∂xu, ∂xū, ∂
2
xu, ∂

2
xū).

2.4.1. The linear equation. We will first look at some properties of the oper-
ator of the linear homogeneous equation{

∂tw = −ε∂4
xw + εδ∂2

xw, x ∈ R, t > 0,

w(0, x) = w0(x),
(2.37)

where w = w(t, x). The IVP (2.37) has the solution

ŵ(t, ξ) = (e(−ε(2πξ)
4+εδ(2πξ)2)t)ŵ0(ξ) = (e−ε(2πξ)

4teεδ(2πξ)
2t)ŵ0(ξ).(2.38)

If K̂εδt = eεδ(2πξ)
2t and Ĝεt(ξ) = e−ε(2πξ)

4t, then the solution of (5.2) can be written
as

w(x, t) = (Gεt ∗ (Kεδt ∗ w0))(x).(2.39)

Note that

Gεt(x) =

∫
R

e2πixξe−εt(2π)4ξ4dξ,(2.40)

so the change of variable η = ξ(εt)1/4 gives

Gεt(x) =

∫
R

e2πixη/(εt)
1/4

e−(2πη)4 dη

(εt)1/4
(2.41)

=
1

(εt)1/4
(e−(2πη)4)∨

(
x

(εt)1/4

)
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and

∂αxGεt(x) =

∫
R

(2πη)α

(εt)α/4
e2πixη/(εt)

1/4

e−(2πη)4 dη

(εt)1/4
.(2.42)

We introduce the notation

W(t)f = (e−ε(2πξ)
4tf̂(ξ))∨(x).(2.43)

2.4.2. The existence of a solution of (2.27). We will prove the existence
and uniqueness of a solution to the IVP{

∂tu = (−ε∂4
x + εδ∂2

x)u+ F (u, ū, ∂xu, ∂xū, ∂
2
xu, ∂

2
xū),

u(x, 0) = u0(x),
(2.44)

as the fixed point for the operator

Φε(u(t)) =W(t)(Kεδt ∗ u0) +

∫ t

0

e(−ε∂
4
x+εδ∂2

x)(t−t′)F (x, t′)dt′(2.45)

=W(t)(Kεδt ∗ u0) +

∫ t

0

W(t− t′)(Kεδt ∗ F )(x, t′)dt′.

We observe that

∂sxΦε(u(t)) =W(t)(Kεδt ∗ ∂sxu0)(2.46)

+

∫ t

0

∂2
xW(t− t′)(Kεδt ∗ ∂s−2

x F )(x, t′)dt′,

so from (2.42)–(2.43) one has the following estimates:

sup
[0,T ]

‖Φε(u(t))‖Hk ≤ C‖w0‖Hk + C

∫ t

0

(ε(t− t′))− 1
2 ‖F‖Hk−2dt′

≤ C‖w0‖Hk + Cε−
1
2T

1
2 sup

[0,T ]

‖F (t)‖Hk−2(2.47)

≤ C‖w0‖Hk + Cε−
1
2T

1
2 sup

[0,T ]

(‖u(t)‖2Hk + ‖u(t)‖lHk

)
and

sup
[0,T ]

‖(Φε(u)−Φε(v))(t)‖Hs ≤ ε−
1
2T

1
2 sup

[0,T ]

‖(F (u)− F (v))(t)‖Hs−2

≤ ε−
1
2T

1
2 sup

[0,T ]

(
‖u(t)‖Hk + ‖v(t)‖Hk + ‖u(t)‖l−1

Hk(2.48)

+ ‖v(t)‖l−1
Hk

)
sup
[0,T ]

‖(u− v)(t)‖Hk−2 .

Collecting the above information we have the following proposition.
Proposition 2.2. There exists Tε = Tε(ε, ‖u0‖Hk) such that

Φ : C([0, Tε] : H
k(R))→ C([0, Tε] : H

k(R))

is a contraction mapping.
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Our next goal is to remove the dependence on ε of the time interval of existence.
We have that for each ε > 0 there exists Tε = Tε(ε, ‖u0‖Hk) = O(ε) such that the
unique solution uε(x, t) of{

∂tu = −ε∂4
xu+ εδ∂2

xu+ ia∂2
xu+ ib∂2

xū+ c∂xu+ d∂xū+ f,

u(x, 0) = u0(x)

satisfies uε ∈ C([0, Tε] : H
k(R)).

Using the a priori estimate obtained in section 2.3, we can reapply the local
existence argument given above to extend the local solution uε to C([0, T ] : Hk(R))
for every ε > 0 with T independent of ε. Therefore, we have shown that for every
u0 ∈ Hk(R) there exists a T = T (‖u0‖Hk) > 0 independent of ε and a unique solution
uε of {

∂tu = −ε∂4
xu+ εδ∂2

xu+ ia∂2
xu+ ib∂2

xū+ c∂xu+ d∂xū+ f,

u(x, 0) = u0(x)

satisfying uε ∈ C([0, T ] : Hk) with

sup
[0,T ]

‖uε(t)‖Hk ≤ C(‖u0‖Hk),(2.49)

with C(‖u0‖Hk) independent of ε.
Next we shall establish the convergence of uε to u, which will be a solution of

(1.1) as ε→ 0.
To establish this convergence, we consider the equation for uε and uε

′
:

∂tu
ε =− ε∂4

xu
ε + δε∂2

xu
ε + ia(uε, ūε, ∂xu

ε, ∂xū
ε)∂2

xu
ε

+ ib(uε, ūε, ∂xu
ε, ∂xū

ε)∂2
xū
ε + c(uε, ūε, ∂xu

ε, ∂xū
ε)∂xu

ε

+ d(uε, ūε, ∂xu
ε, ∂xū

ε)∂xū
ε + f(uε, ūε)

∂tu
ε′ =− ε′∂4

xu
ε′ + δε′∂2

xu
ε′ + ia(uε

′
, ūε

′
, ∂xu

ε′ , ∂xū
ε′)∂2

xu
ε′

+ ib(uε
′
, ūε

′
, ∂xu

ε′ , ∂xū
ε′)∂2

xū
ε′ + c(uε

′
, ūε

′
, ∂xu

ε′ , ∂xū
ε′)∂xu

ε′

+ d(uε
′
, ūε

′
, ∂xu

ε′ , ∂xū
ε′)∂xū

ε′ + f(uε
′
, ūε

′
)

(2.50)

and consider that for the difference of uε, uε
′
, w = wε,ε

′
= uε − uε′ ,

∂tw =− ε∂4
xw + εδ∂2

xw − (ε− ε′)∂4
xu
ε + (ε− ε′)δ∂2

xu
ε

+ ia(uε, ūε, ∂xu
ε, ∂xū

ε)∂2
xw + ib(uε, ūε, ∂xu

ε, ∂xū
ε)∂2

xw̄

+ i
(
a(uε, ūε, ∂xu

ε, ∂xū
ε)− a(uε′ , ūε′ , ∂xuε′ , ∂xūε′)

)
∂2
xu
ε′

+ i
(
b(uε, ūε, ∂xu

ε, ∂xū
ε)− b(uε′ , ūε′ , ∂xuε′ , ∂xūε′)

)
∂2
xū
ε′

+ c(uε, ūε, ∂xu
ε, ∂xū

ε)∂xw + d(uε, ūε, ∂xu
ε, ∂xū

ε)∂xw̄(2.51)

+
(
c(uε, ūε, ∂xu

ε, ∂xū
ε)− c(uε′ , ūε′ , ∂xuε′ , ∂xūε′)

)
∂xu

ε′

+
(
d(uε, ūε, ∂xu

ε, ∂xū
ε)− d(uε′ , ūε′ , ∂xuε′ , ∂xūε′)

)
∂xū

ε′

+ f(uε, ūε)− f(uε′ , ūε′).
By expressing the factors

aε − aε′ = a(uε, ūε, ∂xu
ε, ∂xū

ε)− a(uε′ , ūε′ , ∂xuε′ , ∂xūε′),(2.52)
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similarly for bε− bε′ , cε− cε′ , dε− dε′ in an appropriate manner, we can rewrite (2.51)
in the following form:

∂tw = iaε∂2
xw + ibε∂2

xw̄ + c̃∂xw + d̃∂xw̄ + q̃1w + q̃2w̄ + (ε+ ε′)Ψ,(2.53)

where c̃ = c̃(uε, ūε, ∂xu
ε, ∂xū

ε, ∂2
xu
ε, ∂2

xū
ε, uε

′
, ūε

′
, ∂xu

ε′ , ∂xū
ε′ , ∂2

xu
ε′ , ∂2

xū
ε′), similarly

for d̃, q̃1, q̃2,Ψ. We notice that the last three terms in the right-hand side of (2.53)
can be easily handled by the energy estimate. So we will concentrate on the second
to the fourth terms. For this we repeat the argument in section 2.2 used to obtain
the gauge transformation. The weight function here

φε,ε′ = φε,ε′(u
ε, . . . , ∂2

xū
ε, uε

′
, . . . , ∂2

xū
ε′)(2.54)

is as in (2.11)–(2.16) such that

−2i∂xφε,ε′ +
(
ãεc̃+ b̃ε

¯̃
d
)
φε,ε′ = 0,(2.55)

where ãε = aε

(aε)2−|bε|2 , b̃
ε = bε

(aε)2−|bε|2 . Thus

φε,ε′ = exp

{
1

2i

∫ x

0

(
ãεc̃+ b̃ε

¯̃
d
)
(x′, t)dx′

}
.(2.56)

Using that

sup
[0,T ]

‖uε‖Hk ≤ 100‖u0‖Hk ,(2.57)

we know that φε,ε′ is bounded uniformly on ε, ε′ ∈ (0, 1]. Combining again the
argument in section 2.2 and (2.57), we have

d

dt

∫ [
ãε|wφε,ε′ |2 +Re(b̃εφ̄ε,ε′φ

−1
ε,ε′(w̄φε,ε′)

2)
]
dx(2.58)

≤ C‖wφε,ε′‖L2 + C(ε− ε′).

Using Gronwall inequality, the fact from (2.16), i.e.,∫ [
ãε|wφε,ε′ |2 +Re(b̃εφ̄ε,ε′φ

−1
ε,ε′(w̄φε,ε′)

2)
]
dx ≥ m2

∫
|wφε,ε′ |2dx,(2.59)

where m2 is independent of ε, ε′ ∈ (0, 1] and that w(0) = 0, we obtain

lim
ε,ε′→0

sup
[0,T ]

‖w(t)‖L2 = 0.(2.60)

Hence sup[0,T ] ‖(uε− uε
′
)(t)‖L2 → 0 as ε, ε′ → 0. Consequently, by interpolation, we

have

sup
[0,T ]

‖(uε−uε′)(t)‖Hk−1(2.61)

≤ sup
[0,T ]

‖(uε − uε′)(t)‖ 1
k

L2 sup
[0,T ]

‖(uε − uε′)(t)‖
k−1
k

Hk
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which implies that sup[0,T ] ‖(uε−uε
′
)(t)‖Hk−1 → 0; i.e., {uε}ε>0 is a Cauchy sequence

in the space C([0, T ] : Hk−1(R)). So there exists u ∈ C([0, T ] : Hk−1(R)) which is
the limit of the uε’s as ε → 0. One also has that uε(t) converges weakly to u(t) in
Hk(R) for each t ∈ [0, T ], so u ∈ L∞([0, T ] : Hk(R)). Since k ≥ 4, it is clear that u
solves the IVP (1.1).

The proof of the uniqueness in the class described in Theorem 1 follows the same
argument given above for the convergence without involving the viscosity part; i.e.,
if u, v are solutions, we replace uε by u and uε

′
by v in (2.51) with ε = ε′ = 0 and

repeat the argument.

3. Proof of Theorem 2. The proof of Theorem 2 follows in the same manner
as that of Theorem 1; i.e., we establish formal energy estimate for the jth derivative
of (1.1) for j = 1, 2, . . . , k−1. For the case j = k, we again use a gauge transformation
and introduce the same function φ in (2.16) to obtain the estimate of the expression
(2.24) which is equivalent to ‖·‖Hk for some range ‖|v(t)‖| ≤ 100‖|v(0)‖|. The problem
comes in when the gauge transformation is introduced: φ might have some linear
terms due to the fact that a = a(u, ū, ∂xu, ∂xū) or b, c, d may be linear. The weighted
L2(|x|rdx)-norm will allow us to bound ‖φ‖L∞ . We need to consider Hk ∩L2(|x|rdx)
instead of Hk. Observe that f does not have any influence in the form of φ.

In order to proceed, we need the following interpolation lemma.
Lemma 3.1. If u ∈ Hk(R)

⋂
L2(|x|rdx), then xβ∂αx u ∈ L2(R) with 0 ≤ α +

β ≤ r.
Next, we observe that the weighted norm ‖·‖L2(|x|rdx) guarantees the boundedness

of ‖φ‖L∞ for µ = 1; i.e., a, b, c, d might be linear; e.g., let g be some linear term in
ack + bdk, and then

∫
g(u, ū, ∂xu, ∂xū, ∂

2
xu, ∂

2
xū)dx =

∫
(1 + x2)r/2g

(1 + x2)r/2
dx

≤ ‖(1 + x2)r/2g‖L2‖(1 + x2)−r/2‖L2(3.1)

≤ C
2∑
j=0

(‖∂jxu‖L2(|x|2rdx) + ‖∂jxu‖L2

)
.

Hence, for some l ≥ 0,

‖φ‖L∞ ≤ eC
∫ |ack+bdk|dx(3.2)

≤ e
C
∑

j≤2

(
‖∂j

xu‖L2(|x|rdx)+‖∂j
xu‖lL2(|x|rdx)

)
+C(‖u‖Hk+‖u‖l

Hk).

We will perform the energy estimate for ‖x∂jxu‖L2 , j = 0, 1, 2, 3, 4. We multiply by x
the equation in (2.1) to obtain

∂t(xu) = ia∂2
x(xu)− 2ia∂xu+ ib∂2

x(xū)− 2ib∂xū(3.3)

+ c∂x(xu)− cu+ d∂x(xū)− dū+ xf.
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To perform energy estimates for xu, we multiply (3.3) by xū, integrate with respect
to x over R and take the real part:

∂t

∫
|xu|2dx = −2Re

∫
ia′xū∂x(xu)dx− 4Re

∫
iaxū∂xu dx

− 2Re

∫
ib(∂x(xū))

2dx− Re

∫
ib′′(xū)2dx− 4Re

∫
ibxū∂xū dx(3.4)

+ 2Re

∫
cxū∂x(xu)dx− 2Re

∫
cxūu dx

+Re

∫
d′(xū)2dx− 2Re

∫
dxūū dx− 2Re

∫
xūxf dx

which gives

∂t

∫
|xu|2dx ≤ 2‖a′‖L∞‖xu‖L2‖∂x(xu)‖L2 + 4‖a‖L∞‖xu‖L2‖∂xu‖L2

+ 2‖b‖L∞‖∂x(xu)‖2L2 + ‖b′′‖L∞‖xu‖2L2 + 4‖b‖L∞‖xu‖L2‖∂xu‖L2(3.5)

+ 2‖c‖L∞‖xu‖L2‖∂x(xu)‖L2 + 2‖c‖L∞‖xu‖L2‖u‖L2

+ ‖d′‖L∞‖xu‖2L2 + 2‖d‖L∞‖xu‖L2‖u‖L2 + 2‖xu‖L2‖xf‖L2 .

Thus we can establish the following estimate:

d

dt
‖xu‖L2 ≤C(‖u‖H4 + ‖u‖lH4)(‖xu‖2L2 + ‖x∂xu‖2L2) + C(‖u‖2Hk + ‖u‖lHk)(3.6)

for some l ≥ 0 which depends on the nonlinearity. Similarly, we have

d

dt
‖x∂xu‖2L2 ≤ C(‖u‖H4 + ‖u‖lH4)(‖xu‖2L2 + ‖x∂xu‖2L2 + ‖x∂2

xu‖2L2)

+ C(‖u‖2Hk + ‖u‖lHk),

d

dt
‖x∂2

xu‖2L2 ≤ C(‖u‖H4 + ‖u‖lH4)
(‖xu‖2L2 + ‖x∂xu‖2L2(3.7)

+ ‖x∂2
xu‖2L2 + ‖x∂3

xu‖2L2

)
+ C(‖u‖2Hk + ‖u‖lHk),

d

dt
‖x∂3

xu‖2L2 ≤ C(‖u‖H4 + ‖u‖lH4)
(‖xu‖2L2 + ‖x∂xu‖2L2 + ‖x∂2

xu‖2L2

+ ‖x∂3
xu‖2L2 + ‖x∂4

xu‖2L2

)
+ C(‖u‖2Hk + ‖u‖lHk),

which depends on ‖x∂4
xu‖L2 , i.e., one derivative higher. Thus the estimate for x∂4

xu
depends on x∂5

xu. We need to consider a gauge transformation to enable the estimate
to close within itself which allows us to obtain the desired a priori estimate. We
proceed as in section 2.2; consider the equation for x∂4

xu = xv4,

∂t(xv4) = ia∂2
x(xv4)− 2ia∂xv4 + ib∂2

x(xv̄4)− 2ib∂xv̄4(3.8)

+ c4∂x(xv4)− c4v4 + d4∂x(xv̄4)− d4v̄4 + xf4,
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where

c4 = 4ia′ + ia′3v2 + ib′3v̄2 + c+ c′3v1 + d′3v̄1,
d4 = 4ib′ + ia′4v2 + ib′4v̄2 + d+ c′4v1 + d′4v̄1,

f4 = fa4 + fb4 + fc4 + fd4 + ∂4
xf,

fa4 = iv2∂
3
x(a
′
1v1 + a′2v̄1) + i

3∑
l=2

(
4

l

)
(∂lxa)v6−l,(3.9)

+ i

3∑
l=1

(
3

l

)
v2
(
∂lx(a

′
3)v5−l + ∂lx(a

′
4)v̄5−l

)
,

similarly for fb4, fc4, fd4 (Appendix 1),

and its conjugate and write them as the system

∂t

(
xv4
xv̄4

)
= i

(
a b
−b̄ −a

)
∂2
x

(
xv4
xv̄4

)
+

(−2ia+ c4 −2ib+ d4

2id̄+ d̄4 2ia+ c̄4

)
∂x

(
xv4
xv̄4

)
(3.10)

+

(−2iav4 + 2ibv̄4 − c4v4 − d4v̄4u+ xf4

−2iav̄4 − 2ib̄v4 − c̄4v̄4 − d̄4v4 + xf̄4

)
.

Using the A as in (2.9) and

A−1

(−2ia+ c4 −2ib+ d4

2id̄+ d̄4 2ia+ c̄4

)
=

(
α4

11 α4
12

α4
21 α4

22

)
,(3.11)

the system is written as

A−1∂t

(
xv4
xv̄4

)
= i∂2

x

(
xv4
xv̄4

)
+

(
α4

11 α4
12

α4
21 α4

22

)
∂x

(
xv4
xv̄4

)
+A−1

(
F
F̄

)
.(3.12)

To perform gauge transformation, we multiply a function φ4, which will be determined
later to the system, and consider the first equation of the system:

ã∂t(xv4φ4) + b̃∂t(xv̄4φ4) = i∂2
x(xv4φ4) + (α4

11φ4 − 2i∂xφ4)∂x(xv4)(3.13)

+ α4
12φ4∂x(xv̄4) + i(∂2

xφ4)xv4 + φ4F + ∂tφ4(ãxv4 + b̃xv̄4).

With the choice of φ4 such thatα
4
11φ4 − 2i∂xφ4 = 0,

φ4 = exp

{
1

2i

∫ x

0

α4
11(x

′, t)dx′
}

= e
1
2i

∫ x
0

(ã(c4−2ia)+b̃(d4+2ib̄))(x′,t)dx′ ,
(3.14)

(3.13) is reduced to

ã∂t(xv4φ4) + b̃∂t(xv̄4φ4) = i∂2
x(xv4φ4) + α12φ4∂x(xv̄4) + i(∂2

xφ4)xv4(3.15)

+ φ4F + ∂tφ4(ãxv4 + b̃xv̄4).

Basically φ4 is similar to φ in (2.16) except for some extra terms due to the commu-
tator. Also, it has the same properties as φ listed after (2.16).
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Now we perform the energy estimate: multiply xv̄4φ̄4 to (3.15), integrate with
respect to x over R and take the real part. After integration by parts, we have

d

dt

∫ [
ã|xv4φ4|2 +Re(b̃φ̄φ−1

4 (xv̄4φ4)
2)
]
dx =

∫
(∂tã)|xuφ4|2dx

+

∫
∂t(b̃φ̄4φ

−1
4 )(xv̄4φ4)

2dx− Re

∫
∂x(α12φ̄4φ4φ̄

−2)(xv̄4φ̄)
2dx(3.16)

+ 2Re

∫
i(∂2

xφ4)φ
−1
4 |xuφ4|2dx+

∫
(xv̄4φ̄4)φ4F dx

+

∫
(∂tφ4)(ãφ

−1
4 |xuφ4|2 + b̃φ̄−1

4 (xv̄4φ̄4)
2)dx

which gives the following estimate:

d

dt

∫ [
ã|xv4φ4|2 +Re(b̃φ̄4φ

−1
4 (xv̄4φ4)

2)
]
dx ≤ C(‖xv4φ4‖L2 + ‖xv4φ4‖2L2).(3.17)

With this estimate, we consider the expression

‖| · ‖|2∗ =
k−1∑
j=0

‖vj‖2L2 +

∫
ã|vkφ|2 +Re(b̃φ̄φ−1(v̄kφ)

2)dx(3.18)

+

3∑
j=0

‖xvj‖2L2 +

∫
ã|xv4φ4|2 +Re(b̃φ̄4φ

−1
4 (xv̄4φ4)

2)dx.

Thus we have that

d

dt
‖|v‖|∗ ≤ C(‖|v‖|∗ + ‖|v‖|l∗)(eC(‖|v‖|∗+‖|v‖|l∗) + 1)(3.19)

which shows there exists T∗ > 0 such that

‖|v(t)‖|∗ ≤ 100‖|v(0)‖|∗(3.20)

and within this range

‖| · ‖|∗ ∼

k∑
j=0

‖∂jxu‖L2 +

4∑
j=0

‖x∂jxu‖L2 .(3.21)

Once we obtain this a priori estimate, it is easier to return to the equation (assuming
the existence of the solution) to prove that the solution belongs to the space in the
statement in Theorem 2. To establish local existence, we again introduce two viscosity
terms and proceed exactly as in sections 2.3 and 2.4 with the same argument as above
when dealing with gauge transformation for the case j = k.

The rest of the proof follows by the method in the previous proof, in the previous
section, thus it will be omitted here.

4. Appendix. We would use that for f, g ∈ Hr(R), r ≥ 1, then fg ∈ Hr(R)
(i.e., Hr(R) is a Banach algebra under the pointwise product) and

‖fg‖Hr ≤ Cr(‖f‖L∞‖g‖Hr + ‖g‖L∞‖f‖Hr )(4.1)

for some Cr > 0.
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4.1. Appendix 1. Consider the jth derivative of (2.1):

∂jx∂tu = ∂jx
(
ia∂2

xu+ ib∂2
xū+ c∂xu+ d∂xū+ f

)
(4.2)

= i∂jx(a∂
2
xu) + i∂jx(b∂

2
xū) + ∂jx(c∂xu) + ∂jx(d∂xū) + ∂jxf.

Write ∂xa = a′, ∂
∂zl

a(z1, z2, z3, z4) = a′l, l = 1, 2, 3, 4, similarly for b, c, d.

In order to rewrite the jth derivative of (2.1) such that the energy estimate
can be evaluated effectively, the terms involving the highest and the second highest
derivatives are essential. Thus we need the following:

∂jx(ia∂
2
xu) = ∂jx(iav2) = i

j∑
l=0

(
j
l

)
(∂lxa)(∂

j−l
x v2)(4.3)

= ia∂2
xvj + ija′∂xvj + i(∂jxa)v2 + i

j−1∑
l=2

(
j
l

)
(∂lxa)(∂

j−l
x v2).

Examine ∂jxa:

∂jxa = ∂j−1
x (∂xa) = ∂j−1

x (a′1∂xu+ a′2∂xū+ a′3∂
2
xu+ a′1∂

2
xū)

= ∂j−1
x (a′1v1 + a′2v̄1) + a′3∂xvj + a′4∂xv̄j(4.4)

+

j−1∑
l=1

(
j − 1
l

)(
(∂lx(a

′
3))(∂

j−1−l
x v2) + (∂lx(a

′
4))(∂

j−1−l
x v̄2)

)
,

and thus

∂jx(ia∂
2
xu) = ia∂2

xvj + ija′∂xvj + ia′3v2∂xvj + ia′4v2∂xv̄j

+ iv2∂
j−1
x (a′1v1 + a′2v̄1) + i

j−1∑
l=2

(
j
l

)
(∂lxa)vj+2−l(4.5)

+ i

j−1∑
l=1

(
j − 1
l

)
v2
(
(∂lx(a

′
3))vj+1−l + (∂lx(a

′
4))v̄j+1−l

)
,

similarly for ∂jx(ib∂
2
xū), ∂

j
x(c∂xu), ∂

j
x(d∂xū). Write



∂jx(ia∂
2
xu) = ia∂2

xvj + ija′∂xvj + ia′3v2∂xvj + ia′4v2∂xv̄j + faj ,

∂jx(ib∂
2
xū) = ib∂2

xv̄j + ijb′∂xv̄j + ib′3v̄2∂xvj + ib′4v̄2∂xv̄j + fbj ,

∂jx(c∂xu) = c∂xvj + c′3v1∂xvj + c′4v1∂xv̄j + fcj ,

∂jx(d∂xū) = d∂xv̄j + d′3v̄1∂xvj + d′4v̄1∂xv̄j + fdj ,

(4.6)
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where

faj = iv2∂
j−1
x (a′1v1 + a′2v̄1) + i

j−1∑
l=2

(
j
l

)
(∂lxa)vj+2−l

+ i

j−1∑
l=1

(
j − 1
l

)
v2
(
(∂lx(a

′
3))vj+1−l + (∂lx(a

′
4))v̄j+1−l

)
,

fbj = iv̄2∂
j−1
x (b′1v1 + b′2v̄1) + i

j−1∑
l=2

(
j
l

)
(∂lxb)v̄j+2−l

+ i

j−1∑
l=1

(
j − 1
l

)
v̄2
(
(∂lx(b

′
3))vj+1−l + (∂lx(b

′
4))v̄j+1−l

)
,(4.7)

fcj = v1∂
j−1
x (c′1v1 + c′2v̄1) +

j−1∑
l=1

(
j
l

)
(∂lxc)v̄j+1−l

+

j−1∑
l=1

(
j − 1
l

)(
(∂lxc

′
3)vj+1−l + (∂lxc

′
4)v̄j+1−l

)
v1,

fdj = v̄1∂
j−1
x (d′1v1 + d′2v̄1) +

j−1∑
l=1

(
j
l

)
(∂lxd)v̄j+1−l

+

j−1∑
l=1

(
j − 1
l

)(
(∂lxd

′
3)vj+1−l + (∂lxd

′
4)v̄j+1−l

)
v̄1.

Combine all of the above and write the jth derivative of (2.1)

∂tvj = ∂jx(ia∂
2
xu) + ∂jx(ib∂

2
xū) + ∂jx(c∂xu) + ∂jx(d∂xū) + ∂jxf

= ia∂2
xvj + ija′∂xvj + ia′3v2∂xvj + ia′4v2∂xv̄j + faj

+ ib∂2
xv̄j + ijb′∂xv̄j + ib′3v̄2∂xvj + ib′4v̄2∂xv̄j + fbj(4.8)

+ c∂xvj + c′3v1∂xvj + c′4v1∂xv̄j + fcj

+ d∂xv̄j + d′3v̄1∂xvj + d′4v̄1∂xv̄j + fdj + ∂jxf

= ia∂2
xvj + ib∂2

xv̄j + cj∂xvj + dj∂xv̄j + fj ,

where 
cj = ija′ + ia′3v2 + ib′3v̄2 + c+ c′3v1 + d′3v̄1,
dj = ia′4v2 + ijb′ + ib′4v̄2 + c′4v1 + d+ d′4v̄1,(4.9)

fj = faj + fbj + fcj + fdj + ∂jxf.

4.2. Appendix 2. Let P (α; z1, z2, . . . , zn) represent the polynomial of α-degree
in z1, z2, . . . , zn.

In order to obtain the estimates (2.6) and (2.22), we need to examine the terms
involving a, its jth derivative with respect to x, its derivative with respect to t, and
its derivatives with respect to its arguments, e.g., a′l, l = 1, 2, 3, 4 etc., similarly for
b, c, d and their conjugates. Also, since the expressions faj , fbj , fcj , fdj in (4.7), Fk,
and their conjugates involve the terms mentioned above, they can be considered in
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the similar manner. Other terms worth mentioning are αk12, φ and its derivatives with
respect to x and t.

Recall that



ã =
a

a2 − |b|2 , b̃ =
b

a2 − |b|2 ,

cj = ija′ + ia′3v2 + ib′3v̄2 + c+ c′3v1 + d′3v̄1,
dj = ijb′ + ib′4v2 + ib′4v̄2 + d+ c′4v1 + d′4v̄1,(4.10)

αk12 = ãdk + b̃c̄k,

fj = faj + fbj + fcj + fdj + ∂jxf,

Fk = ãfk + b̃f̄k.

We now investigate the terms above in more detail, especially the order with respect
to u, ū and their derivatives. It is enough to look at a and its derivatives; the cases
for b, c, d are similar.

a′ = a′1∂xu+ a′2∂xū+ a′3∂
2
xu+ a′4∂

2
xū

= P (1; ∂xu, ∂xū, ∂
2
xu, ∂

2
xū),

a′′ = P (2; ∂xu, ∂xū, ∂
2
xu, ∂

2
xū, ∂

3
xu, ∂

3
xū),

∂xã = ∂x(
a

a2 − |b|2 ) =
a′(a2 − |b|2)− a(2aa′ − b̄b′ − bb̄′)

(a2 − |b|2)2
= P (1;u, ū, . . . , ∂2

xu, ∂
2
xū),

∂ta = a′1∂tu+ a′2∂tū+ a′3∂x∂tu+ a′4∂x∂tū(4.11)

= a′1(ia∂
2
xu+ ib∂2

xū+ c∂xu+ d∂xū+ f)

+ a′2(−ia∂2
xū− ib̄∂2

xu+ c̄∂xū+ d̄∂xu+ f̄)

+ a′3∂x(ia∂
2
xu+ ib∂2

xū+ c∂xu+ d∂xū+ f)

+ a′4∂x(−ia∂2
xū− ib̄∂2

xu+ c̄∂xū+ d̄∂xu+ f̄)

= P (2;u, ū, ∂xu, ∂xū, ∂
2
xu, ∂

2
xū, ∂

3
xu, ∂

3
xū)

∂tã = P (2;u, ū, ∂xu, ∂xū, ∂
2
xu, ∂

2
xū, ∂

3
xu, ∂

3
xū).

Other expressions worth mentioning are cj , dj and their derivatives. Again, it is
enough to consider cj :

∂tcj = ∂t(ija
′ + ia′3v2 + ib′3v̄2 + c+ c′3v1 + d′3v̄1)

= ij∂x∂ta+ i∂t(a
′
3)∂

2
xu+ a′3∂

2
x∂tu+ i∂t(b

′
3)∂

2
xū+ b′3∂

2
x∂tū

+ ∂tc+ ∂t(c
′
3)∂xu+ c′3∂x∂tu+ ∂t(d

′
3)∂xū+ d′3∂x∂tū(4.12)

= P (3;u, ū, . . . , ∂4
xu, ∂

4
xū).

We would also consider αk12 since it is an important component of φ:
αk12 = ãck + b̃dk =

ack + bd̄k
a2 − |b|2 = P (u, ū, ∂xu, ∂xū, ∂

2
xu, ∂

2
xū),

∂xα
k
12 = dk∂xã+ ã∂xdk + c̄k∂xb̃+ b̃∂xc̄k = P (2;u, ū, . . . , ∂3

xu, ∂
3
xū).

(4.13)
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The boundedness of φ and its derivatives play an important role in the energy
estimates, thus a closer look at the terms involved is necessary:

φ = exp

{
1

2i

∫ x

0

(ãck + b̃dk)(x
′, t)dx′

}
,

∂xφ =
1

2i
φ(ãck + b̃d̄k) = P (u, ū, . . . , ∂2

xu, ∂
2
xū),(4.14)

∂2
xφ = − 1

4
φ(ãck + b̃d̄k)

2 +
1

2i
φ∂x(ãck + b̃d̄k) = P (u, ū, . . . , ∂3

xu, ∂
3
xū),

∂tφ = φ

(
1

2i

∫ x

0

∂t

(
ack + bd̄k
a2 − |b|2

)
(x′, t)dx′

)
= P (u, ū, . . . , ∂4

xu, ∂
4
xū);

higher derivatives of φ can be derived similarly.

4.2.1. Estimate (2.22). To obtain estimate (2.22), i.e., the boundedness of J1,
we need the following:

‖φ(t)‖L∞ ≤ exp

{
1

2

∫
R

|(ãck − b̃dk)(x, t)|dx
}

≤ exp

{
C

∫
|ack|+ |bdk|dx

}
(4.15)

≤ exp
{
C(‖u‖2Hk + ‖u‖lHk)(t)

}
for some constant C > 0, where a, b, c, d are not linear and l depends on the highest
order of ack + bdk.

Since Fkv̄k = (ãfk + b̃f̄k)v̄k is not linear and involves only at most vk, v̄k, the
right-hand side of (2.22) is

2
{
‖∂x

(
αk12φφ̄

−1
)‖L∞ + ‖∂tφãφ−1‖L∞ + ‖∂tφb̃φ̄−1‖L∞

+ ‖αk12φφ̄−2∂xφ̄‖L∞ + ‖(∂2
xφ)φ

−1‖L∞ + ‖∂t
(
bφ̄φ−1

) ‖L∞(4.16)

+
1

2
‖∂tã‖L∞

}
‖vkφ‖2L2 + 2

∫
|φFkv̄kφ̄|dx ≤ J1‖vk‖2L2

with

J1 ≤ eC(‖u‖2
Hk+‖u‖l

Hk )
(
‖u‖2Hk + ‖u‖l−1

Hk

)
.(4.17)

4.3. Appendix 3.

4.3.1. Proof of Proposition 2.1. The proof of Proposition 2.1 is based on the
following equations:

φ∂2
xvk = ∂2

x(vkφ)− 2∂xφφ
−1∂x(vkφ) + [2(∂xφ)

2φ−2 − ∂2
xφφ

−1](vkφ),(4.18)

φ∂3
xvk = ∂3

x(vkφ)− 3∂xφφ
−1∂2

x(vkφ) + [6(∂xφ)
2φ−1 − 3∂2

xφ]φ
−1∂x(vkφ)(4.19)

+ (−(6(∂xφ)2φ−1 − 3∂2
xφ)φ

−1∂xφ− ∂3
xφ)φ

−1(vkφ),

φ∂4
xvk = ∂4

x(vkφ)− 4∂xφφ
−1∂3

x(vkφ) + [12(∂xφ)
2φ−1 − 6∂2

xφ]φ
−1∂2

x(vkφ)

+ [−24(∂xφ)3φ−1 + 24φ−1∂2
xφ∂xφ− 4∂3

xφ]φ
−1∂x(vkφ)

+ {24(∂xφ)4φ−2 − 12[2φ−2 + φ−1]∂2
xφ(∂xφ)

2 + 8φ−1∂xφ∂
3
xφ(4.20)

+ 6φ−1(∂2
xφ)

2 − ∂4
xφ}φ−1(vkφ)

= ∂4
x(vkφ) + γ3∂

3
x(vkφ) + γ2∂

2
x(vkφ) + γ1∂x(vkφ) + γ0vkφ.
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We would want to show that for some choice of δ > 0 we are able to bound the
following four terms within Hk(R):

(4.21)

2Re

∫
(v̄kφ̄)ã(−εφ∂4

xvk + εδφ∂2
xvk)dx+ 2Re

∫
(v̄kφ̄)b̃(−εφ∂4

xv̄k + εδφ∂2
xv̄k)dx.

Using (4.18)–(4.20) and after integration by parts, we have

2Re

∫
(v̄kφ̄)ã(−εφ∂4

xvk + εδφ∂2
xvk)dx

+ 2Re

∫
(v̄kφ̄)b̃(−εφ∂4

xv̄k + εδφ∂2
xv̄k)dx

≤− 2ε

∫
(ã− |b̃|)|∂2

x(vkφ)|2dx− 2εδ

∫
(ã− |b̃|)|∂x(vkφ)|2dx(4.22)

+ εC1‖∂2
x(vkφ)‖L2‖∂x(vkφ)‖L2 + εC2‖∂x(vkφ)‖L2‖vkφ‖L2

+ εC3‖∂x(vkφ)‖2L2 + εC4‖vkφ‖2L2 .

Thus for p, q > 0, we have

2Re

∫
(v̄kφ̄)ã(−εφ∂4

xvk + εδφ∂2
xvk)dx

+ 2Re

∫
(v̄kφ̄)b̃(−εφ∂4

xv̄k + εδφ∂2
xv̄k)dx

≤− 2εm2‖∂2
x(vkφ)‖2L2 − 2εδm2‖∂x(vkφ)‖2L2

+ εC1

(
1

p
‖∂2
x(vkφ)‖2L2 + p‖∂x(vkφ)‖2L2

)
(4.23)

+ εC2

(
1

q
‖∂x(vkφ)‖2L2 + q‖vkφ‖2L2

)
+ εC3‖∂x(vkφ)‖2L2 + εC4‖vkφ‖2L2

= ε
(−2m2 + C1p

−1
) ‖∂2

x(vkφ)‖2L2

+ ε
(−2δc3 + C1p+ C2q

−1 + C3

) ‖∂x(vkφ)‖2L2 + ε(C2q + δC4)‖vkφ‖2L2 ,

where

C1 = 2‖ãγ2‖L∞ ,

C2 = ‖∂2
x(ãγ3)‖L∞ + 2ε‖∂x(ãγ2)‖L∞ + 2ε‖ãγ1‖L∞ + 4εδ‖ã∂xφφ−1‖L∞ ,

C3 = 4‖∂2
xã‖L∞ + 2‖∂x(ãγ3)‖L∞ + 2‖ãγ2‖L∞

+ 2‖b̃φ̄−1φγ̄2‖L∞ + 4‖∂2
x(b̃φ̄

−1φ)‖L∞ ,(4.24)

C4 = ‖∂4
xã‖L∞ + 2‖ãγ0‖L∞ + 2δ‖ã[2(∂xφ)2φ−2 − ∂2

xφφ
−1]‖L∞

+ 2‖∂4
x(b̃φ̄

−1φ)‖L∞ + 2‖∂3
x(b̃φ̄

−1φγ̄3)‖L∞ + ‖∂2
x(b̃φ̄

−1φγ̄2)‖L∞

+ 2‖∂x(b̃φ̄−1φγ̄1)‖L∞ + 2‖b̃φ̄−1φγ̄2‖L∞ + 2δ
[
‖∂2
x(b̃φ̄

−1φ)‖L∞

+ ‖∂x(b̃φ̄−2φ∂xφ̄)‖L∞ + ‖b̃(2∂xφ̄)2φ̄−2 − (∂2
xφ̄)φ̄

−1‖L∞
]
.
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To obtain the desired result in Proposition 2.1, we choose p such that 2m2 ≥ C1p
−1,

or, p ≥ C1

2m2
, and then choose δ such that −2δm2 + C1p + C2q

−1 + C3 ≤ 0, or

δ ≥ C1p+C2q
−1+C3

2m2
. Thus

2Re

∫
(v̄kφ̄)ã(−εφ∂4

xvk + εδφ∂2
xvk)dx(4.25)

+ 2Re

∫
(v̄kφ̄)b̃(−εφ∂4

xv̄k + εδφ∂2
xv̄k)dx ≤ C‖vkφ‖2L2

for ε ∈ (0, 1], where C = C(δ, ‖u‖Hk) > 0 is independent of ε.
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[15] C.E. Kenig, G. Ponce, C. Rolvung, and L. Vega, Local existence theory for the generalized

nonlinear Schrödinger equations, to appear.
[16] S. Mizohata, On the Cauchy Problem, Notes Rep. Math. Sci. Engrg. 3, Science Press, Beijing,

Academic Press, New York, 1985.
[17] T. Ozawa, Remarks on quadratic nonlinear Schrödinger equations, Funkcial. Ekvac., 38 (1995),

pp. 217–232.
[18] M. Poppenberg, On the local wellposedness for quasiliniear Schrödinger equations in arbitrary

space dimension, J. Differential Equations, 172 (2001), pp. 83–115.
[19] M. Poppenberg, Smooth solutions for a class of fully nonlinear Schrödinger type equations,

Nonlinear Anal., 45 (2001), pp. 723–741.
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Abstract. In two dimensions, we study the stability of the solution of an elliptic equation
with Neumann boundary conditions for nonsmooth perturbations of the geometric domain. Using
harmonic conjugates, we relate this problem to the shape stability of the solution of an elliptic
equation with Dirichlet boundary conditions. As a particular case, we prove the stability of the
solution under a topological constraint (uniform number of holes), which is analogous to Šverák’s
result for Dirichlet boundary conditions.
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1. Introduction. An interesting question arising in shape optimization concerns
the stability of the solution of a partial differential equation (PDE) for nonsmooth
variations of the geometric domain. Various papers in the literature deal with PDEs
with Dirichlet boundary conditions, while very few results can be found for PDEs
with Neumann boundary conditions. Several reasons may explain this situation, but
maybe the most important is that for a nonsmooth open set Ω a function of the
Sobolev space H1(Ω) might not have an extension outside Ω.

The purpose of this paper is to give a quite general method, based on duality,
for the study of the shape stability of the weak solution of a linear elliptic problem
with homogeneous Neumann boundary conditions. Given two bounded open sets
Ω ⊆ D ⊆ R

2, a ∈ L∞(D), a ≥ 0, and h ∈ L2(D), we consider the following problem:{ − � uΩ,h + a(x)uΩ,h = h in Ω,

∂uΩ,h

∂n = 0 on ∂Ω.
(1)

In order to handle easily the compatibility conditions on regions where a vanishes, we
suppose that h(x) = a(x)f(x) + g(x), where f ∈ L2(D) and g ∈ L2(D), supp g ⊆ Ω,
and

∫
C
gdx = 0 for every connected component C of Ω.

We study the stability of the solution uΩ,h for perturbations of the geometric
domain Ω inside D, i.e., the “continuity” of the mapping Ω �→ uΩ,h. We point out
that we consider only weak solutions of (1) (see the precise definition in section 2);
those solutions are classical only if Ω, a, and h are regular enough.

The family of domains is endowed with the Hausdorff complementary topology
(see [7, 24, 25]), which has good compactness properties and allows nonsmooth pertur-
bations of the boundaries. We are particularly interested in dealing with nonsmooth
domains, like domains with cracks or with boundaries of strictly positive measure.
For this reason, the functional spaces where the weak solutions are defined play a
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http://www.siam.org/journals/sima/34-2/38957.html
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crucial role; one has to pay attention to the fact that extension operators may fail to
exist as soon as Ω is not smooth (for example, if Ω has a crack, there is no extension
operator from H1(Ω) to H1(R2)).

In order to compare two solutions on two different domains, the following conven-
tion is applied: extending by zero onD\Ω, we see uΩ,h and ∇uΩ,h as functions defined
on D. The exact sense of those extensions is given in section 2 once the functional
spaces where the solutions belong are introduced.

Several results can be found in the literature concerning (1) for a ≡ 1, which has
a variational solution in the Sobolev space H1(Ω). We refer to [10] for a pioneer-
ing continuity result obtained under geometric constraints on the variable domains
(uniform Lipschitz boundary), which particularly imply the existence of uniformly
bounded extension operators from H1(Ω) to H1(R2); the existence of extension oper-
ators across the boundary is the key result for the shape continuity. In [23] the shape
continuity is established for the same equation in a class of domains satisfying weaker
geometric constraints which still insure the existence of a dense set of functions having
extensions.

A different point of view, still for a ≡ 1, based on the Mosco convergence of H1-
spaces, was followed by Chambolle and Doveri in [9]. (In the last section we recall
the definition of the Mosco convergence and the main lines of this issue.) Here, the
extension property is replaced by an approximability one: the family of functions of
H1(Ω) which can be written as strong limits of elements of H1(Ωn) is dense in H

1(Ω).
They proved (in two dimensions) that if Ωn converges in the Hausdorff complementary
topology to Ω and the lengths of the boundaries H1(∂Ωn) and the number of the
connected components of ∂Ωn are uniformly bounded, then uΩn,h converges to uΩ,h.
In [6] a more general result is proved for the same equation (i.e., a ≡ 1): if Ωn

converges in the Hausdorff complementary topology to Ω such that the number of the
connected components of R

2 \ Ωn is uniformly bounded, then shape continuity holds
if and only if the Lebesgue measure is stable, i.e., |Ωn| → |Ω|.

The purpose of this paper is to investigate the case a ≡ 1 and, in particular, the
case when a vanishes on some regions of the plane. For example if a ≡ 0, we observe
that the stability of the Lebesgue measure is not anymore a necessary condition for
the shape stability of the solutions. We give a set of conditions which is equivalent to
the shape stability of (1). The major condition, which in concrete examples is the one
difficult to check, is reduced by a duality argument to the study of the shape stability
of an elliptic equation with Dirichlet boundary conditions. In particular, we prove
the following.
Theorem 1.1. Let {Ωn}n∈N such that Ωn ⊆ D and the number of the connected

components of Ωc
n is uniformly bounded. If Ωc

n converges into the Hausdorff metric to
Ωc, then, for every admissible right-hand side h in (1), we have that uΩn,h converges
to uΩ,h if and only if |Ωn ∩ {a > 0}|→|Ω ∩ {a > 0}|.

The sense of the convergence is defined in section 2. In the extremal case a ≡ 0,
this result is analogous to the compactness-continuity result of Šverák [25] for Dirichlet
boundary conditions.

In section 2 we introduce the main notation. Section 3 is devoted to the case
a ≡ 0 and to the duality argument. The general case a ≥ 0 is discussed in section 4.
We finish the paper with an example and some remarks.

2. Notation and preliminaries. In this section we set the main notation and
recall some facts about the (weak) variational solutions of (1). For this purpose, we
introduce the functional spaces in which the solutions are searched.



462 DORIN BUCUR AND NICOLAS VARCHON

Let D be a bounded open set in R
2 (called design region). Let a ∈ L∞(D), a ≥ 0,

be a fixed function. For every open set Ω ⊆ D we introduce the following functional
space:

L1,2
a (Ω) =

{
u ∈ L2

loc(Ω) : ∇u ∈ L2(Ω,R2),

∫
Ω

u2adx < +∞
}
,(2)

where the gradient of u is taken in the sense of distributions. Introducing the equiv-
alence relation

uRav if

∫
Ω

|∇(u− v)|2dx+
∫

Ω

(u− v)2adx = 0,

the quotient space L1,2
a (Ω)/Ra

:= L1,2
a (Ω) is a Hilbert space for the scalar product

(u, v)L1,2
a (Ω) =

∫
Ω

∇u∇vdx+
∫

Ω

uvadx.

Let C be a connected component of Ω and let u, v ∈ L1,2
a (Ω) such that uRav. Note

that if |C ∩ {a > 0}| = 0, then u− v is constant a.e. on C. If |C ∩ {a > 0}| > 0, this
constant is zero, i.e., u = v a.e. on C.

If a ≡ 1, then L1,2
a (Ω) is nothing else but the usual Sobolev space H1(Ω) (see [2]).

If a ≡ 0, then L1,2
a (Ω) is the usual Dirichlet space (see [20]). In our paper, if a ≡ 0, the

spaces L1,2
a (Ω), L1,2

a (Ω) will simply be denoted L1,2(Ω), L1,2(Ω), respectively. Note
that if a1 ≤ a2, then the natural injection L

1,2
a2
(Ω) ↪→ L1,2

a1
(Ω) is a contraction.

Following [19, Corollary 2.2], if Ω is smooth enough (e.g., with Lipschitz contin-
uous boundary and with a finite number of connected components), then L1,2(Ω) =
H1(Ω). If Ω is not smooth, then H1(Ω) might be strictly contained in L1,2(Ω).
Observe also that if Ω is not smooth enough, several “well-known” properties of H1-
spaces fail to be true, as, for example, the Poincaré–Wirtinger inequality. Moreover,
there does not exist an extension operator from H1(Ω) to H1(D), even though the
density of C∞(Ω) ∩ H1(Ω) in H1(Ω) remains true (see [18]). In fact, C∞(Ω) is no
longer dense in H1(Ω).

Let h ∈ L2(D) be such that h(x) = a(x)f(x) + g(x), where f ∈ L2(D) and
g ∈ L2(D), supp g ⊆ Ω, and

∫
C
gdx = 0 for every connected component C of Ω. Then

(1) has a weak variational solution uΩ,h ∈ L1,2
a (Ω) obtained by the minimization of

the energy functional

L1,2
a (Ω) � u �→ F (u) =

1

2

∫
Ω

|∇u|2dx+ 1

2

∫
Ω

u2adx−
∫

Ω

hudx.

This is an immediate consequence of the Lax–Milgram theorem (see [2, Corollary V.8]).
The only point to be verified is the strong continuity of the mapping

L1,2
a (Ω) � u �→

∫
Ω

afu+ gudx.

Indeed, ∣∣∣∣∫
Ω

afu+ gudx

∣∣∣∣ ≤ ∫
Ω

|afu|dx+
∣∣∣∣∫

U

gudx

∣∣∣∣
≤
(∫

Ω

au2dx
) 1

2
(∫

Ω

af2dx
) 1

2

+ C
(∫

U

|∇u|2dx
) 1

2
(∫

U

g2dx
) 1

2 ≤ C ′|u|L1,2
a (Ω),
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where C is the constant given by the Poincaré–Wirtinger inequality applied inH1(U)/R;
the smooth set U is chosen such that supp g ⊆ U ⊆ Ω.

If Ω, a, and h are smooth enough, every representative in L1,2
a (Ω) of the weak

variational solution is also classical. In view of the equivalence relation Ra, on each
connected component C of Ω, two classical solutions of (1) are identical if |{a >
0} ∩ C| > 0 and differ by a constant if |{a > 0} ∩ C| = 0. It is not our purpose to
find the minimal assumptions such that the weak solution is classical (see e.g., [2]);
if Ω is of class C3 and a, h are of class C1(Ω), then every representative of the weak
solution is classical. If Ω is not smooth, the sense of the Neumann condition on ∂Ω is
only weak ; it is implicitly contained in the variational formulation of the problem.

One of the main ideas of this paper is to introduce a new equation which is easier
to study from the point of view of the shape stability, but which carries most of
the information concerning the shape stability of (1). Let B = B(0, r) be such that

B(0, r + δ) ⊆ Ω ⊆ D for some δ > 0 and γ ∈ H 1
2 (∂B) such that

∫
∂B
γdσ = 0. Note

that under this last assumption, γ is also an element of the dual of H
1
2 (∂B)/R. We

consider the following equation:
− � vΩ,γ = 0 in Ω \B,

∂vΩ,γ

∂n = 0 on ∂Ω,

∂vΩ,γ

∂n = γ on ∂B.

(3)

Equation (3) has a unique variational solution in L1,2(Ω \ B) obtained by the
minimization of the energy functional

L1,2(Ω \B) � v �→ F (v) =
1

2

∫
Ω\B

|∇v|2dx−
∫
∂B

γvdσ.(4)

This is a consequence of the Lax–Milgram theorem and, again, the only point to be
verified is the continuity of the mapping

v �→
∫
∂B

γvdσ.

This is a direct consequence of the trace theorem and the Poincaré–Wirtinger inequal-
ity applied in H1(B(0, r + δ) \B).

The main interest in relating the shape stability of the solution of (1) to the shape
stability of the solution of (3) relies on the fact that all solutions of (3) (even in open
sets with nonsmooth boundaries) have harmonic conjugates which satisfy a Dirichlet
boundary condition, which is easier to handle on varying domains. Several results for
the boundary variation of Dirichlet problems, such as those of [4, 7, 15, 25], can be
applied. Observe that a new difficulty (of different type) appears, since the traces
of the conjugate functions on the boundary are constant on connected components,
but the constants may vary. Nevertheless, in concrete examples, this seems easier to
handle, as opposed to directly investigating the stability of the original problem.

The sense in which we investigate the continuity of the mappings

Ω �→ uΩ,h and Ω �→ vΩ,γ

is the following. For simplicity, we denote by L2
a(D) the usual space of square in-

tegrable functions with respect to the measure of density a(x) with respect to the
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Lebesgue measure, endowed with the scalar product (u, v) =
∫
D
uv adx. Since the

space to which uΩ,h belongs varies with Ω, the following convention is used. We embed
the space L1,2

a (Ω) into the following space, which is not dependent on Ω:

L1,2
a (Ω) ↪→ L2

a(D)× L2(D,R2)(5)

by

u �→ (ũ, ∇̃u),(6)

where ũ(x) = u(x) if x ∈ Ω and ũ(x) = 0 if x ∈ D \ Ω. In the same way ∇̃u(x) =
∇u(x) if x ∈ Ω and ∇̃u(x) = 0 if x ∈ D \ Ω. Note that ∇̃u is not the distributional
gradient of ũ.

Since L1,2
a (Ω) is a quotient space, one has to check that ũ and ∇̃u do not depend

on the choice of the representative of u. This is true since all representatives of u have
the same gradient and coincide on Ω ∩ {a > 0}. If a ≡ 0, of course the space L1,2(Ω)
is embedded in L2(D,R2), since L2

a(Ω) ≡ {0}.
We denote

O(D) = {Ω ⊆ D : Ω open} and Ol(D) = {Ω ⊆ D : Ω open �Ωc ≤ l}.
Here l ∈ N is fixed, and �Ωc denotes the number of the connected components of the
complement of Ω.

The Hausdorff distance in the family of open subsets of D (called the Hausdorff
complementary distance) is given by the following metric:

dHc(Ω1,Ω2) = dH(D \ Ω1, D \ Ω2),

where

dH(K1,K2) = max

{
sup
x∈K1

inf
y∈K2

|x− y|, sup
y∈K2

inf
x∈K1

|x− y|
}

is the usual Hausdorff distance between two closed sets. It is well known that O(D)
is compact in the Hausdorff complementary topology. Moreover, if Ωn

Hc

−→ Ω, then

∀K ⊂⊂ Ω, ∃n = nK ∈ N such that ∀n ≥ nK we have K ⊆ Ωn.(7)

This property has a geometric character and does not require any regularity on Ω (see
[24, Lemma 3, p. 32]). A direct consequence is the following:

∀φ ∈ C∞0 (Ω) ∃n = nφ ∈ N such that ∀n ≥ nφ we have φ ∈ C∞0 (Ωn).(8)

The characteristic function of a set E is denoted 1E and its Lebesgue measure is
denoted |E|. The capacity of a set E is denoted cap(E); we refer to [20] for details
concerning capacity and quasi-continuous functions in Sobolev spaces.

3. The shape stability in the case a ≡ 0. In this section we discuss the
particular case a ≡ 0. We give, in a first step, a proposition relating the shape
stability of (1) to the shape stability of (3). In a second step we present the duality
method. Using the harmonic conjugates associated to the solutions of (3), we prove
the shape stability of (3) for the Hc-topology in the family of domains for which the
complements have a uniformly bounded number of connected components.



BOUNDARY VARIATION FOR NEUMANN PROBLEMS 465

3.1. Relation between shape stability of (1) with a ≡ 0 and (3).

Proposition 3.1. Let Ωn,Ω ∈ O(D) such that Ωn
Hc

−→ Ω. The following
assertions are equivalent:

1. For a ≡ 0 and for every admissible h := g, we have ∇̃uΩn,g
L2(D,R2)−→ ∇̃uΩ,g.

2. For every ball B such that B ⊆ Ω and for every γ ∈ H 1
2 (∂B) with

∫
∂B
γdσ =

0 we have ∇̃vΩn,γ
L2(D,R2)−→ ∇̃vΩ,γ ,

3. For every u ∈ L1,2(Ω) there exists un ∈ L1,2(Ωn) such that ∇̃un L2(D,R2)−→ ∇̃u.
We list condition 3 in Proposition 3.1 because it is useful in the proof of the

equivalence between conditions 1 and 2.
Proof. 1⇒ 3. Let us denote

Y =

{
ψ ∈ L1,2(Ω) : ∃ψn ∈ L1,2(Ωn) such that ∇̃ψn L2(D,R2)−→ ∇̃ψ

}
.

It is sufficient to prove that Y is dense in L1,2(Ω); then 3 follows straightforwardly by
a usual diagonal procedure. Let Ψ ∈ L1,2(Ω) such that

Ψ ⊥L1,2(Ω) Y,

i.e.,
∫
Ω

∇Ψ∇vdx = 0 for all v ∈ Y . Let us fix a representative of ψ ∈ L1,2(Ω).
Following property (8) of the Hausdorff convergence, the equivalence class gener-
ated by C∞0 (Ω) in L

1,2(Ω) is contained in Y . Hence, for all v ∈ C∞0 (Ω) we have∫
Ω

∇Ψ∇vdx = 0, and therefore −∆Ψ = 0 in D′(Ω). Now let B be a ball such that
B̄ ⊂ Ω. For every g ∈ L2(D), with supp g ⊂ B̄ and

∫
B
gdx = 0 we have, following

condition 1,
∫
B
gΨdx = 0, so Ψ is constant in B; hence ∇Ψ = 0 in the connected com-

ponent of Ω which contains B. Applying this argument to every connected component
of Ω, we deduce that ∇Ψ = 0 in Ω, i.e., Ψ ≡ 0 in L1,2(Ω).

3 ⇒ 1. Let g ∈ L2(Ω) and K = supp g . Let U be a smooth open set such that
K ⊂ U ⊂⊂ Ω. Taking uΩn,g as a test function in (1) and applying the Poincaré
inequality in H1(U), we obtain that the sequence

‖∇̃uΩn,g‖L2(D,R2)

is bounded. Up to a subsequence denoted by the same index we have

∇̃uΩn,g
L2(D)
⇀ (u1, u2).

From property (7) of the Hc-convergence, we get that

∀q ∈ C∞0 (Ω,R2), div q = 0, 〈(u1, u2)|Ω, q〉H−1(Ω,R2)×H1
0 (Ω,R2) = 0.

Applying successively De Rham’s theorem [19, Theorem 2.3] on an increasing sequence
of smooth sets covering Ω, there exists u ∈ L2

loc(Ω) such that (u1, u2)|Ω = ∇u in the
distributional sense in Ω. Moreover, from the compact injection H1(U) ↪→ L2(U) we

have uΩn,g
L2(U)−→ u. Following condition 3, for every v ∈ L1,2(Ω) we have∫

Ω

∇u∇vdx =
∫
D

〈(u1, u2), ∇̃v〉dx = lim
n→∞

∫
D

∇̃un∇̃vndx = lim
n→∞

∫
Ωn

gvndx =

∫
Ω

gvdx.

(9)
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Hence u|Ω = uΩ,g and, moreover,∫
D

|∇̃uΩ,g|2dx =
∫
U

guΩ,gdx←−n→∞
∫
U

guΩn,gdx =

∫
D

|∇̃uΩn,g|2dx.(10)

By the uniqueness of the solution of (1), the whole sequence ∇̃uΩn,g converges to

∇̃uΩ,g in L
2(D,R2).

2 ⇒ 3. Let C be a connected component of Ω and denote

Y = {ψ ∈ L1,2(C\B) : ∃ψn ∈ L1,2(Ωn\B) such that ∇̃ψn L2(D,R2)−→ ∇̃ψ} ⊆ L1,2(C\B).

Let Ψ ∈ L1,2(C \ B), Ψ ⊥ Y , i.e.,
∫
C\B ∇Ψ∇vdx = 0 for all v ∈ Y ; let us fix a

representative of Ψ in L1,2(C \ B). Using property (8) of the Hc-convergence we
deduce, as above, that −∆Ψ = 0 in D′(C \ B). Since every solution vΩ,γ belongs to
Y , writing the orthogonality property we get

0 =

∫
C\B

∇Ψ∇vΩ,γdx =

∫
∂B

γΨdσ.

This relation holds for every γ ∈ H 1
2 (∂B) such that

∫
∂B
γdσ = 0. Since H

1
2 (∂B) is

dense in L2(∂B) we get that Ψ is constant on ∂B. Now let Ψ̄ ∈ L1,2(C) such that

Ψ̄ = Ψ in C \ B̄ and Ψ̄ = c a.e. on B. Since Ωn
Hc

−→ Ω, for every function ϕ ∈ C∞0 (C)
the restriction ϕ|Ω\B̄ belongs to Y, and hence we have∫

Ω

∇Ψ̄∇ϕdx = 0.

Therefore the extension of Ψ by the same constant on B gives a harmonic function
constant on a set of strictly positive measure; hence ∇Ψ = 0 on Ω \B. We conclude
that Y is dense in L1,2(C \ B̄).

To prove that for all u ∈ L1,2(C), there exists un ∈ L1,2(Ωn) such that ∇̃un L2(D,R2)−→
∇̃u we use an argument based on the partition of unity ofD. Let ϕ ∈ C∞0 (C) such that
ϕ = 1 onB. Let un = ũϕ+(1−ϕ)ṽn, where vn ∈ L1,2(Ω\B̄) and ∇̃vn L2(D,R2)−→ ∇̃u|C\B̄ .
So un ∈ L1,2(Ωn) and ∇̃un L2(D,R2)−→ ∇̃u.

Now let (Ci)i∈N be the family of all connected components of Ω. Since the set

{u ∈ L1,2(Ω) such that ∇u = 0 on Ci except for a finite number of i}

is dense in L1,2(Ω) assertion 3 follows.
3 ⇒ 2. The proof follows the same arguments as 3 ⇒ 1 with the remark that

every function of L1,2(Ω \B) has an extension on L1,2(Ω).

3.2. Sufficient topological constraints for the shape stability of (3). In
what follows, we use the harmonic conjugates of the solutions of (3) in order to
transform the shape continuity problem for (3) into a shape continuity problem of an
elliptic equation with Dirichlet boundary conditions. The main reason for doing this
is that the study of the domain variation for Dirichlet problems has a complete answer
in the case that the Dirichlet boundary condition is zero (or a restriction of some fixed
H1-function). Either necessary and sufficient conditions for shape stability are given
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in this case (see [7, 5, 14]) or relaxation results can be established (see [8, 15]). In the
latter case, one can describe exactly the “lack” of continuity. Unfortunately, in our
case, the Dirichlet boundary condition is not zero, and the values of the functions on
different connected components of the boundaries are constants which vary with the
domains.

That is why we restrict ourselves to the case that for every n ∈ N the set R
2 \Ωn

has a uniformly bounded number of connected components. In this particular case,
we can establish a continuity result for the Dirichlet problem even if the constants
are different on each connected component. Nevertheless, some of the results of this
section are true without any restriction.

Theorem 3.2. If {Ωn}n∈N ∈ Ol(D) is such that Ωn
Hc

−→ Ω, then for every ball

B such that B ⊆ Ω and for every γ ∈ H 1
2 (∂B) such that

∫
∂B
γdσ = 0, we have

∇̃vΩn,γ
L2(D,R2)−→ ∇̃vΩ,γ .

Proof. The proof is divided into three steps. We use the duality argument to
transform the Neumann problem into a Dirichlet problem, then use continuity results
for the domain variation of a Dirichlet problem (such as, for example, a Šverák-type
result adapted to different constants), and then return to the Neumann problem.

Step 1. Passage from the Neumann problem to the Dirichlet problem. For the
existence of the conjugate function into a smooth domain with a finite number of
(smooth) holes, we refer to [19, Theorem 3.1]. Since we do not impose any regularity
of the boundary (besides the constraint on the number of connected components),
we prove in what follows that if on the nonsmooth part of the boundary the normal
derivative is zero in the weak sense given by the variational formulation, one can still
use a duality argument and modify the result of [19] in order to find a conjugate
function with a constant trace on the connected components of the complementary.
The sense of the trace on a nonsmooth set is understood as the usual restriction of a
quasi-continuous representative of an H1

0 (D)-function, this restriction being defined
quasi-everywhere (q.e.). (See [20] for details concerning capacity.)

Let Ω ∈ Ol(D) such that B ⊆ Ω and denote by K1, . . . ,Kl the connected compo-
nents of its complement. Consider (3) on Ω \B:

−∆vΩ,γ = 0 in Ω \B,
∂vΩ,γ

∂n = 0 on ∂Ω,

∂vΩ,γ

∂n = γ on ∂B.

(11)

If Ω is not connected in every connected component which does not contain B, the
solution is set to be 0.
Lemma 3.3. There exist a function φ ∈ H1

0 (D) and constants c1, . . . , cl ∈ R such
that ∇vΩ,g = curlφ in Ω \B and −∆φ = 0 in Ω \B,

φ = ci q.e. on Ki, i = 1, . . . , l,
φ = G on ∂B,

(12)

where G ∈ H 3
2 (∂B) is such that G′ = γ in the sense of distribution on ∂B.

The equality φ = ci q.e. on Ki means that the usual restriction (defined q.e.) of
a quasi-continuous representative of φ in H1

0 (D) is equal to ci on Ki.
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Proof. We suppose that for every i = 1, . . . , l, diam(Ki) > 0; if not, we simply
ignoreKi since it has zero capacity. If ∂Ω were Lipschitz, then the result of this lemma
would be a straightforward consequence of [19, Theorem 3.1]. Since no assumption on
the regularity of the ∂Ω is made, we consider a sequence of smooth open sets {Un}n∈N

such that �U c
n ≤ l, B(0, r + δ) ⊆ Un ⊆ Un+1 ⊆ Ω, and Ω =

⋃
n∈N

Un. Let us denote
by vn the solution of the following problem:

−∆vn = 0 in Un \B,
∂vn
∂n = 0 on ∂Un,

∂vn
∂n = γ on ∂B.

(13)

Following [19], there exists a function φn ∈ H1
0 (D) (obtained by extension with zero

on the infinite connected component of R
2 \ Un) such that ∇vn = curlφn in Un \ B

and 
−∆φn = 0 in Un \B,
φn = c

n
i on Kn

i , i = 1, . . . , l,

φn = G+ cn on ∂B.

(14)

Taking vn as a test function in (13) and using the trace theorem and the Poincaré
inequality in H1(B(0, r + δ) \ B), there exists a constant C independent of n such
that (∫

Un\B
|∇vn|2dx

) 1
2 ≤ C|γ|L2(∂B).

In the connected components of Un not containing B we have ∇vn = ∇φn = 0.
Hence ∇φn is bounded in L2(D,R2). Since φn is defined up to a constant in each
connected component of Un \ B, we choose the constants such that φn extended by
these constants on each connected component of D \ (Ω \ B) belongs to H1

0 (D) (see
[20]). These extended functions are denoted by the same symbols. The Poincaré
inequality in H1

0 (D) gives that the sequence {φn}n∈N is bounded in H
1
0 (D). There

exists a function φ ∈ H1
0 (D) such that for a subsequence (still denoted with the same

index) we can write

∇φn L2(D,R2)
⇀ ∇φ.

As a consequence of the Hc-convergence, property (8), we obtain that −∆φ = 0 in
Ω \B, and by the Banach–Saks theorem we get that φ = ci q.e. on Ki, φ = G+ c on
∂B. These equalities hold, since {cni }n∈N is bounded and cap(K

i
n) does not converge

to zero (in fact we have lim infn→∞ cap(Ki
n) ≥ cap(K) > 0).

Let us prove that ∇vΩ,γ = curlφ in Ω \B. It is sufficient to prove that

∇̃vn L2(D,R2)
⇀ ∇̃vΩ,γ .

This comes back to proving that the Neumann problem is shape stable to increasing
sequences of domains. For a subsequence (still denoted by the same index) we can
write

∇̃vn L2(D,R2)
⇀ (v1, v2).
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Since Un is increasing, we get ∂2v1 = ∂1v2 in Ω \ B, and by the De Rham theorem
there exists v̄ ∈ L2

loc(Ω\B) such that ∇v̄ = (v1, v2); hence v̄ ∈ L1,2(Ω\B). Moreover,
we have that v̄ is a weak variational solution of (13) on Ω \B since

1

2

∫
Ω\B

|∇v̄|2dx−
∫
∂B

γv̄dσ ≤ lim inf
n→∞

1

2

∫
Un\B

|∇vn|2dx−
∫
∂B

γvndσ

≤ lim inf
n→∞

1

2

∫
Un\B

|∇ξ|2dx−
∫
∂B

γξdσ

=
1

2

∫
Ω\B

|∇ξ|2dx−
∫
∂B

γξdσ,

where ξ ∈ L1,2(Ω \ B) is an arbitrary element. Consequently, we get that v̄ =
vΩ,γ .

Step 2. Continuity with respect to the domain variation for the associated Dirichlet
problems. We give without proofs two technical lemmas. The first one is an immediate
consequence of [4, 7], while the second one can be proved using circular rearrangements

(see [13]) and noticing that in one dimension the step functions are not in H
1
2 (R).

Lemma 3.4. Let {φn}n∈N ⊆ H1
0 (D), let {Kn}n∈N be a sequence of compact

connected sets in D, and let {cn}n∈N be a sequence of constants such that φn(x) = cn
q.e. on Kn. If

Kn
H−→ K and φn

H1
0 (D)
⇀ φ,

there exists a constant c ∈ R such that cn −→ c and φ(x) = c q.e. on K.
Lemma 3.5. Let φ ∈ H1

0 (D) and let K1,K2 be two compact connected sets in D
with positive diameter. If there exist two constants c1, c2 ∈ R such that φ(x) = c1 q.e.
on K1 and φ(x) = c2 q.e. on K2, then K1 ∩K2 = ∅.

Let us assume that {Ωn}n∈N is a sequence satisfying the hypotheses of Theorem
3.2. As in the previous step, we denote by φn, φ the corresponding functions found
by Lemma 3.3 applied to vΩn,γ on Ωn and vΩ,γ on Ω, respectively. We denote the
connected components of D \Ωn by K

n
1 , . . . ,K

n
l , some of them perhaps being empty.

Lemma 3.6. There exist a subsequence {φnk
}k∈N such that

φnk

H1
0 (D)
⇀ φ

and a function v ∈ L1,2(Ω \B) such that curlφ = ∇v in Ω \B.
Proof. Since the extension by constants of φn does not increase the norm of the

gradient, and since we have
∫
Ωn\B |∇φn|2dx =

∫
Ωn\B |∇un|2dx, we get that {∇̃φn}n∈N

is bounded in L2(D,R2). Hence for a subsequence we have

φnk

H1
0 (D)
⇀ φ.

From the Hausdorff convergence we get −∆φ = 0 in Ω \B.
Without losing the generality, we can suppose that for a subsequence (still denoted

by the same index) and for all i = 1, . . . , l we have Knk
i

H−→ Ki. Using Lemma 3.4
we also get cnk,i → ci and φ = ci q.e. on Ki. If there exist two compact sets with
positive diameter Ki1 and Ki2 and nonempty intersection, then from Lemma 3.5 we
get that ci1 = ci2 .
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SinceD\Ω = ∪l
i=1Ki we get that φ is constant q.e. on every connected component

of D \ Ω. Using property (7) of the Hc-convergence, there exists v ∈ L1,2(Ω) such
that

∇̃vΩn,γ
L2(D,R2)
⇀ (v1, v2)

and ∇v = (v1, v2) in Ω. The relation ∇vΩn,γ = curlφn in Ωn gives (again from
property (7)) that ∇v = curlφ in Ω \B.

Step 3. Passage from the Dirichlet problem to Neumann problem under the rota-
tional hypothesis. The result obtained in the previous step asserts that the weak limit
φ is such that −∆φ = 0 in Ω \B and φ is q.e. constant on each connected component
of D \ Ω. In what follows we prove that φ has a conjugate; i.e., φ is exactly the
function obtained by applying Lemma 3.3 to vΩ,γ on Ω \B.
Lemma 3.7. Let O be a smooth open connected set and K a compact connected

set such that K ⊆ O. Let us denote by θ the capacitary potential of K in O, i.e., the
function θ ∈ H1

0 (O) such that
−∆θ = 0 in O \K,

θ = 0 on ∂O,
θ = 1 q.e. on ∂K.

(15)

There does not exist a function ξ ∈ L1,2(O \ K) such that curlθ = ∇ξ, unless
diam(K) = 0.

Proof. Suppose diam(K) > 0. Since O is smooth and θ attains its minimum
in all the points of ∂O, we get by the Hopf maximum principle that ∂θ

∂n = 0 in any
point of ∂O. There exists a neighborhood of ∂O of the form {θ ≤ c} with c > 0 in
which |∇θ| = 0. Indeed, supposing that there exists xn such that θ(xn) = cn → 0
and ∇θ(xn) = 0, we have by compactness that for a subsequence (still denoted with
the same index) xn → x; therefore, θ(x) = 0, and hence x ∈ ∂O. On the other side,
the gradient is also continuous up to the boundary, which yields ∇θ(x) = 0, contrary
to the previous assertion.

Let us denote U = {x ∈ O : θ(x) < c}. The open set U has a smooth boundary,
∂O ∪ {θ = c}. Computing∫

U

|∇θ|2dx =
∫
∂O∪{θ=c}

θ
∂θ

∂n
dσ −

∫
U

θ∆θdx =

∫
{θ=c}

θ
∂θ

∂n
dσ.

Using the hypothesis curlθ = ∇ξ, we can write∫
{θ=c}

θ
∂θ

∂n
dσ =

∫
{θ=c}

c
∂ξ

∂t
dσ = 0.

Here ∂ξ
∂t denotes the tangential derivative of ξ to the smooth curve {θ = c}. Therefore,

we would get that θ vanishes on U , contrary to the maximum principle.
Lemma 3.8. Let Ω ∈ Ol(D) such that B ⊆ Ω. Suppose that there exist a function

φ ∈ H1
0 (D) and a function u ∈ L1,2(Ω \B) such that ∇u = curlφ in Ω \B and −∆φ = 0 in Ω \B,

φ = ci on Ki, i = 1, . . . , l,
φ = G+ c on ∂B.

(16)

Then u is the weak solution of (11) on Ω \B.
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Proof. Since u ∈ L1,2(Ω \ B) it suffices to prove that for any ξ ∈ L1,2(Ω \ B) we
have ∫

Ω\B
∇u∇ξdx =

∫
∂B

γξdσ.

Considering smooth neighborhoods Oi of Ki, by an argument of partition of unity, it
suffices to prove that for any function ξ ∈ H1(Oi \Ki) vanishing q.e. on ∂Oi we have∫

Oi\Ki

∇u∇ξdx = 0.

It suffices actually to prove that u is a solution of the following problem on Oi \Ki:
−∆u = 0 in Oi \Ki,

∂u
∂n = 0 on ∂Ki,

∂u
∂n =

∂φ
∂t on ∂Oi.

(17)

To the solution u∗ of this equation we associate the function φ∗ given by Lemma
3.3. We have that −∆φ∗ = 0 in Oi \Ki, φ

∗ = φ on ∂Oi, φ
∗ = c∗ on Ki. Denoting

θ = φ − φ∗, we get that ∇θ = curl(u − u∗), −∆θ = 0 in Oi \ Ki, θ = 0 on ∂Oi,
θ = c − c∗ on Ki. Following Lemma 3.7, since diam(Ki) > 0, we get c = c∗, and
hence u = u∗.

Remark that Step 1 is in general true, without any assumption on the number of
connected components. Indeed, when taking the approximating sequence {un}n∈N of
smooth functions, on each set Un, [19, Theorem 3.1] can be applied. Step 2 fails to
be true in general.

4. The general case a ≥ 0. The following result establishes the relation be-
tween the shape stability of problems (1) and (3). This result is general and does not
require any geometrical or topological constraints on Ωn.
Theorem 4.1. Given a sequence of open sets {Ωn}n∈N converging in the Haus-

dorff complementary topology to Ω, assertions (A) and (B) are equivalent:
(A) For every admissible h, we have

(ũΩn,h, ∇̃uΩn,h)
L2

a(D)×L2(D,R2)−→ (ũΩ,h, ∇̃uΩ,h).

(B) The following three conditions hold:

(B.1) For every ball B such that B ⊆ Ω and for every γ ∈ H
1
2 (∂B) with∫

∂B
γdσ = 0, we have

∇̃vΩn,γ
L2(D,R2)−→ ∇̃vΩ,γ .

(B.2) For every u ∈ L1,2
a (Ω) such that ∇u = 0, there exist

un ∈ L1,2
a (Ωn) such that (ũn, ∇̃un) L2

a(D)×L2(D,R2)−→ (ũ, 0).

(B.3) |Ω ∩ {a > 0}| = limn→∞ |Ωn ∩ {a > 0}|.
When investigating the shape stability of (1), condition (B.1) is, in general, the

difficult one. As seen in section 3, the duality argument can be applied successfully
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in some particular situations. Condition (B.2) is easy to handle as soon as Ω is
connected, and condition (B.3) is trivial to check in concrete examples.

Proof. (A)⇒ (B) For proving (B.1) it is enough to prove assertion 3 of Proposition
3.1. Take u ∈ L1,2(Ω) and define for every M > 0

uM := min{max{u∗,−M},M},
where u∗ is a representative of u in L1,2(Ω). Then uM converges in L1,2(Ω) to u when
M → +∞ and, moreover, uM belongs to L1,2

a (Ω).
Let us denote

Y = {uΩ,h : h admissible} ⊆ L1,2
a (Ω)

and prove that this set is dense in L1,2
a (Ω). Suppose for contradiction that u ∈ L1,2

a (Ω)
is orthogonal on Y , i.e., ∫

Ω

∇u∇uΩ,h + auuΩ,hdx = 0.

Consequently ∫
Ω

u(af + g)dx = 0.

Taking f = 0, we get that u is constant on every connected component of Ω, and
taking g = 0 we get that au = 0; hence

∫
Ω

|∇u|2 + au2dx = 0, i.e., u ≡ 0 in L1,2
a (Ω).

So, for every M > 0 and for every ε > 0 there exists hM,ε such that∫
Ω

|∇uΩ,hM,ε
− ∇uM |2dx+

∫
Ω

(uΩ,hM,ε
− uM )2a(x)dx ≤ ε.

Since from hypothesis (A)∫
D

| ˜∇uΩ,hM,ε
− ˜∇uΩn,hM,ε

|2dx+
∫
D

(ũΩ,hM,ε
− ũΩn,hM,ε

)2a(x)dx→ 0,

by a usual diagonal procedure we find a sequence of the form {(ũΩn,hM,εn
, ˜∇uΩn,hM,εn

)}
which converges in L2

a(D)× L2(D,R2) to (ũM , ∇̃uM ). We finish the proof by taking
M → ∞ and observing that for every open set U the injection L1,2

a (U) ↪→ L1,2(U) is
a contraction.

To prove (B.2) let us consider u ∈ L1,2
a (Ω) such that ∇u = 0. Take g = 0 and

f = u. Then u = uΩ,h, and hypothesis (A) gives the conclusion.
In order to prove (B.3) take g = 0 and f = 1. Then uΩn,h = 1Ωn , and hypothesis

(A) gives ∫
Ωn

adx→
∫

Ω

adx.(18)

From the Hc-convergence we have 1Ω ≤ lim infn→∞ 1Ωn a.e. in D, and hence

lim inf
n→∞ 1Ωn∩{a>0} ≥ 1Ω∩{a>0}.(19)

From (18) and (19) we get 1Ωn∩{a>0}
L1(D)−→ 1Ω∩{a>0}; therefore (B.3) holds.
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(B) ⇒ (A) Assume in a first step that the set

Y = {φ ∈ L1,2
a (Ω) : ∃φn ∈ L1,2

a (Ωn) such that (φ̃n, ∇̃φn)→ (φ̃, ∇̃φ)
L2
a(D)× L2(D,R2)− strongly}(20)

is dense in L1,2
a (Ω). Then (A) follows straightforwardly. Indeed, by the boundedness

of {(ũΩn,h, ∇̃uΩn,h)} in L2
a(D) × L2(D,R2) there exists a subsequence (still denoted

by the same index) such that

(ũΩn,h, ∇̃uΩn,h)⇀ (u, u1, u2) in L2
a(D)× L2(D,R2)− weakly.(21)

From property (8) of the Hausdorff convergence and the De Rham theorem, we get
that ∇u = (v1, v2) on Ω. Let us fix φ ∈ Y . Writing the fact that uΩn,h is a solution
on Ωn with φn as a test function (where φn is given by (20)) and passing to the limit
for n→ ∞, by the usual pairing (weak, strong)-convergence we get∫

D

〈(u1, u2), ∇̃φ〉dx+
∫
D

uφ̃adx =

∫
D

hφ̃dx.

Since ∇̃φ(x) = 0 on D \ Ω and φ̃ = 0 on D \ Ω, we have∫
Ω

∇u∇φdx+
∫

Ω

uφdx =

∫
Ω

hφdx.(22)

Because (22) holds for every φ ∈ Y and Y is dense in L1,2
a (Ω), we get that u|Ω = uΩ,h

and (u1, u2)|Ω = ∇uΩ,h. Taking uΩn,h as a test function on Ωn and passing to the
limit for n→ ∞, we have∫

Ωn

|∇uΩn,h|2 + au2
Ωn,hdx =

∫
Ωn

huΩn,hdx =

∫
D

hũΩn,hdx→
∫
D

hudx.(23)

We wrote in the previous equality
∫
D
hudx =

∫
Ω
hudx. Indeed,

∫
D
gudx =

∫
Ω
gudx

because supp g ⊆ Ω, and
∫
D
fuadx =

∫
Ω
fuadx because au = 0 on Ωc ∩ {a > 0}.

The last inequality is a direct consequence of hypothesis (B.3). Since u = uΩ,h on Ω,
using relation (23) we get

|(u, u1, u2)|L2
a(D)×L2(D,R2) ≥ |(ũΩ,h, ∇̃uΩ,h)|L2

a(D)×L2(D,R2)

= lim
n→∞ |(ũΩn,h, ∇̃uΩn,h)|L2

a(D)×L2(D,R2) ≥ |(u, u1, u2)|L2
a(D)×L2(D,R2).

Consequently, we get that (u, u1, u2) = (ũΩ,h, ∇̃uΩ,h) and that convergence (21) is
strong. The continuity uΩn,h → uΩ,h was proved for a subsequence, but since the
limit is unique, it holds for the whole sequence.

To finish, let us prove that Y is dense in L1,2
a (Ω). By linearity and a truncation

argument, we can fix φ ∈ L1,2
a (Ω) such that φ ∈ L∞(Ω) and φ = 0 on Ω \ C, where

C is one connected component of Ω. From now on, we fix one representative of φ in
L1,2
a (Ω). Following (B.1) there exists un ∈ L1,2(Ωn) such that

∇̃un L2(D,R2)−→ ∇̃φ.
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Let us fix a ball B such that B ⊆ C, and choosing the representative of un in L1,2(Ωn)
by adding a suitable constant, we can assume that

∫
B
undx =

∫
B
φdx. Let M be a

positive constant such that ‖φ‖∞ < M and define

uMn = max{min{un,M},−M}.
We notice that uMn ∈ L1,2

a (Ωn) and

∇̃uMn
L2(D,R2)−→ ∇̃φ.

Moreover, since {ũMn }n is uniformly bounded in L∞(D), we can write (for a subse-
quence)

ũMnk

L2(D)
⇀ v,

where ∇v = ∇φ on Ω and v = φ on C. Using the Poincaré inequality on smooth open
subsets compactly contained in C, we have that the convergence is strong in L2

loc(C).
Following (B.2), there exists vnk

∈ L1,2
a (Ωnk

) such that

(ṽnk
, ∇̃vnk

)
L2

a(D)×L2(D,R2)−→ (ṽ|Ω − φ̃, 0).
It is obvious that vnk

can be chosen such that ‖vnk
‖∞ ≤ 2M . Let us define φnk

:=
uMnk

− vnk
∈ L1,2

a (Ωnk
). We have

∇̃φnk

L2(D,R2)−→ ∇̃φ.
Let us prove that

∫
D
a(φ̃nk

− φ̃)2dx→ 0. First, we have∫
Ω

a(φ̃nk
− φ̃)2dx→ 0

since on every compact set ω ⊆ Ω we have that φ̃nk
− φ̃ weakly converges to 0 in

L2(ω), the gradient converges to zero strongly, and the sequence is uniformly bounded
in L∞(D). Second, ∫

D\Ω
a(φ̃nk

− φ̃)2dx ≤ 4M2

∫
D\Ω

a1Ωnk
dx,

the last term converging to zero from (B.3).
Notice that we found a subsequence {φnk

} and not a sequence converging to
φ. Suppose for contradiction that there does not exist a sequence {φn} strongly
converging to φ. For a subsequence, we would have that the distance in L2

a(D) ×
L2(D,R2) from φ to L1,2

a (Ωnk
) would be bounded below by a positive number. This is

absurd since, using the same arguments, there exists a subsequence of this subsequence
for which the property cannot hold.

An immediate consequence of Theorems 4.1 and 3.2 is Theorem 1.1 announced
in the introduction.

Proof of Theorem 1.1.
Necessity. Following Theorem 4.1, condition (B.3) holds.
Sufficiency. Let us prove that (B.1), (B.2), and (B.3) hold. Condition (B.1) is a

consequence of Theorem 3.2, and condition (B.3) is assumed by hypothesis. One has
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only to verify condition (B.2) of Theorem 4.1. If Ω is connected, this is trivial, since
every function with zero gradient in Ω is constant, say c1Ω. Therefore, the sequence
c1Ωn solves (B.2) using the hypothesis on the convergence of the measures in the region
where a is positive. If Ω is not connected, then condition (B.2) is a consequence of the
more involved geometric argument relating the Hausdorff convergence to the capacity.
We recall this result from [6].
Lemma 4.2. If {Ωn}n∈N is a sequence of simply connected open sets in D such

that Ωn
Hc

−→ Ωa∪Ωb, where Ωa∩Ωb = ∅, then there exist a subsequence (still denoted by
the same index) and two sequences of simply connected open sets {Ωa

n}n∈N, {Ωb
n}n∈N

such that Ωa
n ∩ Ωb

n = ∅, Ωa
n ∪ Ωb

n ⊆ Ωn, cap(Ωn \ (Ωa
n ∪ Ωb

n)) → 0, and Ωa
n

Hc

−→ Ωa,

Ωb
n

Hc

−→ Ωb.
Using this lemma, condition (B.2) can be proved using a partition of the unity

and localizing around the boundary of ∂Ω, as in [9].

5. Further remarks. In what follows we give a simple example showing the
influence of the positivity of the function a on the shape stability of (1).

Example 5.1. Let

Ωn = (−1, 1)× (0, 1) \ (−1, 0]×
{
k

n
: k = 1, . . . , n− 1

}
.

Note that Ωn
Hc

→ Ω := (0, 1)× (0, 1).
Take a1 = 1[0,1]2 . Then, following Theorem 1.1, shape stability holds for every

admissible h. For example, if h = 1[0,1]2 , then uΩn,h = 1Ωn
. Clearly, uΩn,h converges

in L2
a1
(D) × L2(D,R2) to uΩ,h. This can be directly verified, since ∇̃1Ωn

≡ 0 and
1Ωn |{a1>0} → 1Ω|{a1>0} strongly in L2({a1 > 0}).

If a2 = 1[−1,1]×[0,1], then, for the same h,

uΩn,h(x, y) =

{
e2

2(1+e2)e
x + 1

2(1+e2)e
−x if (x, y) ∈ Ωn ∩ (−1, 0]× (0, 1),

− 1
2(1+e2)e

x − e2

2(1+e2)e
−x + 1 if (x, y) ∈ Ωn ∩ [0, 1)× (0, 1),

while uΩ,h = 1Ω. Clearly, uΩn,h does not converge to uΩ,h.
Remark 5.2 (shape stability and Mosco convergence). In general, when inves-

tigating the shape continuity of the solution of some variational PDE, one has to
refer to the Mosco convergence of the associated functional spaces. A general result
relating the Mosco convergence of functional spaces and the convergence of minima of
some functionals is contained in [1, Theorem 3.6.6]. We briefly recall the definitions
of the Kuratowski limits and Mosco convergence.

Let X be a Hilbert space and let {Gn}n∈N be a sequence of subsets of X. The
weak upper and the strong lower limits in the sense of Kuratowski are defined as
follows:

w − lim sup
n→∞

Gn =
{
u ∈ X : ∃{nk}k,∃unk

∈ Gnk
such that unk

w−X
⇀ u

}
,

s− lim inf
n→∞ Gn =

{
u ∈ X : ∃un ∈ Gn such that un

s−X−→ u
}
.

If {Gn}n∈N are closed subspaces in X, it is said that Gn converges in the sense
of Mosco to G if



476 DORIN BUCUR AND NICOLAS VARCHON

(M1) G ⊆ s− lim infn→∞Gn,
(M2) w − lim supn→∞Gn ⊆ G.

Note that in general s − lim infn→∞Gn ⊆ w − lim supn→∞Gn. Therefore, if Gn

converges in the sense of Mosco to G, then

s− lim inf
n→∞ Gn = G = w − lim sup

n→∞
Gn.

For our purpose, the space X is, following the embedding given by relations (5)–(6),
L2
a(D)× L2(D,R2).
It can be easily proved that if L1,2

a (Ωn) converges in the sense of Mosco to L
1,2
a (Ω),

then for every admissible h, uΩn,h converges to uΩ,h. Moreover, if a(x) > 0 a.e. in

D, it can be proved that if Ωn
Hc

→ Ω, then the Mosco convergence is equivalent to
the shape stability of the solution for every admissible h; this was proved in [6] for
a ≡ 1. We notice that if a vanishes on some regions, this equivalence fails. We may
have shape stability without Mosco convergence. Indeed, in the example above it is
enough to take, with a1 = 1[0,1]2 , the sequence of functions un(x, y) = x. The second
Mosco condition is not satisfied, since the weak limit in L2

a1
(D)× L2(D,R2) of this

sequence has a nonvanishing gradient on D\Ω. Although the second Mosco condition
is not satisfied in general, we note that it is satisfied for every sequence of solutions.

The first Mosco condition, i.e., every function u ∈ L1,2
a (Ω) is a strong limit (in

the sense of extensions) of a sequence of functions of L1,2
a (Ωn), is implicitly present in

Proposition 3.1, condition 3 and in the proof of Theorem 4.1. In concrete situations,
this condition is the one that is difficult to handle. If Ω would have a smooth boundary,
then the restrictions to Ωn of any extension of u would straightforwardly give (M1).
However, in general we deal with nonsmooth sets and umight not possess an extension
in L1,2(D). If Ω has a crack, the “traces” of the function may be different on each
side of the crack.

Remark 5.3. Theorem 1.1 remains valid if the operator −∆ in (1) is replaced by
a general operator A in the divergence form

Au = −
2∑

i,j=1

∂

∂xi

(
aij(x)

∂

∂xj
u
)
,

with (aij) ∈ L∞(D,R4), uniformly elliptic.
Of course, the duality argument is no longer valid for this operator; for proving

Theorem 1.1 one can use assertion 3 of Proposition 3.1.
For other approaches of the shape stability of (1), through homogenization or

relaxation techniques, we refer the reader to [3, 16, 17, 21, 22] and [11], respectively.
The notion of weak connected domains of [21], even if it does not appear explicitly
here, is strongly related through Lemma 4.2 to the convergence in the sense of Kura-
towski of the families of locally constant functions. The general relaxed form of (1)
is not known.

Largely studied in the literature is also the continuity with respect to the domain
variation of the solution of an elliptic problem with homogeneous Dirichlet boundary
conditions (in (1) the Neumann condition is replaced by u = 0 on ∂Ω). The complete
relaxation result for this problem was obtained in [15]. In a certain way, the study of
the shape continuity for Dirichlet problems is easier, mainly because the H1

0 -Sobolev
spaces enjoy a very natural extension property, but also because many results of
potential theory relating the oscillations of harmonic functions on the boundary to
the Wiener criterion can be applied.
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Another interesting question is to find whether the spectrum of the Neumann–
Laplacian is stable for perturbations of the geometric domain. As shown in the classi-
cal example of Courant and Hilbert [12], the spectrum is not stable in the case when
a fixed square is perturbed by a small square connected by a channel. Consequently,
the resolvent operators do not converge in the operator norm topology, but following
Theorem 1.1 they converge strongly.
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Abstract. We prove the nonlinear stability in Lp, with 1 ≤ p ≤ 2, of particular steady solutions
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1. Introduction. We consider a gas of charged particles described by a distri-
bution function f(t, x, v) ≥ 0 which represents the probability density of particles at
position x with velocity v at time t. The evolution of f is governed by the Liouville
evolution equation

∂f

∂t
+ v · ∇xf + F (t, x) · ∇vf = 0(1.1)

in R
+
0 × R

3 × R
3, where the electric field F (t, x) is given by an external potential φe

and by a mean field potential φ according to

F (t, x) = −q (∇xφ(t, x) +∇xφe(x)) .(1.2)

The electrostatic potential φ ≥ 0 is self-consistently computed by
φ = K ∗ ρ(f)(1.3)

with K = q
4πε0
|x|−1, where ρ(f) is the spatial density of particles, which is defined by

ρ(f)(t, x) =

∫
R3

f(t, x, v) dv .

As usual, ε0 and q are, respectively, the permittivity of the vacuum and the elementary
charge of the particles that, in what follows, we assume to be unity without loss of
generality. We shall consider the initial value problem corresponding to

f(0, x, v) = f0(x, v) ≥ 0 .(1.4)

This system is called the Vlasov–Poisson system for charged particles. The main
feature we add to standard versions of the Vlasov–Poisson system is an external
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potential that confines particles and allows the existence of steady states. For this
reason, we will refer to φe(x) as a confinement potential.

The aim of this paper is to establish the nonlinear stability of special stationary
solutions in Lp(R6) with p ∈ [1, 2] and explicit constants, at least in some cases (see
section 3). For this purpose, we shall use an entropy, which is also called Casimir-
energy, free energy, relative entropy, or Lyapunov functional in the literature. The
stationary solution is a minimizer, under constraints, of the entropy; or, reciprocally,
the entropy functional is determined by the shape in energy of the stationary solution.
Our first main result corresponds to a p which is fixed by the entropy.

Theorem 1.1. Let φe be a bounded-from-below function on R
3 with φe(x)→∞

as |x| → +∞ such that (x, s) �→ s3/2−1γ(s + φe(x)) belongs to L1 ∩ L∞(R3, L1(R)).
Here γ is the inverse of −σ′, eventually extended by 0, where σ is a bounded-from-
below and strictly convex function of class C2.

Let f be a weak solution of the Vlasov–Poisson system corresponding to a nonneg-
ative initial data f0 in L1∩Lp0 , p0 = (12+3

√
5)/11, such that σ(f0) and (|φe|+|v|2)f0

belong to L1(R6). If infs∈(0,+∞) σ
′′(s)/sp−2 > 0 for some p ∈ [1, 2], then there ex-

ists an explicit constant C > 0, which depends only on f0, such that for any t > 0,
f = f(t) satisfies

‖f−f∞‖2Lp ≤ C
∫

R6

[σ(f0)−σ(f∞)−σ′(f∞)(f0−f∞)] d(x, v)+1
2

∫
R3

|∇(φ0−φ∞)|2 dx ,

where
(
f∞(x, v) = γ( 12 |v|2 + φe(x) + φ∞(x)), φ∞

)
is a stationary solution of the Vla-

sov–Poisson system and φ0 is given by (1.3) at t = 0.
The value of p0 arises from the paper [34] by Hörst and Hunze in order to define

weak solutions (see section 2 for more details). Note that some of our results can be
extended to weaker notions of solutions, like the renormalized solutions introduced
by DiPerna and Lions in [26], as we shall see later.

Also, let us point out that assumptions over σ in Theorem 1.1 can be translated
into assumptions over γ if needed. We remark that our stationary states are obtained
as minimizers of entropy functionals; thus hypotheses over σ are more natural.

Our second main result is a stability result in L2, which can be written as follows
in the case of Maxwellian stationary solutions.

Theorem 1.2. Under the same assumptions as in Theorem 1.1, except that we
assume now p0 = 2 and σ(s) = s log s− s, there exists a convex functional F reaching
its minimum at f = f∞ such that any weak solution to (1.1)–(1.4) satisfies

‖f(t, ·)− f∞‖2L2 ≤ F [f0] .
With the notation of Theorem 1.1, p = 1, γ(s) = e−s, and (f∞, φ∞) is given by

f∞(x, v) = e−|v|2/2

(2π)3/2 ρ∞(x) with −∆φ∞ = ρ∞ = ‖f0‖L1
e−(φ∞+φe)∫
e−(φ∞+φe) dx

. More general

statements will be given in the rest of the paper.
Theorem 1.1 is based on a somehow canonical method to relate entropies and

special stationary solutions, at least for p = 1 or p = 2. Here we get an Lp-nonlinear
stability result, 1 ≤ p ≤ 2, for a whole family of stationary solutions. It is also possible
to take advantage of the uniform boundedness of the stationary solution to introduce
new possible choices of the entropy functional and get stability results in Lq with
q �= p: for instance, q = 2 and p = 1 in Theorem 1.2. Note that Theorem 1.2 provides
an L2-stability result for the Maxwellian stationary solutions, which is not included
in Theorem 1.1 (see section 4).
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Similar ideas have been used previously in various contexts: for gravitational
systems (without confinement) in [42, 44, 30, 31, 32] using the Casimir-energy method,
and for systems in bounded domains in [6, 7], using entropy fluxes involving Darrozès–
Guiraud-type estimates. For confinement, we shall refer to [27] and also to [11, 24, 10]
in the case of models with a Fokker–Planck term. Entropy methods have recently
been adapted to nonlinear diffusions: see, for instance, [2] in the linear case and
[13, 14, 20, 21, 39, 23, 22] in the nonlinear case, with applications to models where
a Poisson coupling is involved [2, 8, 9] (also see references therein for earlier works).
The estimates of Csiszár–Kullback type are indeed exactly the same in kinetic and
parabolic frameworks.

In the electrostatic case of the Vlasov–Poisson system, the most relevant refer-
ence for our paper is [12] (also see [4, 5, 29] for earlier results in plasma physics).
In [12], Braasch, Rein, and Vukadinović consider compactly supported classical solu-
tions to the Cauchy problem and stationary solutions which are compactly supported
in the energy variable and depending on additional invariants of the particle motion.
The scope of our paper is to extend their approach to general weak solutions and
to emphasize the interplay of the regularity of the initial data and the various pos-
sible functionals and norms. We improve and complement results in [12] in several
ways. We generalize stationary states in two directions: (1) We allow them to be not
compactly supported in energy variable (Maxwellian stationary states), and (2) the
dependence on energy and on other invariants of motion includes states which have
not been factorized (see section 6 for details). Theorems 1.1 and 1.2 are valid for
either weak or renormalized solutions (see below for details). And finally, we obtain
stability bounds in Lq spaces 1 ≤ q ≤ 2 (while in [12] only for q = 2).

We are going to work in the framework of weak [34, 36] or renormalized [26, 38]
solutions, which of course contains the case of classical solutions. As we shall see
below, there is a natural class of stationary solutions and Lp norms with respect to
which the stability can be studied, but we will also consider other Lq norms. For
instance, Maxwellian steady states are known to be asymptotically stable in L1(R6)
for the Vlasov–Poisson–Fokker–Planck (VPFP) system [11, 10, 27, 24]. It turns out
that they are stable for the Vlasov–Poisson system, in L1 of course, but also in other
norms. This question initially motivated our study and has been used to extend [12]
(see Theorem 1.2).

This paper is organized as follows. We start our discussion with an overview
of the definitions and properties of the solutions to the Vlasov–Poisson system. We
also introduce in section 2 the family of stationary solutions we are dealing with
and some of their properties. Section 3 contains the proof of a generalized version
of Theorem 1.1. Theorem 1.2 is proved in section 4. In section 5, we establish
some relations among various nonlinear stability results and generalize Theorem 1.2.
Finally, in section 6 we consider more general steady states depending on additional
invariants, for which we prove an extension of Theorem 1.2.

2. Notions of solution and stationary solutions.

2.1. Weak and renormalized solutions to the Cauchy problem. A classi-
cal solution [41, 43, 33, 28] is a solution to the Cauchy problem (1.1)–(1.4) for which
the derivatives hold in the classical sense and the force term F satisfies a Lipschitz
condition. Our approach applies to weaker notions of solutions. By weak solution
[3, 34, 36], we mean a solution in the distributional sense, for which the force field F
is not smooth enough to apply the classical characteristics theory (see below for a pre-
cise definition). Essentially, we are going to use the framework of weak solutions (W)
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of Hörst and Hunze [34] and, as a special case, that of Lions and Perthame [36], for
which further interpolations identities are available. These last solutions are some-
times called strong solutions [40], and we shall denote them by (S). For solutions
corresponding to initial data with very low regularity, we shall use the renormalized
solutions (R) of DiPerna and Lions [26, 38].

Before making these notions of solution precise, let us introduce some notation
and a basic hypothesis on the initial data. We shall refer to the Cauchy problem for
the Vlasov–Poisson system with initial data f0 as the initial value problem (1.1)–(1.4).
We assume

(H1) f0 is a nonnegative function in L1(R6)

and denote by M := ‖f0‖L1 its mass. Let φ0 be the solution to the Poisson equation
at t = 0, corresponding to f = f0 in (1.3).

Throughout this paper, we consider global in time solutions: R
+
0 = [0,∞) is

the time interval. As a preliminary step, we can state the following result (see the
appendix for a proof).

Proposition 2.1. For any nonnegative function f0 in L1(R6), there exists a
nonnegative strictly convex function σ such that lims→+∞ σ(s)/s = +∞ and σ(f0) ∈
L1(R6).

To obtain stability results, we are going to impose further constraints on σ, which
will be strongly related to the choice of the entropy or to the choice of a special
stationary solution. However, we first have to define a precise notion of solution.

Definition 2.2. Let p ∈ [1,∞]. A function f ∈ L∞(R+
0 , L

p(R6)) is a global
weak solution of (1.1)–(1.4) with initial data f0 if and only if the following hold:

1. f is continuous on R
+
0 with values in Ls(R6), where s ∈ [1, p) (s = 1 if

p = 1), with respect to the σ(Lp, Lp
′
) topology (weak topology for p <∞ and

weak ∗ topology for p =∞). Here p and p′ are the Hölder conjugates.
2. f(0, ·) = f0.
3. The function (x, v) �→ f(t, x, v)F (t, x) is locally integrable over R

6 for all
t ≥ 0. (Since f(t) ∈ L1(R6) for any fixed t, F (t, ·) is defined almost every-
where on R

3 and is locally integrable.)
4. For all test functions χ ∈ Cc1(R6), the function �(t) :=

∫
χ(x, v)f(t, x, v) d(x, v)

is continuously differentiable on R
+
0 and

�′(t) =
∫
v·∇xχ(x, v) f(t, x, v) d(x, v)+

∫
F (t, x)·∇vχ(x, v) f(t, x, v) d(x, v) .

Note that a weak solution for p > 1 is a weak solution for all q ∈ [1, p]. According
to Hörst and Hunze [34], such weak solutions exist in the case φe ≡ 0 globally in time
if we assume that f0 satisfies
(W) f0 ≥ 0, f0 ∈ L1(R6) ∩ Lp(R6), p ≥ p0 = (12 + 3

√
5)/11 = 1.70075 . . ., and∫

R6

(
|v|2 + φe(x)

)
f0(x, v) d(x, v) <∞ .

We shall also consider the subcase of the so-called strong solutions of Lions and Per-
thame [36]:

(S) f0 ≥ 0, f0 ∈ L1(R6) ∩ L∞(R6), and for some m > 3,∫
R6

(
|v|m + φe(x)

)
f0(x, v) d(x, v) <∞ .
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Remark 2.3. In case (W), ∇φ0 ∈ L2(R3)3 [34] as a consequence of the interpo-
lation inequality, ‖ρ‖Lq ≤ C ‖f‖θLp ‖ |v|2f‖1−θL1 with q = 5p−3

3p−1 , θ ∈ (0, 1); and of the
Hardy–Littlewood–Sobolev inequality, ‖∇φ‖Lr ≤ C ‖ρ‖Lq with 1

q − 1
r =

1
3 . The case

p = p0 is obtained by imposing r = p
′.

Without assumptions on the initial energy, it is still possible to give global exis-
tence results [15, 16]. Also note that if (W) is satisfied, f0 log f0 ∈ L1(R6), as we shall
see in section 4, provided e−β φe ∈ L1(R3) for some β > 0.

In this paper, we will also consider weaker notions of solutions.
Definition 2.4. Assume that
(R) f0 is a nonnegative function in L1(R6) such that f0 log f0 ∈ L1(R6) and∫

R6

(1
2
|v|2 + φe(x)

)
f0(x, v) d(x, v) +

1

2

∫
R3

|∇xφ0|2 dx <∞ .

We shall say that f ∈ C0(R+
0 , L

1(R6)) is a renormalized solution of (1.1)–(1.4) on R
+
0

with initial data f0 if and only if
1. the quantities ∫

R6

(1
2
|v|2 + φe(x) + φ(x, t)

)
f(t, x, v) d(x, v)

and

∫
R6

f(t, x, v) log f(t, x, v) d(x, v)

are bounded from above, uniformly in t ≥ 0;
2. β(f) = log(1 + f) is a weak solution of

∂

∂t
β(f) + v · ∇xβ(f) + F (t, x) · ∇vβ(f) = 0

considered in the distributional sense, where F is defined according to (1.2)
and (1.3).

In the case in which e−β φe ∈ L1(R3) for some β > 0, weak solutions for p > 1 are
also renormalized solutions (see Lemma 4.1).

Proposition 2.5. Let f0 verify (R) and assume that φe is a nonnegative poten-
tial such that lim|x|→+∞ φe(x) = +∞. If φe is in W 1,1

loc (R
3), then (1.1)–(1.4) admits a

global in time renormalized solution. If, moreover, φe belongs to W 1,q
loc for q ≥ 5p−3

2(p−1)

and if (W) holds, then (1.1)–(1.4) admits a weak solution.
Proof. This result can be obtained by adapting the proofs of [34, 36, 26, 38]. For

renormalized solutions, characteristics can be defined according to [25, 35] as soon as
φe is in W

1,1
loc (R

3). Details are left to the reader.
Weak or renormalized solutions have the following properties:
1. The distribution function is nonnegative for all t ≥ 0.
2. Conservation of mass: for any t ≥ 0,∫

R6

f(t, x, v) d(x, v) =

∫
R6

f0(x, v) d(x, v) = M .

3. Finite kinetic energy, potential energy, and entropy: for any t ≥ 0,∫
R6

(
1

2
|v|2 + φe(x) + φ(x)

)
f d(x, v) ≤

∫
R6

(
1

2
|v|2 + φe(x) + φ0(x)

)
f0 d(x, v)

and

∫
R6

f log f d(x, v) ≤
∫

R6

f0 log f0 d(x, v) ,
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with equality in the case of classical solutions (see Corollary 2.8 for an application).
4. In case (S), for any t ≥ 0,

‖f(t, ·)‖L∞(R6) ≤ ‖f0‖L∞(R6) .

5. Moreover, if we assume that

(H2)

∫
R6

σ(f0) d(x, v) <∞

for some strictly convex continuous function σ : R+
0 → R, then for any t ≥ 0,∫

R6

σ(f) d(x, v) ≤
∫

R6

σ(f0) d(x, v) ,

with equality in the case of classical solutions (see Corollary 2.8 for an application).

2.2. Stationary solutions and entropy functionals. Let us introduce fur-
ther notation. For any function f ∈ L1(R6), let φ = φ[f ] be the solution of −∆φ =∫

R3 f dv in L
3,∞(R3) given by the convolution with the Green function of the Lapla-

cian. The operator φ is linear and satisfies∫
R6

f φ[g] d(x, v) =

∫
R6

g φ[f ] d(x, v) .

Any function f∞,σ such that

f∞,σ(x, v) = γ

(
1

2
|v|2 + φ[f∞,σ](x) + φe(x)− α

)
(2.1)

is a stationary solution of the Vlasov–Poisson system. Such a solution exists if and
only if

−∆φ∞,σ = Gσ(φ∞,σ + φe − α) with Gσ(φ) = 4π
√
2

∫ +∞

0

√
s γ(s+ φ) ds

has a solution φ∞,σ = φ[f∞,σ] such that
∫

R6 f∞,σ d(x, v) = M . The constant α is
therefore determined by the total mass M . Under assumptions that we are going to
specify now, we will prove that such a stationary solution exists and is unique (see
Lemma 2.7).

Let us consider σ such that γ is the generalized inverse of−σ′ (eventually extended
by 0): σ is convex (resp., strictly convex) if and only if γ is monotone nonincreasing
(resp., decreasing in its support). With these notations, we assume that σ and φe
verify the following:

(H3) σ ∈ C2(R+) ∩ C0(R+
0 ) is a bounded-from-below strictly convex function

such that

lim
s→+∞

σ(s)

s
= +∞ ;

(H4) φe : R
3 → R is a measurable bounded-from-below function such that

lim
|x|→+∞

φe(x) = +∞

and x �→ Gσ(φe(x)) = 4π
√
2
∫ +∞
0

√
s γ(s+ φe(x)) ds belongs to L1 ∩ L∞(R3).
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The conditions on the growth of φe and on the decay of γ will be referred to as
confinement conditions. We are going to adapt the proofs given in [27] for the case
γ(s) = e−s and in [6, 7] for the bounded domain case to prove the existence of a
stationary solution f∞,σ. The existence of α = α(M) will be a consequence of the
proof.

Let M > 0 and consider on L1
M (R

6) = {f ∈ L1(R6) : f ≥ 0 a.e., ‖f‖L1 = M}
the functional

Kσ[f ] =

∫
R6

[
σ(f) +

(
1

2
|v|2 + φe(x)

)
f

]
d(x, v) +

1

2

∫
R3

| ∇φ[f ] |2 dx .

Definition 2.6. Given f and g in L1
M (R

6), the relative entropy of f with respect
to g is

Σσ[f |g] :=
∫

R6

[σ(f)− σ(g)− σ′(g)(f − g)] d(x, v) + 1

2

∫
R3

|∇φ[f − g]|2 dx(2.2)

Lemma 2.7. Under assumptions (H3)–(H4), Kσ is a strictly convex bounded-
from-below functional on L1

M (R
6). It has a unique global minimum, f∞,σ, which takes

the form (2.1) and is therefore a stationary solution of the Vlasov–Poisson system.
Moreover Σσ[f |f∞,σ] can be written as

Σσ[f |f∞,σ] = Kσ[f ]−Kσ[f∞,σ] .(2.3)

and σ(f∞,σ) and σ
′(f∞,σ)f∞,σ belong to L1(R6).

Proof. Assumption (H4) gives that Kσ[f ] is bounded from below by Jensen’s in-
equality. By hypothesis (H3)Kσ is convex, so we may pass to the limit in a minimizing
sequence involving the semicontinuity property. The limit f∞,σ belongs to L

1
M (R

6)
because of the Dunford–Pettis criterion. Equation (2.1) is the corresponding Euler–
Lagrange (where α enters as the Lagrange multiplier associated to the constraint on
the L1 norm). Identity (2.2) easily follows by a direct computation using (2.1).

Note that Σσ[f |f∞,σ] is obviously nonnegative, since Kσ[f ] attains its unique
minimum at f = f∞,σ.

Corollary 2.8. Consider a renormalized or weak solution f of (1.1)–(1.4)
under assumptions (H1), (H2), (H3), and (H4). Then Σσ[f(t)|f∞,σ] ≤ Σσ[f0|f∞,σ].

The proof relies on standard semicontinuity arguments and is left to the reader.

Example 2.9. (1) Let σq(s) = s
q, with γq(s) = (−s/q)+1/(q−1)

, for some given
q > 1. With the notation f∞,q = f∞,σq and φ∞,q = φ[f∞,σq ], this stationary solution
satisfies the nonlinear Poisson equation

−∆φ∞,q = Cq (α(M)− φe − φ∞,q)
3
2+ 1

q−1

+ ,

where Cq = (2π)
3/2 q−

1
q−1 Γ( q

q−1 )/Γ(
5q−3

2(q−1) ).

(2) The limit case as q → 1 corresponds to σ1(s) = s log s − s and γ1(s) = e−s.
In this case we obtain the Maxwellian stationary solution

f∞,1(x, v) = m(x, v) = M
e−

1
2 |v|2

(2π)3/2
e−(φ∞,1(x)+φe(x))∫

R3 e−(φ∞,1(x)+φe(x)) dx
,(2.4)

where φ∞,1 is given by the Poisson–Boltzmann equation

−∆xφ∞,1 =

∫
R3

m(x, v) dv = M
e−(φ∞,1+φe)∫

R3 e−(φ∞,1+φe) dx
.(2.5)
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(3) A less standard case is given by

σ(t) =

{
2
∫√− log t

1
s2e−s

2

ds if 0 < t ≤ 1 ,
0 if t > 1 ,

which corresponds to γ(t) = e−t
2

.
In the following sections, the various cases of this example will be analyzed. They

will motivate a more general treatment. For simplicity, we shall write Σq[f |f∞,q]
instead of Σσq

[f |f∞,σq ] for q ≥ 1.
3. Lp-nonlinear stability. In this section, we give an Lp-nonlinear stability

result for f∞,σ, 1 ≤ p ≤ 2, with minimal convexity assumptions on the initial data
and an explicit stability constant. It is based on the following result.

Proposition 3.1. Let f and g be two nonnegative functions in L1(R6)∩Lp(R6),
p ∈ [1, 2], and consider a strictly convex function σ : R

+
0 → R in C2(R+) ∩ C0(R+

0 ).
Let A = inf

{
σ′′(s)/sp−2 : s ∈ (0,∞)}. If A > 0, then the following inequality holds:

Σσ[f |g] ≥ 2−2/pA
[
max

(
‖f‖2−pLp , ‖g‖2−pLp

)]−1

‖f − g‖2Lp(3.1)

+
1

2

∫
R3

|∇x(φ[f ]− φ[g])|2 dx .

Proof. The case p = 1 is the well-known Csiszár–Kullback inequality (see, for
instance, [1]) that we are going to adapt to the case p ≥ 1.

Assume first that f > 0. By a Taylor development at order 2 of σ we deduce that
we can write the relative entropy for f and g as

Σσ[f |g] = 1

2

∫
R6

σ′′(ξ)|f − g|2 d(x, v) + 1
2

∫
R3

|∇x(φ[f ]− φ[g])|2 dx

≥ A
2

∫
R6

ξp−2|f − g|2 d(x, v) + 1
2

∫
R3

|∇x(φ[f ]− φ[g])|2 dx ,(3.2)

where ξ lies between f and g. If p = 2, the result is obvious. Let 1 ≤ p < 2. By
Hölder’s inequality, for any h > 0 and for any measurable set A ⊂ R

6, we get∫
A
|f − g|p h−α hα d(x, v) ≤

(∫
A
|f − g|2 hp−2 d(x, v)

)p/2(∫
A
hαs d(x, v)

)1/s

with α = p (2− p)/2, s = 2/(2− p). Thus(∫
A
|f − g|2 hp−2 d(x, v)

)p/2

≥
(∫
A
|f − g|p d(x, v)

) (∫
A
hp d(x, v)

)(p−2)/2

.

We apply this formula to two different sets.
(i) On A = A1 = {(x, v) ∈ R

6 : f(x, v) > g(x, v)}, use ξp−2 > fp−2 and take
h = f : (∫

A1

|f − g|2ξp−2 d(x, v)

)p/2

≥
(∫
A1

|f − g|p d(x, v)
)
‖f‖−(2−p) p/2

Lp .

(ii) On A = A2 = {(x, v) ∈ R
6 : f(x, v) ≤ g(x, v)}, use ξp−2 ≥ gp−2 and take

h = g: (∫
A2

|f − g|2ξp−2 d(x, v)

)p/2

≥
(∫
A2

|f − g|p d(x, v)
)
‖g‖−(2−p) p/2

Lp .
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To prove (3.1) in the case f > 0, we just add the two previous inequalities
in (3.2) and use the inequality (a+ b)r ≤ 2r−1(ar + br) for any a, b ≥ 0 and r ≥ 1. To
handle the case f ≥ 0, we proceed by a density argument: apply (3.1) to fε(x, v) =
f(x, v) + ε e−|x|

2−|v|2 and let ε→ 0 using Lebesgue’s convergence theorem.
This proposition can be applied to weak or renormalized solutions, thus proving

the first main result of this paper, which is a more detailed version of Theorem 1.1.
Theorem 3.2. Let f0 verify (H1), (H2), and either (R) or (W). Assume (H3)

and (H4). If f is a weak or renormalized solution of (1.1)–(1.4) with initial value f0,
then

‖∇φ−∇φ∞,σ‖2L2 ≤ 2Σσ[f0|f∞,σ] .

Assume that A = inf
{
σ′′(s)/sp−2 : s ∈ (0,∞)} is positive for some p ∈ [1, 2]. If

p = 1, assume moreover that e−φe ∈ L1. Then f0 ∈ Lp(R6) and

‖f(t)− f∞,σ‖2Lp ≤ C(f0, σ) Σσ[f0|f∞,σ]

for any t ≥ 0, where C(f0, σ) is a constant, which takes the explicit form

C(f0, σ) =


22/p

A max
(
‖f0‖2−pLp , ‖f∞,σ‖2−pLp

)
if p > 1 ,

4
AM if p = 1 .

In case (S), C(f0, σ) is also bounded by 22/p

A M (2−p)/pM(2−p)(p−1)/p with M =
max (‖f0‖L∞ , ‖f∞,σ‖L∞).

Proof. The proof is a straightforward consequence of Lemma 2.7, Corollary 2.8,
and Proposition 3.1 once it is known that C(f0, σ) is finite. Although we directly
prove an estimate of ‖f(t)− f∞,σ‖2Lp in terms of Σσ[f0|f∞,σ], we may notice that, for
p > 1, two integrations give the inequality

σ(s)− σ(s0)− σ′(s0) (s− s0) ≥ A

p (p− 1)
[
sp − sp0 − p sp−1

0 (s− s0)
]

for any (s, s0) ∈ (0 +∞)2. Applied to f and f∞,σ, this means that on R
6

σ(f)−σ(f∞,σ)−σ′(f∞,σ) (f−f∞,σ) ≥ A

p (p−1)
[
fp−fp∞,σ−p fp−1

∞,σ (f−f∞,σ)
]
,(3.3)

which proves that f belongs to L∞(R+, Lp(R6)) (by ‖f0‖Lp , according to Corollary 2.8
applied with σ(s) = σp(s) = s

p). The constant C(f0, σ) involves ‖f0‖Lp , which is
therefore itself bounded in terms of σ(f0) and f0 σ

′(f0).
If p = 1, the condition that e−φe ∈ L1 shows that f∞,σ also belongs to L

1. In
that case, inequality (3.3) is replaced by

σ(f)− σ(f∞,σ)− σ′(f∞,σ) (f − f∞,σ) ≥ A
[
f log

(
f

f∞,σ

)
− (f − f∞,σ)

]
.

The details of the proof are left to the reader.
Remark 3.3. Note that A = p (p − 1) if σ = σp, p > 1, and A = 1 if p = 1 and

C(f0, σ2) = 1. The expression of C(f0, σ) is optimal at least for σ = σp in the limit
‖f0 − f∞,σ‖Lp → 0 (see [1] for a discussion in the case p = 1).

For p > 2, Hölder’s inequality holds in the reverse sense: ‖f(t) − f∞,σ‖2Lp +
‖∇φ−∇φ∞,σ‖2L2 controls Σσ[f0|σ].

For p = 1, we recover the classical Csiszár–Kullback inequality in Proposition 3.1
and a stability result in L1 (see [1, 2]) which is natural in the framework of renormal-
ized solutions (if f log f belongs to L1: see Lemma 4.1 below).
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4. L2-nonlinear stability of Maxwellian steady states. In [12], Braasch,
Rein, and Vukadinović introduce modified Lyapunov functionals for proving L2-stabil-
ity for certain steady states (see section 5 for more details). In this section, we shall
extend this approach to the Maxwellian case. The main idea is the following: Although
σ′′(s) = 1/s is not bounded from below uniformly away from 0 (which would be the
condition to apply directly Proposition 3.1 in L2), since f∞,1 is bounded in L

∞ by a
constant s̄, it is sufficient to consider the infimum of σ′′ in (0, s̄).

In the Maxwellian case, we first notice that (H2) follows from the other assump-
tions.

Lemma 4.1. Assume that e−β φe belongs to L1(R3) for some β > 0. Let f be a
nonnegative function in L1∩Lq(R6), q > 1, such that (x, v) �→ (|v|2+φe(x))f(x, v) ∈
L1(R6). Then f log f belongs to L1(R6).

Proof. Depending on the sign of log f , we are going to consider two cases.

(1) Define g(x, v) = e−
β
2 |v|2−β φe(x). On A = {(x, v) ∈ R

6 : f(x, v) < 1}, using
Jensen’s inequality, we get

0 ≥
∫
A

[
f log f + β

(
1

2
|v|2 + φe

)
f

]
d(x, v) =

∫
A
f log

(
f

g

)
d(x, v)

≥ ‖f‖L1(A) log

(‖f‖L1(A)

‖g‖L1(A)

)
.

(2) On R
6 \ A, we conclude using the next lemma.

Lemma 4.2. Let f be a nonnegative function in L1 ∩ Lq(Ω), q > 1, for some
arbitrary domain Ω ⊂ R

d, d ≥ 1. Then∫
Ω

f(z) log f(z) dz ≤ 1

q − 1 ‖f‖L1(Ω) log

(‖f‖qLq(Ω)

‖f‖L1(Ω)

)
.

Proof. According to Hölder’s inequality,

‖f‖rLr ≤ ‖f‖
q−r
q−1

L1 ‖f‖
q(r−1)
q−1

Lq

for 1 ≤ r ≤ q. At r = 1, this is an equality and thus we may derive the inequality
with respect to r at r = 1.

Let φe and f0 verify, respectively, (H4) for σ1(s) = s log s − s, and (H1), (W).
Consider a weak or renormalized solution f of (1.1)–(1.4) with initial value f0 and
the corresponding stationary solution f∞,1 = m given by (2.4)–(2.5). According to
Theorem 3.2, m is L1-stable:

Σ1[f |m] ≥ 1

4M
‖f −m‖2L1 .

We shall now prove an L2-stability result form using an appropriate cut-off functional
as in [12]. Let E1(x, v) :=

1
2 |v|2 + φ∞,1(x) + φe(x). According to (H4),

Emin := inf{E1(x, v) : (x, v) ∈ R
6} ≥ inf{φe(x) : x ∈ R

3} > −∞ .
Denote m = ϕ ◦ E1 with ϕ(s) = κ e

−s, where

κ =
M

(2π)3/2

[∫
e−φ1,∞−φe dx

]−1

.(4.1)
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Consider s̄ = ϕ(Emin) and define

τ1(s) :=

{
s log s− s if s ∈ [0, s̄] ,
1
2κ e

Emin (s− s̄)2 − (Emin − log κ)(s− s̄) + s̄ log s̄− s̄ if s ∈ (s̄,+∞) .
The function τ1 is of class C([0,∞))∩C2((0,∞)), with min(τ ′′1 ) = eEmin/κ > 0. Since
0 ≤ m(x, v) ≤ ϕ(Emin) = s̄ for any (x, v) ∈ R

6 and ϕ is decreasing, m is a minimizer
of the modified free energy (or Casimir) functional Στ1 [f |m] = Kτ1 [f ]−Kτ1 [m], where

Kτ1 [f ] =

∫
R6

(
1

2
|v|2 + 1

2
φ+ φe

)
f d(x, v) +

∫
R6

τ1(f) d(x, v) ,

and we can apply Theorem 3.2 with p = 2. This proves a refined version of Theo-
rem 1.2. Since f belongs to L2, τ1(f) makes sense in L

1 according to Lemma 4.1. Let
us remark that the construction of τ1 is done in such a way that Kτ1 [m] = Kσ1 [m],
and then Corollary 2.8 can be applied. In this framework, it is natural to work with
weak rather than renormalized solutions.

Theorem 4.3. Assume (H1), (H3), (H4) for σ = σ1 and (W) for p = 2.
Consider the stationary solution given by (2.4)–(2.5). With the above notation, every
weak solution f of (1.1)–(1.4) with initial data f0 ∈ L1 ∩ L2(R6) verifies

Στ1 [f0|m] ≥ Στ1 [f(t)|m] ≥
1

2 s̄
‖f(t)−m‖2L2 for all t ≥ 0 .

Remark 4.4. (1) A simpler version of Theorem 4.3 holds for solutions satisfying
(S). In this case, it is not necessary to modify σ, since σ′′1 (s) = 1

s is bounded from
below in (0,max(‖f0‖L∞ , ‖m‖L∞)] by max(‖f0‖L∞ , ‖m‖L∞)−1.

(2) Theorem 4.3 can be generalized to any stationary solution f∞,σ and any
Lq norm with p �= q ∈ (1, 2]; see the next section.

(3) Note that in the Maxwellian case the value of κ defined by (4.1) is e−α(M),
where α = α(M) is the constant in (2.1) which is fixed by the mass constraint.

5. General nonlinear stability results. In this section, we generalize to Lq,
1 ≤ q ≤ 2, and to arbitrary steady states f∞,σ the stability results of sections 3–4. We
are also going to generalize the techniques used in the L2-stability result of Braasch,
Rein, and Vukadinović in [12], which can be summarized as follows. Let γ be a
C1 function on R such that γ′ < 0 on (−∞, Emax) and γ ≡ 0 on [Emax,+∞) and
define σ as a primitive of −(γ−1), which is well defined at least on some subinterval
in R

+ (see, for instance, [14] for more details). Then f∞,σ is a compactly supported
steady state which is L2-stable among weak or renormalized solutions of (1.1)–(1.4).

For q > p, the main idea is again to bound σ′′(s)/sq−2 from below only on the
interval (0, s̄ = ‖f∞,σ‖L∞) and to modify σ on (s̄,+∞). In this case, let us establish
a useful consequence of Proposition 3.1. Let Eσ(x, v) :=

1
2 |v|2 + φ∞,σ(x) + φe(x) and

Emin := inf{Eσ(x, v) : (x, v) ∈ R
6}, which is finite by assumption (H4). With the

notation of sections 2–3, f∞,σ = γ ◦ (Eσ − α), where α is such that ‖f∞,σ‖L1 = M .
Take s̄ = γ(Emin − α) and define

τσ(s) :=

{
σ(s) if s ∈ [0, s̄] ,
ψ(s) if s ∈ (s̄,+∞)

with ψ(s) = σ′′(s̄)
σ′′
q (s̄)σq(s) + (σ

′(s̄)− σ′′(s̄)
σ′′
q (s̄) σ

′
q(s̄))(s− s̄) + σ(s̄)− σ′′(s̄)

σ′′
q (s̄) σq(s̄) and σq(t) =

tq. With the truncated Lyapunov functional Στσ [f |f∞,σ] = Kτσ [f ] −Kτσ [f∞,σ], we
immediately get the following variant of Proposition 3.1.
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Corollary 5.1. Let f and g be two nonnegative functions in L1(R6) ∩ Lq(R6),
q ∈ [1, 2], and consider a strictly convex function σ : R

+
0 → R in C2(R+) ∩ C0(R+

0 ).
With the above notation, let B = inf

{
σ′′(s)/sq−2 : s ∈ (0, s̄)}. If B > 0, then there

exists a constant C > 0 such that

Στσ [f |g] ≥ C ‖f − g‖2Lq +
1

2
‖∇φ−∇φ∞,σ‖2L2 .

As in the case of section 4, this estimate can be applied to get nonlinear stability
results.

Theorem 5.2. Let f0 verify (H1), (H2), and either (R) or (W). Assume that σ
and φe satisfy (H3) and (H4). Assume that inf

{
σ′′(s)/sp−2 : s ∈ (0, s̄)} is positive for

some p ∈ [1, 2], where s̄ is defined as above. Then f∞,σ is Lq-nonlinearly stable among
weak or renormalized solutions of (1.1)–(1.4) for any q ∈ (1, 2], provided f0 ∈ Lq(R6)
if q > p.

Proof. The case q = p is covered by Theorem 3.2. In the case q > p, the proof is
an easy application of Corollary 5.1: f∞,σ is L

q-stable in the sense that there exists
a constant C > 0 such that for any t ≥ 0,

‖f(t)− f∞,σ‖Lq ≤ C Στσ [f0|f∞,σ] .

The case 1 < q < p relies on Hölder’s inequality and Theorem 3.2:

‖f(t)− f∞,σ‖Lq ≤ (2M) p−q
q (p−1) (C(f0, σ) Σσ[f0|f∞,σ])

p (q−1)
2q (p−1) .

The case p = q = 1 is covered by Theorem 3.2. Only the case 1 = q < p is left
open. In the case q > p, notice that the Lq norm is bounded in terms of Στσ [f0|f∞,σ]
and not in terms of Σσ[f0|f∞,σ] (as is also the case in Theorem 4.3, with p = 1, q = 2).

6. Steady states depending on additional invariants. In the previous sec-
tions, we dealt with stationary solutions depending only on the energy. Our stability
analysis can be extended to steady states which depend on additional invariants of the
particle motion. To avoid lengthy statements, we shall state only the generalization
of Theorem 4.3. In order to emphasize the connection with the previous results, we
shall abuse the same notations.

Consider the ODE system

Ẋ = V , V̇ = −∇xφ(t,X)−∇xφe(X) ,

which describes the characteristics of the Vlasov equation (1.1). We shall assume
that either both φ and φe are locally Lipschitz (classical solutions), or both φ and φe
are at least in W 1,1

loc (using the generalized characteristics of DiPerna and Lions; see
[25, 35]). A function I : R6 → R

m is an invariant of the motion if and only if

d

dt
I(X(t), V (t)) = 0

in an appropriate sense. Classical examples of invariants are, for instance, the angular
momentum I(x, v) = x×v in the case of a central force motion (i.e., if φ+φe is radially
symmetric), its modulus, or one of its components: I(x, v) · ν, in the axisymmetric
case with axis of direction ν ∈ S2, corresponding to a system invariant under rotations
of axis ν. References on existence results of classical solutions with symmetries can
be found in [28] (for stationary solutions, see [18]).
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Consider stationary solutions in the form

f∞,σ(x, v) = µ
(
E(x, v)− αM [φ∞,σ, φe, I], I(x, v)

)
,(6.1)

where αM is a constant to be determined by ‖f∞,σ‖L1 =M , E is the energy, and I is
an invariant of the motion. Note that E depends on φ∞,σ = φ[f∞,σ]. For simplicity,
we suppose that I is a scalar quantity.

In [12], Braasch, Rein, and Vukadinović consider the case where µ can be factor-
ized as

µ(E, I) = γ(E − α) ν(I) for all (E, I) ∈ R
2 ,

where γ is compactly supported and α ∈ R. If γ satisfies (H3) and (H4) and if ν is
a C1 uniformly positive function, our previous results can easily be extended. In this
section, we are going to consider general steady states corresponding to functions µ
which cannot be factorized in terms of two functions γ and ν (such an extension has
already been considered by Guo and Rein in [32] for gravitational systems) or which
do not necessarily have a compact support in E.

In order to obtain the existence of these stationary solutions, we have to assume
the following hypotheses on µ and φe, which are generalizations of (H3) and (H4) of
section 2.
(H3′) Let σ : R

+
0 ×R→ R be such that ∂σ

∂s (s, I) = −µ−1(s, I) and assume that for

any fixed I ∈ R, σ(., I) has a C0(R0
+) ∩ C2(R+) regularity and is bounded

from below, strictly convex, and such that lims→+∞ σ(s, I)/s = +∞. Here
µ−1 is the generalized inverse of s �→ µ(s, I) for fixed I.

(H4′) The external potential φe : R
3 → R is a measurable bounded-from-below func-

tion such that lim|x|→+∞ φe(x) = +∞ and

x �→
∫

R3

µ

(
1

2
|v|2 + φe(x), I(x, v)

)
dv

belongs to L1 ∩ L∞(R3).
The stationary solution f∞,σ is characterized as the unique nonnegative critical

point of a strictly convex coercive functional Kσ, with

Kσ[f ] =

∫
R6

[
σ(f, I) +

(
1

2
|v|2 + φe(x)

)
f

]
d(x, v) +

1

2

∫
R3

|∇φ[f ]|2 dx ,

under the constraint
∫

R6 f∞,σ d(x, v) = M for some given M > 0. As in section 2,
αM in (6.1) is the Lagrange multiplier associated to the constraint on the mass and
is uniquely determined by the condition

∫
R6 f∞,σ d(x, v) = M . To σ we associate a

relative entropy functional defined by

Σσ[f |f∞,σ] := Kσ[f ]−Kσ[f∞,σ]

=

∫
R6

[
σ(f, I)−σ∞− ∂σ∞

∂s
(f−f∞,σ)

]
d(x, v) +

1

2

∫
R3

|∇x(φ[f ]−φ∞,σ)|2dx

with σ∞ = σ(f∞,σ, I) and φ∞,σ = φ[f∞,σ].

If there exists a function Aσ(I) > 0 such that
∂2σ
∂s2 (s, I) ≥ Aσ(I) for any (s, I) ∈

R
+
0 × R, by Taylor expansion it follows that

Σσ[f |f∞,σ] ≥
∫

R6

Aσ(I)|f − f∞,σ|2 d(x, v) ,
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which proves a weighted L2-stability result. Exactly as before, we can use a cut-off
argument and get a generalization of Theorem 4.3.

Let Eσ(x, v) :=
1
2 |v|2+φ∞,σ(x)+φe(x) and Emin := inf{Eσ(x, v) : (x, v) ∈ R

6},
which is finite by assumption (H4′). With evident notation, f∞,σ = µ(Eσ(·) − αM ,
I(·, ·)). Take s̄(I) = µ(Emin − αM , I) and define for any I ∈ R

τσ(s, I) :=

{
σ(s, I) if s∈ [0, s̄(I)] ,
ψ(s, I) if s∈(s̄(I),+∞)(6.2)

with ψ(s, I) = σ′′(s̄,I)
σ′′
2 (s̄) σ2(s) + (σ

′(s̄, I)− σ′′(s̄,I)
σ′′
2 (s̄) σ

′
2(s̄))(s− s̄) + σ(s̄, I)− σ′′(s̄,I)

σ′′
2 (s̄) σ2(s̄),

s̄ = s̄(I), and σ2(s) = s
2. With the truncated Lyapunov functional Στσ [f |f∞,σ] =

Kτσ [f ]−Kτσ [f∞,σ], we immediately get the following variant of Theorem 4.3.
Theorem 6.1. Let I be a function in C1(R6) and assume that φe, µ verify

(H3′)–(H4′). Assume, moreover, that

Bσ(I) = inf

{
s ∈ [Emin − αM , µ−1(0, I)] :

∂2σ

∂s2
(s, I)

}
> 0 for any I ∈ R .

Let f0 be a nonnegative function in L1(R6) ∩ L2(R6, Bσ(I(x, v)) d(x, v)) such that
(x, v) �→ σ(f0(x, v), I(x, v)) belongs to L1(R6) and consider a weak (resp., renormal-
ized) solution of the Vlasov–Poisson system with initial data f0 satisfying (W) (resp.,
(R)). Then for any t ≥ 0

Στσ [f0|f∞,σ] ≥ Στσ [f(t)|f∞,σ] ≥
∫

R6

Bσ(I(x, v)) |f(t, x, v)− f∞,σ(x, v)|2 d(x, v) .

Weighted Lq estimates can also be established if one replaces σ2 by σq in (6.2),

under the condition that inf{s ∈ [Emin − α, µ−1(0, I)] : s2−q ∂
2σ
∂s2 (s, I)} > 0 for any

I ∈ R.
Remark 6.2. Equation (1.1) is a special case (parabolic-band approximation) of

the Vlasov–Poisson system for semiconductors

∂f

∂t
+ v(p) · ∇xf + F (t, x) · ∇pf = 0

on R
+
0 × R

3 × R
3, with v(p) = ∇pε(p). If we assume that ε is a nonnegative C

1

function such that e−ε(p) ∈ L1(R3), then abusing the same notations as for (1.1)
(which corresponds to the special case ε(p) = 1

2p
2), one can, for instance, prove that

there exists a Maxwellian-type stationary solution given by

m(x, p) = M
e−ε(p)−q (φ(x)+φe(x))∫

R6 e−ε−q (φ+φe) d(x, p)
,

where φ is given by (1.3) with ρ(f)(t, x) =
∫

R3 f(t, x, p) dp. Nonlinear stability results
for m and more general stationary states can be easily obtained using the previous
ideas. Realistic models include collisions, which usually determine a special class of
stationary solutions (and the appropriate Lyapunov functional is then decreasing even
for classical solutions). We refer to [37, 6, 7, 17, 19] for more details on this subject.

7. Appendix: A convexity property of L1 functions. Let f0 be a nonneg-
ative function in L1(Ω) for some (not necessarily bounded) domain Ω in R

d, d ≥ 1.
It is straightforward to check that σ(f0) ∈ L1(Ω) if σ is a C2 convex function on R

+
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such that s �→ σ(s)/s is bounded (consider, for example, σ(s) = 2s + e−s − 1). The
result of Proposition 2.1, which is a special case of the following Proposition, is much
stronger.

Proposition 7.1. Let (E, dµ) be a measurable space. For any nonnegative
function f0 in L1(E, dµ), there exists a nonnegative strictly convex function σ of
class C2 such that lims→+∞ σ(s)/s = +∞ and σ(f0) ∈ L1(E, dµ).

This result is more or less standard. For completeness, we are going to give a
proof which is based on the following elementary lemma.

Lemma 7.2. Consider a sequence {αn} with αn > 0 for any n and
∑
αn < ∞.

Then there exists an increasing sequence {βn} with βn > 0 for any n ∈ N, and
limn→∞ βn = +∞ such that

∑
αnβn <∞.

Proof of Lemma 7.2. We prove this result by an explicit construction of βn. Let
εn =

∑
m≥n αm and take βn =

1
2
√
εn
:

αnβn = (εn − εn+1)
1

2
√
εn
≤ √εn −√εn+1 ,

which immediately gives
∑

m≥n αmβm ≤
√
εn.

Proof of Proposition 7.1. Let αn =
∫
n≤f0<n+1

f0 dµ and take βn given by

Lemma 7.2. One can find a convex function σ with s �→ σ(s)/s nondecreasing such
that σ(n+ 1) = (n+ 1)βn. Thus∫

n≤f0<n+1

σ(f0) dµ ≤
∫
n≤f0<n+1

f0 dµ · σ(n+ 1)
n+ 1

= αnβn ,

which ends the proof.
Remark 7.3. From Proposition 7.1, it is clear that there is no optimal convex

function σ corresponding to a given initial data f0 (reapply the Proposition to σ(f0)).
To any σ, one can, however, associate a function γ. Is there an optimal condition
on the growth of φe so that both the stationary solution and the relative entropy are
well defined? This would indeed define a notion of confinement which would depend
only on f0. On the other hand, if the growth condition is not satisfied, is it possible
to give some dispersion estimate (as in the case φe ≡ 0, or (x−x0) ·∇φe ≥ 0 for some
given x0 ∈ R

3)?

Acknowledgment. The authors thank Bernt Wennberg for a comment which
led us to include the results stated in the appendix.

REFERENCES

[1] A. Arnold, P. Markowich, G. Toscani, and A. Unterreiter, On generalized Csiszár-
Kullback inequalities, Monatsh. Math., 131 (2000), pp. 235–253.

[2] A. Arnold, P. Markowich, G. Toscani, and A. Unterreiter, On convex Sobolev inequal-
ities and the rate of convergence to equilibrium for Fokker-Planck type equations, Comm.
Partial Differential Equations, 26 (2001), pp. 43–100.

[3] A.A. Arsen’ev, Global existence of a weak solution of Vlasov’s system of equations, Soviet
Math. Dokl., 14 (1973), pp. 1763–1765.

[4] J. Batt, P.J. Morrison, and G. Rein, A rigorous stability result for the Vlasov-Poisson
system in three dimensions, Ann. Mat. Pura Appl. (4), 164 (1993), pp. 133–154.

[5] J. Batt, P.J. Morrison, and G. Rein, Linear stability of stationary solutions of the Vlasov-
Poisson system in three dimensions, Arch. Ration. Mech. Anal., 130 (1995), pp. 163–182.

[6] N. Ben Abdallah and J. Dolbeault, Entropies relatives pour le système de Vlasov-Poisson
dans des domaines bornés (Relative entropies for the Vlasov-Poisson system in bounded
domains), C. R. Acad. Sci. Paris Sér. I Math., 330 (2000), pp. 867–872.



NONLINEAR STABILITY IN Lp 493

[7] N. Ben Abdallah and J. Dolbeault, Relative entropies for kinetic equations in bounded
domains (irreversibility, stationary solutions, uniqueness), Arch. Ration. Mech. Anal., to
appear.

[8] P. Biler and J. Dolbeault, Long time behavior of solutions to Nernst-Planck and Debye-
Hückel drift-diffusion systems, Ann. Henri Poincaré, 1 (2000), pp. 461–472.
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Abstract. In light of applications to relaxed problems in the calculus of variations, this paper
addresses convex but not necessarily strictly convex minimization problems. A class of energy func-

tionals is described for which any stress field σ in Lq(Ω) with div σ in W 1,p′ (Ω) belongs to W 1,q
loc (Ω).

The condition on div σ holds, for example, for solutions of the Euler–Lagrange equations involv-
ing additional lower-order terms. Applications include the scalar double-well potential, an optimal
design problem, a vectorial double-well problem in a compatible case, and Hencky elastoplasticity
with hardening. If the energy density depends only on the modulus of the gradient, we also show
regularity up to the boundary.
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1. Introduction. Consider a volume term f ∈ Lqloc(Ω), Dirichlet data u0 ∈
W 1,p(Ω), and a nonvoid, closed, convex set A of admissible displacements, which
satisfies u0 + W 1,p

0 (Ω) ⊆ A ⊆W 1,p(Ω). The problem

minimize E(u) :=

∫
Ω

W (Du) dx−
∫

Ω

f u dx among u ∈ A(1.1)

may fail to have a solution in A. Typically, infimizing sequences exist and are bounded
in the seminorm of W 1,p(Ω) and weakly convergent towards some u in A. The limit
u, however, may fail to minimize the energy E since the functional E : A → R is not
(sequentially) weakly lower semicontinuous owing to its nonconvexity.

Nevertheless, u describes the macroscopic, space-averaged state and is therefore of
interest. Relaxation results in the calculus of variations show that u can be computed
as a solution of the relaxed problem

minimize RE(u) :=

∫
Ω

ϕ(Du) dx−
∫

Ω

f u dx among u ∈ A.(1.2)

In the general case ϕ is the quasi-convexification of W [Dac89, Rou97]. The arguments
of this paper are essentially restricted to the situation where ϕ is the convex envelope
of W .

It was observed in [Fri94, Cel93a, Cel93b, CP97b] for scalar problems and recently
in [BKK00] in the general case that the stress fields σj := DW (Duj) of an infimizing
sequence uj converge in a weak sense. The limit σ is given as the stress of a relaxed
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energy ϕ, i.e., σ = Dϕ(Du). Hence the stress field associated with (1.1) can be
computed from (1.2); for the regularity of σ it suffices to study (1.2).

This paper establishes local regularity of the stress variable σ under minimal
conditions on u. We consider a class of convex (but not necessarily strictly convex)
C1 functions ϕ with

|Dϕ(A)−Dϕ(B)|2 ≤ c1 (1 + |A|s + |B|s)
×(Dϕ(A)−Dϕ(B)) : (A−B)(1.3)

for all A,B ∈ M
m×n (Mm×n denotes the real m × n matrices) and a multiplicative

constant c1. Note that (1.3) implies convexity of ϕ but not strict convexity.
Theorem 2.1 of section 2 asserts that the monotonicity condition (1.3) and the

identity divDϕ(Du) = f in W 1,q(Ω), which is the Euler–Lagrange equation corre-
sponding to (1.2), together yield σ = Dϕ(Du) in W 1,q

loc (Ω). Examples include the
scalar two-well potential (see section 3) and a relaxed energy density of an optimal
design problem (see section 4).

A symmetric variant of (1.1)–(1.2), where n = m and where Du is replaced by
the symmetric part ε(u) := symDu, is given by

minimize RE(u) :=

∫
Ω

ϕ(ε(u)) dx−
∫

Ω

f u dx among u ∈ A(1.4)

and is discussed in section 5. Emphasis is put on the robustness of the stress estimate
as λ→∞, where λ is the Lamé constant related to volume changes. Applications to
Hencky elastoplasticity and a vector two-well example in sections 6 and 7, respectively,
conclude this paper.

Throughout this paper M
m×n denotes the real m× n matrices endowed with the

Euclidean scalar product A : B :=
∑m
j=1

∑n
k=1 AjkBjk and the induced (Frobenius

matrix) norm | · |, |A| := (A : A)1/2. We use standard notation for Sobolev and
Lebesgue spaces and their norms and seminorms.

2. Abstract stress regularity result. Let Ω be an open set in R
n, let ϕ :

M
m×n → R be a C1 function, and let Dϕ be its derivative. Suppose that there

exist constants 1 < p < ∞, 1 < r < ∞, 0 ≤ s < ∞, and 0 < c2 such that, for all
A,B ∈M

m×n,

|Dϕ(A)−Dϕ(B)|r ≤ c2 (1 + |A|s + |B|s)× (Dϕ(A)−Dϕ(B)) : (A−B).(2.1)

Theorem 2.1. Assume furthermore that

u ∈W 1,p(Ω; R
m) and σ := Dϕ(Du)

satisfy

σ ∈ Lqloc(Ω; M
m×n) and div σ ∈W 1,p′

loc (Ω; R
m)

for p′ := p/(p− 1) and q := r/(1 + s/p). Suppose p′ ≤ q and r ≤ 2. Then

σ ∈W 1,q
loc (Ω; M

m×n).

Remark 2.1. (a) The point is that (2.1) implies that ϕ is convex; nonetheless, ϕ
need not to be strictly convex since the lower bound is in terms of stress differences
but not in terms of |A−B|.
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(b) The assumptions on u can be localized to u ∈ W 1,p
loc (Ω; R

n) by applying the
result to subsets of Ω.

Proof. Let ω be an open, bounded set which is compactly contained in Ω, i.e.,
ω ⊂ ω ⊂ Ω. Fix η ∈ D(ω) and a direction M ∈M

m×n with |M | = 1. Set α := 1/(r−1)
and β := r/(r − 1). For 0 < h < h0 := dist(supp η; ∂ω) consider the difference
quotients

τ(x) := (σ(x + hM)− σ(x))/h,

e(x) := (u(x + hM)− u(x))/h,

δ(x) := De(x).

A standard argument in the approximation of weak derivatives by difference quotients
shows that

‖e‖p := ‖e‖Lp(ω) ≤ c3 ‖u‖W 1,p(Ω).(2.2)

Here and throughout the proof ‖ · ‖t := ‖ · ‖Lt(ω) denotes the Lt(ω)-norm with respect
to the subdomain ω of Ω.

Since u ∈ W 1,p(Ω) the expression ‖e‖Lp(ω) is bounded uniformly in h. A careful
use of Hölder’s inequality in combination with q′ ≤ p,

div σ ∈W 1,p′(ω; Mm×n) and σ ∈ Lp′(ω; Mm×n),

yields the uniform bound

‖ &q/r ‖r/q1+p/s + ‖e‖p + ‖e‖q′ + ‖ηβ div τ‖p′ + ‖ η ‖W 1,∞(Ω) ≤ c4,(2.3)

where &(x) := 1 + |Du(x)|s + |Du(x + hM)|s.
To verify the assertion, we have to bound |τ |Lq(K) uniformly in h for each compact

set K ⊂ Ω (below K is a compact subset of the interior of supp η).
Applying (2.1) with A := Du(x + hM) and B := Du(x), we obtain

|τ |r ≤ c2 h
2−r & τ : δ a.e. in ω.(2.4)

Raising (2.4) to the power q/r, multiplying with ηαq, and finally integrating the result
over Ω, we infer that

‖ηατ‖qq ≤ c
q/r
2 hq(2−r)/r

∫
Ω

ηαq &q/r (τ : δ)q/rdx.(2.5)

Applying Hölder’s inequality (with r/q and (r/q)′ = 1+p/s), raising the result to the
power r/q, and using the fact that 0 ≤ τ : δ and αr = β, we derive

‖ηατ‖rq ≤ c2 h
2−r ‖ &q/r ‖r/q1+p/s

∫
Ω

ηβ τ : δ dx.(2.6)

Since δ = De on ω and h ≤ h0, an integration by parts proves that∫
Ω

ηβ τ : δ dx = −
∫

Ω

e · div(ηβτ)dx(2.7)

≤ β‖ η ‖1,∞ ‖ ηβ−1 τ e ‖1 + ‖ e ‖p‖ ηβ div τ ‖p′ .
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Hölder’s inequality and the relation β − 1 = α lead to

‖ ηβ−1 τ e ‖1 ≤ ‖ e ‖q′ ‖ ηα τ ‖q.(2.8)

The combination of (2.6)–(2.8) with (2.3) and the hypothesis r ≤ 2 proves that

‖ηατ‖rq ≤ c2c
3
4h

2−r
0 (1 + ‖ ηατ ‖q).(2.9)

With Young’s inequality ab ≤ (ac)r/r + (b/c)r
′
/r′ for positive a, b, c we deduce from

(2.9) and the assumptions r ≤ 2 and q > 1 that ‖ηατ‖q is bounded uniformly in h.
Hence,

lim sup
h→0

‖ηατ‖Lq(Ω) <∞ for all η ∈ D(Ω).

The proof is finished.
To illustrate the growth condition in (2.1) we consider the simple example of the

p-Laplace equation.
Example 2.1. Let m = 1, let 2 ≤ p < ∞, and consider ϕ(F ) := |F |p/p for

F ∈ R
n. Then Dϕ(F ) = |F |p−2 F , and for fixed B ∈ R

n and A ∈ R
n with |A| → ∞,

we have

|Dϕ(A)−Dϕ(B)|2
(Dϕ(A)−Dϕ(B) · (A−B)

≈ |Dϕ(A)|/|A| = |A|p−2.

Indeed, it is known (e.g., by a combination of Lemmas 2.1 to 2.3 in [CK01]) that for
any A,B ∈ R

n,

|Dϕ(A)−Dϕ(B)|2
(Dϕ(A)−Dϕ(B) · (A−B)

≤ (1 + max{1, p− 2}2)(|A|p−2 + |B|p−2).

We therefore obtain, as a corollary of Theorem 2.1, local regularity of the stress

field, i.e., σ := Dϕ(Du) ∈ W 1,p′
loc (Ω; R

n) for a minimizer u ∈ W 1,p(Ω) of (1.2) with

f ∈W 1,p′
loc (Ω).

3. An application to the scalar two-well problem. This section concerns
the scalar double-well problem, where

W : R
n → R, F �→ |F − F1|2 |F − F2|2(3.1)

and where the energy wells F1, F2 ∈ R
n, F1 �= F2, are given. The scalar problem (1.1)

with (3.1) (for m = 1) can be deduced from the Ericksen–James energy density in an
antiplane shear model; the version for n = 1, due to Bolza [Bol06]) (cf. also [You69]),
is the model example in nonconvex minimization.

Proposition 3.1 (see [CP97b]). Let a := (F2 − F1)/2 and b := (F1 + F2)/2.
The convex envelope ϕ of W given by (3.1) is

ϕ(F ) := max{|F − b|2 − |a|2, 0}2 + 4(|a|2 |F − b|2 − [a · (F − b)]2)

and satisfies (2.1) with r = 2, s = 2, and c2 = 4 max{2, |F1 − F2|2}.
Corollary 3.2. Adopt the notation of Proposition 3.1 and let u be a minimizer

of (1.2) with f ∈W 1,4/3. Then σ := Dϕ(Du) ∈W 1,4/3
loc (Ω; R

n).
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Proof. The assertion follows from Theorem 2.1 and Proposition 3.1 since the
Euler–Lagrange equations of the minimization problem (1.2) imply that −div σ =
f ∈W 1,4/3(Ω).

Remark 3.1. Further estimates in [CP97b] allow one to control other quantities.
In particular,

max{0, |B −Du|2 − |A|2} ∈ H1
loc(Ω) and M ·Du ∈ H1

loc(Ω)

for all directions M perpendicular to A.

4. An application to an optimal design problem. The relaxed model for an
optimal design problem derived in [GKR86] has the form (1.2), where ϕ(F ) = ψ(|F |).
Given positive parameters 0 < t1 < t2 and 0 < µ2 < µ1 with t1µ1 = t2µ2, the C1

function ψ : [0,∞)→ [0,∞) is defined by ψ(0) = 0 and

ψ′(t) :=


µ1 t if 0 ≤ t ≤ t1,

t1µ1 = t2µ2 if t1 ≤ t ≤ t2,
µ2 t if t2 ≤ t.

Proposition 4.1 (see [CP97b]). The function ϕ(F ) = ψ(|F |) satisfies (2.1)
with r = 2, s = 0, and c2 = 1/µ1.

Therefore Theorem 2.1 yields local stress regularity for minimizers of (1.2) when
f ∈ H1

loc(Ω).
Corollary 4.2. Adopt the notation of Proposition 4.1 and let u be a minimizer

of (1.2) in A := H1
0 (Ω). Then σ := Dϕ(Du) ∈W 1,2

loc (Ω; R
n).

Global regularity of the variable u ∈ Cα(Ω) ∩W 1,∞(Ω) and of the level sets has
been analyzed in [KSW91].

The rest of this section is devoted to establishing stress regularity up to the
boundary.

Theorem 4.3. Suppose that f ∈ W 1,2
0 (Ω) and that Ω is a C2,1 domain. If u is

a minimizer of (1.2), then σ := Dϕ(Du) ∈W 1,2(Ω; R
n).

The remaining part of this section is devoted to a proof of Theorem 4.3 via a
local reflection argument. Owing to the local regularity of Corollary 4.2, it remains
to prove σ ∈W 1,2(Ω∩B(x0, δ); R

n) for each point x0 on the boundary ∂Ω and some
small δ > 0. Without loss of generality, we suppose x0 = 0 and that the Cartesian
coordinate system at hand directly allows a C2,1 parameterization.

Definition 4.1. Let χ : B′0 → R be a (scalar) C2+α function, where B0 :=
B(0, δ0) ⊂ R

n and B′0 := {x′ ∈ R
n−1 : |x′| < δ0} ⊂ R

n−1 denote the δ0-ball around
x0 = 0 in n and (n − 1) dimensions, respectively. Suppose that χ parameterizes the
boundary Γ := ∂Ω near x0 = 0, i.e.,

Γ ∩B0 = {(x′, χ(x′)) ∈ B0 : x′ ∈ B′0},
Ω ∩B0 = {(x′, xn) ∈ B0 : x′ ∈ B′, xn > χ(x′)},
B0\Ω = {(x′, xn) ∈ B0 : x′ ∈ B′, xn < χ(x′)}.

Let ν be the unit normal vector on Γ and set

Ψ(x) := (x′, χ(x′))− xn ν(x′, χ(x′)) for all x =: (x′, xn) ∈ B0 ⊂ B′0 × R.

Lemma 4.4. The pull-back metric g := DΨTDΨ : B0 →M
n×n
sym is of class C1+α.

Let In−1 denote the n×(n−1) unit matrix (i.e., the first n−1 columns of
∑n−1
j=1 ej⊗ej)
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and let E := In−1 + en ⊗Dχ(x′)− xnDx′ν(x′, χ(x′)) ∈M
n×(n−1). Then

g(x) =

(
ETE 0

0 1

)
∈M

n×n
sym for (x′, xn) ∈ B.

Proof. We have DΨ = E − ν ⊗ en. Hence Ψ ∈ C1+α. Moreover ETEen = 0 and

ET ν =

n∑
j=1

(
νj + (∂xj

χ)νn − xn(∂xj
ν) · νn

)
ej .

Since ν is normal to the surface x′ �→ (x′, χ(x′)) we have (νj +∂xjχ) = ∂xj (x′, χ(x′)) ·
ν = 0. Moreover ∂xj

ν · ν = 0 since |ν|2 = 1. This establishes the desired block
structure of g.

Definition 4.2. Suppose that δ is small enough, 0 < δ < δ0, such that Ψ(B+) =:
ω ⊂ Ω, B± := {(x′, xn) ∈ B : ±xn > 0}, where B := B(0, δ) and B′ := {x′ ∈ R

n−1 :
|x′| < δ} denote the δ-ball around x0 = 0 in n and (n − 1) dimensions, respectively.
For any x = (x′, xn) ∈ B+ set Sx := (x′,−xn) ∈ B− and

ũ(x) = −ũ(Sx) := u(Ψ(x)),

σ̃(x) = −σ̃(Sx)S := σ(Ψ(x)) cof DΨ,

f̃(x) = −f̃(Sx) := (det g(x))1/2 f(Ψ(x)),

g̃(x) = g̃(Sx) := g(x).

Lemma 4.5. There holds ũ ∈W 1,2(B), f̃ ∈W 1,2(B), σ̃ ∈ H(div, B),

σ̃ = Dϕ(∇ũ g̃−1/2) cof g̃1/2 in B, and div σ̃ = f̃ in D′(B).

Proof. A polar decomposition QU = DΨ(x) shows that g(x) = U2, g(x)1/2 = U .
Since Q = DΨ(x)g(x)−1/2 is orthonormal we have

|∇u(Ψ(x))| = |∇u(Ψ(x))DΨ(x) g(x)−1/2| = |∇ũ(x) g(x)−1/2|.
The function ϕ(·) = ψ(| · |) solely depends on the modulus, and this implies that for
ξ := Ψ(x) and x ∈ B+,

σ(ξ) = Dϕ(∇u(ξ))

= ψ′(|∇u(ξ)|)∇u(ξ)/|∇u(ξ)|
= ψ′(|∇ũ(x) g(x)−1/2|)(∇ũ(x)DΨ−1(x))/|∇ũ(x)DΨ−1(x)|
= Dϕ(∇ũ(x) g−1/2(x))QT .

Using adjDψ(x) = cof g1/2(x)QT we obtain the asserted identity for σ̃ in B+.
By assumption div σ = f in D′(Ω). Using the test function η ◦ Ψ−1, where

η ∈ D(B+), and the change of variables formula we get∫
B+

f̃(x) η(x) dx =

∫
ω

f(ξ)η(Ψ−1(ξ)) dξ

= −
∫
ω

∇η(Ψ−1(ξ)) · (DΨ−1(ξ)σ(ξ)
)
dξ.

The substitution of σ̃ and a retransformation give∫
B+

f̃(x) η(x) dx =

∫
B+

σ̃(x) · ∇η(x) dx.
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This proves div σ̃ = f̃ in D′(B+).

The block structure of g shows that gα commutes with S = diag(1, . . . , 1,−1),
i.e., Sgα = gαS for α ∈ R. Since ϕ(·) depends solely on the modulus, Dϕ commutes
with S as well, i.e., Dϕ(−S·) = −SDϕ(·). Then, for x ∈ B−, ξ ∈ B+, x = Sξ,

cof g̃1/2(x)Dϕ(g̃−1/2(x)∇ũ(x))

= cof g̃1/2(ξ)Dϕ(−g̃−1/2(ξ)S∇ũ(ξ))

= −S cof g̃1/2(ξ)Dϕ(g̃−1/2(ξ)∇ũ(ξ))

= −σ̃(ξ)S = σ̃(x).

Thus σ̃ = cof(g̃1/2)Dϕ(g̃−1/2∇ũ) holds a.e. in B.

Since f̃ = 0 = ũ on B+ ∩ B− = B ∩ (B′ × {0}) the maps ũ and f̃ belong to
W 1,2(B). Notice that g ∈ C(B). Clearly σ̃ ∈ L2(B) and σ̃|B± ∈ H(div, B±). Hence

it remains to prove div σ̃ = f̃ in D′(B). Given η ∈ D(B), set α := (η + η ◦ S)/2 and
β := (η − η ◦ S)/2. Since ∇α(x) = (∇η(x) +∇η(Sx)S)/2 = ∇α(Sx)S we get∫

B

σ̃ · ∇αdx =

∫
B+

(σ̃(x) + σ̃(Sx)) · ∇α(x) dx = 0.

We have β = 0 on B′ × {0} and ∇β(Sx) = −∇β(x)S. Thus a transformation to B+

and an integration by parts in B+ lead to∫
B

σ̃ · ∇η dx =

∫
B+

σ̃(x) · ∇β(x) dx +

∫
B+

σ̃(Sx) · ∇β(Sx) dx

= 2

∫
B+

σ̃(x) · ∇β(x) dx = 2

∫
B+

f̃(x)β(x) dx =

∫
B

f̃(x)β(x) dx.

Hence −div σ̃ = f̃ in D′(B), and the proof of Lemma 4.5 is finished.

If we can show that the transformed stress σ̃ satisfies σ̃ ∈ W 1,2
loc (B; M

n×n), then
we easily conclude that σ ∈W 1,2(Ω ∩B(x0, δ/2); Rn), and we are done. To establish
the regularity of σ̃ we cannot directly appeal to Theorem 2.1 since σ̃ is not of the
form Dϕ(∇ũ) but is given by the inhomogeneous expression cof(g̃1/2)Dϕ(g̃−1/2∇ũ).
To conclude we thus adopt the strategy of the proof of Theorem 2.1 for the present
situation with variable coefficients.

Proof of Theorem 4.3. Let x ∈ B, h > 0, and let M ∈ R
n with |M | = 1. We use

the abbreviations x2 := x + hM , x0 := x− hM , x1 := x and define, for j = 1, 2,

Fj := ∇ũ(xj), σj := σ̃(xj), Uj := g̃−1/2(xj),

Vj := cof U−1
j , Σj := σj detUj , Tj := ΣjU

−1
j .

We write a � b to denote a ≤ C b if C is a generic constant that is independent of
δ > 0, h > 0 (as long as they are sufficiently small). The constant C > 0 may, how-
ever, depend on g, Uj , Vj , e.g., through ‖g̃‖W 1,∞(B), ‖ cof g̃‖‖W 1,∞(B), ‖g̃−1‖W 1,∞(B),
‖ cof g̃−1‖W 1,∞(B), or ‖η‖W 1,∞(B). With this notation we have

|σ2 − σ1|2 = |Dϕ(F2U2)V2 −Dϕ(F1U1)V1)|2
� |V2 − V1|2|Dϕ(F1U1)|2 + |Dϕ(F2U2)−Dϕ(F1U1)|2.
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Using Proposition 4.1 and the identity TjUj = Σj we infer

|Dϕ(F2U2)−Dϕ(F1U1)|2
� (Dϕ(F2U2)−Dϕ(F1U1)) · (F2U2 − F1U1)

= (T2 − T1) · (F2U2 − F1U1)

= (Σ2 − Σ1) · (F2 − F1) + (T2 − T1) · (F1 + F2)(U2 − U1)

+ T1 · F1(U2 − U1)− T2 · F2(U2 − U1).

Consider η ∈ D(B), 0 ≤ η ≤ 1, which equals one in a neighborhood of x0 = 0, and
assume that |h| is sufficiently small. Multiply the combination of the last two estimates
by η2/h2 and integrate over supp η. With the notation τ̃(x) := (σ̃(x2)− σ̃(x1))/h and
ẽ(x) := (ũ(x2)− ũ(x1))/h, we deduce that∫

η2(x)|τ̃(x)|2 dx �
∫

η2|σ̃(x)|2 dx

+ 1/h2

∫
η2(Σ2 − Σ1) · (F2 − F1) dx

+ 1/h

∫
η2|T2 − T1| (|∇ũ(x)|+ |∇ũ(x + hM)|) dx

+ 1/h2

∫
η2T1(U2 − U1) · F1 dx

− 1/h2

∫
η2T2(U2 − U1) · F2 dx

=: I + II + III + IV−V.

Term I is bounded since σ̃ ∈ L2(B). Term II is recast into the form

II = 1/h2

∫
η2(Σ2 − Σ1) · (F2 − F1) dx

=

∫
η2(x) det g̃−1/2(x) τ̃(x) · ∇ẽ(x) dx

+

∫
η2(x)

(
det g̃−1/2(x2)− det g̃−1/2(x1)

)
/h

× σ̃(x2) · ∇ẽ(x) dx.

Since ẽη2 det g̃−1/2 ∈ H1(B) is a feasible test function we have∫
η2 det g̃−1/2τ̃ · ∇ẽ dx = −

∫
ẽτ̃ · ∇(η2 det g̃−1/2) dx

+

∫
ẽ(x)η2(x) det g−1/2(x) (f(x2)− f(x1)) /h dx

� ‖ũ‖1,2(‖f‖1,2 + ‖ητ̃‖2)

with the abbreviations ‖ · ‖p := ‖ · ‖Lp(B) and ‖ · ‖1,p := ‖ · ‖W 1,p(B). To estimate the
other term in II we write out ∇ẽ(x) = 1/h (∇ũ(x + hM)−∇ũ(x)), split the integral
into two integrals, and perform a change of variables x �→ x−hM in the first integral
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(summation by parts). This yields∫
η2(x)

(
det g̃−1/2(x2)− det g̃−1/2(x1)

)
/h σ̃(x2) · ∇ẽ(x) dx

= −
∫

(η2(x1)− η2(x0))/h

× (det g̃−1/2(x1)− det g̃−1/2(x0))/h σ̃(x) · ∇ũ(x) dx

−
∫

η2(x)(det g̃−1/2(x2)− det g̃−1/2(x))/h τ̃(x) · ∇ũ(x) dx

−
∫

η2(x)
(

det g̃−1/2(x2)− 2 det g̃−1/2(x1)

+ det g̃−1/2(x0)
)
/h2 σ̃(x) · ∇ũ(x) dx

� (‖σ̃‖2 + ‖ητ̃‖2) · ‖ũ‖1,2.
In the last step we used g ∈ C1,1. It is at this point that the assumption ∂Ω is C2,1

enters. Combining the previous estimates, we get

II � ‖ũ‖1,2(‖f‖1,2 + ‖σ̃‖1,2 + ‖ητ̃‖2).

Since Tj = Dϕ(∇ũ(xj)) = σj cof Uj , similar arguments lead to

III = 1/h

∫
η2|T2 − T1|(|∇ũ(x1)|+ |∇ũ(x2)|) dx

� (‖ητ̃‖2 + ‖σ̃‖2)‖u‖1,2.
A shift in the variable x2 in term V leads similarly to the estimate

IV−V =

∫
η2T1(g̃−1/2(x2)− 2g̃−1/2(x1) + g̃−1/2(x0)/h2 · ∇ũ(x) dx

+

∫
(η2(x1)− η2(x2)/hT1 (g̃−1/2(x)− g̃−1/2(x0)/h · ∇ũ(x) dx

� ‖σ̃‖2 ‖ũ‖1,2.
Absorbing ‖ητ‖2 in terms II and III concludes the proof.

5. A symmetric variant for geometrically linear models. This section
concerns a variation of Theorem 2.1 for symmetrized gradients. Some (geometrically)
linear models in elasticity involve the symmetric Green strain

ε(u) := symDu := ((∂uj/∂xk + ∂uk/∂xj) : j, k = 1, . . . , n)

for m = n. For ease of presentation we focus on p = r = q = 2 and s = 0 as in linear
elasticity but emphasize robustness with respect to the limit λ→∞, where λ is one
of the Lamé constants (see below).

Let M
n×n
sym denote the symmetric real n× n matrices. The fourth-order elasticity

tensor C : M
n×n
sym →M

n×n
sym is defined by

CE := λ tr(E) I + 2µE for E ∈M
n×n
sym .

Here the positive scalars λ, µ are the Lamé constants, I is the identity matrix, and
tr(E) :=

∑n
j=1 Ejj . Since C is symmetric and positive definite, there exist an inverse

C
−1 and the square roots C

1/2 and C
−1/2. The norm

|E |C := (E : CE)1/2 = |C1/2E | for E ∈M
n×n
sym



504 CARSTEN CARSTENSEN AND STEFAN MÜLLER

is induced by the energy scalar product with respect to C in M
n×n
sym .

Suppose that ϕ : M
n×n
sym → R is C1 and that there exists a constant c5 such that

for all A,B ∈M
n×n
sym ,

|Dϕ(A)−Dϕ(B)|2
C−1 ≤ c5 (Dϕ(A)−Dϕ(B)) : (A−B).(5.1)

Theorem 5.1. Assume furthermore that

u ∈ H1(Ω; R
n) and σ := Dϕ(ε(u))

satisfy

σ ∈ L2
loc(Ω; M

n×n
sym ) and div σ ∈ H1

loc(Ω; R
n).

Then

σ ∈ H1
loc(Ω; M

n×n
sym ).

Moreover, if ω0 ⊂⊂ ω1 ⊂⊂ Ω for nonvoid open sets ω0 and ω1, there exists a λ-
independent constant c6 > 0 such that

‖σ ‖H1(ω0) ≤ c6 (‖u ‖H1(ω1) + ‖σ ‖L2(ω1) + ‖ div σ ‖H1(ω1)).(5.2)

Remark 5.1. (a) Korn’s inequality does not play an explicit role in the proof. It
is used, however, in applications to guarantee u ∈ H1(Ω) (and so the boundedness of
e in L2

loc(Ω) in the proof).
(b) The fourth-order elasticity tensor could be more general; for the assertion

σ ∈ H1
loc(Ω; M

n×n
sym ) it is sufficient that C is a linear, continuous, and positive definite

operator.
(c) The constant c6 in (5.2) depends on c5, µ, ω0, and ω1, but on neither σ nor u.
(d) The functional ϕ : M

n×n
sym → R may depend on C and λ; the constant c6

depends on ϕ only through c5 and stays independent of λ as long as c5 does.
Proof of Theorem 5.1. The proof follows the arguments of the proof of Theo-

rem 2.1, but the differential operator D is replaced by the symmetric variant ε. In
particular, δ := ε(e). This results in the estimate

‖ ηC
−1/2τ ‖22 ≤ c7

∫
ω

η2 ε(e) : τ dx = −c7
∫
ω

ediv(τη2) dx

≤ c7 ‖ e ‖2 ‖ η ‖W 1,∞(Ω)(2‖ η τ ‖2 + ‖ η div τ ‖2)(5.3)

≤ c8(‖u ‖2H1(ω) + ‖ div σ ‖2H1(ω) + ‖ η τ ‖2)2

for some (h, λ, µ)-independent constant c8 > 0. The first assertion follows (with a
constant depending on λ) from (5.3) and the estimate

‖ η τ ‖2 ≤ (2µ + λ)1/2‖ ηC
−1/2τ ‖2.

In order to prove (5.2) fix ω0 ⊂⊂ ω1 and suppose that ω is a bounded Lipschitz domain
between ω0 and ω1, ω0 ⊂⊂ ω ⊂⊂ ω1. Assume that η ∈ D(ω) satisfies 0 ≤ η ≤ 1
and equals η = 1 on ω0. Then we introduce the deviator dev(τ) := τ − tr(τ)/n I and
rewrite (5.3) as

‖ ηC
−1/2τ ‖22 =

‖ dev(ητ) ‖22
2µ

+
‖ tr(ητ) ‖22

n2(2µ/n + λ)

≤ c8

(
‖u ‖2H1(ω) + ‖ div σ ‖2H1(ω) + ‖ dev(ητ) ‖22 + ‖ tr(ητ) ‖22

)
.(5.4)
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The λ-independent bound requires an extra argument using results for the Stokes
problem [BF91, GR86]. To apply this we first reduce to a situation with zero mean.
Let ξ be the center of mass of ω. We write |ω| for the measure of ω, and we set
e1 = (1, 0, . . . , 0). Define the constant

τ0 :=

∫
ω

tr(η τ)dx/|ω| ∈ R

and consider the function v1 ∈ H1(ω; Rn) defined by

v1(x) := τ0((x− ξ) · e1) e1 for x ∈ ω.

Then div v1 = τ0 and
∫
ω

(τ0 − tr(η τ))dx = 0. The solvability of the Stokes equations
guarantees the existence of v2 ∈ H1

0 (ω; Rn), which satisfies div v2 = τ0 − tr(ητ) and
the bound

‖ v2 ‖H1(ω) ≤ c9 ‖ τ0 − tr(η τ) ‖2 ≤ c9 ‖ tr(η τ) ‖2.

Thus there exists c10 > 0 such that v := v1 − v2 ∈ H1(ω; Rn)) satisfies

div v = tr(η τ) and ‖ v ‖H1(ω) ≤ c10 ‖ tr(η τ) ‖2.(5.5)

Recall that tr(η τ)/n I := η τ − dev(η τ). Hence

‖ tr(η τ) ‖22 =

∫
ω

tr(η τ) div v dx =

∫
ω

tr(η τ)I : Dv dx

= n

∫
ω

(η τ − dev(η τ)) : Dv dx.

Multiple applications of Cauchy’s inequality and integration by parts yield

1

n
‖ tr(η τ) ‖22 ≤ ‖Dv ‖2‖ dev(η τ) ‖2 −

∫
Ω

v · (τ∇η + η div τ)dx

≤ ‖ v ‖H1(ω)

(
‖ dev(η τ) ‖2 + ‖ η div τ ‖2

)
(5.6)

−
∫

Ω

v · τ∇η dx.

To rewrite the last term using a summation by parts, let ⊗ denote the dyadic product
and set

Vh(x) :=
1

h

(
(v ⊗∇η)(x)− (v ⊗∇η)(x− hM)

)
∈M

n×n for a.e. x ∈ ω.

Now (v ⊗∇η)jk = vj ∂η/∂xk belongs to H1(ω), and we have

lim
h→0
‖Vh ‖2 ≤ | v ⊗∇η |H1(ω1) ≤ ‖ v ‖H1(ω)‖ η ‖W 2,∞(ω).(5.7)

Since η ∈ D(ω) is fixed we infer (for sufficiently small h) from (5.7) that

−
∫

Ω

v · τ∇η dx =

∫
Ω

Vh : σ dx

≤ ‖σ ‖L2(ω1) ‖Vh ‖L2(ω1) ≤ c11 ‖σ ‖L2(ω1) ‖ v ‖H1(ω).



506 CARSTEN CARSTENSEN AND STEFAN MÜLLER

Using this in (5.6) and applying the estimate (5.5) to bound ‖ v ‖H1(ω), we deduce

c12 ‖ tr(η τ) ‖2 ≤ ‖ dev(η τ) ‖2 + ‖ div τ ‖2 + ‖σ ‖L2(ω1).(5.8)

We return to (5.4) and substitute ‖ tr(η τ) ‖2 with the bound (5.8) on the right-hand
side of (5.4). The resulting estimate reads

‖ dev(ητ) ‖22
2µ

+
‖ tr(ητ) ‖22

n2(2µ/n + λ)

≤ c13

(
‖u ‖2H1(ω) + ‖ div σ ‖2H1(ω) + ‖σ ‖2L2(ω1)

+ ‖ dev(ητ) ‖22
)

and allows us to absorb ‖ dev(ητ) ‖2 using Young’s inequality. Hence

c14‖ ηC
−1/2τ ‖2 ≤ ‖u ‖H1(ω) + ‖ div σ ‖H1(ω) + ‖σ ‖L2(ω1).

Another application of (5.8) finally yields

c15‖ η τ ‖2 ≤ ‖u ‖H1(ω) + ‖ div σ ‖H1(ω) + ‖σ ‖L2(ω1).

The proof is then concluded as in Theorem 2.1.

6. An application to Hencky elastoplasticity with hardening. One time
step within an elastoplastic evolution problem leads to Hencky’s model. For various
hardening laws and von-Mises yield conditions, the minimization problem takes the
form (1.4). After an elimination of internal variables [ACZ99] the energy function
becomes, in the notation of the previous section,

ϕ(E) :=
1

2
E : CE − 1

4µ
max{0, |dev CE| − σy}2/(1 + η)(6.1)

for E ∈M
n×n
sym . Here C is the fourth-order elasticity tensor, σy > 0 is the yield stress,

and η > 0 is the modulus of hardening. The model of perfect plasticity corresponds
to η = 0 [Tem83].

Proposition 6.1. We have, for all A,B ∈M
n×n
sym ,

|Dϕ(A)−Dϕ(B)|2
C−1 ≤ (Dϕ(A)−Dϕ(B)) : (A−B).(6.2)

Proof. Set ξ(x) := 1 − max{0, 1 − σy/(2µx)}/(1 + η) to define the continuous
and monotonously decreasing function ξ : [0,∞) → (0, 1] with ξ(0) = 1 ≥ ξ(x) >
η/(1 + η) > 0 for 0 < x <∞. Then

Dϕ(E) = (λ + 2µ/n) tr(E) I + 2µ ξ(|devE|) devE for all E ∈M
n×n
sym .

Without loss of generality, we suppose that a := |devA| ≤ b := |devB| and abbrevi-
ate α := ξ(a) and β := ξ(b). First, we calculate

2µ δ := |Dϕ(A)−Dϕ(B)|2
C−1 − (Dϕ(A)−Dϕ(B)) : (A−B).

Then we have to show that

δ = |dev(ξ(a)A− ξ(b)B)|2 − dev(ξ(a)A− ξ(b)B) : dev(A−B)
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is nonpositive. To see that δ ≤ 0 observe that 0 ≤ (1−α)β+α(1−β). Expanding the
squares and collecting terms, we infer in combination with Cauchy’s inequality that

δ = (ξ(a)a− ξ(b)b)2 − (ξ(a)a− ξ(b)b)(a− b)

+ (dev(A) : dev(B)− ab)
(

(1− α)β + α(1− β)
)

≤ (ξ(a)a− ξ(b)b)2 − (ξ(a)a− ξ(b)b)(a− b)

= (ξ(a)a− ξ(b)b)
(

(α− 1)a− (β − 1)b
)
.

An elementary analysis shows that xξ(x) ≥ 0 is monotonously increasing in 0 ≤ x <
∞, while x(ξ(x) − 1) ≤ 0 is monotonously decreasing. As a consequence, a ≤ b
implies ξ(a)a ≤ ξ(b)b and (ξ(a) − 1)a ≥ (ξ(b) − 1)b. Taking this into account in the
last estimate of δ, we conclude that δ ≤ 0.

We therefore have the following consequence of Theorem 5.1.
Corollary 6.2. If u is a minimizer of (1.2) in A ⊆ H1(Ω) and f ∈ H1

loc(Ω),

then σ := Dϕ(ε(u)) ∈W 1,2
loc (Ω; R

n).
Remark 6.1. (a) The corollary is essentially due to Seregin [Ser93].
(b) The case η = 0 corresponds to perfect plasticity [Tem83] and is excluded from

our analysis. Then u belongs only to BD(Ω), the space of bounded deformations.

7. An application to a vector two-well problem. Given two distinct wells
E1 and E2 in M

n×n
sym with minimal energies W 0

1 and W 0
2 in R, we consider the quadratic

elastic energies

Wj(E) :=
1

2
(E − Ej) : C(E − Ej) + W 0

j for all E ∈M
n×n
sym .(7.1)

Energy minimization leads to an optimal choice of the configuration of the two phases,
and so the strain energy density W is modeled by the minimum

W (E) = min{W1(E),W2(E)} for all E ∈M
n×n
sym .(7.2)

The two wells (transformation strains) are said to be compatible if the following
condition holds:

E1 = E2 +
1

2
(a⊗ b + b⊗ a) for some a, b ∈ R

n.(7.3)

The constant γ used below is determined by a certain projection onto the space of
symmetric matrices and satisfies 0 < γ ≤ 1

2 |E2 − E1|2C. In the compatible case (7.3)
it attains its upper bound, i.e., γ = 1

2 |E2 − E1|2C. The quasi-convexification ϕ of W
is given by [Koh91]:

ϕ(E) =


W2(E) if W2(E) + γ ≤W1(E),
1
2 (W2(E) + W1(E))− 1

4γ (W2(E)−W1(E))2 − γ
4

if |W2(E)−W1(E)| ≤ γ,

W1(E) if W1(E) + γ ≤W2(E).

(7.4)

Lemma 7.1 (see [CP97a]). In the compatible case (7.3) we have, for all A,B ∈
M
n×n
sym ,

|Dϕ(A)−Dϕ(B)|2
C−1 ≤

(
Dϕ(A)−Dϕ(B)

)
: (A−B).(7.5)
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Thus Theorem 5.1 implies the following result.

Corollary 7.2 (see [Ser96]). If u is a minimizer of (1.4) in A ⊆ H1(Ω) and
f ∈ H1

loc(Ω), then σ := Dϕ(ε(u)) ∈W 1,2
loc (Ω; M

n×n).

Remark 7.1. (a) The corollary is due to Seregin [Ser96, Theorem 2.2]. In addition
to the local stress regularity, he shows that the strain tensor locally has bounded mean
oscillation, and he investigates the pure phase area.

(b) In the case of incompatible wells (i.e., if (7.3) fails) Lemma 7.1 fails (as it
guarantees convexity of ϕ). Seregin [Ser99] showed that the quasi-convex envelope
ϕ(symF ) can be rewritten as the sum of a convex function (which then satisfies an
estimate of the form (7.5)) and a linear combination of second-order minors of F .
The integral

∫
Ω

cof Dudx depends only on the boundary values of u and can hence
be neglected in the pure Dirichlet problem. Then, up to cofactor matrices of the
gradient F , the stress belongs to W 1,2

loc (Ω; M
n×n
sym ). Formally one may interpret the

term
∫
Ω

cof Dudx as a constant pressure (as the model is in material coordinates).
Such an interpretation is, however, doubtful if one keeps in mind that (7.1) is based on
a linearization. Thus material and spatial coordinates coincide and incompressibility
reads div u = 0 and not detDu = 1.

(c) A time-discretized model for hysteresis in [MTL] leads to a similar variational
problem. From a stress estimate in [CP00] we obtain an analogue of Lemma 7.1 and
can conclude σ ∈W 1,2

loc (Ω; M
n×n) as well.
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ON A NONLINEAR PARTIAL DIFFERENTIAL EQUATION
ARISING IN MAGNETIC RESONANCE

ELECTRICAL IMPEDANCE TOMOGRAPHY∗
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Abstract. This paper considers the fundamental questions, such as existence and uniqueness,
of a mathematical model arising in the MREIT system, which is an electrical impedance tomography
technique integrated with magnetic resonance imaging. The mathematical model for MREIT is the

Neumann problem of a nonlinear elliptic partial differential equation ∇ · ( a(x)
|∇u(x)|∇u(x)) = 0. We

show that this Neumann problem belongs to one of two cases: either infinitely many solutions exist
or no solution exists. This explains rigorously the reason why we have used the modified model in
[O. Kwon, E. J. Woo, J. R. Yoon, and J. K. Seo, IEEE Trans. Biomed. Engrg., 49 (2002), pp. 160–
167], which is a system of the Neumann problem associated with two different Neumann data. For
this modified system, we prove a uniqueness result on the edge detection of a piecewise continuous
conductivity distribution.

Key words. conductivity reconstruction, interior measurement, uniqueness, current density
imaging, electrical impedance tomography, magnetic resonance imaging

AMS subject classifications. 35R30, 35J60, 31A25, 62P10, 92C55

PII. S0036141001391354

1. Introduction. Magnetic resonance electrical impedance tomography
(MREIT) is a new imaging technique of reconstructing the cross-sectional conduc-
tivity distribution of a human body by means of the electrical impedance tomography
(EIT) technique integrated with the magnetic resonance imaging (MRI) technique.
The EIT technique to estimate the conductivity distribution uses data obtained by
injecting a known current into the body through electrodes placed on the surface and
measuring the resulting voltage difference recorded on the electrodes. The EIT prob-
lem is known as a highly ill-posed inverse problem due to its low sensitivity of data
to the change in conductivity value. (See [14].) MREIT is designed to overcome this
severe ill-posedness of the EIT problem by making good use of a recent MRI tech-
nique, so-called current density imaging (CDI), which measures the internal current
density distribution. (For related works see [4, 6, 10, 11, 12, 15].)

In the recent paper [7], a new reconstruction algorithm for MREIT was developed
to provide a high-resolution conductivity image. This algorithm is based on a new
mathematical modeling which is involved with a nonlinear partial differential equation
instead of the linear conductivity equation. Although the algorithm has achieved
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Fig. 1.1. An illustration of the model where the current I is applied through a pair of electrodes
attached to the boundary.

successful numerical results in simulations, there has been no related mathematical
theory for the new model such as existence and uniqueness. This paper is intended
to provide answers to those questions.

Let us explain the mathematical model for MREIT, which was introduced in [7].
Let the cross-section of the cylindrical body occupy a bounded domain Ω ⊂ R

2. When
a current is injected transversely through the outer surface of the body, it induces
an electrical potential distribution u that satisfies the two-dimensional conductivity
equation

∇ · (σ∇u) = 0 in Ω,(1.1)

where σ denotes the conductivity coefficient of the body which we want to reconstruct.
This unknown two variable function σ may be regarded as a piecewise continuous
positive function. In the MREIT model, the current is applied through a pair of
electrodes attached on the boundary ∂Ω: If both electrodes of width 2ε are attached
at points P,Q ∈ ∂Ω, respectively, then the current density on the boundary can be
approximated by a function

g(x) =


+ I

2ε on {|x− P | < ε} ∩ ∂Ω,

− I
2ε on {|x−Q| < ε} ∩ ∂Ω,

0 otherwise,

(1.2)

where I is the current sent to both electrodes at P and Q; see Figure 1.1. For more
details, see the ave-gab model in [3, 9].

With this current g, the resulting internal current density vector J = −σ∇u is
divergence-free and satisfies the boundary condition

σ
∂u

∂ν
= −J · ν = g on ∂Ω,(1.3)

where ν denotes the outward unit normal vector to ∂Ω. Moreover, the MREIT system
furnishes the internal data a = |J| = σ|∇u|, which is measured and processed in the
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MRI system [7, 15]. We want to utilize this acquisition data a by substituting

σ(x) =
a(x)

|∇u(x)| , x ∈ Ω,(1.4)

into the conductivity equation (1.1) and the Neumann boundary condition (1.3). As
a result, the linear boundary value problem (1.1) and (1.3) with two unknowns σ
and u is reduced to the following nonlinear Neumann boundary value problem with
one unknown u:

∇·
(

a

|∇u|∇u
)

= 0 in Ω,

a

|∇u|
∂u

∂ν
= g on ∂Ω, and

∫
∂Ω

u ds = 0,

(1.5)

where the last condition means the potential reference condition. To be precise, the
electric potential u ∈ H1(Ω) can be viewed as a weak solution satisfying∫

Ω

a

|∇u|∇u · ∇φdx =

∫
∂Ω

gφ ds for all φ ∈ H1(Ω)

with a constraint
∫
∂Ω

u ds = 0.

It is natural to investigate the fundamental mathematical issue of the nonlinear
boundary value problem (1.5), such as existence and uniqueness. In practice, the
existence may not be a serious problem, but the uniqueness must be seriously taken
into account. In the case in which we have not one but several different solutions,
there will be several corresponding distinct conductivity images, and we cannot judge
which one would be the actual image.

Unfortunately, in section 3 we will prove that once (1.5) has a solution, then it
always has infinitely many solutions under a practically acceptable assumption that
will be precisely defined in section 3. Hence the model (1.5) using one measurement
is insufficient for the reconstruction of the conductivity distribution. A numerical
example is presented in section 5 to show how different conductivity images can be
reconstructed with the same data (a, g). Moreover, we also prove in section 3 that
(1.5) in general does not have an existence result even if a is smooth. We think
that the existence of the solution to (1.5) is related to some complicated connection
between a and g, because the internal current density a depends on the choice of the
injected current g.

Thus the model should be modified in order to guarantee the uniqueness. In
section 4, we apply two different currents g1 and g2 approximated in the same manner
as in (1.2), attaching two different pairs of electrodes {P1, Q1} and {P2, Q2}. Since
the conductivity distribution σ is independent of the change of injected currents, from
the relation (1.4) we may assume

a1(x)

|∇u1(x)| =
a2(x)

|∇u2(x)| , x ∈ Ω,

where uj is a solution to the nonlinear Neumann boundary value problem (1.5) when
g and a are replaced by gj and aj (j = 1, 2). This leads to the following nonstandard
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system of equations:

∇·
(

aj
|∇uj |∇uj

)
= 0 in Ω,

a1

|∇u1| =
a2

|∇u2| in Ω,

aj
|∇uj |

∂uj
∂ν

= gj on ∂Ω,∫
∂Ω

uj ds = 0

(1.6)

for j = 1, 2. With this modified model and a practically acceptable assumption, in
section 4 we are able to establish an important uniqueness result which may look
strange at a glance.

In section 2, we define a space for physically meaningful conductivity distributions
and recall some regularity properties of elliptic partial differential equations for further
usage.

2. Definitions and preliminary. We assume that Ω ⊂ R
2, a cross-section of

the human body, is a simply connected bounded domain with a C2 boundary. The
conductivity distribution σ on the cross-section Ω may be regarded as a piecewise
continuous function because distinct tissues have different conductivities. So, we may
assume that σ belongs to the following class:

Σ :=

{
σ = σ0 +

M∑
k=1

σkχDk

∣∣∣ M ∈ N, 0 < σ <∞, D̄k ⊂ Ω, D̄k ∩ D̄� = ∅ for k = �,

σ0 ∈ Cα(Ω̄), σk ∈ Cα(D̄k), σk = 0 on ∂Dk, ∂Dk is a C2 boundary

}
,

where χDk
denotes the characteristic function for Dk and 0 < α < 1 is not an

important number. With this setting, for any σ = σ0 +
∑M
k=1 σkχDk

∈ Σ, we easily
see that

σ ∈ Cα (∪Mk=1D̄k

) ∩ Cα (Ω \ ∪Mk=1Dk

)
,(2.1)

{x ∈ Ω |σ is discontinuous at x} =

M⋃
k=1

∂Dk.(2.2)

For a given current g in (1.2) and σ = σ0 +
∑M
k=1 σkχDk

∈ Σ, let u be the solution
of the classical Neumann boundary value problem

∇· (σ∇u) = 0 in Ω,

σ
∂u

∂ν
= g on ∂Ω, and

∫
∂Ω

u ds = 0.
(2.3)

From the basic theory of standard elliptic partial differential equations [5, 8], we know

(a) u ∈ C(Ω̄),

(b) ∇u ∈ Cα (∪Mk=1D̄k

) ∩ Cα (Ω \ ∪Mk=1Dk

)
,

(c) σ0(ξ)∇u+(ξ) · ν(ξ) = (σ0(ξ) + σk(ξ))∇u−(ξ) · ν(ξ) if ξ ∈ ∂Dk,

(d) ∇u+(ξ) · τ(ξ) = ∇u−(ξ) · τ(ξ) if ξ ∈ ∂Dk,

(2.4)
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where ν and τ are the outward unit normal vector and the unit tangent vector to ∂Dk,
respectively, and u+, u− are defined by

u+ = u|Ω\⋃M
k=1 D̄k

and u− = u|⋃M
k=1Dk

.

Moreover, owing to the choice of g as in (1.2), we can show that

∇u(x) = 0 for all x ∈ Ω,(2.5)

the proof of which can be found in [1, 2, 13]. Indeed, (2.5) holds if nonzero g satisfies
the following condition: there exist two disjoint arcs Γ+ and Γ− contained in ∂Ω such
that

Γ+ ∪ Γ− = ∂Ω, and Γ+ ⊂ {g ≥ 0}, Γ− ⊂ {g ≤ 0},
the detailed proof of which will be given in Remark 4.2 for completeness.

3. Nonexistence and nonuniqueness. In this section, we will prove that the
nonlinear Neumann boundary value problem (1.5) under a practically acceptable as-
sumption is generally not uniquely solvable by constructing infinitely many different
solutions from one solution and by giving an example for nonexistence.

From the relation (1.4) between the conductivity distribution σ and the measured
current density a, we may assume that a practically meaningful solution u of the
Neumann problem (1.5) satisfies

a(x)

|∇u(x)| ∈ Σ,(3.1)

since Σ contains almost all cases of piecewise continuous conductivities that may
happen in the real situation. So, the practical solution u can be considered as a
H1(Ω) solution of the more complicated problem where g is given as in (1.2),

∇·
(

a

|∇u|∇u
)

= 0 in Ω,
a

|∇u| ∈ Σ,

a

|∇u|
∂u

∂ν
= g on ∂Ω, and

∫
∂Ω

u ds = 0.

(3.2)

Hence, if u is a solution of (3.2), it satisfies (2.5) and the properties (a)–(d) in (2.4). By
the property (b) in (2.4) and (3.1), a = a

|∇u| |∇u| must be also a piecewise continuous

function in Ω.
We can easily construct a solution for (3.2): For any σ ∈ Σ, there exists a unique

solution uσ to the classical Neumann problem (2.3), and this uσ is also a solution
to (3.2) when a is given by a = σ|∇uσ|. To our surprise, (3.2) with this a has
infinitely many solutions, and uσ is just one of them. The following theorem states
this nonuniqueness result.

Theorem 3.1. If the nonlinear problem (3.2) has a solution, then it has infinitely
many solutions.

Proof. Suppose u is a solution of the problem (3.2). We will construct infinitely
many solutions by means of u. Since u satisfies the property (a) in (2.4) and (2.5),
we have minx∈Ω̄ u(x) < maxx∈Ω̄ u(x). For any t ∈ (minΩ̄ u,maxΩ̄ u) and λ > 0, we
define

ut,λ :=

{
u + c in Ω+

t ,

λu + (1− λ)t + c in Ω−t ,
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where the number c is chosen so that
∫
∂Ω

ut,λ ds = 0 and

Ω+
t := {x ∈ Ω |u(x) ≥ t} and Ω−t := {x ∈ Ω |u(x) < t}.

Then it is easy to see that ut,λ ∈ C(Ω̄) and

∇ut,λ(x)

|∇ut,λ(x)| =
∇u(x)

|∇u(x)| for all x ∈ Ω.

Since the possible discontinuity regions of a/|∇ut,λ| are {x ∈ Ω |u(x) = t} and those
of a/|∇u|, we easily verify that a/|∇ut,λ| ∈ Σ. Therefore ut,λ is also a solution to (3.2),
which completes the proof.

In section 5, we will present two distinct (numerically obtained) solutions that
will arise in a complicated real situation and which solve the same problem (3.2).

Now we investigate the existence question. For simplicity, we confine ourselves to
a unit square domain Ω = (0, 1) × (0, 1) in R

2. Let x = (x1, x2) denote a point in Ω
and let the current pattern g on ∂Ω be given by

g(x) =


−1 if x1 = 0,

1 if x1 = 1,

0 otherwise.

(3.3)

The next theorem furnishes an example for the nonexistence of (3.2).
Theorem 3.2. Let Ω = (0, 1)× (0, 1) and g be given in (3.3). Assume that a in

(3.2) depends only on the x1-variable, that is, a(x1, x2) = a(x1). The necessary and
sufficient condition for the existence of solution to (3.2) is a ≡ 1.

Proof. If a ≡ 1, then clearly u(x) = x1 − 1
2 is a solution of (3.2) which would be

one of the infinitely many solutions. This proves the sufficiency.
To show the necessity, suppose that the problem (3.2) has a solution u. First, we

will prove that a(t) ≥ 1 for all t ∈ (0, 1). For convenience, we denote

l1 = {x ∈ ∂Ω |x2 = 0}, l2 = {x ∈ ∂Ω |x1 = 1},
l3 = {x ∈ ∂Ω |x2 = 1}, l4 = {x ∈ ∂Ω |x1 = 0},

and let Rt := {x ∈ Ω | 0 < x1 < t} be a rectangle on the left side of the line {x1 = t}.
Applying the divergence theorem on Rt, we obtain

0 =

∫
∂Rt

a

|∇u|
∂u

∂ν
ds

=

∫
∂Rt∩∂Ω

g ds +

∫
∂Rt∩{x1=t}

a

|∇u|∇u · ν ds

= −
∫
l4

ds + a(t)

∫
∂Rt∩{x1=t}

∇u · ν
|∇u| ds

≤ −1 + a(t),

(3.4)

since a(x) = a(t) on ∂Rt ∩ {x1 = t} and ∇u · ν ≤ |∇u|, where ν denotes the outward
unit normal to Rt. Hence we have a(t) ≥ 1 for all t ∈ (0, 1).

Now, we will show that the level curve Γt := {x ∈ Ω |u(x) = u(t, 0)} is the vertical
line {x ∈ Ω |x1 = t} for all t ∈ (0, 1). Since a ≥ 1, the choice of g in (3.3) and the
Neumann boundary condition in (3.2) yield ∂u/∂ν(t, 0) = 0, which implies

min
x∈Ω̄

u(x) < u(t, 0) < max
x∈Ω̄

u(x).
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Thus Ωt := {x ∈ Ω |u(x) < u(t, 0)} is a nonempty open subset of Ω and (t, 0) ∈ ∂Ωt.
It is easy to see that

H1(∂Ωt ∩ l4) < H1(∂Ωt \ (l1 ∪ l3 ∪ l4)) if Γt = {x ∈ Ω |x1 = t},(3.5)

where H1(L) denotes the arclength of the curve L.
Applying the divergence theorem on Ωt, we have

0 =

∫
∂Ωt

a

|∇u|
∂u

∂ν
ds

=

∫
∂Ωt∩∂Ω

g ds +

∫
∂Ωt\∂Ω

a

|∇u|
∂u

∂ν
ds

= −H1(∂Ωt ∩ l4) +H1(∂Ωt ∩ l2) +

∫
∂Ωt\∂Ω

a
∇u · ν
|∇u| ds,

(3.6)

where ν denotes the outward unit normal to Ωt. Since u(x) < u(t, 0) in Ωt and
u(x) = u(t, 0) on ∂Ωt \ ∂Ω, we have ν = ∇u/|∇u| on ∂Ωt \ ∂Ω, which implies

∇u · ν
|∇u| = 1 on ∂Ωt \ ∂Ω.

By the above identity and the fact that a ≥ 1, from (3.6) we get

H1(∂Ωt ∩ l4) = H1(∂Ωt ∩ l2) +

∫
∂Ωt\∂Ω

a ds

≥ H1(∂Ωt ∩ l2) +H1(∂Ωt \ ∂Ω)

= H1(∂Ωt \ (l1 ∪ l3 ∪ l4)).

Hence, from (3.5) it must be Γt = {x ∈ Ω |x1 = t}, that is, u(t, x2) = u(t, 0) for
0 < x2 < 1, which implies (∇u · ν)/|∇u| = ±1 on ∂Rt ∩ {x1 = t} in (3.4). Thus
from (3.4), we have

0 =

∫
∂Rt

a

|∇u|
∂u

∂ν
ds = −1± a(t).

By the knowledge of a ≥ 1, we conclude that a(t) = 1 for all t ∈ (0, 1), which proves
the necessity.

4. Uniqueness of edge in a modified system. In order not to go astray
from the main point of MREIT, we must focus on the final goal of MREIT, which
aims to reconstruct the conductivity image σ. In section 3, we have observed that
the model (3.2) may have infinitely many solutions u, and so has infinitely many
distinct conductivity images σ = a/|∇u|. Thus, the model (3.2) is not appropriate
for making a reconstruction algorithm. This is the main reason why the modified
system (1.6) was introduced in [7] for the reconstruction algorithm that has been
successfully demonstrated to provide accurate high-resolution conductivity images.

Although in numerical simulations in [7] the system (1.6) seems to have unique-
ness, we were not able to prove the uniqueness rigorously as of this writing, but we
could prove a practically useful uniqueness result which guarantees the unique detec-
tion of the edges of the conductivity image. This means that the system (1.6) uniquely
determines the interface where the conductivity distribution σ is discontinuous.
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As discussed at the beginning of section 3, if we assume that (u1, u2) is a practi-
cally acceptable solution of the system (1.6), we may impose the assumption

σ =
a1

|∇u1| =
a2

|∇u2| ∈ Σ,

which is the two-measurement analogue of the assumption (3.1). By plugging this as-
sumption into the system (1.6), we have the following system, which will be considered
in this section:

∇·
(

aj
|∇uj |∇uj

)
= 0 in Ω,

a1

|∇u1| =
a2

|∇u2| ∈ Σ,

aj
|∇uj |

∂uj
∂ν

= gj on ∂Ω,∫
∂Ω

uj ds = 0

(4.1)

for j = 1, 2. For the uniqueness of (4.1), we need to choose an appropriate pair of
current patterns g1 and g2 to have

|∇u1(x)×∇u2(x)| > 0 for all x ∈ Ω.(4.2)

In practice, each current gj (j = 1, 2) is applied through one pair of electrodes attached
at points Pj , Qj ∈ ∂Ω. Here, the points P1, P2, Q1, and Q2 are situated along the
boundary ∂Ω in this order and separated by a distance greater than 2ε. (See [7].)
Hence we can assume, as in (1.2), the current gj is approximated by

gj(x) =


+ I

2ε on {|x− Pj | < ε} ∩ ∂Ω,

− I
2ε on {|x−Qj | < ε} ∩ ∂Ω,

0 otherwise,

(4.3)

where I is the current sent to both electrodes at Pj and Qj , and 2ε is the width of
each electrode. With these currents g1 and g2 as the Neumann data, from (2.5) we can
easily see that the solution (u1, u2) ∈ H1(Ω) ×H1(Ω) to the nonlinear system (4.1)
satisfies

∇uj(x) = 0 for all x ∈ Ω, j = 1, 2.

More generally, in this case we can prove that (4.2) holds as the following lemma.

Lemma 4.1. Suppose that (u1, u2) ∈ H1(Ω)×H1(Ω) is a solution to the nonlinear
system (4.1) with the Neumann data g1 and g2 defined in (4.3). Then we have

|∇u1(x)×∇u2(x)| > 0 for all x ∈ Ω.

Proof. To derive a contradiction, suppose that there exists a point ξ ∈ Ω such
that

|∇u1(ξ)×∇u2(ξ)| = 0.
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Then there exists a nonzero vector (c1, c2) ∈ R
2 so that c1∇u1(ξ) + c2∇u2(ξ) = 0.

Consider the function w := c1u1 + c2u2, which satisfies ∇w(ξ) = 0 and

∇·
(

a1

|∇u1|∇w
)

= 0 in Ω,

a1

|∇u1|
∂w

∂ν
= g̃ on ∂Ω, and

∫
∂Ω

w ds = 0,

where g̃ = c1g1 + c2g2. By the assumption of

a1(x)

|∇u1(x)| =
a2(x)

|∇u2(x)| ∈ Σ,

we may regard w as a solution to the classical Neumann problem (2.3) with the
conductivity coefficient in the set Σ. Then all the properties in (2.4) hold for w.

On the other hand, the definition of gj in (4.3) yields

g̃(x) =



+c1
I
2ε on {|x− P1| < ε} ∩ ∂Ω,

+c2
I
2ε on {|x− P2| < ε} ∩ ∂Ω,

−c1 I
2ε on {|x−Q1| < ε} ∩ ∂Ω,

−c2 I
2ε on {|x−Q2| < ε} ∩ ∂Ω,

0 otherwise.

Hence, by the ordering of the points P1, P2, Q1, and Q2, we easily see that for any
nonzero vector (c1, c2), g̃ = 0 and there exist two disjoint arcs Γ+ and Γ− contained
in ∂Ω such that

Γ+ ∪ Γ− = ∂Ω, and Γ+ ⊂ {g̃ ≥ 0}, Γ− ⊂ {g̃ ≤ 0}.(4.4)

Therefore, it follows from (2.5) that ∇w(x) = 0 for all x ∈ Ω. In particular, ∇w(ξ) =
0, and hence it is a contradiction. This completes the proof.

For the sake of clarity, we will give in the following remark more detailed proof
for the reason why the property (4.4) of nonzero g̃ implies ∇w = 0 in Ω, although it
can also be found in [1, 2, 13].

Remark 4.2. Suppose that ∇w(ξ) = 0; then by the maximum principle the
level set {x ∈ Ω |w(x) = w(ξ)} divides Ω into more than four disjoint connected
components Ω±1 , . . . ,Ω

±
m (m ≥ 2) such that (see Figure 4.1)

m⋃
k=1

Ω+
k = {x ∈ Ω |w(x) > w(ξ)} and

m⋃
k=1

Ω−k = {x ∈ Ω |w(x) < w(ξ)}.

Applying the maximum principle again, we find that the boundary of each com-
ponent Ω±k must occupy a portion γ±k of ∂Ω, that is, γ±k := ∂Ω±k ∩ ∂Ω = ∅: if not,
∂Ω±k is a subset of the level curve {x ∈ Ω |w(x) = w(ξ)} and therefore by maximum
principle w is the constant equal to w(ξ) in Ω±k . By the unique continuation, ∇w = 0
in the whole domain Ω, and therefore g̃ = 0, which is a contradiction.

From the maximum-minimum principle

sup
Ω+

k

w = sup
∂Ω+

k

w = sup
γ+
k

w and inf
Ω−

k

w = inf
∂Ω−

k

w = inf
γ−
k

w,
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Fig. 4.1. An illustration for Remark 4.2 when m = 2.

there exist points z+
k ∈ γ+

k and z−k ∈ γ−k so that

w(z+
k ) = sup

Ω+
k

w, w(z−k ) = inf
Ω−

k

w.

By Hopf’s lemma, we have g̃(z+
k ) > 0 and g̃(z−k ) < 0 for k = 1, . . . ,m. Since m ≥ 2,

g̃ cannot satisfy the property (4.4), which is a contradiction.
Lemma 4.1 tells us that two gradient vector fields ∇u1 and ∇u2 are neither

vanishing nor parallel to each other at any points in Ω. Based on this fact, we can
prove the following uniqueness result for the inverse problem with two measurements.

Theorem 4.3. Suppose that (u1, u2), (ũ1, ũ2) ∈ H1(Ω)×H1(Ω) are solutions to
the nonlinear system (4.1) with the Neumann data g1 and g2 defined in (4.3). Then
the edge of the conductivity image is uniquely determined by (a1, a2) in such a way
that{

x ∈ Ω

∣∣∣∣ aj
|∇uj | is discontinuous at x

}
=

{
x ∈ Ω

∣∣∣∣ aj
|∇ũj | is discontinuous at x

}
.

Proof. Since (u1, u2) satisfies

a1

|∇u1| =
a2

|∇u2| ∈ Σ,

there exist σ0 ∈ Cα(Ω̄) and {(σk, Dk) |σk ∈ Cα(D̄k), D̄k ⊂ Ω}Mk=1 for some M ∈ N,
which satisfy

aj
|∇uj | = σ0 +

M∑
k=1

σkχDk
∈ Σ.(4.5)

Hence, from (2.1) we have

σ := σ0 +

M∑
k=1

σkχDk
∈ Cα (∪Mk=1D̄k

) ∩ Cα (Ω \ ∪Mk=1Dk

)
,(4.6)
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and uj can be viewed as a solution of (2.3) when g is substituted by gj . Thus, from
(b) in (2.4) we get

∇uj ∈ Cα
(∪Mk=1D̄k

) ∩ Cα (Ω \ ∪Mk=1Dk

)
.(4.7)

From (4.5), we have aj(x) = σ(x)|∇uj(x)|, which implies that

aj ∈ Cα
(∪Mk=1D̄k

) ∩ Cα (Ω \ ∪Mk=1Dk

)
for j = 1, 2

by the aid of (4.6) and (4.7). Therefore, we get

A := {x ∈ Ω | a1 or a2 is discontinuous at x} ⊂
M⋃
k=1

∂Dk.(4.8)

For the converse of (4.8), fix any ξ ∈ ∂Dk for any k = 1, . . . ,M . It follows from
Lemma 4.1 that either

∂u+
1

∂τ
(ξ) = 0 or

∂u+
2

∂τ
(ξ) = 0,(4.9)

where u+
j := uj |Ω\D̄k

for j = 1, 2, and ∂/∂τ denotes the tangential derivative on ∂Dk.
By the properties (c) and (d) in (2.4), we get

σ0(ξ)
∂u+

j

∂ν
(ξ) = (σ0(ξ) + σk(ξ))

∂u−j
∂ν

(ξ) and
∂u+

j

∂τ
(ξ) =

∂u−j
∂τ

(ξ),

where u−j := uj |Dk
and ν denotes the outward unit normal to ∂Dk. Considering

aj = σ|∇uj |, a simple calculation yields that

|a−j (ξ)|2 = |a+
j (ξ)|2 +

(
(σ0(ξ) + σk(ξ))

2 − (σ0(ξ))
2
) ∣∣∣∣∣∂u

+
j

∂τ
(ξ)

∣∣∣∣∣
2

,(4.10)

where a−j := aj |Dk
and a+

j := aj |Ω\D̄k
. Since σk(ξ) = 0 by definition of Σ, by the aid

of (4.9) the second term on the right-hand side of (4.10) is nonzero for either j = 1 or
j = 2. Thus we show that a1 or a2 is discontinuous at ξ, and so ξ ∈ A. This proves
that ∪Mk=1∂Dk ⊂ A. Hence, from (4.8) we conclude that ∪Mk=1∂Dk = A.

On the other hand, from (4.5) and (2.2), we can easily see that{
x ∈ Ω

∣∣∣∣ aj
|∇uj | is discontinuous at x

}
=

M⋃
k=1

∂Dk = A.(4.11)

Because we have used only the fact that (u1, u2) is a solution to the nonlinear
system (4.1), we can derive the same conclusion as (4.11) for (ũ1, ũ2){

x ∈ Ω

∣∣∣∣ aj
|∇ũj | is discontinuous at x

}
=

M̃⋃
k=1

∂D̃k = A(4.12)

for some mutually disjoint domains D̃k ⊂ Ω. Since the set A is completely determined
by the data (a1, a2), the proof is completed by (4.11) and (4.12).

Theorem 4.3 shows that the region where the conductivity distribution has jumps
can be uniquely detected by the observation of discontinuities of the measured data
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(a1, a2). In the following theorem, we show that the conductivity values as well as
the unknown inclusions can be determined in a simple case when the conductivity
distribution σ ∈ Σ is known to be piecewise constant.

Theorem 4.4. Suppose that (u1, u2), (ũ1, ũ2) ∈ H1(Ω)×H1(Ω) are solutions to
the nonlinear system (4.1) with the Neumann data g1 and g2 defined in (4.3). Suppose
that

aj
|∇uj | and

aj
|∇ũj | are piecewise constants, that is,

aj
|∇uj | = 1 +

M∑
k=1

µkχDk
and

aj
|∇ũj | = 1 +

M̃∑
k=1

µ̃kχD̃k
,(4.13)

where µk, µ̃k are nonzero constants satisfying −1 < µk, µ̃k < ∞. Then (u1, u2) and
(ũ1, ũ2) are the same.

Proof. First, we will prove that

aj
|∇uj | =

aj
|∇ũj | .(4.14)

From (4.13), and (4.11), (4.12) in the proof of Theorem 4.3, the edge of the con-

ductivity image is uniquely determined, that is, M = M̃ and
⋃M
k=1 Dk =

⋃M̃
k=1 D̃k.

Thus, for (4.14) it only remains to prove that µk = µ̃k for k = 1, . . . ,M . For this,
it suffices to show that µk can be uniquely determined by the measured data (a1, a2)
analogously as explained in the proof of Theorem 4.3. To be precise, µk will be shown
to be determined by

µk =
√

1 + mk − 1, k = 1, . . . ,M,(4.15)

where the number mk is defined by

mk :=



max
ξ∈∂Dk

{∣∣∣∣ a−1 (ξ)

a+
1 (ξ)

∣∣∣∣2 − 1

}
if a−1 ≥ a+

1 on ∂Dk,

min
ξ∈∂Dk

{∣∣∣∣a−1 (ξ)

a+
1 (ξ)

∣∣∣∣2 − 1

}
if a−1 ≤ a+

1 on ∂Dk.

(4.16)

Here, a−1 := a1|Dk
and a+

1 := a1|Ω\D̄k
.

From (4.13), we have a+
1 = |∇u+

1 | on ∂Dk, and thus it follows that∣∣∣∣a−1 (ξ)

a+
1 (ξ)

∣∣∣∣2 − 1 =
| a−1 (ξ)|2 − | a+

1 (ξ)|2
|∇u+

1 (ξ)|2 , ξ ∈ ∂Dk.(4.17)

By the aid of (4.10) (in our case, σ0(ξ) = 1 and σk(ξ) = µk), we easily observe
that either a−1 ≥ a+

1 or a−1 ≤ a+
1 on ∂Dk. In the case in which a−1 ≥ a+

1 , from
(4.17) and (4.10) we have∣∣∣∣a−1 (ξ)

a+
1 (ξ)

∣∣∣∣2 − 1 ≤ | a
−
1 (ξ)|2 − | a+

1 (ξ)|2∣∣ ∂u+
1 /∂τ(ξ)

∣∣2 = µk(µk + 2)

for all ξ ∈ ∂Dk. In the case in which a−1 ≤ a+
1 , we get a similar result given by∣∣∣∣a−1 (ξ)

a+
1 (ξ)

∣∣∣∣2 − 1 ≥ µk(µk + 2).
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Now we will find the optimizer z ∈ ∂Dk of (4.16). Applying the divergence theorem
on Ω \ D̄k, we get

0 =

∫
∂Ω

a1

|∇u1|
∂u1

∂ν
ds−

∫
∂Dk

∂u+
1

∂ν
ds = −

∫
∂Dk

∂u+
1

∂ν
ds,

noting that u1 belongs to C1,α(Ω \ ∪Mk=1Dk) from (2.4) and a+
1 /|∇u+

1 | = 1 on ∂Dk.
Hence there exists a point z ∈ ∂Dk satisfying ∂u+

1 /∂ν(z) = 0, and by Lemma 4.1 we
have ∣∣∣∣∂u+

1

∂τ
(z)

∣∣∣∣ = |∇u+
1 (z)| > 0.(4.18)

From (4.17), (4.18), and the jump relation (4.10), we obtain∣∣∣∣a−1 (z)

a+
1 (z)

∣∣∣∣2 − 1 = µk(µk + 2),

which implies that the point z ∈ ∂Dk is the optimizer of (4.16). Thus it is clear that
the number mk defined in (4.16) is given by mk = µk(µk +2) > −1 because µk > −1.
Therefore we conclude that µk =

√
1 + mk − 1, which proves (4.15) and hence (4.14).

Finally, from (4.13) and (4.14) we see that uj and ũj can be viewed as the solutions

of (2.3) when g is substituted by gj and σ := 1 +
∑M
k=1 µkχDk

, since both (u1, u2)
and (ũ1, ũ2) are solutions to the nonlinear system (4.1). Hence by the uniqueness of
the classical Neumann problem (2.3), we verify that u1 = ũ1 and u2 = ũ2, which
completes the proof.

5. Conclusion and numerical examples. A new reconstruction algorithm,
the so-called J-substitution algorithm, was presented in [7] without uniqueness proofs
to provide an impressively high-resolution conductivity image σ in simulations based
on internal current density a obtained from the MRI system. For this algorithm,
two different internal current densities a1 and a2 induced by two different applied
currents g1 and g2 defined in (4.3) were used. In this paper, Theorem 4.3 has proved
the uniqueness of the edge detection for piecewise continuous conductivities, and
Theorem 4.4 has shown that a piecewise constant conductivity distribution can be
completely reconstructed from a1 and a2.

On the other hand, it is worth investigating whether one could recover the con-
ductivity distribution with only one internal current density, which means equiva-
lently whether the nonlinear Neumann boundary value problem (3.2) could be solved
uniquely. Theorem 3.1 has given a negative answer to this question.

In this section, we will present a numerically obtained example of nonuniqueness
with one measurement which has been discussed in section 3. Suppose that Figure 5.1
represents an internal current density a(x) on a cross-section Ω = (−1, 1)× (−1, 1) of
the human body induced by the applying the current

g(x) =


1 if x1 = 1,

−1 if x1 = −1,

0 otherwise,

(5.1)

which can be viewed as an electrode attachment model in (1.2) when P = (1, 0),
Q = (−1, 0), I = 2, and ε = 1. We have numerically obtained this current density

a(x) := σ(x)|∇u(x)|(5.2)



524 S. KIM, O. KWON, J. K. SEO, AND J.-R. YOON

Fig. 5.1. Simulated current density a(x).

u1(x) u2(x)

Fig. 5.2. Two different solutions u1 and u2 to the problem (3.2).

by assuming a conductivity distribution σ (in our experiment, σ is assumed to be
σ1 in Figure 5.3) and numerically solving the classical Neumann problem (2.3) with
Neumann data g in (5.1) to calculate |∇u(x)|. As a numerical solver for (2.3), we
have adopted the cell-centered finite difference scheme explained in [7]. In a real
situation, the current density a(x) is provided by a suitable MRI experiment called
current density imaging [4, 6, 10, 11, 12, 15].

With this a and g, we can construct infinitely many solutions of the nonlinear
Neumann boundary value problem (3.2) by virtue of Theorem 3.1. Here we present
two different solutions u1 and u2, respectively given in Figure 5.2. Indeed, u1 is equal
to u that has been used to generate the simulated current density a in (5.2), and u2

corresponds to ut,λ defined in the proof of Theorem 3.1 in the case in which t = 0
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σ1(x) σ2(x)

Fig. 5.3. Two distinct conductivity images generated by u1 and u2.

and λ = 5. These two different solutions yield two distinct conductivity images,

σ1(x) =
a(x)

|∇u1(x)| and σ2(x) =
a(x)

|∇u2(x)| ,

which are respectively shown in Figure 5.3. Hence, we conclude that only one internal
current density information is insufficient for the unique determination of conductivity
distributions.
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Abstract. A one-dimensional system describing small shearing disturbances in a semi-infinite,
fully saturated granular medium is studied. The system is fully nonlinear as a result of the incremen-
tally nonlinear constitutive law for the material. In particular, there are two different wave speeds
corresponding to loading or unloading of the material. A free boundary problem for the boundary
between loading and unloading regions is derived and solved globally. The solution is then applied
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1. Introduction. The following system of equations was derived by Osinov and
Gudehus [7] as the key equations in a simplified model for plane shear waves in a
saturated granular body:

∂tv = ∂xσ,

∂tσ = a∂xv + b|∂xv|.
(1.1)

Here a and b are constants satisfying 0 < b < a. The dependent variables are v
and σ; v is velocity and σ is a component of stress. Notice that, in regions where
∂xv (or, equivalently, ∂tσ) does not change sign, the system (1.1) reduces to a linear
wave equation with wave speed

√
a+ b or

√
a− b. Osinov and Gudehus derive the

system (1.1) from a full three-dimensional system of equations for the deformation
of a saturated granular material with a hypoplastic flow rule. (See [1], [4], [5], [6].)
They linearize this system about a static state (i.e., zero strain rate) with constant
stress tensor T 0; further, they assume that the incremental variables depend only on
t and x1 and that v2 is the only nonzero component of velocity. The equations for
v = v2 and σ = T12 − T 0

12 (the perturbation of the shear stress) decouple from the
other equations, leading to the system (1.1). We should point out that the constant
b is positive because we assume that T 0

12 < 0; the sign of b changes if T
0
12 > 0. (See

[7].) A consequence of T 0
12 < 0 is that increasing σ decreases the magnitude of the

total shear stress and thus unloads the material. Similarly, decreasing σ loads the
material. Thus we will refer to regions where ∂tσ < 0 (or, equivalently, ∂xv < 0) as
loading regions and those where ∂tσ > 0 (∂xv > 0) as unloading.

A physical context for this model is shown in Figure 1.1. The figure shows a
saturated granular material resting on an inclined solid mass. Plane shear waves
described by (1.1) propagate in the direction perpendicular to the interface between
the solid and the granular material, while the velocity vector is parallel to it. Boundary
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Fig. 1.1. Physical setting for the model equations.

disturbances could be created by waves propagating through the solid. A negative
shear stress T 0

12 is created by the weight of the granular material.

We consider the system (1.1) in the quarter plane x ≥ 0, t ≥ 0 with initial data

v(x, 0) = σ(x, 0) = 0(1.2)

and stress-controlled boundary data

σ(0, t) = −φ(t),(1.3)

where φ(0) = 0, limt→∞ φ (t) = 0, φ is continuous, nonnegative, nondecreasing on
[0, ts], and nonincreasing on [ts,∞). (Two examples of such φ are shown in Figures
6.1 and 6.2.) Notice that (1.3) implies that σ decreases initially and then increases so
that the resulting traveling pulse consists of a loading front followed by an unloading
front. The form of the solution in the xt-plane (near t = ts) is shown in Figure 1.2.
Velocity and stress are zero in A0 due to (1.2), A1 is a loading region, and A2 is an
unloading region. Finding the solution in A0 and A1 is a straightforward application
of the method of characteristics to (1.2) and (1.3). However, the solution in A2 and
the interface between A1 and A2 are interdependent, resulting in a free boundary
problem. Gordon, Shearer, and Schaeffer [3] solve (1.1), (1.2), (1.3) with piecewise
linear boundary data so that the resulting interface between loading and unloading
regions is a straight line whose slope is the solution of a quadratic. In our case, this
interface will be the solution of a difficult functional equation similar to the one solved
in [2], and we find solutions with a similar iterative technique. The solution in [2] is
local, and the iterations shrink the domain so that some effort is needed to show that
it does not vanish to a point in the limit. In this work, we find a local solution and
show that the iterations actually enlarge the domain, leading to a global solution.

In section 2, we use characteristic analysis to reduce the boundary value problem
to an equation for the loading/unloading interface. In sections 3 and 4, we consider
two cases: (i) φ has a corner at ts and (ii) φ is smooth at ts. The main challenge in the
smooth case is finding a suitable function space, closed under our iterating operator,
in which to seek a solution.
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ts

x=β t
A2

A 0A1

t

x0
0

x=s(t)

Fig. 1.2. Form of the solution in xt-space.

We had hoped to show in this work that the long-time solution of (1.1), (1.2),
(1.3) was the same as was shown for a piecewise linear boundary pulse in [3], i.e., a de-
caying pulse which consists of a leading loading front and a trailing unloading front for
all time. In fact, our derivation in section 2 of the equation for the loading/unloading
interface assumes that our solution also has this form for all time. (See Figure 1.2.)
However, if the solution begins to load somewhere in the unloading region after the
loading/unloading interface has passed, it will invalidate that derivation. Unfortu-
nately, this can happen for some choices of φ, as we show by example in section 6. In
that section, we consider two examples of possible boundary data φ. We use analysis
and numerical computations to show that, in one case, the solution of the interface
equation does not lead to a global solution of (1.1), (1.2), (1.3), while in the other it
does. In the second case, we show that the behavior of the solution is, as expected,
qualitatively the same as for the stress-controlled problem in [3]. In section 5, we
show that the solution of the interface equation leads to a solution of (1.1), (1.2),
(1.3) that is at least locally valid.

2. Derivation of loading/unloading interface equation. In deriving an
equation for the interface between loading and unloading regions, we will assume
that the solution of (1.1), (1.2), (1.3) has the form shown in Figure 1.2; v = σ = 0
in A0 = {(x, t) : x > βt}; A1 = {(x, t) : s(t) < x < βt} is a loading region, and
A2 = {(x, t) : x < s(t)} is unloading. (We will show later that this assumption is
at least locally valid and that σ and v are continuous across the loading/unloading
interface x = s (t) .) This means that

∂tv = ∂xσ,

∂tσ = β2∂xv
(2.1)
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in A1, where β =
√
a− b is the slow wave speed associated with loading, and

∂tv = ∂xσ,

∂tσ = α2∂xv
(2.2)

in A2, where α =
√
a+ b is the fast wave speed associated with unloading. The curve

x = s(t) must satisfy the entropy condition discussed in [3]:

β ≤ s(t+ h)− s(t)

h
≤ α.(2.3)

We will use characteristic analysis to derive an equation for the loading/unloading
interface. First, notice that v = σ = 0 in A0 because of (1.2) and the fact that every
point in A0 is connected to the x-axis by a pair of characteristics. Each point in A1

is reached by one characteristic emanating from the x-axis and one from the t-axis,
so the solution there is determined by (1.2) and (1.3). To see this, we rewrite (2.1) as

(∂t − β∂x) (σ + βv) = 0,

(∂t + β∂x) (σ − βv) = 0.
(2.4)

Equations (2.4) and (1.2) imply that σ + βv = 0 in A1, so

v = −σ/β in A1.(2.5)

Combining (2.5) with (1.3), we have

v(0, t) = φ(t)/β for t ≤ ts.

This, (1.3), and (2.4) now imply that

(σ − βv) (0, t) = −2φ (t) for t ≤ ts.(2.6)

Equation (2.6), combined with (2.4), determines σ − βv on all of A1; using (2.5),
the entire solution σ, v is then determined on all of A1. Notice that, if the load-
ing/unloading interface x = s(t) was known, characteristic analysis could then be
used to find the entire solution on A2, since two characteristics enter A2 from the
interface. Since this would also determine the known boundary condition σ = φ (t)
on the t-axis for t > ts, it seems reasonable to expect that we can set up an equation
relating s (t) to φ (t) . Figure 2.1 shows how this will be accomplished. Referring to
that figure, we let (s(t), t) be a point on the interface and

tα = t− s(t)/α = t̃+ s(t̃)/α,

tβ = t− s(t)/β, t̃β = t̃− s(t̃)/β.
(2.7)

From (2.6) and (2.4), we have

(σ − βv)(s(t), t) = (σ − βv)(0, tβ) = −2φ(tβ).(2.8)

By (2.5),

(σ − βv)(s(t), t) = 2σ(s(t), t).(2.9)
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Fig. 2.1. Derivation of the interface equation.

Combining (2.5), (2.8), and (2.9), we have

σ(s(t), t) = −φ(tβ),(2.10)

v(s(t), t) = φ(tβ)/β.

Similarly,

σ(s(t̃), t̃) = −φ(t̃β),(2.11)

v(s(t̃), t̃) = φ(t̃β)/β.

Notice that (2.2) can be written as (2.4) with α in place of β:

(∂t − α∂x) (σ + αv) = 0,

(∂t + α∂x) (σ − αv) = 0.
(2.12)

This implies

(σ − αv)(s(t), t) = (σ − αv)(0, tα) = −φ(tα)− αv(0, tα),

(σ + αv)(s(t̃), t̃) = (σ + αv)(0, tα) = −φ(tα) + αv(0, tα).

Adding these gives

(σ − αv)(s(t), t) + (σ + αv)(s(t̃), t̃) = −2φ(tα).(2.13)

Notice that (2.10) and (2.12) imply

(σ − αv)(s(t), t) + (σ + αv)(s(t̃), t̃) = − (α/β + 1)φ(tβ) + (α/β − 1)φ(t̃β).(2.14)



532 MICHAEL S. GORDON

Combining (2.13) and (2.14), we have the equation we seek:

− (α/β + 1)φ(tβ) + (α/β − 1)φ(t̃β) = −2φ(tα).

For simplicity, we rewrite this equation as

µφ(tβ)− φ(t̃β) = (µ− 1)φ(tα),(2.15)

where µ = (α+ β)/(α− β) > 1.
It becomes easier to see (2.15) in terms of the unknown interface if we make a

change in coordinates so that the characteristics in A2 become coordinate directions:
ξ = t− x/α, ζ = t+ x/α. We let ζ = ρ(ξ) be the loading/unloading interface in the
new variables, where ρ is defined implicitly in terms of s:

ρ (t− s (t) /α) = t+ s (t) /α for t > ts.(2.16)

The point (t, s(t)) becomes (ξ, ρ(ξ)) in the new coordinates. We let ξ̃ = t̃ − s(t̃)/α;
then (t̃, s(t̃)) becomes (ξ̃, ρ(ξ̃)) in the new coordinates. Notice that (2.16) implies

ξ = t− s(t)/α = tα by (2.7),(2.17)

ρ (ξ) = t+ s (t) /α,(2.18)

ρ(ξ̃) = t̃+ s(t̃)/α = tα by (2.7).(2.19)

We solve (2.17) and (2.18) for t and s (t) to get

t = (ρ (ξ) + ξ) /2,(2.20)

s (t) = α (ρ (ξ)− ξ) /2.

We use (2.20) to rewrite tβ in terms of the new variables:

tβ = t− s(t)/β = (ρ (ξ) + ξ) /2− α

2β
(ρ (ξ)− ξ) =

µξ − ρ(ξ)

µ− 1 .(2.21)

A similar calculation with t̃ and ξ̃ in place of t and ξ gives

t̃β = t̃− s(t̃)/β =
µξ̃ − ρ(ξ̃)

µ− 1 .(2.22)

Notice that (2.17) and (2.19) imply

ξ = ρ(ξ̃)⇒ ξ̃ = ρ−1(ξ),

provided that ρ is invertible. Combining this with (2.22), we have

t̃β =
µρ−1(ξ)− ξ

µ− 1 .(2.23)

Using (2.17), (2.21), and (2.23) to make appropriate substitutions into (2.15), we now
have

µφ

(
µξ − ρ(ξ)

µ− 1
)
− φ

(
µρ−1(ξ)− ξ

µ− 1
)
= (µ− 1)φ(ξ).(2.24)
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We have reduced the boundary value problem to solving (2.24) for the load-
ing/unloading interface ζ = ρ(ξ). We seek a solution ρ, defined on [ts,∞), satisfying
the entropy condition (2.3) or, equivalently,

D�ρ(ξ) ≥ µ(2.25)

for all ξ ≥ ts, where

D�ρ(ξ) = lim inf
h→0+

ρ(ξ + h)− ρ(ξ)

h

is the lower Dini derivative. The upper Dini derivative is defined by

Duρ(ξ) = lim sup
h→0+

ρ(ξ + h)− ρ(ξ)

h
.

We will also show that the loading/unloading interface x = s (t) approaches but never
intersects the leading edge of the front x = βt, or, equivalently,

ρ(ξ) < µξ(2.26)

for all ξ ≥ ts, and

lim
ξ→∞

(µξ − ρ(ξ)) = 0.(2.27)

Notice that (2.27) and (2.25) imply that

lim
ξ→∞

D�ρ(ξ) = µ.(2.28)

3. Corner case. In this section, we solve (2.24), assuming that there is a jump
in the derivative of φ at ts. More precisely, we let φ1 = φ|[0,ts] and φ2 = φ|[ts,∞). We
assume that φ1 ∈ C1 [ts − δ0, ts], φ2 ∈ C1[ts, ts + δ0] for some δ0 > 0, and

φ′1 > 0 on [ts − δ0, ts] and φ
′
2 ≤ 0 on [ts, ts + δ0].(3.1)

The solution of (2.24) will be obtained by an iterative procedure defined as follows.
Given a continuous function ρ satisfying (2.25) and ρ(ts) = ts, let Ψ(ρ) be the function
satisfying

µφ1

(
µξ −Ψ(ρ)(ξ)

µ− 1
)
− φ1

(
µρ−1(ξ)− ξ

µ− 1
)
= (µ− 1)φ2(ξ)

or, equivalently,

Ψ(ρ)(ξ) = µξ − (µ− 1)φ−1
1

[
(1− 1/µ)φ2(ξ) +

1

µ
φ1

(
µρ−1(ξ)− ξ

µ− 1
)]

.(3.2)

Notice that a function ρ which is a fixed point of Ψ is a solution of (2.24). We will
show that Ψn(ρ) converges to a fixed point of Ψ as n→∞.

Before we continue, however, we pause to give some motivation for the choice of
Ψ. Consider the case, solved in [3], where the boundary data φ is piecewise linear.
As mentioned in the introduction, the loading/unloading interface in this case is a
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straight line. Let φ′1 (t) = ω1 > 0, φ
′
2 (t) = −ω2 ≤ 0, and ρ′ (ξ) = ρ0. It is not difficult

to show that (2.24) reduces to

µω1

(
µ− ρ0

µ− 1
)
− ω1

(
µ/ρ0 − 1
µ− 1

)
= −(µ− 1)ω2,(3.3)

which then reduces to a quadratic in ρ0. We examine what happens when we employ
the iterative method described above to (3.3). Ψ is now defined by

Ψ(ρ0) = µ− µ− 1
ω1

[
−(1− 1/µ)ω2 +

ω1

µ

(
µ/ρ0 − 1
µ− 1

)]
= µ+

ω2(µ− 1)2
ω1µ

+ 1/µ− 1/ρ0.

Notice that Ψ : [µ, k]→ [µ, k] , where

k = µ+
ω2(µ− 1)2

ω1µ
+ 1/µ.(3.4)

Suppose ρ0, ρ̄0 ∈ [µ, k] . Then

|Ψ(ρ̄0)−Ψ(ρ0)| = |1/ρ0 − 1/ρ̄0| =
|ρ̄0 − ρ0|
ρ̄0ρ0

≤ |ρ̄0 − ρ0|
µ2

.

This shows that Ψ is a contraction on [µ, k], and so Ψn(ρ0) converges to a solution of
(3.3) for any ρ0 ∈ [µ, k] . This is the strategy we use in solving the general problem in
this and the following section. In both cases, we will show that Ψ is a contraction in
the supremum norm on a suitably chosen function space. In the corner case, the space
chosen is analogous to the interval used above in the piecewise linear case, placing
upper and lower bounds on Duρ and D�ρ. The choice is more difficult in the smooth
case; more discussion precedes that section.

In this and the following section, we let

tβ (ξ) =
µξ −Ψ(ρ)(ξ)

µ− 1 = φ−1
1

[
(1− 1/µ)φ2(ξ) +

1

µ
φ1

(
t̃β (ξ)

)]
.(3.5)

t̃β (ξ) is as defined in (2.23). (See Figure 3.1.) The following lemma motivates the
definition of the function space for the corner case.

Lemma 3.1. Suppose ρ ∈ C[ts, ts + δ], δ > 0, ρ(ts) = ts, ρ(ξ) ≤ µξ, and ρ
satisfies (2.25). Then Ψ(ρ) ∈ C[ts, ρ(ts + δ)], Ψ(ρ)(ts) = ts, Ψ(ρ)(ξ) ≤ µξ, and Ψ(ρ)
satisfies (2.25).

Proof. Suppose ρ ∈ C[ts, ts + δ], ρ(ts) = ts, ρ(ξ) ≤ µξ, and ρ satisfies (2.25). It
is clear from (3.2) that Ψ(ρ)(ts) = ts. It follows from ρ(ξ) ≤ µξ and (2.25) that

ξ ≤ µρ−1(ξ) ≤ µts + (ξ − ts)⇒ 0 ≤ t̃β (ξ) =
µρ−1(ξ)− ξ

µ− 1 ≤ ts

for all ξ ∈ [ts, ρ(ts + δ)]. Notice then that

0 ≤ (1− 1/µ)φ2(ξ) + φ1

(
t̃β (ξ)

)
/µ ≤ φ (ts)

for all ξ ∈ [ts, ρ(ts + δ)]. It then follows from (3.2) that Ψ(ρ) ∈ C[ts, ρ(ts + δ)]
and that Ψ(ρ)(ξ) ≤ µξ. It follows from (2.25) that t̃β (ξ) is nonincreasing, and so
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Fig. 3.1. Iterative procedure for finding the interface.

φ1

(
t̃β (ξ)

)
is nonincreasing. Since φ2 is also nonincreasing, (3.5) implies that tβ(ξ)

is nonincreasing, and so

D�Ψ(ρ)(ξ) = µ− (µ− 1)Dutβ(ξ) ≥ µ.

Hence Ψ(ρ) satisfies (2.25).

LetK = µ+(µ−1)2K1K2/µ+K1K2/µ, whereK1 = sup
{
1/φ′1(t) : ts − δ0 ≤ t ≤ ts

}
and K2 = sup

{∣∣φ′(t)∣∣ : ts − δ0 ≤ t ≤ ts + δ0

}
. Notice that K1 exists by (3.1). Define

Γ(δ) to be the set of functions ρ ∈ C[ts, ts + δ] such that ρ(ts) = ts, ρ(ξ) ≤ µξ, ρ
satisfies (2.25), and

Duρ(ξ) ≤ K(3.6)

for ξ ∈ [ts, ts + δ]. We note that K is a generalization of the bound in (3.4).

We now show that Γ (δ) is closed under Ψ.

Theorem 3.2. Ψ : Γ(δ)→ Γ(δ) for δ ≤ δ0.

Proof. Suppose ρ ∈ Γ(δ0). By Lemma 3.1, we need only show that Ψ(ρ) satisfies
(3.6). Differentiating (3.2), we have

DuΨ(ρ)(ξ) = µ− (µ− 1)
2

µ

φ′2(ξ)
φ′1 (tβ(ξ))

+
φ′1(t̃β(ξ))
φ′1 (tβ(ξ))

(
1

µ
− 1

Duρ (ρ−1 (ξ))

)
(3.7)

≤ µ+
(µ− 1)2

µ
K1K2 +K1K2/µ = K.

Theorem 3.3. There is some δ1 ∈ (0, δ0] such that Ψ is a contraction in the
supremum norm on Γ(δ1).

Proof. Suppose ρ1, ρ2 ∈ Γ(δ0). Let ‖ ·‖δ denote the supremum norm on Γ(δ), and
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let t1,2, t̃1,2 be defined as tβ , t̃β with ρ1,2 in place of ρ. Then, by (3.2),

Ψ(ρ1)(ξ)−Ψ(ρ2)(ξ) = (µ− 1) (t2(ξ)− t1(ξ))

=
µ− 1
µφ′1(τ)

(
φ1

(
t̃2(ξ)

)− φ1

(
t̃1(ξ)

))
, where τ is between t1, t2

=
(µ− 1)φ′1(τ̃)

µφ′1(τ)

(
t̃2(ξ)− t̃1(ξ)

)
, where τ̃ is between t̃1, t̃2

=
φ′1(τ̃)
φ′1(τ)

(
ρ−1
2 (ξ)− ρ−1

1 (ξ)
)

=
φ′1(τ̃)
φ′1(τ)

ρ−1
2 (ξ)− ρ−1

1 (ξ)

ρ1

(
ρ−1
2 (ξ)

)− ρ1

(
ρ−1
1 (ξ)

) (ρ1

(
ρ−1
2 (ξ)

)− ρ2

(
ρ−1
2 (ξ)

))
.

Thus, by (2.25),

|Ψ(ρ1)(ξ)−Ψ(ρ2)(ξ)| ≤
φ′1(τ̃)
µφ′1(τ)

∣∣ρ1

(
ρ−1
2 (ξ)

)− ρ2

(
ρ−1
2 (ξ)

)∣∣ .(3.8)

Choose κ ∈ (1,√µ). By (3.1), we can choose δ1 ∈ (0, δ0] so that

ν/κ ≤ φ′1(t) ≤ νκ for t ∈ [ts, ts + δ1(K − µ)/(µ− 1)] ,(3.9)

where ν = φ′1(ts). By (3.6),

ρ(ξ) ≤ K(ξ − ts) + ts(3.10)

for all ρ ∈ Γ(δ1). Since t̃β is nonincreasing and ρ(ξ) > ξ, we have that t̃β(ξ) ≥ t̃β(ρ(ξ))
which implies

ts − t̃β(ξ) ≤ ts − t̃β(ρ(ξ)) = ts − µξ − ρ(ξ)

µ− 1 .

Combining this with (3.10), we have

ts − t̃β(ξ) ≤ K − µ

µ− 1 (ξ − ts)(3.11)

for all ρ ∈ Γ(δ1). By Theorem 3.2, Ψ(ρ) ∈ Γ(δ1), so Ψ(ρ) satisfies (3.10). Thus, since

ts − tβ(ξ) = ts − µξ −Ψ(ρ)(ξ)
µ− 1 ,

tβ satisfies (3.11) for all ρ ∈ Γ(δ1), and so t1,2, t̃1,2, τ , τ̃ all satisfy (3.11) for ξ ∈
[ts, ts + δ1]. This, along with (3.9) and (3.8), implies that

‖Ψ(ρ1)−Ψ(ρ2)‖δ1 ≤
νκ

µν/κ
‖ρ1 − ρ2‖δ1 =

κ2

µ
‖ρ1 − ρ2‖δ1 ,

from which the theorem follows.
From Theorems 3.2 and 3.3 and the completeness of Γ(δ1) in the supremum norm,

we have the following theorem.
Theorem 3.4. Ψn(ρ) converges to a unique solution of (2.24) in Γ(δ1) for any

ρ ∈ Γ(δ1).
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We now show that the iterative procedure used to solve (2.24) locally actually
leads to a global solution.

Theorem 3.5. There is a unique solution of (2.24) defined on [ts,∞) satisfying
(2.25), (2.26), and (2.27).

Proof. Let ρ1 ∈ Γ(δ1) be a solution of (2.24), and let ρn = Ψ(ρn−1) for n ≥ 2.
Define δn by

ts + δn = ρn−1(ts + δn−1)(3.12)

for n ≥ 2. Notice that the proofs of Lemma 3.1 and Theorem 3.2 imply that ρn ∈ Γ(δn)
for n ≥ 2. By (2.25), δn ≥ µδn−1, and so δn →∞ as n→∞, and so ρn converges to
a function ρ∗ solving (2.24) on [ts,∞) and satisfying (2.25).

We now show that ρ∗ satisfies (2.26). Clearly there is some δ > 0 such that
ρ∗(ξ) < µξ for ξ ∈ [ts, ts + δ]. This implies

ξ < µρ−1
∗ (ξ)⇒ t̃β (ξ) =

µρ−1
∗ (ξ)− ξ

µ− 1 > 0

for all ξ ∈ [ts, ρ∗(ts + δ)]. Thus

(1− 1/µ)φ2(ξ) +
1

µ
φ1

(
µρ−1
∗ (ξ)− ξ

µ− 1
)
> 0

for all ξ ∈ [ts, ρ∗(ts + δ)] since φ1 is positive on (0, ts]. Thus, by (3.2), ρ∗(ξ) < µξ for
ξ ∈ [ts, ρ∗(ts + δ)]. By (3.12), ρn∗ (ts + δ) = ts + δn →∞ as n→∞, so ρ∗(ξ) < µξ for
ξ ∈ [ts,∞).

We now show that ρ∗ satisfies (2.27). Equations (2.25) and (2.26) imply that µξ−
ρ∗ (ξ) is nonincreasing and bounded below by zero. Thus ε = limξ→∞ (µξ − ρ∗(ξ)) ≥
0. Letting ξ →∞ in (2.24), we have

µφ1

(
ε

µ− 1
)
− φ1

(
ε

µ− 1
)
= 0⇒ φ1

(
ε

µ− 1
)
= 0⇒ ε = 0.

The following theorem shows that the solution ρ is differentiable if the boundary
data φ is differentiable except at t = ts.

Theorem 3.6. Suppose that φ1 is differentiable on [0, ts] and φ2 is differentiable
on [ts,∞). Then the solution ρ of (2.24) is differentiable on [ts,∞) and

lim
ξ→∞

ρ′(ξ) = µ.(3.13)

Proof. Let ρ be a solution of (2.24). Using (3.2) and differentiating, we have

ρ′(ξ) = µ− (µ− 1)
2

µ

φ′2(ξ)
φ′1 (tβ(ξ))

+
φ′1(t̃β(ξ))
φ′1 (tβ(ξ))

(
1

µ
− 1

ρ′ (ρ−1 (ξ))

)
,(3.14)

which implies that if ρ is differentiable on [ts, ts + δ1], then ρ is differentiable on
[ts, ρ

n (ts + δ1)], and hence on [ts,∞). Thus we need only show that ρ is differentiable
on [ts, ts + δ1]. Notice that D�ρ and Duρ satisfy (3.14). Taking the difference, we
have

Duρ (ξ)−D�ρ (ξ) = − φ′1(t̃β(ξ))
φ′1 (tβ(ξ))

(
1

Duρ (ρ−1 (ξ))
− 1

D�ρ (ρ−1 (ξ))

)
=

φ′1(t̃β(ξ))
φ′1 (tβ(ξ))

(
Duρ

(
ρ−1 (ξ)

)−D�ρ
(
ρ−1 (ξ)

)
Duρ (ρ−1 (ξ))D�ρ (ρ−1 (ξ))

)
.
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Combining this with (2.25) and (3.9), we have

|Duρ (ξ)−D�ρ (ξ)| ≤ κ2

µ2

∣∣Duρ
(
ρ−1 (ξ)

)−D�ρ
(
ρ−1 (ξ)

)∣∣
for ξ ∈ [ts, ts + δ1]. By induction,

|Duρ (ξ)−D�ρ (ξ)| ≤ κ2n

µ2n

∣∣Duρ
(
ρ−n (ξ)

)−D�ρ
(
ρ−n (ξ)

)∣∣ ≤ κ2n

µ2n
K → 0 as n→∞,

and so Duρ = D�ρ on [ts, ts + δ1]. Equation (3.13) follows from (2.28).

4. Smooth case. We now assume in place of (3.1) that φ is differentiable at ts.
Specifically, φ ∈ C1[ts − δ0, ts + δ0] for some δ0 > 0 (so φ

′(ts) = 0) and φ′′(ts) exists
and is nonzero. Thus we may write

φ(ξ) = φ(ts)− (ξ − ts)
2(λ+ φ0(ξ)),(4.1)

where φ0 ∈ C1 ([ts − δ0, ts + δ0]− {ts}) , limξ→ts φ0(ξ) = 0, limξ→ts (ξ − ts)φ
′
0(ξ) =

0, and λ = − 1
2φ
′′(ts) > 0. We note that Lemma 3.1 still holds in this setting.

Before we begin, we remark on the difficulties of this case as compared to the
corner case. The corner case relies on the Lipschitz continuity of φ1 and its inverse to
find a space of Lipschitz continuous functions which is complete and closed under our
iterating operator. In the smooth case, φ−1

1 is not Lipschitz continuous, but we are
still able to find a similar space of Lipschitz continuous functions by modifying the
upper bound on difference quotients in (3.6). (See (4.2).) However, it is more difficult
to show closure (Lemma 4.2) and requires a bound on the modulus of continuity of
difference quotients of ρ at ξ = ts (see (4.3)), forcing another condition on the function
space which must be preserved under Ψ (Lemma 4.1).

Let ρ0 = µ−1+
√
µ2 − µ+ 1 > µ. It will be apparent from the construction that

follows that if ρ is a solution of (2.24) under the above assumptions, then ρ′(ts) = ρ0.

Choose K̃ > µ+ 1/µ+ (µ− 1)3 / (µρ0 − µ2
)
> ρ0.

Define φ̄0(ξ) = sup {|φ0(ζ)| : |ζ − ts| ≤ |ξ − ts|} and

t̃∗β(ξ) =
µts − ξ

µ− 1 = ts − ξ − ts
µ− 1 ,

t∗β(ξ) = φ−1
1

[
(1− 1/µ)φ2(ξ) +

1

µ
φ1

(
t̃∗β(ξ)

)]
.

Notice that t̃∗β , t
∗
β are lower bounds (independent of ρ) of t̃β , tβ . Choose c ∈ (1/ρ3

0, 1)
and define

ε(h) =
4(ρ0 − µ)φ̄0(t̃

∗
β(ts + h))

λµ (2ρ0 − µ)
2
(1− c)

+
4(ρ0 − µ)φ̄0(t

∗
β(ts + h))

λ (1− c)
+
(µ− 1)3φ̄0(ts + h)

λµ (ρ0 − µ) (1− c)
.

Notice that ε is nondecreasing and limh→0 ε(h) = 0.
Define Ω(δ) to be the set of functions ρ ∈ C[ts, ts + δ] such that ρ(ts) = ts,

D�ρ(ξ) ≥ µ, Duρ(ξ) ≤ K̃(4.2)

for ξ ∈ [ts, ts + δ], and

|D(ρ, h)− ρ0| ≤ ε(h)(4.3)
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for h ∈ (0, δ], where

D(ρ, h) =
ρ(ts + h)− ρ(ts)

h
=

ρ(ts + h)− ts
h

.

Notice that (4.3) and limh→0 ε(h) = 0 imply that ρ
′(ts) = ρ0 for all ρ ∈ Ω(δ).

The following two lemmas, along with Lemma 3.1, establish the closure of Ω under
Ψ.

Lemma 4.1. There is some δ1 ∈ (0, δ0] such that |D(Ψ (ρ) , h)− ρ0| ≤ ε(h) for
all ρ ∈ Ω(δ1), h ∈ (0, δ1].

Proof. Let ρ ∈ Ω(δ0). Letting ξ = ts + h in (4.1) and substituting into (2.24), we
have

µ (tβ − ts)
2
(λ+ φ0 (tβ))−

(
t̃β − ts

)2 (
λ+ φ0

(
t̃β
))
= (µ− 1)h2 (λ+ φ0 (ts + h)) ,

where tβ = tβ (ts + h) , t̃β = t̃β (ts + h) . Using (2.21) and (3.5), we have

µ

(µ− 1)2 (Ψ(ρ)(ts + h)− ts − hµ)
2
(λ+ φ0 (tβ))

− 1

(µ− 1)2
(
µρ−1 − µts − h

)2 (
λ+ φ0

(
t̃β
))
= (µ− 1)h2 (λ+ φ0 (ts + h))

which implies

µ (D(Ψ (ρ) , h)− µ)
2
(λ+ φ0 (tβ))−

(
1− µD(ρ−1, h)

)2 (
λ+ φ0

(
t̃β
))

= (µ− 1)3 (λ+ φ0 (ts + h)) .

Using the fact that D(ρ−1, h) = 1/D(ρ, ρ−1(ts + h)− ts), this implies

µ (D1 − µ)
2
(λ+ φ0 (tβ))− (1− µ/D2)

2 (
λ+ φ0

(
t̃β
))
= (µ− 1)3 (λ+ φ0 (ts + h)) ,

(4.4)

where D1 = D(Ψ (ρ) , h) and D2 = D(ρ, ρ−1(ts+h)− ts). It is not hard to show that
ρ0 satisfies

µ (ρ0 − µ)
2 − (1− µ/ρ0)

2
= (µ− 1)3 .(4.5)

Multiplying (4.5) by λ and subtracting the result from (4.4), we have

λµ (D1 − ρ0) (D1 + ρ0 − 2µ)+µ (D1 − µ)
2
φ0 (tβ)+λµ (1/ρ0 − 1/D2) (2− µ/ρ0 − µ/D2)

− (1− µ/D2)
2
φ0

(
t̃β
)
= (µ− 1)3 φ0 (ts + h) ,

and so

D1−ρ0 =
(D2 − ρ0) (µD2 + µρ0 − 2ρ0D2)

ρ2
0D

2
2 (D1 + ρ0 − 2µ)

+
(1− µ/D2)

2
φ0

(
t̃β
)

λµ (D1 + ρ0 − 2µ)
− (D1 − µ)

2
φ0 (tβ)

λ (D1 + ρ0 − 2µ)

+
(µ− 1)3 φ0 (ts + h)

λµ (D1 + ρ0 − 2µ)
.

Notice that

µD2 + µρ0 − 2ρ0D2

ρ2
0D

2
2 (D1 + ρ0 − 2µ)

→ − 1
ρ3
0

as D1, D2 → ρ0.
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Choose ε ∈ (0, ρ0 − µ) such that∣∣∣∣ µD2 + µρ0 − 2ρ0D2

ρ2
0D

2
2 (D1 + ρ0 − 2µ)

∣∣∣∣ < c when |D1,2 − ρ0| < ε.(4.6)

Now, solving (4.4) for D1, we have

D1 = µ+

[
(µ− 1)3

µ
· λ+ φ0 (ts + h)

λ+ φ0 (tβ)
+
1

µ
(1− µ/D2)

2 · λ+ φ0

(
t̃β
)

λ+ φ0 (tβ)

]1/2

.(4.7)

Equation (2.25) implies that ρ−1(ts + h)− ts ≤ h/µ < h, and so, by (4.3),

|D2 − ρ0| ≤ ε(h).(4.8)

Combining (4.7) and (4.8) we have upper and lower bounds on D1 given by

µ+

[
(µ− 1)3

µ
· λ± φ̄0 (ts + h)

λ∓ φ̄0(t
∗
β)

+
1

µ

(
1− µ

ρ0 ± ε(h)

)2

· λ± φ̄0(t̃
∗
β)

λ∓ φ̄0(t
∗
β)

]1/2

,(4.9)

where t∗β = t∗β (ts + h) , t̃∗β = t̃∗β (ts + h) . From (4.5) we have

ρ0 = µ+

[
(µ− 1)3

µ
+
1

µ

(
1− µ

ρ0

)2
]1/2

.(4.10)

Equations (4.8), (4.9), and (4.10) imply that there is some δ1 > 0 such that |D1,2 − ρ0| <
ε for all ρ ∈ Ω(δ1). Thus, by (4.6),

|D1 − ρ0| ≤ c |D2 − ρ0|+
(1− µ/D2)

2
φ̄0

(
t̃β
)

λµ (D1 + ρ0 − 2µ)
+
(D1 − µ)

2
φ̄0 (tβ)

λ (D1 + ρ0 − 2µ)

+
(µ− 1)3 φ̄0 (ts + h)

λµ (D1 + ρ0 − 2µ)

≤ c |D2 − ρ0|+
(1− µ/ (ρ0 + ε))

2
φ̄0(t̃

∗
β)

λµ (2ρ0 − 2µ− ε)
+
(ρ0 − µ+ ε)

2
φ̄0(t

∗
β)

λ (2ρ0 − 2µ− ε)

+
(µ− 1)3 φ̄0 (ts + h)

λµ (2ρ0 − 2µ− ε)
.

Using (4.8) and the fact that ε < ρ0 − µ, we have

|D1 − ρ0| ≤ cε(h) +
4 (ρ0 − µ) φ̄0(t̃

∗
β)

λµ (2ρ0 − µ)
2 +

4 (ρ0 − µ) φ̄0(t
∗
β)

λ
+
(µ− 1)3 φ̄0 (ts + h)

λµ (ρ0 − µ)

= ε(h)

for all ρ ∈ Ω(δ1).
Lemma 4.2. There is some δ2 ∈ (0, δ1] such that DuΨ(ρ) (ξ) ≤ K̃ for all ρ ∈

Ω(δ2), ξ ∈ [ts, ts + δ2] .
Proof. Let ρ ∈ Ω(δ1). From (3.7) we have

DuΨ(ρ)(ξ) ≤ µ+
(µ− 1)2

µ
·
∣∣φ′2(ξ)∣∣

φ′1 (tβ(ξ))
+

φ′1(t̃β(ξ))
µφ′1 (tβ(ξ))

.(4.11)
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Notice that

t̃β(ξ) = ts − ξ − ts
µ− 1

(
1− µD(ρ−1, ξ − ts)

)
= ts − ξ − ts

µ− 1
(
1− µ/D(ρ, ρ−1(ξ)− ts)

)
,

so, by (4.8),

t̃β(ξ) ≥ ts − ξ − ts
µ− 1

(
1− µ

ρ0 + ε(ξ − ts)

)
.(4.12)

Also, from (3.5),

tβ(ξ) = ts − ξ − ts
µ− 1 (D(Ψ(ρ), ξ − ts)− µ)

≤ ts − ξ − ts
µ− 1 (ρ0 − ε(ξ − ts)− µ)(4.13)

by Lemma 4.1. Given (4.12), (4.13), and

1− µ/ρ0 < ρ0 − µ,(4.14)

we can choose δ3 ∈ (0, δ1] such that

tβ(ξ) ≤ t̃β(ξ) for all ρ ∈ Ω(δ3), ξ ∈ [ts, ts + δ3] .(4.15)

Choose δ4 ∈ (0, δ3] such that φ
′
1 is decreasing on [t

∗
β (ts + δ4) , ts]. Then, by (4.15),

we have

φ′1
(
t̃β(ξ)

)
φ′1 (tβ(ξ))

≤ 1 for all ρ ∈ Ω(δ4), ξ ∈ [ts, ts + δ4] .(4.16)

Differentiating (4.1), we have∣∣φ′2(ξ)∣∣
φ′1(tβ)

=
(ξ − ts)

(
2λ+ 2φ0 (ξ) + (ξ − ts)φ

′
0 (ξ)

)
(ts − tβ)

(
2λ+ 2φ0 (tβ) + (tβ − ts)φ

′
0 (tβ)

)
=

µ− 1
D(Ψ(ρ), ξ − ts)− µ

· 2λ+ 2φ0 (ξ) + (ξ − ts)φ
′
0 (ξ)

2λ+ 2φ0 (tβ) + (tβ − ts)φ
′
0 (tβ)

≤ µ− 1
ρ0 − ε(ξ − ts)− µ

· 2λ+ 2φ0 (ξ) + ϕ0 (ξ)

2λ− 2φ0(t
∗
β)− ϕ0(t

∗
β)
→ µ− 1

ρ0 − µ
as ξ → ts,

where tβ = tβ (ξ) , t
∗
β = t∗β (ξ) , and ϕ0 (ξ) = sup

{∣∣(ζ − ts)φ
′
0 (ζ)

∣∣ : |ζ − ts| ≤ |ξ − ts|
}
.

Combining this with (4.11) and (4.16), we can now choose δ2 ∈ (0, δ4] such that
DuΨ(ρ) (ξ) ≤ K̃ for all ρ ∈ Ω(δ2), ξ ∈ [ts, ts + δ2] .

From Lemmas 3.1, 4.1, and 4.2, we have the following theorem.
Theorem 4.3. Ψ : Ω(δ)→ Ω(δ) for δ ≤ δ2.
Theorem 4.4. There is some δ∗ ∈ (0, δ2] such that Ψ is a contraction in the

supremum norm on Ω(δ∗).
Proof. Suppose ρ1, ρ2 ∈ Ω(δ2), and let t1,2, t̃1,2 be defined as in the proof of

Theorem 3.3. From (4.12), (4.13), and (4.14), we deduce that there is some δ∗ ∈ (0, δ2]
such that t1,2 < t̃1,2 for any pair ρ1, ρ2 ∈ Ω(δ2). Thus τ < τ̃ , which implies that
φ′1(τ̃) < φ′1(τ). Combining this with (3.8) gives

‖Ψ(ρ1)−Ψ(ρ2)‖δ∗ ≤
1

µ
‖ρ1 − ρ2‖δ∗ ,
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from which the theorem follows.
From Theorems 4.3 and 4.4 and the completeness of Ω(δ∗) in the supremum norm,

we have the following theorem.
Theorem 4.5. Ψn(ρ) converges to a unique solution of (2.24) in Ω(δ∗) for any

ρ ∈ Ω(δ∗).
Theorems 3.5 and 3.6 follow as before, except that, in the proof of Theorem 3.6,

we can use 1 in place of κ.

5. Verification of loading/unloading near t = ts. Throughout this section,
we let ρ (ξ) be the solution of (2.24) and σ (x, t) , v (x, t) be continuous functions
satisfying (1.2), (1.3), (2.1) on A1 and A0, and (2.2) on A2. As mentioned in section
2, characteristic analysis can be used to find σ and v on A1 and, once the interface
ζ = ρ (ξ) between A1 and A2 is determined, on A2. The goal of this section is to
carry out such analysis and use it to verify that σ and v satisfy the original system
(1.1) for at least a short time after the loading/unloading interface forms, i.e., that
the solution is loading on A1 and unloading on A2. For simplicity, we assume in this
section that φ is differentiable (except possibly at t = ts). Then, by Theorem 3.6, ρ
is differentiable, and it is not hard to show that σ and v are also then differentiable
on A1 and A2. The following theorem shows that the solution is loading on A1.

Theorem 5.1. ∂tσ(x, t) ≤ 0 on A1 = {(x, t) : s(t) < x < βt} .
Proof. From (2.4), we have

(σ − βv)(x, t) = (σ − βv)(0, t− x/β)

on A1. Combining this with (1.3) and (2.5), we have

σ(x, t) = −φ(t− x/β)(5.1)

on A1. The theorem follows from (5.1) since φ is nondecreasing on (0, tβ) and 0 <
t− x/β < tβ on A1.

The following lemma gives a necessary and sufficient condition for the solution σ,
v to be unloading in A2. We should note that the condition can be checked only after
the solution ρ of (2.24) is determined.

Lemma 5.2. ∂tσ(ξ, ζ) ≥ 0 on A2 = {(ξ, ζ) : ξ < ζ < ρ (ξ)} iff

φ′1(tβ (ξ)) [ρ
′ (ξ)− µ] ≥ φ′1(t̃β (ζ))

[
1

µ
− 1

ρ′ (ρ−1 (ζ))

]
(5.2)

on A2 or, equivalently,

φ′1(tβ (ξ)) [ρ
′ (ξ)− µ] ≥ φ′1(tβ (ζ)) [ρ

′ (ζ)− µ] +
(µ− 1)2

µ
φ′2 (ζ)(5.3)

on A2. (See Figure 5.1.)
Proof. From (2.12), we have

∂ξ (σ + αv) = 0,

∂ζ (σ − αv) = 0

on A2. Combining this with (2.10), we have

(σ + αv) (ξ, ζ) = (σ + αv)
(
ρ−1 (ζ) , ζ

)
=

2

µ− 1φ1

(
t̃β (ζ)

)
,(5.4)

(σ − αv) (ξ, ζ) = (σ − αv) (ξ, ρ (ξ)) = − 2µ

µ− 1φ1 (tβ (ξ)) .
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ts ts(   ,   )

(ρ  (ζ),ζ)−1

tβ(ζ)tβ(ζ)~ ~(       ,       )

tβ(ξ) tβ(ξ)(       ,       )

ζ

ζ=ξρ

(ξ,ρ(ξ))

(ξ,ζ)

ξ

Fig. 5.1. Derivation of the unloading condition.

Adding these gives

σ (ξ, ζ) =
φ1

(
t̃β (ζ)

)− µφ1 (tβ (ξ))

µ− 1 .(5.5)

Notice that ∂t = ∂ξ + ∂ζ , so

∂tσ(ξ, ζ) =
φ′1
(
t̃β (ζ)

)
t̃′β (ζ)− µφ′1 (tβ (ξ)) t

′
β (ξ)

µ− 1

=
φ′1
(
t̃β (ζ)

) [
µ/ρ′

(
ρ−1 (ζ)

)− 1]− µφ′1 (tβ (ξ)) [µ− ρ′ (ξ)]

(µ− 1)2

=
µ

(µ− 1)2
(
φ′1 (tβ (ξ)) [ρ

′ (ξ)− µ]− φ′1
(
t̃β (ζ)

) [ 1
µ
− 1

ρ′ (ρ−1 (ζ))

])
,

from which (5.2) follows. From (3.14),

φ′1(t̃β (ζ))
[
1

µ
− 1

ρ′ (ρ−1 (ζ))

]
= φ′1(tβ (ζ)) [ρ

′ (ζ)− µ] +
(µ− 1)2

µ
φ′2 (ζ) ,

which implies (5.3).
The following theorem shows that the solution is locally unloading on A2.
Theorem 5.3. σ, v satisfy (1.1) on {(x, t) : 0 < t < ts + δ} for some δ > 0 in

both the corner case and the smooth case.
Proof. By Theorem 5.1 and Lemma 5.2, we need only show that (5.2) is satisfied on

{(ξ, ζ) : ξ < ζ < ρ(ξ), ts < ξ < ts + δ} for some δ > 0. Note that, in both the corner
and smooth cases,

ρ′ (ts)− µ ≥ 1

µ
− 1

ρ′ (ts)
.
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The result then follows in the corner case from the fact that limξ→ts φ
′
1 (ξ) = ν and

in the smooth case from (4.16).

6. Examples. In this section we apply the previously described iterative tech-
nique to (2.24) with µ = 3 and specific boundary data; first,

φ(t) =

{
1
2 +

1
2 sinπ

(
t− 1

2

)
0 ≤ t < 2,

0 t ≥ 2;(6.1)

then

φ(t) =
t

t2 + 1
.(6.2)

(See Figures 6.1 and 6.2.) Notice that both fall under the smooth case and ts = 1 for
both. Our computations show that, with boundary data (6.1), ∂tσ(ξ, ζ) < 0 in part
of A2, and so σ, v do not satisfy (1.1) globally, while with boundary data (6.2), σ, v
(as defined in section 5) satisfy (1.1) globally.

0

0.2

.4

.6

.8

1

.2

.4

.6

t

Fig. 6.1. Boundary data (6.1).

First, we use Maple V and the iterative technique described previously to compute
the solution ρ of (2.24), (6.1). Figure 6.3 shows the graphs of µξ and ρ.

Claim 1. Let σ, v be the solution of (2.2) with µ = 3 satisfying (1.3), (6.1), and
(2.10). Then ∂tσ(ξ, ζ) < 0 on a subset of A2 = {(ξ, ζ) : ξ < ζ < ρ (ξ)} .

Let

G (ξ) = φ′1(tβ (ξ)) [ρ
′ (ξ)− µ](6.3)

H (ξ) = φ′1(tβ (ξ)) [ρ
′ (ξ)− µ] +

(µ− 1)2
µ

φ′2 (ξ) .(6.4)

Graphs of G and H for (6.1) are shown in Figure 6.4. Notice that G(ξ) = H(ξ)
for ξ ≥ 2 (this is because φ′2(ξ) = 0) and G is increasing for ξ ≥ 2. This implies
that G(ξ) < H(ζ) = G (ζ) for 2 ≤ ξ < ζ, but, according to (5.3) and Lemma 5.2,
∂tσ(ξ, ζ) ≥ 0 iff G(ξ) ≥ H(ζ). This demonstrates the claim.
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0

.2

.4

.6

0.8

1

t

Fig. 6.2. Boundary data (6.2).

0

2

4

6

8

0

ξ

ρµρ

Fig. 6.3. Solution of (2.24), (6.1) with µ = 3.

The claim is also illustrated by Figures 6.5 and 6.6. Figure 6.5 shows the graph
of v (derived from (5.4)) at t = 1.5, 2, 2.5. The portion of each graph following the
corner corresponds to the region A2 and was derived assuming that the solution is
unloading there. However, closer inspection of v at t = 2.5 (Figure 6.6) shows that
∂xv < 0 (loading) on part of that region, thus invalidating the solution. Figure 6.7
shows the corresponding graphs of σ.

Next, we compute the solution ρ of (2.24), (6.2). Figure 6.8 shows the graphs of
µξ and ρ.

Claim 2. Let σ, v be the solution of (2.2) with µ = 3 satisfying (1.3), (6.2), and
(2.10). Then ∂tσ(ξ, ζ) ≥ 0 on all of A2 = {(ξ, ζ) : ξ < ζ < ρ (ξ)} .

Graphs of G and H for (6.2) are shown in Figure 6.9. Notice that G(ξ) > H(ξ)
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0

0.5

1

.5

2

ξ

G

H

Fig. 6.4. g and h with boundary data (6.1).

0

.2

.4

0.6

.8

v

x

t=2.5

t=2

t=1.5

Fig. 6.5. Solution of (1.1), (1.2) with boundary data (6.1) and µ = 3.

for ξ ≥ 1 since φ′2(ξ) < 0 for ξ ≥ 1. Let Hmax(ξ) = max{H(ζ) : ξ ≤ ζ ≤ ρ(ξ)}.
The claim is equivalent to G(ξ) > Hmax(ξ) for ξ > 1. Figure 6.10 shows graphs of
G and Hmax for 1 ≤ ξ ≤ 10, demonstrating the claim for ξ in that interval. Notice
that H = Hmax once H begins decreasing, so if we can show that H is decreasing for
ξ ≥ 10, the claim will follow. Toward that end, we will prove the following theorem.

Theorem 6.1. Suppose ρ is the solution of (2.24), (6.2). There is some M such
that, if ξ0 ≥M and H is decreasing on [ξ0, ρ (ξ0)] and

H(ξ) ≤ (µ− 1)
2 ln ξ

µξ2 lnµ
(6.5)

on [ξ0, ρ (ξ0)], then H is decreasing on [ξ0,∞).
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Fig. 6.6. v(x, 2.5).
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Fig. 6.7. Solution σ of (1.1), (1.2) with boundary data (6.1) and µ = 3.

We begin with two lemmas.

Lemma 6.2. Suppose ρ is the solution of (2.24), (6.2). If ξ ≥ √e and H satisfies
(6.5) on [ξ0, ρ (ξ0)], then H satisfies (6.5) on [ξ0,∞).

Proof. Differentiating (2.24), we have

µφ′1(tβ) (µ− ρ′(ξ))− φ′1(t̃β)
(
µ− ρ′(ρ−1(ξ))

ρ′(ρ−1(ξ))

)
= (µ− 1)2φ′2(ξ).
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Fig. 6.8. Solution of (2.24), (6.2) with µ = 3.

0

.02

.04

.06

.08

0.1

.12

.14

.16

G

H

ξ

Fig. 6.9. G and H with boundary data (6.2).

Combining this with (6.4), we have

H(ξ) =
µH(ρ−1(ξ))− (µ− 1)2φ′2(ρ−1(ξ))

µ2ρ′(ρ−1(ξ))
,

which implies

H(ρ (ξ)) =
µH(ξ)− (µ− 1)2φ′2(ξ)

µ2ρ′(ξ)
(6.6)

≤ µH(ξ) + (µ− 1)2/ξ2

µ3
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Fig. 6.10. G and Hmax.

by (2.25) and

−φ′2(ξ) =
ξ2 − 1(
ξ2 + 1

)2 <
1

ξ2 .(6.7)

Combining (6.5) and (6.6), we have

H(ρ (ξ)) ≤ (µ− 1)
2 ln ξ

µ3ξ2 lnµ
+
(µ− 1)2
µ3ξ2 =

(µ− 1)2 lnµξ
µ(µξ)2 lnµ

.

Thus

H(ρ (ξ)) ≤ (µ− 1)
2 ln ρ(ξ)

µρ(ξ)2 lnµ

for ξ ≥ √e/µ by (2.26) and the fact that (ln ξ)/ξ2 is decreasing for ξ ≥ √e. This
means that H satisfies (6.5) on

[
ρ (ξ0) , ρ

2 (ξ0)
]
. Notice that (2.25) implies that

limn→∞ ρn (ξ0) =∞ for ξ0 > 1, so the result follows by induction.
Lemma 6.3. Suppose ρ is the solution of (2.24), (6.2) satisfying (6.5). Then there

is some M1 such that

ρ′(ξ)− µ ≤ 2(µ− 1)
2 lnµξ

µξ2 lnµ

for ξ ≥M1.
Proof. From (6.4), we have

ρ′(ξ)− µ =
µH(ξ)− (µ− 1)2φ′2(ξ)

µφ′1(tβ(ξ))
.(6.8)

It is not hard to show that

φ′1(ξ) =
1− ξ2(
ξ2 + 1

)2 ≥ 1− 3ξ2 ≥ 1
2
for ξ ≤ 1√

6
.(6.9)
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Since tβ is decreasing by (2.25) and limξ→∞ tβ (ξ) = 0 by (2.27), there is some M1

such that

tβ (ξ) ≤ 1√
6

for ξ ≥M1.(6.10)

Combining this with (6.7), (6.8), and (6.9) gives

ρ′(ξ)− µ ≤ µH(ξ) + (µ− 1)2/ξ2

µ
(
1− 3tβ (ξ)2

) ≤ 2H (ξ) + 2(µ− 1)
2

µξ2

for ξ ≥M1. Combining this with (6.5) gives

ρ′(ξ)− µ ≤ 2(µ− 1)
2 ln ξ

µξ2 lnµ
+
2(µ− 1)2

µξ2 =
2(µ− 1)2 lnµξ

µξ2 lnµ

for ξ ≥M1.

We now give the proof of Theorem 6.1.

Proof. Assume that, on [ξ0, ρ (ξ0)], H is decreasing and satisfies (6.5). Let ξ0 ≤
ξ < ζ ≤ ρ (ξ0) . From (6.3), (6.4), and (6.6) we have

H(ρ (ξ)) =
G(ξ)

µρ′(ξ)
,

so

H(ρ (ξ))−H(ρ (ζ)) =
G(ξ)

µρ′(ξ)
− G(ζ)

µρ′(ζ)
=

G(ξ)−G(ζ)

µρ′(ξ)
+

G(ζ)

µρ′(ξ)ρ′(ζ)
(ρ′(ζ)− ρ′(ξ))

=
G(ξ)−G(ζ)

µρ′(ξ)
+

G(ζ)

µρ′(ξ)ρ′(ζ)

(
G(ζ)

φ′1(tβ(ζ))
− G(ξ)

φ′1(tβ(ξ))

)
by (6.3)

=
G(ξ)−G(ζ)

µρ′(ξ)

[
1− G(ζ)

ρ′(ζ)φ′1(tβ(ξ))

]
+
G(ζ)2

(
φ′1(tβ(ξ))− φ′1(tβ(ζ))

)
µρ′(ξ)ρ′(ζ)φ′1(tβ(ζ))φ

′
1(tβ(ξ))

.

The last term is negative since φ′1 and tβ are decreasing, so

H(ρ (ξ))−H(ρ (ζ)) ≥ G(ξ)−G(ζ)

µρ′(ξ)
(1− 2G(ζ)/µ)− 4G(ζ)

2

µ2

(
φ′1(tβ(ζ))− φ′1(tβ(ξ))

)(6.11)

for ξ ≥M1 by (2.25), (6.9), and (6.10). By (6.3), (6.4), (6.5), and (6.7), we have

G(ζ) ≤ (µ− 1)
2 ln ζ

µζ2 lnµ
+
(µ− 1)2
µζ2 =

(µ− 1)2 lnµζ
µζ2 lnµ

.(6.12)

Combining this with Lemma 6.3, we can choose M2 ≥M1 such that

G (ζ) ≤ µ

4
and ρ′ (ξ) ≤ µ+ 2

(µ
4

)
=
3µ

2
(6.13)



FREE BOUNDARY PROBLEM FOR HYPOPLASTIC SHEAR WAVES 551

when ξ ≥M2. Then, from (6.11), we have

H(ρ (ξ))−H(ρ (ζ)) ≥ G(ξ)−G(ζ)

3µ2
− 4G(ζ)

2

µ2

(
φ′1(tβ(ζ))− φ′1(tβ(ξ))

)
=

H(ξ)−H(ζ)

3µ2
+
(µ− 1)2 (φ′2(ζ)− φ′2(ξ)

)
3µ3

− 4G(ζ)2

µ2

(
φ′1(tβ(ζ))− φ′1(tβ(ξ))

)
=

H(ξ)−H(ζ)

3µ2
+
(µ− 1)2 φ′′2(c1) (ζ − ξ)

3µ3

− 4G(ζ)2φ′′1(c2)t
′
β(c3) (ζ − ξ)

µ2
,(6.14)

where ξ < c1, c3 < ζ, and tβ(ζ) < c2 < tβ(ξ). It is not hard to show from (6.2) that

φ′′2 (ξ) ≥
1

ξ3 for ξ ≥
√
12,(6.15)

φ′′1 (ξ) ≥ −6ξ.(6.16)

Combining (6.14), (6.15), and (6.16), we have

H(ρ (ξ))−H(ρ (ζ)) ≥ H(ξ)−H(ζ)

3µ2
+

[
(µ− 1)2
3µ3c31

+
24G(ζ)2c2t

′
β(c3)

µ2

]
(ζ − ξ)

(6.17)

when ξ ≥M2,
√
12. From (2.21) and Lemma 6.3, we have

t′β (c3) =
µ− ρ′ (c3)
µ− 1 ≥ −2 (µ− 1) lnµc3

µc23 lnµ
≥ −2 (µ− 1) lnµξ

µξ2 lnµ
.

We now use this and (6.12) to estimate the quantity in brackets in (6.17):

(µ− 1)2
3µ3c31

+
24G(ζ)2c2t

′
β(c3)

µ2
≥ (µ− 1)

2

3µ3c31
− 48c2 (µ− 1)

5
ln2 µζ lnµξ

µ5ζ4ξ2 ln3 µ

≥ (µ− 1)
2

3µ3ζ3 −
48tβ(ξ) (µ− 1)5 ln2 µζ lnµξ

µ5ζ4ξ2 ln3 µ

≥ (µ− 1)
2

3µ3ζ3 −
8
√
6 (µ− 1)5 ln2 µζ lnµξ

µ5ζ4ξ2 ln3 µ

for ξ ≥M2,
√
12 by (6.10). Combining this with (6.17), we have

H(ρ (ξ))−H(ρ (ζ)) ≥ H(ξ)−H(ζ)

3µ2
+
(µ− 1)2
3µ3ζ3

[
1− 24

√
6(µ− 1)3 ln2 µζ lnµξ

µ2ζξ2 ln3 µ

]
(ζ − ξ)

≥ H(ξ)−H(ζ)

3µ2
+
(µ− 1)2
3µ3ζ3

[
1− 24

√
6(µ− 1)3 ln3 µξ

µ2ξ3 ln3 µ

]
(ζ − ξ)(6.18)

for ξ ≥ e2/µ since (ln2 µζ)/ζ is then decreasing. Since the function in brackets is
increasing for ξ ≥ e/µ and approaches 1 as ξ →∞, we can chooseM ≥M2,

√
12, e2/µ
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Fig. 6.11. Bound on H.

so that

1− 24
√
6(µ− 1)2 ln3 µξ

µ2ξ3 ln3 µ
> 0(6.19)

for ξ ≥ M . Since H is decreasing on [ξ0, ρ (ξ0)], (6.18) implies that H is decreasing
on [ρ (ξ0) , ρ

2 (ξ0)] if ξ0 ≥M . The result follows by induction and Lemma 6.2.
Our computations with µ = 3 show that (6.10), (6.13), and (6.19) all hold for

ξ ≥ 10 > √12, e2/µ, so we can let M = 10. Figure 6.11 shows that (6.5) holds on
[10, ρ(10)] and that H is decreasing on [10, ρ(10)], and so Theorem 6.1 implies that
H is decreasing on [10,∞), from which Claim 2 follows.

Figures 6.12 and 6.13 show the graphs of v and σ at t = 2, 5, 10. The solution of
(1.1), (1.2), (1.3), (6.2) with µ = 3 is qualitatively the same as for the stress-controlled
problem in [3], i.e., a decaying pulse of increasing length consisting of a loading front
followed by an unloading front. We prove the decay in the following theorem.

Theorem 6.4. Let σ, v be the solution of (2.2) with µ = 3 satisfying (1.3), (6.2),
and (2.10). Then

lim
t→∞maxx {|v(x, t)|, |σ(x, t)|} = 0.

Proof. Since ∂xv changes sign only at the loading/unloading interface, we have

max
x
|v(x, t)| = v (s(t), t) = φ(t− s(t)/β)/β(6.20)

by (2.10). Equation (2.27) implies that limt→∞ (t− s(t)/β) = 0, and hence

lim
t→∞maxx |v(x, t)| = 0.

Now, from (5.1), we have

∂xσ(x, t) = φ′(t− x/β)/β
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Fig. 6.12. Solution v of (1.1), (1.2) with boundary data (6.2) and µ = 3.
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Fig. 6.13. Solution σ of (1.1), (1.2) with boundary data (6.2) and µ = 3.

which is nonnegative on A1 since

t− x/β ≤ t− s(t)/β = tβ ≤ ts

on A1. This implies that

0 ≥ σ (x, t) ≥ σ (s (t) , t) = −φ(t− s(t)/β)

by (2.10), and so

lim
t→∞ max

x≥s(t)
|σ(x, t)| = 0.
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We now focus on A2. Combining (5.5) and (2.24), we have

σ (ξ, ζ) =
µ

µ− 1 [φ1 (tβ (ζ))− φ1 (tβ(ξ))]− φ2 (ζ) ,(6.21)

which is negative on A2 since tβ is nonincreasing (by (2.21) and (2.25)), φ1 is nonde-
creasing, and ζ > ξ. Also, (6.21) implies that

σ (ξ, ζ) ≥ − µ

µ− 1φ1 (tβ(ξ))− φ2 (ζ)

= − µ

µ− 1φ1 (tβ(t− x/α))− φ2 (t+ x/α)

≥ − µ

µ− 1φ1 (tβ(t− s (t) /α))− φ2 (t)

on A2 since φ2 and tβ are nonincreasing and φ1 is nondecreasing. By (2.7),

tβ(t− s (t) /α) = t− s (t) /β,

so

0 ≥ σ (x, t) ≥ − µ

µ− 1φ1 (t− s (t) /β)− φ2 (t) .

The right-hand side goes to zero as t→∞ by (2.27), so

lim
t→∞ max

0≤x≤s(t)
|σ(x, t)| = 0.
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Abstract. The present paper studies the asymptotic stability of a traveling wave for the Broad-
well model in a half space. This model admits the traveling wave which connects two distinct
Maxwellian states at the spatial asymptotic points. The traveling wave is shown to be time asymp-
totically stable if the fluid dynamical velocity is less than a certain positive value. This stability
theorem is proved by applying the standard energy method. Here, the location of the traveling wave,
which should be a time asymptotic state, is shifted by boundary effect. This shift is estimated by
utilizing the property that the traveling wave converges to the Maxwellian states exponentially fast.
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1. Introduction.

1.1. Problems. We study the asymptotic stability of a traveling wave solution
to the Broadwell model system

∂tF1 + v∂xF1 = q(F ),(1.1a)

4∂tF2 = −2q(F ),(1.1b)

∂tF3 − v∂xF3 = q(F )(1.1c)

in the first half space R+ := {x > 0}. Here,

q(F ) := F 2
2 − F1F3, F := (F1, F2, F3),

v is a positive constant, and unknown functions Fi > 0 for i = 1, 2, 3 represent the
mass densities for gas particles moving with the speed v, 0, and −v in the x-direction,
respectively.

We prescribe the initial condition

F (x, 0) = F0(x) = (F1, 0, F2, 0, F3, 0)(x),(1.2a)

F0(x)→M+ = (M+
1 ,M

+
2 ,M

+
3 ) as x→∞,(1.2b)

where M+ is a Maxwellian state. The Maxwellian state M := (M1,M2,M3) is an
equilibrium state of (1.1) with positive entries

q(M) = 0, Mi > 0 for i = 1, 2, 3.(1.3)
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Since the characteristic speed v of F1 is positive, it is necessary to set one condition
on the boundary {x = 0} for the well-posedness of the initial and boundary value
problem (1.1) and (1.2). Then we adopt the pure diffusion boundary condition as

F1(0, t) = B1, B1 > 0,(1.4)

where B1 is a constant. The compatibility condition of order zero is supposed to hold:

F1, 0(0) = B1.(1.5)

The traveling wave to the system (1.1) is a solution in the form of F̃ (ξ) :=
(F̃ 1, F2, F3)(ξ) interpolating two distinct Maxwellian states M± = (M±1 ,M

±
2 ,M

±
3 ):

F̃ (ξ)→M± = (M±1 ,M
±
2 ,M

±
3 ) as ξ → ±∞, M+ �=M−,(1.6)

where ξ := x − st and s is a constant called the traveling wave speed. The main
purpose of the present paper is to show the asymptotic stability of the traveling
wave with s > 0 in the first half space R+. It is shown in Lemma 1.1 that for a
positive constant B1 and a Maxwellian state M+, if B1 > M+

1 , then we can find a
unique Maxwellian state M− = (M−1 ,M

−
2 ,M

−
3 ) such that there exists a traveling

wave F̃ (x− st), with s > 0, which satisfies (1.6) with M−1 = B1.

1.2. Equations for traveling waves. Substituting F̃ (ξ) in (1.1) yields that

(v − s)F̃
′

1 = F̃
2

2 − F̃ 1F̃ 3,(1.7a)

−4sF̃
′

2 = −2(F̃
2

2 − F̃ 1F̃ 3),(1.7b)

−(v + s)F̃
′

3 = F̃
2

2 − F̃ 1F̃ 3.(1.7c)

Here and hereafter, the superscript “
′
” denotes the differentiation with respect to ξ.

From (1.7), it holds that

{(v − s)F̃ 1 − 4sF̃ 2 − (v + s)F̃ 3}′ = 0,(1.8a)

{(v − s)F̃ 1 + (v + s)F̃ 3}′ = 0.(1.8b)

Suppose that the traveling wave solution F̃ (ξ), ξ ∈ R, satisfying (1.6) with (1.3),
exists for the moment. Integrating (1.8) over (−∞,∞) and (−∞, ξ], respectively, we
have

(v − s)F̃ 1 − 4sF̃ 2 − (v + s)F̃ 3 = r1, r1 := (v − s)M±1 − 4sM±2 − (v + s)M±3 ,
(1.9a)

(v − s)F̃ 1 + (v + s)F̃ 3 = r2, r2 := (v − s)M±1 + (v + s)M±3 .(1.9b)

The right equalities in (1.9) are the Rankine–Hugoniot condition. It is easy to see
from (1.7) that s �= ±v, 0. Represent F̃ 2 and F̃ 3 in terms of F̃ 1 by solving (1.9)
and then substitute the resultant expressions in (1.7a). Apply the same procedure to
F̃ 2 and F̃ 3, too. The results are

F̃
′

1 =
v2 + 3s2

4s2(v + s)
(F̃ 1 −M−1 )(F̃ 1 −M+

1 ),(1.10a)

F̃
′

2 =
v2 + 3s2

4s(v + s)(v − s) (F̃ 2 −M−2 )(F̃ 2 −M+
2 ),(1.10b)

F̃
′

3 = −
v2 + 3s2

4s2(v − s) (F̃ 3 −M−3 )(F̃ 3 −M+
3 ).(1.10c)
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Since F̃ (ξ) satisfies (1.6), we arrive at the inequality

0 < s < v(1.11a)

or −v < s < 0.(1.11b)

It is easy to see from (1.10) that the traveling wave is monotonic. Especially, F̃ 1(ξ)
is monotonically decreasing and thus M+

1 < M−1 . F̃ 2(ξ) is monotonically decreasing
if and only if (1.11a) holds.

The above observation means that the condition (1.11) is necessary for the exis-
tence of the traveling wave F̃ (ξ). Moreover, it is proved in [2], the condition (1.11)
is sufficient for the existence of the traveling wave. This fact is also proved by the
straightforward computation with (1.10). In the next lemma, we summarize the re-
sults concerning the existence of the traveling wave in a convenient formulation to
the present paper. The proof follows from algebraic computations with (1.3), (1.9),
and (1.11).

Lemma 1.1. (i) If there exists a traveling wave F̃ (ξ), ξ := x−st ∈ R, interpolating
two distinct Maxwellian states M±, then (1.11) hold. Moreover, if s ≶ 0, then M−2 ≶
M+

2 .
(ii) Suppose that a positive constant B1 and a Maxwellian state M

+ = (M+
1 ,M

+
2 ,

M+
3 ) satisfy B1 > M+

1 . If |B1 −M+
1 | is sufficiently small, then there exists a unique

Maxwellian state M− = (M−1 ,M
−
2 ,M

−
3 ) such that M−1 = B1, M

−
2 > M+

2 , and the
Rankine–Hugoniot condition in (1.9) holds. Therefore, there exists a traveling wave
F̃ (x− st), uniquely up to a shift, which interpolates M± and satisfies (1.11a).

Due to Lemma 1.1, we assume that

M+
1 < B1(1.12)

and (1.11a) hold, here and hereafter. For a given Maxwellian state M+ and B1

satisfying (1.12), M− is determined by the algebraic relation (1.9) and (1.3) with
M−1 = B1. Therefore, it holds that

|M+
i −M−i | ≤ CδM , δM := |M+

1 −B1| for i = 1, 2, 3.(1.13)

We often call the quantity δM the shock strength.

1.3. Fluid dynamical equations. We rewrite the system (1.1) in terms of
the fluid dynamical quantities, following the context of [3]. The density ρ and the
momentum m are defined by

ρ := F1 + 4F2 + F3, m := v(F1 − F3).(1.14a)

In addition, we denote

z := v2(F1 + F3).(1.14b)

From (1.1) and (1.14), we have the system of equations for the fluid dynamical quan-
tities

ρt +mx = 0,(1.15a)

mt + zx = 0,(1.15b)

zt + v2mx =
(v2ρ− z)2 − 4(z2 − v2m2)

8v2
.(1.15c)
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The initial data for the above system (1.15) is derived from (1.14) and written as

ρ(x, 0) = ρ0(x) := (F1, 0 + 4F2, 0 + F3, 0)(x),

m(x, 0) = m0(x) := v(F1, 0 − F3, 0)(x),

z(x, 0) = z0(x) := v2(F1, 0 + F3, 0)(x).

(1.16)

The spatial asymptotic states for the fluid dynamical quantities are given by

ρ± =M±1 + 4M±2 +M±3 > 0, m± := v(M±1 −M±3 ), z± := v2(M±1 +M±3 ) > 0.

(1.17)

The above inequalities follow from the positivity of each M±i . The condition (1.3) for
the Maxwellian state M is rewritten in the fluid dynamical quantities as

|u| < v, z = ρσ(u), σ(u) :=
v2

3

(
2

√
1 +

3u2

v2
− 1

)
,(1.18)

where u := m/ρ is called the fluid dynamical velocity. Since the asymptotic states
(ρ±,m±, z±) are Maxwellian states, (ρ±,m±, z±) satisfy (1.18).

We express the traveling wave solution to (1.15) by

(ρ̃, m̃, z̃) := (F̃ 1 + 4F̃ 2 + F̃ 3, v(F̃ 1 − F̃ 3), v
2(F̃ 1 + F̃ 3)),(1.19)

which satisfies

−sρ̃′
+ m̃

′
= 0,(1.20a)

−sm̃′
+ z̃

′
= 0,(1.20b)

−sz̃′
+ v2m̃

′
=

(v2ρ̃− z̃)2 − 4(z̃2 − v2m̃2)

8v2
.(1.20c)

The existence of the traveling wave (ρ̃, m̃, z̃) immediately follows from (1.19) and
the existence of the traveling wave (F̃ 1, F̃ 2, F̃ 3) to (1.7) in Lemma 1.1. Substituting
(1.19) in (1.9), we have the Rankine–Hugoniot condition

−s(ρ+ − ρ−) + (m+ −m−) = 0,(1.21a)

−s(m+ −m−) + (z+ − z−) = 0.(1.21b)

Apparently, from (1.13),

|(ρ+ − ρ−,m+ −m−, z+ − z−)| ≤ CδM .(1.22)

It is shown in [3] that the condition (1.11) is equivalent to the Lax entropy condition

λ−(u+) < s < λ+(u
−) or λ+(u

+) < s < λ−(u−),(1.23)

where

λ±(u) :=
u±√σ(u)√
1 + 3(u2/v2)

, u± :=
m±

ρ±
.(1.24)

Here, λ±(u) are the characteristics of the corresponding Euler equation

ρt +mx = 0,(1.25a)

mt + (ρσ(u))x = 0.(1.25b)

The system (1.25) is derived from (1.15) through the Chapman–Enskog expansion.
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1.4. Assumptions and the main result. To handle the boundary terms, the
given Maxwellian state M+ is supposed to satisfy

M+
1 −M+

3 < 2M+
2 .(1.26)

The condition (1.26) apparently holds if the fluid dynamical momentum is negative at
the Maxwellian stateM+. The condition (1.26) withM+ replaced by F̃ (ξ) also holds,
provided that the traveling wave F̃ (ξ) interpolatesM− andM+ with sufficiently small
shock strength, δM � 1. The condition (1.26) is rewritten in the fluid dynamical
quantities as

u+ <
2−√2

2
v,(1.26

′
)

where we have used (1.18).
Since the traveling wave F̃ (ξ) converges to M+ exponentially fast as ξ tends to

infinity, we can define the antiderivatives of the initial perturbations from the traveling
wave if F0 −M+ ∈ L1(R+). Thus, we define

Φ̂0(x) := −
∫ ∞
x

φ̂0(x)d y, Ψ̂0(x) := −
∫ ∞
x

ψ̂0(x)d y,(1.27a)

φ̂0(x) := ρ0(x)− ρ̃(x− β), ψ̂0(x) := m0(x)− m̃(x− β),
ω̂0(x) := z0(x)− z̃(x− β),

(1.27b)

where β is a positive constant. The parameter β is determined later and utilized to
handle the boundary terms in subsection 2.3.

Theorem 1.2. Suppose that (1.5) and (1.26) hold. Let F0−M+ ∈ (L1∩H1)(R+)
and (Φ̂0, Ψ̂0) ∈ L2(R+). Then there exists a constant δ̄0 with the following property:
if δM ≤ δ̄0, then one can find a positive constant β0 such that whenever β ≥ β0 and
‖(Φ̂0, Ψ̂0)‖+‖F0(·)−F̃ (·−β)‖1 is sufficiently small, the initial boundary value problem
(1.1), (1.2), and (1.4) has a unique solution F (x, t) globally in time. Moreover, the
solution F (x, t) satisfies that for a certain constant x∞,

sup
x∈R+

|F (x, t)− F̃ (x− st+ x∞)| → 0 as t→∞.(1.28)

The Broadwell model (1.1) is a simple but typical model of the Boltzmann equa-
tion. The existence of the traveling wave to the model is established by Caflish [2]. It
is proved by Kawashima and Matsumura in [3] that the traveling wave is asymptoti-
cally stable in the full space R. In [3], the energy method is employed to obtain the
a priori estimate. In the present research, we also use this method and follow some
computations of their research. Due to Lemma 1.1, we have to assume B1 > M+

1 for
the existence of the traveling wave. The opposite case B1 < M+

1 gives the solution
which converges to the rarefaction wave in the half space R+. It has been recently
proved by Nikkuni and Kawashima in [9].

The half space problem for general systems of the Boltzmann equation with dis-
crete velocities is considered in [4], [5], [8], and [10]. These papers are concerned with
the stationary wave, which is the traveling wave with zero speed. The research in
[10] and [4] shows the existence of the stationary wave with the pure diffusive bound-
ary condition. The stability of this stationary wave is proved in [8]. The existence
and the stability of the stationary wave with the reflective boundary condition are
proved in [4].
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Following these results, the present research studies the stability of the traveling
wave with positive speed, s > 0. Although these two types of waves, the traveling
wave and the stationary wave, look similar, the positivity of the traveling wave speed
gives rise to some essential difficulties. For example, it has been enough to consider
a certain part of the stationary wave in [4] and [8]. As the traveling wave moves in a
positive direction, the present research needs to handle the whole shape of the wave.
Thus, we have to introduce the antiderivatives of perturbations from the traveling
wave. Furthermore, we cannot determine the asymptotic location of the traveling
wave by the initial condition. Namely, the boundary effect causes a shift of the
location. This difficulty is resolved by employing the idea in Matsumura and Mei [7],
where the same kind of problem is considered for the viscous p-system.

The plan of the present paper is as follows. In the next section, we discuss
the property of the traveling wave and then derive the system of equations to the
antiderivatives of perturbations in terms of fluid dynamical quantities. Then we show
the time exponential decay of a certain linear combination of the boundary data by
utilizing the decay property of the traveling wave at the spatial asymptotic points.
In section 3, we obtain the a priori estimates by the energy method applied to the
fluid dynamical equations. In these computations, the decay property of the boundary
condition plays an essential role. Here, we are indebted to some ideas in the preceding
research in [3] and [7].

Notation. For 1 ≤ p ≤ ∞, Lp(Ω) denotes the usual Lebesgue space over Ω with the
norm |·|p. For an arbitrary integer l ≥ 0, H l denotes the lth order Sobolev space in the
L2-sense, equipped with the norm ‖·‖l. We note H0 = L2 and ‖·‖ := ‖·‖0 = | · |2. We
also denote by Ck(I;H l(Ω)) the space of k-times continuously differentiable functions
on the interval I with values inH l(Ω). Finally, by c and C we denote several constants
without confusion.

2. Preliminary calculation.

2.1. Properties of traveling waves. In this subsection, we summarize the
property of the traveling wave satisfying (1.11a). We first normalize the traveling
wave as

F̃ 1(0) =
1

2
(M+

1 +M−1 )(2.1)

for clarity. Then it holds from (1.10a) that, for ξ ∈ R,{
0 < M−1 − F̃ 1(ξ) ≤ (M−1 −M+

1 )eσξ/2 for ξ ≥ 0,

0 < F̃ 1(ξ)−M+
1 ≤ (M−1 −M+

1 )e−σξ/2 for ξ < 0,
(2.2a)

σ :=
v2 + 3s2

4s2(v + s)
(M−1 −M+

1 ) > 0,(2.2b)

where we have used s > 0. From (1.9) and (1.14), we have

−sρ̃+ m̃ = −sρ± +m±, −sm̃+ z̃ = −sm± + z±.(2.3)

Substituting (2.3) in (1.20) yields that

ρ̃
′
= Cρ(ρ̃− ρ+)(ρ̃− ρ−), Cρ :=

v2 + 3s2

8sv2
> 0,(2.4)
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where we have used (1.11a). It holds from (1.22), (2.2a), and (2.4) that

ρ̃
′
< 0, m̃

′
= sρ̃

′
< 0, z̃

′
= s2ρ̃

′
< 0,(2.5a)

|ρ̃(ξ)− ρ+| ≤
{
(|ρ− − ρ+|/2)e−σξ ≤ CδMe

−σξ for ξ ≥ 0,

|ρ− − ρ+|/2 ≤ CδM for ξ < 0,
(2.5b)

|m̃(ξ)−m+| ≤
{
(|m− −m+|/2)e−σξ ≤ CδMe

−σξ for ξ ≥ 0,

|m− −m+|/2 ≤ CδM for ξ < 0.
(2.5c)

2.2. The equations for the perturbations. The difficulty of the stability
problem in the half space comes from the fact that the location of the traveling wave,
which should be the asymptotic state for the initial boundary value problem, is shifted
owing to the boundary effects. To overcome this difficulty, we employ the idea in [7]
and consider the traveling wave in the form of F̃ (x−st+α−β), where the parameters,
α and β, are to be determined later. Then putting

f(x, t) := F (x, t)− F̃ (x− st+ α− β),(2.6)

we have from (1.1) that

∂tf1 + v∂xf1 = q(F )− q(F̃ ),(2.7a)

4∂tf2 = −2(q(F )− q(F̃ )),(2.7b)

∂tf3 − v∂xF3 = q(F )− q(F̃ ).(2.7c)

The initial and boundary data for (2.7) are given by

f0(x) := f(x, 0) = F0(x)− F̃ (x+ α− β), f1(0, t) = B1 − F̃ 1(−st+ α− β).(2.8)

The local existence theorem for the above system is proved by the standard argument
using the characteristic method and the contraction principle.

Lemma 2.1. Suppose that f0 ∈ H1(R+) and the compatibility condition (1.5)
holds. Then there exists a positive constant T0, depending only on ‖f0‖1, such that
the initial boundary value problem (2.7) and (2.8) has a unique solution f(x, t) in the
space C0([0, T0];H

1(R+)) ∩ C1([0, T0];L
2(R+)).

In order to prove the existence of the solution to (2.7) (and thus (1.1)) globally in
time, it is convenient to handle the system (1.15) for the fluid dynamical quantities.
We regard the solution (ρ,m, z)(x, t) as the perturbation from the traveling wave
(ρ̃, m̃, z̃)(x− st+ α− β) and introduce the new unknown functions,

(φ, ψ, ω)(x, t) : = (ρ,m, z)(x, t)− (ρ̃, m̃, z̃)(x− st+ α− β)
= (f1 + 4f2 + f3, v(f1 − f3), v2(f1 + f3))(x, t).

(2.9)

From (2.7) (or (1.15)), we have

φt + ψx = 0,(2.10a)

ψt + ωx = 0,(2.10b)

ωt + v2ψx − ãφ− m̃ψ + b̃ω = Γ(φ, ψ, ω),(2.10c)

where the quantities in (2.10c) are given by

ã :=
v2ρ̃− z̃

4
, b̃ :=

v2ρ̃+ 3z̃

4v2
, Γ(φ, ψ, ω) :=

(v2φ− ω)2 − 4(ω2 − v2ψ2)

8v2
.(2.11)
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It holds from (2.5a) with (1.11a) that

ã
′
=

1

4
(v2 − s2)ρ̃′

< 0, b̃
′
=

1

4v2
(v2 + 3s2)ρ̃

′
< 0.(2.12)

Thus, ã and b̃ are monotonically decreasing. Using (1.17), (1.11a), and (2.5a), it holds
that

c ≤ a+ ≤ ã ≤ a− ≤ C, c ≤ b+ ≤ b̃ ≤ b− ≤ C(2.13)

for certain positive constants c and C, where a± := limη→±∞ ã(η), b± := limη→±∞ b̃(η).
The initial and boundary data for (2.10) are derived from (2.8):

(φ0, ψ0, ω0)(x) := (ρ0,m0, z0)(x)− (ρ̃, m̃, z̃)(x+ α− β),(2.14) (
ψ +

1

v
ω

)
(0, t) = 2v

(
M1 − F̃ 1(−st+ α− β)

)
.(2.15)

We see from (2.10) that we can define the antiderivatives of perturbations φ and ψ if
(φ0, ψ0) ∈ (L1 ∩H1)(R+):

Φ(x, t) := −
∫ ∞
x

φ(y, t) dy, Ψ(x, t) := −
∫ ∞
x

ψ(y, t) dy.(2.16)

Then, integrating (2.10a) and (2.10b) over [x,∞) for x > 0 and multiplying by −1,
we have

Φt +Ψx = 0,(2.17a)

Ψt + ω = 0,(2.17b)

ωt + v2Ψxx − ãΦx − m̃Ψx + b̃ω = Γ(Φx,Ψx, ω).(2.17c)

Substituting ω = −Ψt in (2.17c), we obtain the system

Φt +Ψx = 0,(2.18a)

Ψtt − v2Ψxx + ãΦx + m̃Ψx + b̃Ψt = −Γ(Φx,Ψx,−Ψt).(2.18b)

Here, the nonlinear term Γ in (2.18b) is estimated as

|Γ(Φx,Ψx,−Ψt)| ≤ C(|Φx|2 + |Ψx|2 + |Ψt|2),(2.19a)

|∂tΓ(Φx,Ψx,−Ψt)| ≤ C(|Φx|+ |Ψt|+ |Ψx|)(|Φxt|+ |Ψtt|+ |Ψxt|).(2.19b)

The initial data for the system (2.18) is derived from (2.14):

Φ0(x) := −
∫ ∞
x

φ0(y) dy, Ψ0(x) := −
∫ ∞
x

ψ0(y) dy, Ψt(x, 0) = −ω0(x).(2.20)

The boundary condition to be satisfied by (Φ,Ψ) is discussed in the next subsection.

2.3. Boundary estimates. In this subsection, we derive the estimate for the
boundary data on {x = 0}. Divide (2.7b) by 2 and add the resultant equality to (2.7a).
This computation yields that

(f1 + 2f2)t + v(f1)x = 0.(2.21)



STABILITY TO THE BOLTZMANN EQUATION IN HALF SPACE 563

Integrating (2.21) over (0,∞)× [0, t] for t > 0, we obtain

(2.22)

∫ ∞
0

(f1 + 2f2)(x, t) dx

=

∫ ∞
0

(f1 + 2f2)(x, 0) dx+ v

∫ t

0

M−1 − F̃ 1(−sτ + α− β) dτ,

where we have used (2.8). The left-hand side of (2.22) converges to zero as t tends to
infinity, provided that the stability of the traveling wave holds. Thus, it is necessary
that the right-hand side of (2.22) converges to zero as t tends to infinity. Therefore,
we have ∫ ∞

0

(f1 + 2f2)(x, 0) dx+ v

∫ ∞
0

M−1 − F̃ 1(−sτ + α− β) dτ = 0.(2.23)

Thus, it is necessary to chose α so that (2.23) holds. We derive the explicit formula
of α following the idea in [7]. We regard the left-hand side of (2.23) as the function
of α. Let I(α) denote it. Differentiate I(α) with respect to α using (2.6) and then
apply the Rankine–Hugoniot condition in (1.9). The result is I

′
(α) = (M−1 −M+

1 ) +
2(M−2 −M+

2 ). Integrating this equality in α, we have the identity I(α) = I(0) +
{(M−1 −M+

1 ) + 2(M−2 −M+
2 )}α. Consequently, we see that (2.23) holds if and only

if α is given by

α = CM

{∫ ∞
0

(F1 + 2F2)(x, 0)− (F̃ 1 + 2F̃ 2)(x− β) dx

+ v

∫ ∞
0

M−1 − F̃ 1(−sτ − β) dτ
}

= CM

{
−1
2
(Φ̂0(0) +

1

v
Ψ̂0(0)) + v

∫ ∞
0

M−1 − F̃ 1(−sτ − β) dτ
}
,

(2.24)

CM := {(M+
1 −M−1 ) + 2(M+

2 −M−2 )}−1.

Notice that the right-hand side of (2.24) is determined by the initial and boundary
data. The above observation means that it is necessary to chose α by (2.24) for the
stability of the traveling wave. Thus, here and hereafter, we determine α by (2.24)
and regard it as the function of the other parameter β. Namely, α = α(β). The
essential property of α(β) is that α(β) is bounded even if the parameter β becomes
large. Moreover, the following lemma holds.

Lemma 2.2. For an arbitrary positive constant ε, there exists a constant δ such
that if β > 0 and ‖(Φ̂0, Ψ̂0)‖1 + 1/β ≤ δ, then |α(β)| ≤ ε.

Proof. Estimating (2.24) by using (2.2), we have

|α(β)| ≤ C(|Φ̂0|∞ + |Ψ̂0|∞ + e−σβ).(2.25)

The proof immediately follows from (2.25) by applying the Sobolev inequality.
Subtracting (2.23) from (2.22), and using (2.9) and (2.16), we have that(

Φ+
1

v
Ψ

)
(0, t) = B(t),(2.26a)

B(t) := 2v

∫ ∞
t

M−1 − F̃ 1(−sτ + α(β)− β) dτ(2.26b)
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for t > 0. Suppose that β > 0 is sufficiently large. Substitute (2.2) in (2.26b) and
apply Lemma 2.2 as well as (2.2). The result is the estimate for boundary data:

0 < B(t) < Ce−σ(st+β) < Ce−σβ .(2.27)

Square (2.27) and integrate in t. The result is

0 <

∫ t

0

B(τ)2 dτ < C

∫ t

0

e−2σ(sτ+β) dτ < Ce−2σβ .(2.28)

Apply ∂it on (2.26a), for i = 1, 2, and use (2.26b). Then we have

|∂itB(t)| < Ce−σβ , 0 <

∫ t

0

|∂itB(τ)|2 dτ < Ce−2σβ .(2.29)

The existence and the asymptotic state of a time global solution is obtained in
the next section by the energy method. In this method, we make the integration by
parts, but it gives rise to the integrations in t along the boundary {x = 0}. These
integrations are estimated by utilizing the inequalities (2.27), (2.28), and (2.29).

We conclude this section by showing the next lemma, which we prove using the
idea in [7]. Here, we recover a certain gap between the assumptions on initial data
in Theorem 1.2 and Proposition 3.1. Precisely, we need to prove that the smallness
assumption on the initial data in Theorem 1.2, which is equivalent to the smallness
of (Φ̂0, Ψ̂0, ω̂0), implies that of (Φ0,Ψ0, ω0).

Lemma 2.3. For an arbitrary positive constant ε, there exists a positive constant δ
such that if β > 0 and (β + 1)(‖(Φ̂0, Ψ̂0)‖22 + ‖ω̂0‖21) + 1/β ≤ δ, then ‖(Φ0,Ψ0)‖22 +
‖ω0‖21 ≤ ε.

Proof. Subtracting the first equality in (2.20) from (1.27) yields that

Φ̂0(x)− Φ0(x) = −
∫ ∞
x

ρ̃(y − β)− ρ+ dy +

∫ ∞
x

ρ̃(y + α− β)− ρ+ dy

=

∫ 0

α

ρ̃(y + θ − β)− ρ+ dθ =: χ(x).

Then we compute ‖χ‖ with the aid of the estimate (2.5b) assuming α ≥ 0. The other
case, α < 0, is computed similarly. Divide the integration region (0,∞) into three
parts and apply (2.5b), respectively. Consequently, we have

‖χ‖2 =
∫ β−α

0

|χ(x)|2 dx+
∫ β

β−α
|χ(x)|2 dx+

∫ ∞
β

|χ(x)|2 dx

≤ C(α2β + o(α) + o(1/β)),

where o(α)→ 0 as α→ 0. The first term on the right-hand side of the above inequality
is estimated as

|α2β| ≤ C(‖Φ̂0‖21 + ‖Ψ̂0‖21 + e−2σβ)|β|,
where we have used (2.25) and the Sobolev inequality. These computations and
Lemma 2.2 yield the estimate

‖Φ0‖2 ≤ ‖Φ̂0‖2 + C(‖Φ̂0‖21 + ‖Ψ̂0‖21)|β|+ o(1/β).

This estimate gives the proof of the assertion concerning ‖Φ0‖. The estimates for
the first and the second derivatives of Φ0 are obtained by direct computation with
(2.20) and (1.27). The other terms are handled similarly.

Note that the assumptions in Lemma 2.3 hold if we choose β sufficiently large
and then take the initial data ‖(Φ̂0, Ψ̂0)‖2 + ‖ω̂0‖1 small enough.
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3. Energy estimate. In this section, we prove the a priori estimate in Propo-
sition 3.1 by the energy method following the context of [3]. Theorem 1.2 follows
from combining Proposition 3.1 and the local existence of the initial boundary value
problem (2.18), (2.20), and (2.26a) with the aid of Lemma 2.3. Precisely, we show the
existence of the global solution (φ, ψ, ω)(x, t) to (2.10). This immediately means the
global existence of the solution F (x, t). The asymptotic convergence (1.28) follows
from the standard discussion on the uniform estimate (3.3). (See [7], for example.)

The local existence of the solution (φ, ψ, ω)(x, t) to the problem (2.18), (2.20),
and (2.26a) follows from Lemma 2.1 and it verifies

(φ, ψ, ω) ∈ C0([0, T0];H
1(R+)) ∩ C1([0, T0];L

2(R+)),(3.1)

where the existence time T0 depends only on the initial data ‖(φ0, ψ0, ω0)‖1. Moreover,
if (φ0, ψ0) ∈ L1(R+), then the antiderivatives (Φ,Ψ)(x, t) can be defined by (2.16) for
t ∈ [0, T0] and satisfy (2.18). Furthermore, we see from (2.17) that (Φ,Ψ)(·, t) ∈
L2(R+) if (Φ0,Ψ0) ∈ L2(R+).

We introduce some notations.

N(t) = sup
0≤τ≤t

{‖(Φ,Ψ)(τ)‖2 + ‖Ψt(τ)‖1},

M(t)2 =

∫ t

0

‖(Φx,Φxt,Ψx,Ψt,Ψxt,Ψtt)(τ)‖2 dτ,

|||φ|||1 := (‖φ‖21 + ‖φt‖2)1/2.
L1 and L2 denote the left-hand sides of (2.18), respectively. Namely,

L1(Φ,Ψ) := Φt +Ψx, L2(Φ,Ψ) := Ψtt − v2Ψxx + ãΦx + m̃Ψx + b̃Ψt.(3.2)

Here, we state the a priori estimate. Since the proof is divided in several lemmas,
we complete it at the end of this section.

Proposition 3.1. Let (φ, ψ, ω) be a solution to the problem (2.10), (2.14),
and (2.15), which satisfies (3.1) with T0 replaced by T . Then (Φ,Ψ) defined by (2.16)
is located in C0([0, T ];H2(R+)) and satisfies (2.18), (2.20), and (2.26). Moreover, let
δM be sufficiently small and then β > 0 be sufficiently large. Then there is a positive
constant δ independent of T such that if N(T ) ≤ δ, then we have the uniform estimate

(3.3) |||(Φ,Ψ)(t)|||21 + ‖(Φxx,Φxt,Ψxx,Ψxt,Ψtt)(t)‖2

+

∫ t

0

‖(|ρ̃′ |1/2Ψ)(τ)‖2 + |||(Φx,Ψx,Ψt)(τ)|||21 dτ

≤ C(‖(Φ0,Ψ0)‖2 + ‖ω0‖21 + e−2σβ)

for 0 ≤ t ≤ T , where C is a positive constant independent of T .
By the standard argument employing a mollifier with respect to t, we may assume

without loss of generality that (Φ,Ψ) ∈ C∞([0, T ];H2(R+)).
Lemma 3.2. Suppose that the same assumptions as in Proposition 3.1 hold. If

N(T ) < δ, then it holds that

(3.4) ‖Φ(t)‖2 + |||Ψ(t)|||21
+

∫ t

0

‖(|ρ̃′ |1/2Ψ,Ψx,Ψt)(τ)‖2 +Ψ2(0, τ) + Ψ2
t (0, τ) dτ +Ψ2(0, t)

≤ C(‖Φ(0)‖2 + |||Ψ(0)|||21 +N(t)M(t)2 + e−2σβ)
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for 0 ≤ t ≤ T , where C is a positive constant independent of T .
Proof. Multiply (2.18a) and (2.18b) by −Ψx and ã−1Ψt, respectively. Adding

these two resultant equalities yields that

−ΨxL1(Φ,Ψ) + ã−1ΨtL2(Φ,Ψ) = −ã−1ΨtΓ,(3.5)

where we have used the notations in (3.2). Precisely, (3.5) gives that

(3.6) −Ψ2
x +

{
ã−1

(
1

2
Ψ2
t +

v2

2
Ψ2
x

)
−ΨxΦ

}
t

+ ã−1b̃Ψ2
t + {−v2ã−1ΨtΨx +ΨtΦ}x

− s(ã−1)
′
(
1

2
Ψ2
t +

v2

2
Ψ2
x

)
+ ã−1m̃ΨtΨx + (ã−1)

′
v2ΨtΨx = −ã−1ΨtΓ.

Successively, multiply (2.18a) and (2.18b) by Φ and ã−1Ψ, respectively, and add the
resultant equalities to obtain that

ΦL1(Φ,Ψ) + ã−1ΨL2(Φ,Ψ) = −ã−1ΨΓ.(3.7)

Namely,

(3.8)

{
1

2
Φ2 + ã−1ΨΨt + s(ã−1)

′ 1

2
Ψ2 +

1

2
ã−1b̃Ψ2

}
t

+ ã−1(−Ψ2
t + v2Ψ2

x)

+

{
−1
2
{ã−1(m̃− sb̃)}′ + 1

2
(s2 − v2)(ã−1)

′′
}
Ψ2

+

{
ΦΨ− v2ã−1ΨΨx +

1

2
ã−1m̃Ψ2 +

v2

2
(ã−1)

′
Ψ2

}
x

= −ã−1ΨΓ.

Then multiply (3.8) by λ, which is a positive constant to be determined later. Add
the resultant equality to (3.6). The result is

(E1 + E2 + Ê2)t + E3 + E4 +G+ B̂x = −ã−1(Ψt + λΨ)Γ,(3.9)

where

E1(Φ,Ψx) : = ã−1

(
λ

2
ãΦ2 − ãΦΨx + v2

2
Ψ2
x

)
,(3.10a)

E2(Ψ,Ψt) : = ã−1

(
λ

2
b̃Ψ2 + λΨΨt +

1

2
Ψ2
t

)
,(3.10b)

Ê2(Ψ) : =
λs

2
(ã−1)

′
Ψ2,(3.10c)

E3(Ψt,Ψx) : = ã−1{(b̃− λ)Ψ2
t + m̃ΨtΨx + (λv2 − ã)Ψ2

x},(3.10d)

E4(Ψ) : =
λ

2

{
−{ã−1(m̃− sb̃)}′ + (s2 − v2)(ã−1)

′′}
Ψ2,(3.10e)

G(Ψt,Ψx) : = (ã−1)
′
{
−s
(
1

2
Ψ2
t +

v2

2
Ψ2
x

)
+ v2ΨtΨx

}
,(3.10f)

B̂ : = −v2ã−1ΨtΨx +ΨtΦ(3.10g)

+ λ

{
ΦΨ− v2ã−1ΨΨx +

1

2
ã−1m̃Ψ2 +

v2

2
(ã−1)

′
Ψ2

}
.



STABILITY TO THE BOLTZMANN EQUATION IN HALF SPACE 567

Then, integrating (3.9) over (0,∞)× (0, t) we have

(3.11)

∫ ∞
0

(E1 + E2 + Ê2)(x, t) dx

+

∫ t

0

∫ ∞
0

(E3 + E4 +G)(x, τ) dx dτ −
∫ t

0

B̂(0, τ) dτ

=

∫ ∞
0

(E1 + E2 + Ê2)(x, 0) dx−
∫ t

0

∫ ∞
0

ã−1(Ψt + λΨ)Γ dx dτ.

Next, we need to estimate the integrands above, respectively. If the shock strength
δM is sufficiently small, then we have

c(Φ2 +Ψ2
x) ≤ E1 ≤ C(Φ2 +Ψ2

x),(3.12a)

c(Ψ2 +Ψ2
t ) ≤ E2 ≤ C(Ψ2 +Ψ2

t ),(3.12b)

c(Ψ2
t +Ψ2

x) ≤ E3 ≤ C(Ψ2
t +Ψ2

x)(3.12c)

by choosing the constant λ suitably, where c and C are positive constants. These
equivalences are obtained by computing the determinants of the quadratic forms
E1, E2, and E3. For example, if we take λ to be

λ =
ρ+ + ρ−

8
+
z+ + z−
8v2

,(3.13)

then (3.12) holds. For details, see [3].
Owing to (2.12) and (2.13), we have

0 ≤ Ê2(Ψ) ≤ C|ρ̃′ |Ψ2,(3.14)

where C is a positive constant. Next, it follows from (2.12) that

{ã−1(m̃− sb̃)}′ = −v
2 − s2
4ã2 ρ±(u± − s)ρ′

< 0, ã
′′
=
v2 − s2

4
ρ

′′
.(3.15)

The first inequality in (3.15) follows from the inequality

−v
2 − s2
4ã2 ρ±(u± − s) > c � 0,(3.16)

where c is a positive constant. Here, (3.16) is obtained by using (1.11a). For de-
tails, see [3]. Estimating (3.15) using (2.4) and (3.16) and substituting the resultant
estimation in (3.10e), we have that

E4 ≥ c|ρ̃′ |Ψ2.(3.17)

We also have, from (2.12), that

|G| ≤ C|ρ̃′ |(Ψ2
t +Ψ2

x).(3.18)

The last term in (3.11) is estimated by (2.19a) as

|(ã−1(Ψt + λΨ)Γ)| ≤ C(‖Ψ‖1 + ‖Ψt‖1)(Φ2
x +Ψ2

x +Ψ2
t )

≤ Cδ(Φ2
x +Ψ2

x +Ψ2
t ),

(3.19)
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where we have used the Sobolev inequality. Substitute the estimates (3.14), (3.17),
(3.18), and (3.19) in (3.11). These computations give the desired estimate (3.4) except
the boundary integration along {x = 0}.

Therefore, it remains to estimate the boundary terms. By virtue of (2.26a) and
(2.17a), we have

Φ(0, t) = B(t)− 1

v
Ψ(0, t), Ψx(0, t) = −Bt(t) + 1

v
Ψt(0, t).(3.20)

Substituting (3.20) in (3.10g) yields that

(3.21) −B̂(0, τ) = λ

{
1

v
− m̃

2ã
+
v(s− v)

2
(ã−1)

′
}
Ψ2 +

v

ã
Ψ2
t

+

{(
1

2v
+
vλ

2ã

)
Ψ2

}
t

− (λΨ+Ψt)(B + v2ã−1Bt),

where we have also used (2.13). Then we estimate each term on the right-hand side
of (3.21), respectively. The coefficient of Ψ2 in the first term is strictly positive due to
(1.26) with (1.19) if the shock strength δM is sufficiently small (see (2.12) and (2.13)).
So is the coefficient of Ψ2

t in the second term owing to (2.13). We integrate the third
term in t to obtain that{(

1

2v
+
vλ

2ã

)
Ψ2

}
(0, t)−

{(
1

2v
+
vλ

2ã

)
Ψ2

}
(0, 0).(3.22)

Owing to (2.13), the first term in (3.22) appears on the left-hand side of (3.4). The
second term is majorized by ‖Ψ0‖1. At last, we estimate the fourth term by using
(2.27) and (2.29). The absolute value of the fourth term is less than

ε(|Ψ(0, τ)|2 + |Ψt(0, τ)|2) + Cε(|B(τ)|2 + |Bt(τ)|2),(3.23)

where ε is an arbitrary positive number. We take ε so small that the first term in (3.23)
is absorbed in the first and the second terms on the right-hand side of (3.21). The
second term in (3.23) is estimated by using (2.28) and (2.29). The above computations
give the estimates for boundary terms in (2.13) and complete the proof.

Lemma 3.3. Suppose that the same assumptions as in Proposition 3.1 hold. If
N(T ) < δ, then it holds that

(3.24) ‖Φx(t)‖2 +
∫ t

0

‖Φx(τ)‖2 dτ

− c
{
‖(Ψx,Ψt)(t)‖2 +

∫ t

0

‖(Ψx,Ψt)(τ)‖2 +Ψ2
t (0, τ) dτ

}
≤ C(‖(Φx,Ψx,Ψt)(0)‖2 +N(t)M(t)2 + e−2σβ)

for 0 ≤ t ≤ T , where c and C are positive constants independent of T .

Proof. Differentiate (2.18a) in x and then multiply by Ψt + v2Φx. Then multiply
(2.18b) by Φx. Adding these two resultant equalities yields that

(Ψt + v2Φx)L1(Φx,Ψx) + ΦxL2(Φ,Ψ) = −ΦxΓ,(3.25)
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since ∂xL1(Φ,Ψ) = L1(Φx,Ψx). Precisely, (3.25) gives that(
1

2
v2Φ2

x +ΨtΦx − 1

2
Ψ2
x

)
t

+ (ΨtΨx)x + ãΦ2
x +Φx(m̃Ψx + b̃Ψt) = −ΦxΓ.(3.26)

Then we integrate (3.26) over (0,∞)× (0, t) and estimate each term, respectively.
The first term on the left-hand side of (3.26) is handled by the Schwarz inequality.
The second term gives the boundary integration, which is estimated by the Schwarz
inequality as ∫ t

0

|(ΨtΨx)(0, τ)| dτ ≤ C

∫ t

0

B2
t (τ) + Ψ2

t (0, τ) dτ

≤ C(e−2σβ +

∫ t

0

Ψ2
t (0, τ) dτ),

(3.27)

where we have used (3.20) and (2.29). The third term gives the desired term since
ã ≥ a+ > 0 (see (2.13)). The fourth term is handled by the Schwarz inequality again
as well as (2.5c) and (2.13):

|ΦxΨx| ≤ εΦ2
x + CεΨ

2
x, |ΦxΨt| ≤ εΦ2

x + CεΨ
2
t ,

where ε is an arbitrary positive constant. We take ε so small that ε < a+. Finally, the
right-hand side of (3.26) is estimated by the argument, using (2.19b), similar to that
in deriving (3.19). The above computations yield the desired estimate (3.24).

Then we need to derive the estimate for the higher derivatives. For this purpose,
it is convenient to compute the time derivatives to take advantage of the time decay
of the boundary data in (2.27), (2.28), and (2.29). Thus, we differentiate the linear
operators L1(Φ,Ψ) and L2(Φ,Ψ) in t, respectively, to obtain that

∂tL1(Φ,Ψ) = L1(Φt,Ψt), ∂tL2(Φ,Ψ) = L2(Φt,Ψt)−R(Φx,Ψx,Ψt),(3.28a)

R(Φx,Ψx,Ψt) := s(ã
′
Φx + m̃

′
Ψx + b̃

′
Ψt).(3.28b)

Lemma 3.4. Suppose that the same assumptions as in Proposition 3.1 hold. If
N(T ) < δ, then it holds that

(3.29) ‖Φt(t)‖2 + |||Ψt(t)|||21 +
∫ t

0

‖(Ψxt,Ψtt)(τ)‖2 +Ψ2
t (0, τ) + Ψ2

tt(0, τ) dτ

+Ψ2
t (0, t)− c

∫ t

0

‖(Φx,Ψx,Ψt)(τ)‖2 dτ

≤ C(‖Φt(0)‖2 + |||Ψt(0)|||21 +N(t)M(t)2 + e−2σβ)

for 0 ≤ t ≤ T , where c and C are positive constants independent of T .
Proof. We first differentiate (2.18a) in t and multiply by −Ψxt. Successively,

differentiate (2.18b) in t and multiply by ã−1Ψtt. Adding these two resultant equalities
using (3.28), we have

−ΨxtL1(Φt,Ψt) + ã−1ΨttL2(Φt,Ψt) = −ãΨttΓt + ã−1ΨttR.(3.30)

Next, differentiate (2.18a) in t and multiply by Φt. Then, differentiate (2.18b) in t
and multiply ã−1Ψt. Adding these two equalities yields that

ΦtL1(Φt,Ψt) + ã−1ΨtL2(Φt,Ψt) = −ã−1ΨtΓt + ã−1ΨtR.(3.31)



570 SHINYA NISHIBATA

It is easy to see that the left-hand sides of (3.30) and (3.31) take the forms of the left-
hand sides of (3.5) and (3.7) with (Φt,Ψt) in place of (Φ,Ψ), respectively. Thus, we ap-
ply the computation in deriving (3.4) to the left-hand sides of (3.30) and (3.31). Since
the nonlinear terms including Γt in (3.30) and (3.31) are estimated, using (2.19b), by
the same method as (3.19), it suffices to estimate the last terms on the right-hand
sides of (3.30) and (3.31). In fact, they are handled by using the inequalities

|ã−1ΨttR| ≤ εΨ2
tt + Cε(Φ

2
x +Ψ2

x +Ψ2
t ), |ã−1ΨtR| ≤ C(Φ2

x +Ψ2
x +Ψ2

t ),(3.32)

where ε is an arbitrarily small positive constant. In deriving (3.32), we have used
(2.5a) and (2.12). Consequently, we have the desired estimate (3.29).

Lemma 3.5. Suppose that the same assumptions as in Proposition 3.1 hold. If
N(T ) < δ, then it holds that

(3.33) ‖(Φxt,Ψxx)(t)‖2 +
∫ t

0

‖(Φxt,Ψxx)(τ)‖2 dτ

− c
{
‖(Ψxt,Ψtt)(t)‖2 +

∫ t

0

‖(Φx,Ψx,Ψt,Ψxt,Ψtt)(τ)‖2 +Ψ2
tt(0, τ) dτ

}
≤ C(‖Φxt,Ψxt,Ψtt)(0)‖2 +N(t)M(t)2)

for 0 ≤ t ≤ T , where c and C are positive constants independent of T .

Proof. Differentiate (2.18) with respect to t, respectively. Then, apply the proce-
dure in deriving (3.25). The result is

(Ψtt + v2Φxt)L1(Φxt,Ψxt) + ΦxtL2(Φt,Ψt) = −ΦxtΓt +ΦxtR.(3.34)

Here, notice that the left-hand side of (3.34) takes the form of the left-hand side
of (3.25) with (Φt,Ψt) in place of (Φ,Ψ). Thus, the left-hand side of (3.34) is handled
by the same procedure as that in the proof of Lemma 3.3. Since the first term on
the right-hand side of (3.34) is estimated by using (2.19b) with the Sobolev and the
Schwarz inequalities, it suffices to drive the estimation on the last term in (3.34). It
is handled by applying the Schwarz inequality on (3.28b) as

|ΦxtR| ≤ εΦ2
xt + Cε(Φ

2
x +Ψ2

x +Φ2
t ),

where ε is an arbitrarily small positive constant. Finally, use the equality |Φtx| =
|Ψxx|, which follows from (2.18a). Consequently, we have the desired estimate
(3.33).

In order to complete the proof of the a priori estimate (3.3), we derive the esti-
mates for the other remaining terms.

Lemma 3.6. Suppose that the same assumptions as in Proposition 3.1 hold. If
N(T ) < δ, then it holds that

(3.35) ‖Φxx(t)‖2 +
∫ t

0

‖Φxx(τ)‖2 dτ

− c
{
‖Ψxt(t)‖2 +

∫ t

0

‖(Φx,Ψx,Ψt,Φxt,Ψxt)(τ)‖2 dτ
}
≤ C‖(Φxx,Ψxt)(0)‖2

for 0 ≤ t ≤ T , where c and C are positive constants independent of T .
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Proof. Differentiating (2.7b) in x, we have

f2 tx + F̃ 2f2 x = −(f2 x + F̃ 2 x)f2 +H,(3.36a)

H :=
1

2
(f1f3 + F̃ 3f1 + F̃ 1f3 + F̃ 1f3 x)x.(3.36b)

Multiplying (3.36a) by f2 x yields that

1

2
(f2

2 x)t + F̃ 2f
2
2 x = −(f2 x + F̃ 2 x)f2f2 x +Hf2 x(3.37a)

≤ (c1δ + ε)f2
2 x + Cε(f

2
2 +H2),(3.37b)

where ε is an arbitrary positive constant and c1 is a certain positive constant. In
deriving the inequality (3.37b), we have used the Schwarz inequality and the fact that

|f2|∞ ≤ c1(‖Φx‖1 + ‖Ψt‖1) ≤ c1δ,(3.38)

which follows from (2.9). In addition, we have from (2.9) that

f2
2 ≤ C(Φ2

x +Ψ2
t ), H2 ≤ C(Ψ2

x +Ψ2
t +Ψ2

xx +Ψ2
xt).(3.39)

Substitute the estimates (3.39) in (3.37b), take ε and δ so small that c1δ+ ε < M+
2 =

minξ∈R F̃ 2(ξ), and successively integrate the resultant inequality to obtain that

(3.40) ‖f2 x(t)‖2 +
∫ t

0

‖f2 x(τ)‖2 dτ

≤ C

{
‖f2 x(0)‖2 +

∫ t

0

‖(Φx,Ψx,Ψt,Ψxx,Ψtx)(τ)‖2 dt
}
.

From (2.9), we have

c(|Φxx|2 − |Ψxt|2) ≤ |f2 x|2 ≤ C(|Φxx|2 + |Ψxt|2),(3.41)

where c and C are positive constants. Substituting (3.41) in (3.40) yields the desired
estimate (3.35).

Proof of Proposition 3.1. Multiply the estimates (3.4), (3.24), (3.29), (3.33),
and (3.35) by suitably chosen positive constants, respectively, sum up the resultant
inequalities, and then take δ sufficiently small. Consequently, it holds that

(3.42) |||(Φ,Ψ)(t)|||21 + ‖(Φxx,Φxt,Ψxx,Ψxt,Ψtt)(t)‖2

+

∫ t

0

‖(|ρ̃′ |1/2Ψ)(τ)‖2 + |||(Φx,Ψx,Ψt)(τ)|||21 dτ

≤ C(|||(Φ,Ψ)(0)|||21 + ‖(Φxt,Φxx,Ψxx,Ψxt,Ψtt)(0)‖2 + e−2σβ).

From (2.17) and (2.18), we see that the right-hand side of (3.42) is equivalent to
(‖Φ0,Ψ0)‖22+‖ω0‖21+e−2σβ). These procedures yield the desired estimate (3.3).
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Abstract. We investigate how evolution occurs as the strain ux of a viscoelastic system utt −
(σ(ux) + uxt)x + u = 0 goes towards a state of equilibrium. The time limit of ux eventually shows a
finite number of discontinuous interfaces if the strain starts from the continuous initial data whose
transition layers are steep enough and the initial energy is sufficiently small. The number of phases is
conserved and the transition layers stay in the initial position of interfaces. The results are obtained
by using the implicit time discretization method and the Andrews–Pego transformed equations.

Key words. implicit time discretization, viscous dissipation, transition layers, Andrews–Pego
transformed equations, nonconvex energy
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Introduction. There are various results on the phase transitions of microstruc-
tured elastic crystals [2, 5, 12, 16, 25, 27, 30, 32, 33]. Nonconvex double-well free
energy induces hysteretic behavior of the fine microstructures of the material. The
usual approach involves the minimization of the elastic energy. Due to the noncon-
vexity of the free energy, every minimizing sequence fails to attain a minimizer and
induces the formation of finer and finer oscillations of the sequence [5, 6, 30]. However,
under the presence of the energy dissipation, such a behavior is prevented and the
solution converges to the minimizer of the energy [3, 15, 27].

This article focuses on the one-dimensional viscoelastic system

utt − (σ(ux) + uxt)x + u = 0,(0.1)

where u is a mapping from (0, 1)× (0,∞) ⊂ R×R to R under appropriate initial and
boundary conditions and σ(x) =W ′(x) for some stored energy function W : R→ R.

The system describes a time-dependent elastic bar with a nonconvex energy W
and a viscous stress uxxt with the zero displacement boundary conditions. The bar
interacts with an elastic foundation u. In other words, the bar is placed on a system
of linearly elastic springs [32].

Many global existence results for the solutions of similar systems are available
[1, 3, 4, 7, 9, 11, 13, 14, 15, 16, 17, 18, 21, 24, 26, 27, 28]. The existence of a
weak solution for the viscoelastic-type materials was developed for the cases without
assuming the ellipticity of the free energyW [27], the convexity ofW, or the Lipschitz
continuity of σ [15]. In either case, the viscous dissipation plays a significant role
in the strong convergence of the minimizing sequences. In the higher-dimensional
case, Friesecke and Dolzmann [15] approached the results by an approximation, called
the time discretized solution, on each sufficiently small time interval and using the
Andrews–Pego transformed equations which were introduced in [1, 25].

The dynamics of the transition layers on the viscoelastic system (0.1) is the main
topic in this paper. The transition layers are defined by the part of the strain ux
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2002; published electronically December 13, 2002.
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where the norm of ux is less than a sufficiently small number. For the dynamics, we
need the following two assumptions:

(I) The continuous initial data u0 must have steep enough transition layers; that
is, the norm of (u0)xx should be sufficiently large at the position of transition
layers of the initial data.

(II) The initial energy where the energy functional is defined by

E(u, v) =

∫ 1

0

[
1

2
(u(x))2 +W ((ux(x)) +

1

2
(v(x))2

]
dx

must be sufficiently small.
Under these assumptions, the time limit of ux experiences a discontinuity at a

finite number of points. More precisely, the transition layers get steeper and eventually
become discontinuous at the time limit. Away from these finitely many points, the
solution remains continuous and converges to a steady state. The number of transition
layers remains the same and the transition layers of the solution are always within
the intervals of initial layers, which is comparable to the results of stick-slip motion
of layers in a system with the time-dependent displacement boundary conditions [33].
It was proven in [33] that the dynamics exhibits a different behavior than our main
results. The layers do not stay in the initial intervals and will move both forward and
backward.

Some important physical applications include a phase transformation in micro-
structured elastic crystals caused by changes in temperature, stresses, or incident
electromagnetic waves. The nonconvex elastic energy functional induces finer and finer
oscillations, but under the given initial state, the dynamics prevents the nucleation of
more phases.

Friesecke and McLeod [16] proved the dynamics of transition layers employing
the semigroup approach. In this paper, we use the method of time discretization to
show the results. The time discretization theory has a long history [8, 10, 15, 19]. The
scheme has been used for the nonlinear diffusion equations [8] and for the parabolic
equations [19]. The second order time discretization on a related problem was first
introduced in [10].

The existence of the solution was achieved in [16] by proving the existence of the
Andrews–Pego transformations under an appropriate fractional power space. How-
ever, in [15], the variational approach was utilized for the proof of existence. It was
proven that the time discretized functional

Jm,j [u] :=

∫ 1

0

[
1

2m2
|u− 2um,j−1 + um,j−2|2 + W (ux) +

1

2m
|ux − um,j−1

x |2 +
1

2
|u|2

]
dx

for each time interval ((j − 1)m, jm], j ∈ N, where m > 0 is a fixed and sufficiently
small time stepsize, has a minimizer um,j which is a weak solution to the following
discretized version of (0.1):

1

m2
(u− 2um,j−1 + um,j−2)− (σ(ux))x − 1

m
(ux − um,j−1

x )x + u = 0(0.2)

on ((j − 1)m, jm], j ∈ N. The key idea of the approach is the following: The non-
convexity of the stored energy function W is compensated by the discretized viscous
damping term 1

2m |ux − um,j−1
x |2 to provide the convexity of the functional. It was

also proven in [15] that the W 1,p
0 limit of the time discretized solutions is the weak
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solution of (0.1) as the time stepsize m approaches zero. The time discretization
scheme naturally applies to the proof of the dynamics of the phase transition in this
paper. The method is rather straightforward since it does not introduce any new
space. There is nevertheless still a question whether the asymptotic behaviors of (0.1)
and (0.2) commute or not. Is there any equivalence between jm→∞ for fixed m and
then m → 0 for the discretized problem, and t → ∞ for the original problem? The
question is discussed in the last section of the paper.

As in previous works [16, 27], the decay of the energy functional E(u, v) is the
crucial point of the proof. We prove in section 4 that the discretized energy functional
is nonincreasing and bounded by the initial energy. A priori estimates are also proved
in this section. We show next the existence and the equilibrium state as the limit um�
(as j → ∞) of the discretized solution for fixed m in section 5. The main proof of
the dynamics is conducted in section 6. We prove in this section that the transition
layers approach a jump discontinuity as j → ∞ by showing that a finite number of
intervals where the strain is steep enough are decreasing to a finite number of isolated
points. Unfortunately, the intervals in (0, 1) where the norm of the strain um,j

x is
sufficiently small (denote the intervals as I(um,j

x )) do not decrease monotonically as
j →∞ in general. Instead, we introduce the time discretized version of Andrews–Pego
transformed equations,

pm,j(x) :=
1

m

∫ x

0

[um,j(y)− um,j−1(y)]dy − 1

m

∫ 1

0

∫ z

0

[um,j(y)− um,j−1(y)]dydz,

qm,j(x) := um,j
x (x)− pm,j(x),

and consider the finite number of intervals in (0, 1) where the norm of qm,j is suffi-
ciently small (denote them as I(qm,j)). We show that the I(qm,j) decrease monotoni-
cally and exponentially to the isolated points as j →∞, and the intervals I(um,j

x ) are
contained in the I(qm,j). The solution at the limit exhibits a jump discontinuity be-
cause of the decrease of the I(qm,j) and the fact that the I(um,j

x ) are contained in the
I(qm,j). In the last section, we summarize the relationship between the asymptotic
behaviors of (0.1) and (0.2).

The interaction of the bar with an elastic foundation u induces a finely layered
microstructure [12]. It has also been shown using the bifurcation analysis that the
elastic foundation induces oscillations in the one-dimensional case of the static prob-
lem [32]. Nevertheless, under the assumption of low initial energy, the results still
hold without the elastic foundation, and only minor change of the proof is required.

Another advantage is that the method is also useful in the practical implemen-
tation of the numerical solution of the system. The numerical results for the related
problems have been discussed [4, 20, 29, 30, 31]. An implicit finite difference scheme for
the homogeneous boundary conditions was achieved in [29], and the numerical meth-
ods for the time-dependent boundary conditions were investigated in [31]. In [20],
the efficient numerical algorithms for the system in both one- and two-dimensional
cases were developed. Applications to the microscale heat transfer equations will also
appear in the near future.

The dynamics on similar problems was investigated in [22, 23]. The stability of the
incompressible viscoelastic non-Newtonian fluid flows was observed in these papers.
Investigating this type of spurt phenomena using the method of time discretization
would be very interesting for future work.
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1. The initial-boundary value problem and hypotheses. Consider the
initial-boundary value problem

utt − (σ(ux) + uxt)x + u = 0 (x ∈ (0, 1), t ∈ (0,∞)),
u|x=0 = u|x=1 = 0 (t ∈ [0,∞)),(1.1)

u|t=0 = u0, ut|t=0 = v0 (x ∈ [0, 1]),
where u is a function from (0, 1)× (0,∞) ⊂ R× R to R, σ = W

′
, and W is a stored

energy function satisfying the following conditions:
(H1) W ∈ C2(R),W

′
= σ.

(H2) There exist c > 0, C > 0, and p ≥ 2 such that
c|z|p − C ≤W (z) ≤ C(|z|p + 1), |σ(z)| ≤ C(|z|p−1 + 1) (coercivity).

(H3) W : double-well potential, that is, there exist z− < z1 < 0 < z2 < z+ such that
W (z±) = 0,W > 0 elsewhere, W

′
(0) = 0,W

′′ |(z1,z2) < 0,W
′′ |R\[z1,z2] > 0.

The stored energy function W is usually a fourth order nonconvex polynomial,
and the most common example is W (z) = 1

4 (z
2 − 1)2. Moreover, assume

(A1) (smoothness and a priori bounds) u0 ∈ C2, v0 ∈W 1,2
0 , ||(u0)x||L∞+||v0||W 1,2 ≤

M ;
(A2) (low initial energy) E(u0, v0) < ε, where

E(u, v) :=

∫ 1

0

(
1

2
u2 +W (ux) +

1

2
v2

)
dx;

(A3) (no transition layers at x = 0, 1) Lρ(0) := {x ∈ [0, 1] : |(u0)x(x)| ≤ ρ} ⊂
(0, 1);

(A4) (steepness of transition layers) |(u0)xx(x)| ≥ K in Lρ(0)
for someM, ε, ρ,K > 0. Here, ε, ρ are sufficiently small numbers andK is a sufficiently
large number.

Let the connected components of Lρ(0) be denoted by [(a0)i, (b0)i], i = 1, . . . , N
(0 < (a0)1 < (b0)1 < · · · < (a0)N < (b0)N < 1). Note that by assumption (A4), there
exists only one zero of (u0)x in each interval [(a0)i, (b0)i]. Let the zeros of (u0)x be
(x0)i, (x0)i ∈ [(a0)i, (b0)i], i = 1, . . . , N.

2. The time discrete scheme for the solution. Let m > 0, m � 1 be the
time stepsize of our problem. The m will be fixed throughout the paper except for
the last section. Let um,0 := u0, v

m,0 := v0, u
m,−1 := u0−mv0. For each time interval

((j − 1)m, jm], j ∈ N, define the following functional inductively:

Jm,j [u] :=

∫ 1

0

[
1

2m2
|u− 2um,j−1 + um,j−2|2 + W (ux) +

1

2m
|ux − um,j−1

x |2 +
1

2
|u|2

]
dx

on the Sobolev spaceW 1,p
0 ((0, 1),R), where p is the coercivity exponent ofW in (H2).

It was shown that Jm,j attains a minimum um,j if W satisfies the hypotheses (H1),
(H2), and (H3) since the first and the fourth integrands are convex and the nonconvex
termW (ux) combined with the viscous dissipation term

1
2m |ux−um,j−1

x |2 provides the
weakly lower semicontinuity [15]. It can be easily verified that for each time interval
((j − 1)m, jm], j ∈ N, um,j(x) is the weak solution of

1

m2
(u− 2um,j−1 + um,j−2)− (σ(ux))x − 1

m
(ux − um,j−1

x )x + u = 0,(2.1)

which is the time approximated equation of (1.1). The um,j is thus called the time
discretized solution of the problem (1.1). Assume that um,j satisfies the boundary
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conditions of (1.1) for each j ∈ N. On the time interval ((j − 1)m, jm], j ∈ N, we
define the linear interpolation function uj(x, t) of um,j(x) as follows:

uj(x, t) :=

(
mj − t

m

)
um,j−1(x) +

(
t−m(j − 1)

m

)
um,j(x).(2.2)

It is now important to define the functions which are called the Andrews–Pego trans-
formed equations. The equations will play a crucial role for the proof of the main
results. Define

p0(x) :=

∫ x

0

v0(y)dy −
∫ 1

0

∫ z

0

v0(y)dydz,

q0(x) := (u0)x(x)− p0(x),

pm,j(x) :=
1

m

∫ x

0

[um,j(y)− um,j−1(y)]dy − 1

m

∫ 1

0

∫ z

0

[um,j(y)− um,j−1(y)]dydz,

qm,j(x) := um,j
x (x)− pm,j(x)

for all j ∈ N. Note that pm,j
x (x) = um,j(x)−um,j−1(x)

m =: vm,j(x). For all j ∈ N and
(j− 1)m < t ≤ jm, define the interpolation functions of pj(x, t), qj(x, t), and vj(x, t)
of pm,j(x), qm,j(x), and vm,j(x), respectively, in the same way as (2.2).

3. Main results. The following theorem describes the dynamical behavior of
the transition layers.

Theorem 3.1. Suppose the stored energy function W and the initial data (u0, v0)
∈W 1,∞

0 ×L2 are assumed to satisfy (H1)–(H3), (A1)–(A4). Then the following hold:
(P1) (Preservation of number of zeros.) The number of zeros of um,j

x , denoted by
N(j), is finite, is positive for all j ∈ {0}∪N, and is independent of j. Let the
zeros be denoted by 0 < xm1 (j) < · · · < xmN (j) < 1.

(P2) (Preservation of intervals of transition layers.) The number of connected com-
ponents of L ρ

2
(j) := {x ∈ (0, 1) : |ujx(x, t)| ≤ ρ

2} is finite, is positive for all

j ∈ N, and is independent of j, and in each connected component, ujx(x, t) is
strictly monotone and has exactly one zero. Let the connected components of
L ρ

2
(j) be denoted by [ami (j), b

m
i (j)], i = 1, . . . , N (0 < am1 (j) < bm1 (j) < · · · <

amN (j) < bmN (j) < 1).
(P3) (Lock-in and exponential steepening of transition layers.) For all j ∈ N,

i = 1, . . . , N, and for some K0 > 0,

xmi (j) ∈ [ami (j), bmi (j)] ⊂ [(a0)i, (b0)i],

|ujxx(x, t)| ≥
K0

2
eσ0jm ∀x ∈ L ρ

2
(j) =

N⋃
i=1

[ami (j), b
m
i (j)],

|bmi (j)− ami (j)| ≤
2ρ

K0
e−σ0jm,

where σ0 := min[−ρ,ρ] |σ′| > 0.
(P4) (Convergence of phases.) limj→∞ xmi (j) =: (x�)

m
i exists for all i = 1, . . . , N

and (x�)
m
i ∈ [(a0)i, (b0)i] (in particular, 0 < (x�)

m
1 < · · · < (x�)

m
N < 1).

(P5) (Jump discontinuity of the limit state.) limj→∞ um,j
x =: (um� )x (which exists

as an Lp limit) is continuous on (0, 1)\{(x�)m1 , . . . , (x�)
m
N} but discontinuous

at every (x�)
m
i for all i = 1, . . . , N .
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4. Energy decay and a priori estimates. Let t ∈ ((j− 1)m, jm], j ∈ N.We
first prove the decay of the energy functional:

E(t) = E(uj , vj) =

∫ 1

0

[
1

2
(uj(x, t))2 +W (ujx(x, t)) +

1

2
(vj(x, t))2

]
dx.

Lemma 4.1. E(t) is nonincreasing, bounded by the initial data on ((j−1)m, jm]
for all j ∈ N.

Proof. Recall that um,j , j ∈ N, satisfies (2.1). That is, the equation

vjt − σ(um,j
x )x − vm,j

xx + um,j = 0(4.1)

is satisfied for all j ∈ N. Then the following holds:

d

dt
E(t) =

∫ 1

0

[vm,j · vjt + σ(um,j
x ) · ujxt + um,j · ujt + (vj − vm,j)vjt

(4.2)
+ (σ(ujx)− σ(um,j

x )) · ujxt + (uj − um,j) · ujt ]dx

=

∫ 1

0

[vm,j{vjt − σ(um,j
x )x + um,j}+ (vj − vm,j)vjt

(4.3)
+ (σ(ujx)− σ(um,j

x )) · ujxt + (uj − um,j) · ujt ]dx

=

∫ 1

0

[
vm,j · vm,j

xx +
(t− jm)

m2
· |vm,j − vm,j−1|2

+ (σ(ujx)− σ(um,j
x )) · ujxt +

(t− jm)

m2
· |um,j − um,j−1|2

]
dx

= −
∫ 1

0

|vm,j
x |2dx+ (t− jm)

m2

∫ 1

0

|vm,j − vm,j−1|2dx
(4.4)

+

∫ 1

0

(σ(ujx)− σ(um,j
x )) · ujxtdx+ (t− jm)

∫ 1

0

|vm,j |2dx

for (j − 1)m < t ≤ jm. The first three terms of (4.2) are the same as the first term
of (4.3) by the integration by parts and the boundary conditions of (1.1). By using
the mean value theorem, and by the fact that the function σ′ is bounded below by a
negative number, that is, for all y ∈ R, σ′(y) ≥ −L for some L > 0, the integrand
of the third term of (4.4) is estimated in the following way:

(σ(ujx)− σ(um,j
x )) · ujxt ≤ σ′(c∗)(ujx − um,j

x ) · ujxt
= (jm− t){−σ′(c∗)} (u

m,j
x − um,j−1

x )2

m2

≤ m ·max
y∈R

{−σ′(y)} (u
m,j
x − um,j−1

x )2

m2

= mL(vm,j
x )2(4.5)

for some c∗ between ujx and um,j
x . Moreover, both the second and the fourth term of

(4.4) are negative since t− jm ≤ 0. Now the following inequalities on the energy E(t)
are derived:

d

dt
E(t) ≤ (−1 +mL)

∫ 1

0

|vm,j
x |2dx

≤ −1
2
‖vm,j

x ‖2L2
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for all t ∈ ((j − 1)m, jm].
Note that by taking an integral from (j − 1)m to jm on both sides of the above

inequality, we get

E(jm)− E((j − 1)m) ≤ −1
2
m‖vm,j

x ‖2L2 ,

and after taking a summation from j = 1 to j = S, the following estimate is estab-
lished:

E(Sm)− E(0) ≤ −m

2

S∑
j=1

‖vm,j
x ‖2L2 .

Therefore,

m

2

S∑
j=1

‖vm,j
x ‖2L2 ≤ E(0)− E(Sm) < E(0) < ε(4.6)

for all S ∈ N. Next, we show the several estimates on the functions which will play a
significant role for the proof of Theorem 3.1.

Lemma 4.2. The following a priori estimates hold:
(a) supj∈N

sup(j−1)m<t≤jm ‖pj(·, t)‖L∞ ≤ η,

(b) supj∈N
sup(j−1)m<t≤jm ‖πa(

∫ x
0
uj(y, t)dy)‖L∞ ≤ σ0η, where πa(f) := f −∫ 1

0
f,

(c) supj∈N
sup(j−1)m<t≤jm ‖qj(·, t)‖L∞ ≤ K̃,

(d) supj∈N
sup(j−1)m<t≤jm ‖uj(·, t)‖L∞ ≤ K̃,

(e) supj∈N
sup(j−1)m<t≤jm |

∫ 1

0
σ(ujx(x, t))dx| ≤ σ0η,

(f) supj∈N
sup(j−1)m<t≤jm ‖vj(·, t)‖L∞ = supj∈N

sup(j−1)m<t≤jm ‖pjx(·, t)‖L∞ ≤
K̃

for some constants K̃, η > 0, η � 1.

Proof. Since
∫ 1

0
pj(x, t)dx = 0, pj(x′, t) = 0 for some x′ in (0, 1). Hence, the

following holds:

|pj(x, t)| =
∣∣∣∣∫ x

x′
pjx(y, t)dy

∣∣∣∣ ≤ (∫ 1

0

|pjx(y, t)|2dy
) 1

2

.

Since ‖pjx(·, t)‖L2 = ‖vj(·, t)‖L2 ≤ √
E(uj , vj) ≤ √

E(u0, v0) ≤
√
ε, (a) is accom-

plished by choosing η > 0 such that η > max{√ε, 2
√
ε/σ0, C5

√
ε/σ0}, where C5 will

be chosen later.
Similarly,∥∥∥∥∫ x

0

uj(y, t)dy

∥∥∥∥
L∞

=

∥∥∥∥∫ x

0

∫ y

0

(pj(z, t) + qj(z, t))dzdy

∥∥∥∥
L∞

≤
∥∥∥∥∫ x

0

(pj(y, t) + qj(y, t))dy

∥∥∥∥
L2

= ‖uj(·, t)‖L2

≤ √ε ≤ σ0η

2
,
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which proves (b).
By using (4.1),

qjt =
um,j
x (x)− um,j−1

x (x)

m
−

∫ x

0

vjt +

∫ 1

0

∫ x

0

vjt

= −πa(σ(um,j
x )) + πa

(∫ x

0

um,j

)
(4.7)

= −σ(pm,j + qm,j) + em,j
1 ,(4.8)

where em,j
1 =

∫ 1

0
σ(um,j

x (x))dx + πa(
∫ x
0
um,j(y)dy). From the hypotheses (H2) and

(H3), σ(z) ≤W (z) + C1 for some C1 > 0, z ∈ R. This and estimate (b) imply

|em,j
1 | ≤

∫ 1

0

[|W (um,j
x )|+ C1]dx+ σ0η ≤ ε+ C1 + σ0η < C2(4.9)

for some C2 > 0. Since ‖pj‖L∞ < η, from (4.8), qjt < 0 when qj ≥ K1 and qjt > 0
when qj ≤ −K1 for some sufficiently large K1 > 0. Hence, qj is bounded. Let
K̃ > max{η +K1,K2}, where K2 will be chosen later. This completes the proof of
(c).

Note that

‖ujx‖L∞ ≤ ‖pj‖L∞ + ‖qj‖L∞ ≤ η +K1 < K̃.(4.10)

Now, (d) clearly follows from (4.10).
Note that by (4.10),

|σ(ujx)| ≤ C3(4.11)

for some C3 > 0. Since qjt satisfies (4.8), (4.11) combined with (4.9) implies that q
j
t

is uniformly bounded for all j ∈ N in L∞ norm. Also, note that

|σ′(ujx)| ≤ C4(4.12)

for some C4 > 0. From the coercivity condition (H2) on W and σ and by estimate
(4.10),

C5 := sup
z∈[−K̃,K̃]\{z−,z+}

|σ(z)|√
W (z)

is well defined and∣∣∣∣∫ 1

0

σ(ujx(x, t))dx

∣∣∣∣ ≤ ‖σ(ujx)‖L2 ≤ C5

(∫ 1

0

|W (ujx)|
) 1

2

< C5

√
ε ≤ σ0η,

which proves (e).
It will be shown next that ‖pjxx‖L2 is uniformly bounded for all j ∈ N in order to

prove (f).
Since

pjxx(x, t) = rj(x, t) + sj(x, t),
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where

rj(x, t) :=

(
mj − t

m

)
pj−1
t (x) +

(
t−m(j − 1)

m

)
pjt (x),

(4.13)

sj(x, t) :=

(
mj − t

m

)
qj−1
t (x) +

(
t−m(j − 1)

m

)
qjt (x),

and ‖qjt ‖L∞ is uniformly bounded for all j ∈ N, one would only need to show that
‖pjt‖L2 is uniformly bounded for all j ∈ N. By (4.7) and the identity ujxt = pm,j

xx , pjt
satisfies the following equation:

pjt = pm,j
xx + πa

[
σ(pm,j + qm,j)−

∫ x

0

∫ x′

0

(pm,j + qm,j)

]
.(4.14)

Let f(pm,j) := −qjt . Note that
‖f(pm,j)‖L∞ < M1(4.15)

for some M1 > 0 since qjt is uniformly bounded. From (4.14),

pm,j − pm,j−1 = m∆pm,j +mf(pm,j),

which implies

pm,j =
pm,j−1

(1−m∆)
+

m

(1−m∆)
f(pm,j)

=
1

(1−m∆)

[
pm,j−2

(1−m∆)
+

m

(1−m∆)
f(pm,j−1)

]
+

m

(1−m∆)
f(pm,j)

=
pm,j−2

(1−m∆)2
+m

[
f(pm,j−1)

(1−m∆)2
+

f(pm,j)

(1−m∆)

]
· · ·

=
p0

(1−m∆)j
+m

[
f(pm,1)

(1−m∆)j
+ · · ·+ f(pm,j)

(1−m∆)

]
.

Therefore,

pjt =
pm,j − pm,j−1

m
=

∆p0

(1−m∆)j
+m

j−1∑
k=1

∆f(pm,k)

(1−m∆)j+1−k +
f(pm,j)

(1−m∆)
.

By incorporating the inequality ‖ ∆
(1−m∆)‖L2 ≤ 1 and (4.15), the following inequalities

occur:

‖pjt‖L2 ≤ ‖∆p0‖L2 +m

j−1∑
k=1

∥∥∥∥ 1

(1−m∆)j−k
· ∆

(1−m∆)
· f(pm,k)

∥∥∥∥
L2

+ ‖f(pm,j)‖L2

≤ ‖∆p0‖L2 +mM1 ·
j−1∑
k=1

1

(1−mλ1)j−k
+M1

≤ ‖∆p0‖L2 +
M1

λ1
·
[

1

(1−mλ1)j−1
− 1

]
+M1

≤ ‖∆p0‖L2 +

(
− 1
λ1
+ 1

)
·M1.
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Here, λ1 < 0 is the largest eigenvalue of ∆. Therefore, ‖pjt‖L2 is uniformly bounded
for all j ∈ N and ‖pjx‖L∞ < K2 for some K2 > 0. Proof of Lemma 4.2 is now
complete.

Remark. One can see from the proofs of Lemmas 4.1 and 4.2 that the energy
decay and a priori estimates are independent of m for sufficiently small m > 0.

5. Equilibrium state as the limit of the solution as j → ∞. We now
introduce the function ϕ, which is called the phase function. This function will play
an important role in proving the equilibrium state of the solution at the limit as
j →∞. Fix r > 0, r � 1 such that for λ ∈ [−r, r], the equation σ(z) = λ has three
different solutions z1(λ) < z2(λ) < z3(λ). Define

ϕ(z) =

 i, z ∈
⋃

λ∈[−r, r]
zi(λ), i = 1, 2, 3,

∞ elsewhere.

The next proposition states that the discretized solution um,j converges in W 1,p
0 to

an equilibrium state as j goes to infinity.
Proposition 5.1. Suppose (H1)–(H3), (A1)–(A4) hold. Then the solution

(um,j , vm,j) of (2.1) converges strongly in W 1,p
0 × L2 (1 ≤ p < ∞) to some equi-

librium state (um� , 0) ∈W 1,∞
0 × L2 as j →∞.

Proof. The proof consists of several lemmas. The following lemma states that
under some appropriate conditions on the elastic stress σ(um,j

x (x))− ∫ x
0
um.j and the

phase function ϕ, the strain um,j
x converges to an equilibrium state. We must be

careful when choosing the pointwise representatives of um,j
x since in the measure zero

sets of (0, 1), we never know the behavior of the strain um,j
x . It is important to choose

a good representative so that the limit state is continuous except for the finitely many
points which are the zeros of the limit state.

Lemma 5.2. Assume there exists a full measure subset Ω̃ ∈ (0, 1)(measure of Ω̃
is 1) and pointwise representatives w̄m,j of um,j

x such that
(B1) σ(w̄m,j(x))− ∫ x

0
um,j =: λmj (x) → λm as j → ∞ for some λm ∈ (−r, r) and

all x ∈ Ω̃;
(B2) limj→∞ ϕ(w̄m,j(x)) exists and is finite for all x ∈ Ω̃.
Then limj→∞ w̄m,j(x) =: w̄m(x) exists for all x ∈ Ω̃. Moreover, the equivalence

class ŵm of w̄m satisfies

‖ŵm‖L∞ ≤ K̃ and um� (x) :=

∫ x

0

ŵm is in W 1,∞
0 .

Also,

σ((um� )x(x))−
∫ x

0

um� ≡ λm a.e., ϕ((um� )x(x)) = lim
j→∞

ϕ(um,j
x (x)) a.e.

and

um,j → um� in W 1,p
0 (1 ≤ p <∞).

Proof. Recall that supj∈N
‖ujx‖L∞ < K̃ by (4.10). Define

χm,j
i (x) :=

{
1, x ∈ Ω̃ and ϕ(w̄m,j(x)) = i ∈ {1, 2, 3},
0 else,
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χm,j
∞ (x) :=

{
1, x ∈ Ω̃ and ϕ(w̄m,j(x)) =∞,
0 else.

Let x ∈ Ω̃. Since w̄m,j(x) = zi(
∫ x
0
um,j + λmj (x)) and χm,j

∞ (x) = 0 if ϕ(w̄m,j(x)) =
i, i = 1, 2, 3, the following equation holds:

w̄m,j(x)− w̄m,k(x)

=

3∑
i=1

[
χm,j
i (x) · zi

(∫ x

0

um,j + λmj (x)

)
− χm,k

i (x) · zi
(∫ x

0

um,k + λmk (x)

)]
(5.1)

+ χm,j
∞ (x) · w̄m,j(x)− χm,k

∞ (x) · w̄m,k(x).

Note that since 1 = d
dλm (σ(zi(λ

m))) = σ′(zi(λm)) · z′i(λm),
|zi(a)− zi(b)| ≤ sup

x∈[−r, r]
|z′i(x)| · |a− b|

(5.2)

= sup
x∈[−r, r]

1

|σ′(zi(x))| · |a− b| ≤ 1

M̄
|a− b|,

where M̄ := minz∈σ−1([−r,r]) |σ′(z)|. Let ξmj,k(x) =
∫ x
0
|um,j − um,k|, j, k ∈ N. Then

0 ≤ d

dx
ξmj,k(x) =

∣∣∣∣∫ x

0

(um,j
x − um,k

x )

∣∣∣∣
=

∣∣∣∣∣
∫ x

0

[
3∑
i=1

{
χm,j
i (x′) · zi

(∫ x′

0

um,j + λmj (x
′)

)

− χm,k
i (x′) · zi

(∫ x′

0

um,k + λmk (x
′)

)}
(5.3)

+ χm,j
∞ (x′) · w̄m,j(x′)− χm,k

∞ (x′) · w̄m,k(x′)

]
dx′

∣∣∣∣∣
=

∣∣∣∣∣
∫ x

0

[
3∑
i=1

χm,k
i (x′){w̄m,j(x′)− w̄m,k(x′)}+

3∑
i=1

{χm,j
i (x′)− χm,k

i (x′)}w̄m,j(x′)

+ χm,j
∞ (x′) · w̄m,j(x′)− χm,k

∞ (x′) · w̄m,k(x′)

]
dx′

∣∣∣∣∣
holds for j, k ∈ N. Note that∫ x

0

[
3∑
i=1

(χm,j
i − χm,k

i )w̄m,j

]
≤ 2K̃|{x ∈ (0, 1) : ϕ(w̄m,j(x)) �= ϕ(w̄m,k(x))}|

and∫ x

0

(
χm,j
∞ · w̄m,j − χm,k

∞ · w̄m,k
) ≤ K̃|{x ∈ (0, 1) : ϕ(w̄m,j(x)) �= ϕ(w̄m,k(x))}|

+ 2K̃|{x ∈ (0, 1) : ϕ(w̄m,j(x)) = ϕ(w̄m,k(x)) =∞}|.
Therefore, the last three terms in (5.3) are dominated by

3K̃|{x ∈ (0, 1) : ϕ(w̄m,j(x)) �= ϕ(w̄m,k(x))}|
+ 2K̃|{x ∈ (0, 1) : ϕ(w̄m,j(x)) = ϕ(w̄m,k(x)) =∞}| =: δmj,k.
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Let x ∈ (0, 1) be fixed. By assumption (B2), ϕ(w̄m,j(x)) = ϕ(w̄m,k(x)) = i(x) for
some i(x) = 1, 2, 3 if j, k are sufficiently large. Therefore, δmj,k → 0 as min{j, k} → ∞.
For each i ∈ {1, 2, 3},∫ x

0

χm,k
i (x′)(w̄m,j(x′)− w̄m,k(x′))dx′ ≤

∫
J1(i)

|w̄m,j(x′)− w̄m,k(x′)|dx′

+

∫
J2(i)

|w̄m,j(x′)− w̄m,k(x′)|dx′,

where

J1(i) := {x′ ∈ (0, x) : χm,j
i (x′) = χm,k

i (x′) = 1},

J2(i) := {x′ ∈ (0, x) : χm,j
i (x′) = 0, χm,k

i (x′) = 1}.
In the set J1(i),

|w̄m,j(x′)− w̄m,k(x′)| =
∣∣∣∣∣zi

(∫ x′

0

um,j(s)ds+ λmj (x
′)

)
− zi

(∫ x′

0

um,k(s)ds+ λmk (x
′)

)∣∣∣∣∣
≤ 1

M̄

[∫ x′

0

|um,j(s)− um,k(s)|ds+ |λmj (x′)− λmk (x
′)|

]

=
1

M̄
[ξmj,k(x

′) + |λmj (x′)− λmk (x
′)|].

Note that J2(i) ⊂ {x ∈ (0, 1) : ϕ(w̄m,j(x)) �= ϕ(w̄m,k(x))}, i = 1, 2, 3. Hence,

d

dx
ξmj,k(x) ≤ 2 · δmj,k +

1

M̄

∫ 1

0

|λmj (x′)− λmk (x
′)|dx′ +

∫ x

0

1

M̄
ξmj,k(x

′)dx′

≤ 2 · δmj,k +
1

M̄
‖λmj − λmk ‖L1 +

1

M̄
ξmj,k(x)

≤ εmj,k +
1

M̄
ξmj,k(x),

where εmj,k := 2·δmj,k+ 1
M̄
‖λmj −λmk ‖L1 . By assumption (B1), εmj,k → 0 as min{j, k} → ∞.

By Gronwall’s inequality,

ξmj,k(x) ≤ εmj,k · M̄ ·
(
exp

(
1

M̄
x

)
− 1

)
→ 0 as min{j, k} → ∞.

Therefore, ∣∣∣∣∫ x

0

um,j −
∫ x

0

um,k

∣∣∣∣ ≤ ξmj,k(x)→ 0

as min{j, k} → ∞. By combining this with assumption (B1), we get∣∣∣∣(∫ x

0

um,j + λmj (x)

)
−

(∫ x

0

um,k + λmk (x)

)∣∣∣∣→ 0 a.e.

as min{j, k} → ∞. By assumption (B2), χm,j
i (x) = χm,k

i (x) = 1 for some i(x) =
1, 2, 3, and χm,j

∞ (x) = χm,k
∞ (x) = 0 for sufficiently large j, k ∈ N. This implies that
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the right-hand side of (5.1) converges to zero, and thus w̄m,j(x)− w̄m,k(x)→ 0 for all
x ∈ Ω̃ as min{j, k} → ∞. Hence,

lim
j→∞

∫ x

0

um,j =: Um exists ∀ x ∈ [0, 1],

lim
j→∞

w̄m,j =: w̄m exists ∀ x ∈ Ω̃.

This implies that um,j
x converges to the equivalence class ŵm of w̄m in L1. Let um� (x) :=∫ x

0
ŵm. Since

um� (1) =

∫ 1

0

ŵm = lim
j→∞

∫ 1

0

um,j
x = lim

j→∞
(um,j(1)− um,j(0)) = 0,

um� satisfies the boundary conditions of (1.1). Moreover, since

um,j(x) =

∫ x

0

um,j
x →

∫ x

0

ŵm = um� (x) in C([0, 1]),

Um =
∫ x
0
um� . Hence,

um,j → um� in W 1,p, 1 ≤ p <∞.

Since um,j , um,j
x are uniformly bounded, um� ∈W 1,∞

0 . Therefore,

um,j
x → (um� )x boundedly a.e.

Since σ(um,j
x )− ∫ x

0
um,j → σ((um� )x)−

∫ x
0
um� boundedly a.e. by assumption (B1),

λm = σ((um� )x)−
∫ x

0

um� a.e.(5.4)

Since (um� )x lies in one of the three intervals
⋃
λ∈[−r, r] zi(λ), i ∈ {1, 2, 3} a.e., we can

choose the nice pointwise representatives w̄m,j of um,j
x such that (5.4) holds for the set

(0, 1) except for the finitely many points which are the limits (x�)
m
i of finitely many

zeros xmi (j), i = 1, . . . , N, of um,j
x in (P4). Hence, we can conclude that (um,j , vm,j)

converges to an equilibrium state (um� , 0) strongly in W 1,p
0 × L2.

In the lemmas to follow, we will show that under the low initial energy, the
assumptions (B1) and (B2) are satisfied. Lemma 5.3 shows that the convergence of

mean elastic stress
∫ 1

0
(σ(um,j

x )− ∫ x
0
um,j)dx implies the convergence of elastic stress

σ(um,j
x )− ∫ x

0
um,j .

Lemma 5.3. Let um,j , j ∈ N, be a solution of (2.1). Assume that

lim
j→∞

∫ 1

0

(
σ(um,j

x )−
∫ x

0

um,j

)
dx =: λm exists.

Then

σ(um,j
x )−

∫ x

0

um,j → λm a.e. as j →∞.

Proof. By (4.7), the sufficient condition to the conclusion is when qjt goes to zero
a.e. as j →∞. Define the following modification of the energy functional E(t):

Ẽ(t) :=

∫ 1

0

[
W (ujx(x, t)) +

1

2
(uj(x, t))2 + pj(x, t)sj(x, t)

]
dx,
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where sj(x, t) is the interpolation function defined in (4.13). Note that Ẽ(t) is uni-
formly bounded and, moreover, sufficiently small since the first two terms are the part
of energy functional E(t) and the third term is small since pj(x, t) is small enough
by estimate (a) of Lemma 4.2 and sj(x, t) is uniformly bounded since qjt is uniformly
bounded for all j ∈ N. By (4.1) and the integration by parts,

d

dt
Ẽ(t) =

∫ 1

0

[σ(ujx) · ujxt + uj · ujt + pjt · qjt + pjt (s
j − qjt ) + pj · sjt ]dx

=

∫ 1

0

[
(σ(ujx)− σ(um,j

x )) · ujxt + (uj − um,j) · ujt

+ σ(um,j
x ) · ujxt + um,j · ujt + ujxt · qjt − (qjt )2

+ pjt

((
mj − t

m

)
qm,j−1
t +

(
t−m(j − 1)−m

m

)
qm,j
t

)
+ pjsjt

]
dx

≤ mL‖vm,j
x ‖2L2 + (t−mj)‖vm,j‖2L2 −

∫ 1

0

(qjt )
2dx

+

∫ 1

0

[
(vm,j
xx − vjt ) · ujt + ujxtu

j
xt − ujxtp

j
t(5.5)

+ pjt

(
t−mj

m

)
· (qm,j

t − qm,j−1
t ) + pjsjt

]
dx

≤ mL‖vm,j
x ‖2L2 −

∫ 1

0

(qjt )
2dx

(5.6)

+

∫ 1

0

[−ujxtvm,j
x − ujtv

j
t + ujxtu

j
xt + ujtp

j
xt + pjt · (t−mj) · sjt + pjsjt ]dx

= mL‖vm,j
x ‖2L2 −

∫ 1

0

(qjt )
2dx+

∫ 1

0

sjt

[
(t−mj) ·

(
pm,j − pm,j−1

m

)
+

(
mj − t

m

)
pm,j−1 +

(
t−m(j − 1)

m

)
pm,j

]
dx

= mL‖vm,j
x ‖2L2 −

∫ 1

0

(qjt )
2dx+ 2 ·

∫ 1

0

sjt · pjdx−
∫ 1

0

sjt · pm,jdx.

The first term of (5.5) is followed from estimate (4.5). The first four terms of the
integrand of the third term of (5.6) vanish because of the identities ujxt = vm,j

x , pjxt =
vjt . Since∣∣∣∣∫ 1

0

sjt · pm,jdx

∣∣∣∣ ≤ ‖pm,j
xx ‖L2 · ‖sjt‖L2

= ‖vm,j
x ‖L2 ·

∥∥∥∥∥qjt − qj−1
t

m

∥∥∥∥∥
L2

≤ ‖vm,j
x ‖L2 ·

(∥∥∥∥πa(σ′(c∗∗) · u
m,j
x − um,j−1

x

m

)∥∥∥∥
L2

+

∥∥∥∥um,j
x − um,j−1

x

m

∥∥∥∥
L2

)
≤M2 · ‖vm,j

x ‖2L2 ,
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0

sjt · pjdx
∣∣∣∣ ≤ ‖vjx‖L2 · ‖sjt‖L2

≤M3 · (‖vm,j−1
x ‖L2 + ‖vm,j

x ‖L2) · ‖vm,j
x ‖L2 ,

and

‖vm,j−1
x ‖L2 · ‖vm,j

x ‖L2 ≤M4 · (‖vm,j−1
x ‖2L2 + ‖vm,j

x ‖2L2)

for some c∗∗ between um,j
x and um,j−1

x , M2,M3, and M4 > 0, the following estimate

on d
dt Ẽ(t) holds:

d

dt
Ẽ(t) ≤ mL‖vm,j

x ‖2L2 −
∫ 1

0

(qjt )
2dx+M5 · (‖vm,j−1

x ‖2L2 + ‖vm,j
x ‖2L2)(5.7)

for some M5 > 0. By taking an integral from (j − 1)m to jm on both sides of (5.7),
we get

Ẽ(jm)− Ẽ((j − 1)m) ≤ −m
∫ 1

0

(qjt )
2 + (mL+M5)m‖vm,j

x ‖2L2 +mM5‖vm,j−1
x ‖2L2 .

By taking the summation j = 1, . . . , S, we get the following estimate:

Ẽ(Sm)− Ẽ(0) ≤ −m
S∑
j=1

∫ 1

0

(qjt )
2 + (mL+M6)

S∑
j=1

m‖vm,j
x ‖2L2 +mM5‖(v0)x‖2L2

for some M6 > 0. By (4.6),

m

S∑
j=1

∫ 1

0

(qjt )
2 ≤ Ẽ(0)− Ẽ(Sm) + 2(mL+M6)ε+M5m‖(v0)x‖2L2

≤ |Ẽ(0)|+ |Ẽ(Sm)|+ 2(mL+M6)ε+ ε1

≤ δ

for some ε1, δ � 1. Therefore, m
∑∞

j=1

∫ 1

0
(qjt )

2 ≤ δ, and this implies qjt → 0 a.e. as
j →∞.

The next lemma shows the convergence of the phase function under the assump-
tions of the low initial energy and the convergence of mean elastic stress.

Lemma 5.4. Let um,j , j ∈ N, be the solution of (2.1). Then the assumption (B2)
in Lemma 5.2 holds.

Proof. By (b) and (e) of Lemma 4.2, mean elastic stress
∫ 1

0

(
σ(um,j

x )− ∫ x
0
um,j

)
dx

is sufficiently small. Then by Lemma 5.3, lim supj→∞
∣∣σ(um,j

x )− ∫ x
0
um,j

∣∣ is suffi-
ciently small a.e. Combining this and estimate (b) of Lemma 4.2, lim supj→∞

∣∣σ(ujx)∣∣ ≤
2r
3 a.e. This implies that for almost every x, there exists J(x) ∈ N such that

{ujx(x, t) : j ≥ J(x)} ⊆ σ−1([−r, r]) =

3⋃
i=1

⋃
λ∈[−r, r]

zi(λ).

Since {ujx(x, t) : j ≥ J(x)} is connected, ujx(x, t) ∈
⋃
λ∈[−r, r] zi(λ) for all j ≥ J(x)

and for some i(x) = 1, 2, or 3. This implies that limj→∞ ϕ(ujx(x, t)) exists and is finite
a.e. Consequently, limj→∞ ϕ(um,j

x (x)) also exists and is finite a.e.
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The next lemma shows the convergence of mean elastic stress.

Lemma 5.5. Let um,j be the solution of (2.1). Then

lim
j→∞

[∫ 1

0

(
σ(um,j

x )−
∫ x

0

um,j

)
dx

]
︸ ︷︷ ︸

=: c(j)

exists.

Proof. Suppose this fails. Then there exists a subsequence jk → ∞ such that
c(jk) → λm and another subsequence js → ∞ such that c(js) → λ̄m for some
λm, λ̄m ∈ [− 2r

3 , 2r
3 ] and λm < λ̄m. Then by Lemma 5.3, σ(um,jk

x ) − ∫ x
0
um,jk → λm

a.e. as jk → ∞ and σ(um,js
x ) − ∫ x

0
um,js → λ̄m a.e. as js → ∞. Also by Lemma 5.4,

limjk→∞ ϕ(um,jk
x ), limjs→∞ ϕ(um,js

x ) exist and are finite, respectively. Hence, these
satisfy the assumptions (B1), (B2) of Lemma 5.2, and therefore there exist um, ūm ∈
W 1,∞ such that

σ(umx )x −
∫ x

0

um ≡ λm a.e., σ(ūmx )x −
∫ x

0

ūm ≡ λ̄m a.e.,

ϕ(umx (x)) = lim
jk→∞

ϕ(um,jk
x (x)) a.e., and ϕ(ūmx (x)) = lim

js→∞
ϕ(um,js

x (x)) a.e.

Note that ϕ(umx (x)) = ϕ(ūmx (x)) =: ϕ∞(x) since the limit of the phase function is
independent of λm and λ̄m.

Consider the case where ϕ∞(x) ∈ {1, 3} a.e. That is, the measure of the set
Ωu := {x ∈ (0, 1) : ϕ∞(x) = 2} is zero. Now we introduce the following principle,
whose proof was done in [16].

Comparison principle for weak solutions of the ordinary differential
equation σ(ux)x = u. Assume that u, ū ∈W 1,∞ satisfy

σ(ux)x −
∫ x

0

u ≡ λ a.e., σ(ūx)x −
∫ x

0

ū ≡ λ̄ a.e.,

λ < λ̄, u(0) = ū(0) = 0, σ(ux), σ(ūx) ∈ [−r, r] a.e., ϕ(ux) = ϕ(ūx) a.e., and
ϕ(ux) ∈ {1, 3} a.e. Then u(x) < ū(x) for all x ∈ (0, 1].

Since um and ūm satisfy the assumptions of the above comparison principle,
um(1) < ūm(1). This contradicts the boundary conditions of (1.1). In the case when
the measure of Ωu is not zero, contradiction arises from the following modified prin-
ciple, which was also proven in [16].

Refined comparison principle for weak solutions of the ordinary dif-
ferential equation σ(ux)x = u. Under the same assumptions as the comparison

principle, but with the condition ϕ(ux) ∈ {1, 3} a.e. replaced by
∫ 1

0
W (ux) < ε and

|Ωu| �= 0, the inequality

u(1) < ū(1)

holds.

Now Proposition 5.1 is complete.
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6. Dynamical behavior of the transition layers. If the set

L ρ
2
(j) =

{
x ∈ (0, 1) : |ujx(x, t)| ≤

ρ

2

}
is monotonically decreasing to the finitely many isolated points as j →∞, we obtain
the desired conclusion, since this is equivalent to the fact that the layers get steeper
and eventually become discontinuous as j approaches infinity. However, the set L ρ

2
(j)

is not decreasing as j → ∞. We define the following set L̃(j) instead and show that
the set L ρ

2
(j) is contained in L̃(j). We will then show that the set L̃(j) is decreasing

to the finitely many isolated points. Let η ∈ (0, ρ4 ). Set ρ0 := ρ− η. Define

L̃(j) := {x ∈ (0, 1) : |qj(x, t)| ≤ ρ0}.

The following lemma states that the set of transition layers are always in the set
L̃(j) and furthermore in the set of initial transition layers Lρ(0). This lemma plays
an important role in showing the preservation of the number of transition layers.

Lemma 6.1.

L ρ
2
(j) ⊆ L̃(j) ⊆ Lρ(0) ∀j ∈ N.

Proof. If x ∈ L ρ
2
(j), then |ujx(x, t)| ≤ ρ

2 . Therefore, by estimate (a) of Lemma 4.2,

|qj(x, t)| = |ujx − pj | ≤ ρ

2
+ η <

ρ

2
+

ρ

4
< ρ− η = ρ0.

Now, L̃(j) ⊆ Lρ(0) clearly follows.
Next we show that the set L̃(j) is exponentially decreasing to the finitely many

isolated points.
Lemma 6.2. Assume K > 4K̃. Then for all j ∈ N and for some C0 > 0,
(i) |qjx(x, t)| ≥ C0e

jmσ0 |(q0)x| if x ∈ L̃(j) (exponential growth),

(ii) L̃(j + 1) ⊆ L̃(j) (monotonicity).

Proof. We will show (i) by induction. Fix j ∈ N and fix x ∈ L̃(j). Then x ∈ Lρ(0)
by Lemma 6.1. By hypothesis (A4), |(u0)xx(x)| ≥ K. Suppose (u0)xx(x) ≥ K. Since
(p0)x(x) < K̃ by estimate (f) of Lemma 4.2, (q0)x(x) = (u0)xx(x)− (p0)x(x) > 0. By
differentiating (4.7) with respect to x for j = 1, and by using the estimates (d), (f) of
Lemma 4.2 and (4.12), we get the following estimate:

qm,1
x (x)− qm,0

x (x) = {−[σ(um,1
x (x))]x + um,1(x)}m

= {−σ′(um,1
x (x))(pm,1

x (x) + qm,1
x (x)) + um,1(x)}m

≥ −σ′(um,1
x (x))qm,1

x (x)m− C6m

for some C6 > 0. Hence,

(1 + σ′(um,1
x (x))m)qm,1

x (x) ≥ qm,0
x (x)− C6m.

Since m is sufficiently small and qm,0
x = (q0)x > 0, qm,1

x is also positive. Therefore,
the inequality

(1− σ0m)q
m,1
x (x) ≥ (1 + σ′(um,1

x (x))m)qm,1
x (x) ≥ qm,0

x (x)− C6m
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holds. Recall that σ0 = min[−ρ,ρ] |σ′|. By induction, suppose qm,j−1
x > 0. Then

qm,j
x > 0 and

(1− σ0m)q
m,j
x (x) ≥ qm,j−1

x (x)− C6m.

By iterating this, we obtain

qm,j
x ≥ 1

1− σ0m
· qm,j−1

x − C6m · 1

1− σ0m

≥ 1

1− σ0m
·
[

1

1− σ0m
· qm,j−2

x − C6m · 1

1− σ0m

]
− C6m · 1

1− σ0m

=
1

(1− σ0m)2
· qm,j−2

x − C6m

[
1

1− σ0m
+

1

(1− σ0m)2

]
· · ·

=
1

(1− σ0m)j
· (q0)x − C6m

[
1

1− σ0m
+ · · ·+ 1

(1− σ0m)j

]
=

1

(1− σ0m)j
·
(
(q0)x − C6

σ0

)
+

C6

σ0
.

This implies

qm,j
x ≥ ejmσ0 · (q0)x.

Therefore, we can establish the exponential growth of qjx, that is,

|qjx(x, t)| ≥ C0e
jmσ0 · |(q0)x|

for some C0 > 0. Similarly, we get the same conclusion for the case (u0)xx(x) ≤ −K,
and this proves (i) of Lemma 6.2.

Note that for K > 4K̃,

|qjx(x, t)| ≥ C0e
jmσ0 · |(q0)x| ≥ C0e

jmσ0(|(u0)xx| − K̃) ≥ 3K0e
jmσ0 .(6.1)

Here, K0 = K̃C0. If q
j = ρ0, then ujx = pj + qj = pj + ρ0 ≥ −η + ρ0 > 0, and if

qj = −ρ0, then ujx = pj − ρ0 ≤ η − ρ0 < 0, which implies sign(ujx) = sign(qj) at
|qj | = ρ0. By using this and (4.7), and also by using estimates (b), (e) of Lemma 4.2,
we have the estimate

d

dt
|qj(x, t)| = sign(qj(x, t)) ·

[
qm,j(x)− qm,j−1(x)

m

]
= sign(ujx(x, t)) ·

[
σ(0)− σ(um,j

x (x)) +

∫ 1

0

σ(um,j
x ) + πa

(∫ x

0

um,j

)]
≥ −σ′(c′) · ujx · sign(ujx)− σ′(c′) · (um,j

x − ujx) · sign(ujx)− 2σ0η

≥ σ0 · |ujx| − 2σ0η − σ′(c′) · sign(ujx) ·
jm− t

m
(um,j

x − um,j−1
x )

≥ σ0 · (ρ− 4η)− σ′(c′) · sign(ujx) ·
jm− t

m
(um,j

x − um,j−1
x )(6.2)

at |qj | = ρ0 and for some c
′ between 0 and um,j

x (x). Note that | jm−tm | < 1. By estimate

(a) of Lemma 4.2, |pm,j − pm,j−1| ≤ 2η � 1. By (4.15), |qm,j − qm,j−1| = m|qjt | ≤
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mM1 � 1 when m � 1. Hence, |um,j
x − um,j−1

x | � 1, and this enables the second
term of (6.2) to be small. Therefore,

d

dt
|qj(x, t)| ≥ 0,

which implies |qj(x, t)| ≤ |qj+1(x, t)| for all j ∈ N when |qj(x, t)| = ρ0. By (i), q
j is

strictly increasing or decreasing on L̃(j), which implies (ii).
From part (i) of Lemma 6.2, estimate (f) of Lemma 4.2, and the hypothesis (A4),

|ujxx(x, t)| ≥ |qjx(x, t)| − |pjx(x, t)|
≥ C0e

jmσ0 · |(q0)x| − K̃

≥ C0e
jmσ0 · (|(u0)xx| − 2K̃)

≥ 1
2
K0e

jmσ0(6.3)

if x ∈ L ρ
2
(j) and K > 4K̃.

From (6.3) and the fact that ‖um,j‖C2 < ∞ for all j ∈ N, L ρ
2
(j) has a finite

number of components [ami (j), b
m
i (j)], 0 < am1 (j) < bm1 (j) < · · · < amN (j) < bmN (j) < 1,

in each of which ujx(x, t) is strictly monotone and has exactly one zero xmi (j). Also,
N(j) ≥ 1 since uj(0, t) = uj(1, t) = 0 for all j ∈ N.

Lemma 6.3. N(j) ≡ const. for all j ∈ N.
Proof. For all j ∈ N, define

gj(x, t) := ujx(x, t), (j − 1)m < t ≤ jm.

Since gj , gjx ∈ C((0, 1) × ((j − 1)m, jm]) and at each zero (x0, t0) of g
j , |gjx(x, t)| ≥

K0

2 > 0 by inequality (6.3), {gj(x0, t0)|(x0, t0) is a zero of g
j} does not contain a

critical value of gj(·, t) for each t0. By the implicit function theorem, the number of
zeros of gj(·, t) is independent of t for (j − 1)m < t ≤ jm for all j ∈ N.

Similarly, by defining

gj(x, t) := ujx(x, t)−
ρ

2
and gj(x, t) := ujx(x, t) +

ρ

2
,

the number of connected components of L ρ
2
(j) is independent of j. Now, the proof of

(P1) and (P2) is complete.
From Lemma 6.1, [ami (j), b

m
i (j)] ⊆ [(a0)i, (b0)i], i = 1, . . . , N . Moreover,

ρ = |ujx(bmi (j), t)− ujx(a
m
i (j), t)|

=

∫ bmi (j)

am
i

(j)

|ujxx|dx

≥ 1
2
K0e

jmσ0 · |bmi (j)− ami (j)|,

which implies

|bmi (j)− ami (j)| ≤
2ρ

K0
· e−jmσ0 for all i = 1, . . . , N

for fixed j and K > 4K̃. This proves the last part of (P3). The rest of (P3) was
already proved.
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From (6.1) and from similar analysis as in the case L ρ
2
(j), L̃(j) has a finite number

of components [αmi (j), β
m
i (j)], 0 < αm1 (j) < βm1 (j) < · · · < αmN (j) < βmN (j) < 1. By

Lemma 6.1, xmi (j) ∈ [ami (j), bmi (j)] ⊆ [αmi (j), βmi (j)] ⊆ [a0
i , b

0
i ]. By (ii) of Lemma 6.2,

[αmi (j + 1), β
m
i (j + 1)] ⊆ [αmi (j), βmi (j)]. Therefore, the set of [αmi (j + 1), βmi (j + 1)]

forms a nested family of intervals. Hence,

2ρ > 2ρ0 = |qj(βmi (j), t)− qj(αmi (j), t)|

=

∫ βm
i (j)

αm
i

(j)

|qjx|dx

≥ 3K0|βmi (j)− αmi (j)| · ejmσ0 ,

which concludes the proof of (P4).
(P3) and (P4) automatically imply that (um� )x is discontinuous at every (x�)

m
i .

It remains now to show that (um� )x is continuous on (0, 1)\{(x�)m1 , . . . , (x�)
m
N}. Since

um� is an equilibrium state, it satisfies the equation

σ((um� )x(x)) =

∫ x

0

(um� ) + λm

for some constant λm > 0. We know that the first term on the right-hand side
of the above equation is small by estimate (b) of Lemma 4.2. Furthermore, λm is
sufficiently small on (0, 1)\{(x�)m1 , . . . , (x�)

m
N}. Therefore, (um� )x, the inverse image

of σ, is continuous on those intervals, which proves (P5). Theorem 3.1 is finally
complete.

Remark. The results of transition layer dynamics work for the discretized vis-
coelastic system without the elastic foundation term u, that is, for the system

1

m2
(u− 2um,j−1 + um,j−2)− (σ(ux))x − 1

m
(ux − um,j−1

x )x = 0.

The proof is similar to the proof for the system with the elastic foundation. Only the
minor change of the proof of energy decay (Lemma 4.1), the proof of Lemma 5.3, and
the estimate of qj(x, t) is needed.

7. Asymptotic behavior of the original system. In this section, we answer
the following question: How do our results relate to the asymptotic behavior of the
original system (1.1)?

We proved in section 5 that um,j converges strongly in W 1,p
0 to a steady state um�

as j →∞ for fixed m� 1. Therefore, um� satisfies

−(σ(ux))x + u = 0.

We will show next the existence of a weak limit of umk
� in W 1,p

0 as mk → 0 for some
sequence mk � 1, k ∈ N, in the following theorem.

Theorem 7.1. There is a sequence mk � 1, k ∈ N, and mk → 0 as k →∞ such
that the steady state umk

� in Proposition 5.1 converges in W 1,p
0 to a weak limit u� as

k →∞.
Proof. The difficulty arises due to the nonlinearity of σ. However, by the fact

that (um� )x is uniformly bounded by K̃ > 0 and the coercivity condition for σ in (H2),
the inequalities ∫ 1

0

σ((umk
� )x) · ζxdx ≤ M̂

∫ 1

0

(|(umk
� )x|p−1 + 1) · ζxdx

≤ M̂

∫ 1

0

(K̃p−1 + 1) · ζxdx
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hold for some M̂ > 0 and for any test function ζ ∈ C∞0 ((0, 1),R). The result follows
from the dominated convergence theorem.

Note that we can assume that σ is globally Lipschitz continuous since um,j
x is

uniformly bounded for all j ∈ N and for any m � 1. Then by [15, section 5.1], the
weak solution of the system (1.1) is unique. Combining this with the results shown
in [15, Theorem 4.1] and [16, Theorem 3.1] , the discretized solution um,j converges
in W 1,p

0 to a unique weak solution u of (1.1) as m → 0, and u converges strongly in
W 1,p

0 to a unique equilibrium state u∞ as t→∞.
If the weak limit u� is unique and is the same as u∞, the same asymptotic behavior

will hold for the system (1.1). However, we do not know the answer to this question
and it remains as an open problem.
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Abstract. We study the hyperbolic system of Euler equations for an isothermal, compressible
fluid. The strong convergence theorem of approximate solutions is proved by the theory of compen-
sated compactness. The existence of a weak entropy solution to Cauchy problems with large L∞
initial data which may include a vacuum is also obtained. We note that we establish the commutation
relations not only for the weak entropies but also for the strong ones by using the analytic extension
theorem.
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1. Introduction. The one-dimensional Euler equations of compressible fluid
read {

ρt + (ρu)x = 0,

(ρu)t + (ρu2 + p(ρ))x = 0,
(1.1)

where the unknown variable ρ ≥ 0 denotes the density of the mass, u the velocity.
Usually, it is convenient to study (1.1) by a new variable, the momentum m = ρu.
Thus (1.1) becomes 

ρt +mx = 0,

mt +

(
m2

ρ
+ p(ρ)

)
x

= 0.
(1.2)

For polytropic perfect gas, p = p0ρ
γ with γ the adiabatic exponent. Equation

(1.1) is called isentropic gas dynamics for γ > 1, while it is called isothermal gas
dynamics for γ = 1. Without loss of generality, p0 is normalized to be 1 here.

One of the main difficulties for the mathematical analysis of (1.1) is the singularity
at the vacuum ρ = 0. It is noted that the term ρu2 is only Lipschitz continuous for
γ > 1 near the vacuum, while it is not even Lipschitz continuous for γ = 1 due to
the infiniteness of the velocity u. This shows that the isothermal case is completely
different from the isentropic one. Another difficulty is the development of a shock
wave in solutions of (1.1) no matter how smooth the initial data are.
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Away from the vacuum, the first result on the existence of BV solutions with
large initial data in the BV space was obtained in Nishida [18] by using the Glimm
scheme [11] for γ = 1. Poupaud, Rascle, and Vila [20] made a great simplification and
improved the results of [18] to the isothermal Euler–Poisson system. For the case of
γ > 1, the existence of a BV solution was established in Nishida and Smoller [19] for
large total variation with small γ − 1.

When a vacuum occurs, the first global existence for (1.1) with large initial data
in L∞ was established in Diperna [10] for γ = 1 + 2

2n+1 , n ≥ 2, by the theory of

compensated compactness. For the interval (1, 5
3 ], the existence was solved by Ding,

Chen, and Luo [6, 7] and Chen [2]. Lions, Perthame, and Tadmor [14] and Lions,
Perthame, and Souganidis [15] treated this problem for γ > 5

3 . More recently, Chen
and Le Floch [4] studied the existence problem for general pressure, where p acts like
γ-law (1 < γ < 3) near the vacuum ρ = 0. The approach of [4] further simplified the
proofs for the case of γ > 1.

The purpose of the present paper is to prove the existence of a global weak
L∞ solution for isothermal gas dynamics with large initial data by the theory of
compensated compactness. Our initial data are

(ρ(0, x),m(0, x)) = (ρ0(x),m0(x)) ∈ L∞,(1.3)

where the vacuum may occur. It is known that all effective approaches for isentropic
gas dynamics are based on the subtle analysis for the Euler–Poisson–Darboux (EPD)
equation, while the entropy equation of γ = 1 is not governed by the EPD equation.
Therefore all previous approaches [2, 4, 6, 7, 10, 14, 15] fail here. We shall use a new
approach to achieve our goal. We establish the commutation relations for some strong
entropies even though we do not know whether these strong waves satisfy the H−1

compact condition or not. It should be noted here that the strong entropy is useless
for isentropic gas dynamics (see Lions, Perthame, and Tadmor [14]).

In addition, we note that the vacuum may disappear in the solution to the Rie-
mann problem for isothermal flow. It is well known that the centered rarefaction
wave may disappear in the solution of the Riemann problem for the scalar conserva-
tion laws, but initial value problems are still investigated when the initial data includes
the centered rarefaction wave for the scalar equation. Similarly, the Cauchy problem
for isothermal gas dynamics with the vacuum initial data is also important (see [1])
and has been long standing for many years. According to our experience with the
Riemann problem, we conjecture that the solution we get here for the Cauchy problem
may not contain the vacuum when t > 0. However, it seems that it is not easy to
prove the above conjecture.

Now we recall the definition of the weak entropy solution.
Definition 1.1. (ρ,m)(x, t) ∈ L∞(R2

+) is called a weak entropy solution of (1.2)
if it holds, for any test function φ ∈ C∞0 (R2

+), that
∫∫

t>0

(ρφt +mφx) dxdt+

∫
R

ρ0(x)φ(x, 0) dx = 0,∫∫
t>0

mφt +

(
m2

ρ
+ p(ρ)

)
φx dxdt+

∫
R

m0(x)φ(x, 0) dx = 0,

(1.4)

and for any weak entropy pair (η, q)(ρ,m) with convex η(ρ,m),

η(ρ,m)t + q(ρ,m)x ≤ 0(1.5)
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holds in the sense of distributions. Here the entropy pair (η, q) is determined by the
additional conservation law

η(ρ,m)t + q(ρ,m)x = 0(1.6)

for any smooth solution of (1.2), and weak entropy is an entropy that vanishes at the
vacuum.

Our main results follow.
Theorem 1.2 (existence theorem). Let γ = 1, and assume that the initial data

satisfy

0 ≤ ρ0(x) ≤M, |m0(x)| ≤ ρ0(x)(M + | log ρ0(x)|) a.e.;(1.7)

then there exists a global weak entropy solution of (1.2), (1.3) satisfying

0 ≤ ρ(x, t) ≤ C, |m(x, t)| ≤ ρ(x, t)(C + | log ρ(x, t)|) a.e.,(1.8)

where C only depends on M .
Remark 1.3. It is known that Nishida [18] had established the existence of global

BV solutions for the isothermal gas dynamics if the initial data (ρ0, u0) ∈ BV (R)
and ρ0 > c > 0. But here our initial data is more rough, i.e., (ρ0, u0) ∈ L∞(R).
Furthermore, our initial data may include the vacuum.

Theorem 1.4 (compactness framework). Let γ = 1 and let (ρε,mε) be a sequence
of approximate solutions of (1.2) satisfying (1.8) uniformly in ε. Assume that

∂tη(ρ
ε,mε) + ∂xq(ρ

ε,mε) is compact in H−1
loc(1.9)

holds for some (not all) weak entropies (η, q) with

η = ρ
1

1−ξ2 e
ξ

1−ξ2
u
, q = (u+ ξ)η, ξ ∈ (−1, 1);(1.10)

then there exists a function (ρ(x, t),m(x, t)) satisfying (1.8) such that, extracting a
subsequence if necessary,

(ρε(x, t),mε(x, t))→ (ρ(x, t),m(x, t)) in Lploc(R
2
+)(1.11)

for all p ∈ [1,+∞).
Remark 1.5. Theorem 1.4 is useful for studying the existence of a global weak

L∞ solution of (1.1) with source term for γ = 1; for instance, the compressible Euler
equations with damping, the Euler–Poisson system, etc.

Before we explain our ideas, it is worthwhile to briefly recall the theory of com-
pensated compactness. To prove the existence, one usually constructs a sequence of
approximate solutions (ρε,mε) by using viscosity perturbation or a finite difference
scheme, then extracts a strong subsequence of (ρε,mε), if necessary, to get the desired
results. However, it is very difficult to get a strong convergent subsequence for (1.2).
Usually it is easy to obtain the uniform boundness estimates for (ρε,mε), which indi-
cates that extracting a weak convergent subsequence is available. It is well known that
weak convergence alone is not sufficient for implying the existence of a weak solution
due to the nonlinearity of (1.2). So some information on the derivative of (ρε,mε) is
needed. Tartar [22] first applied the Young measure to introduce the commutation
relations

〈νx,t, q1η2 − q2η1〉 = 〈νx,t, q1〉〈νx,t, η2〉 − 〈νx,t, q2〉〈νx,t, η1〉,(1.12)
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with any two entropy pairs (ηi, qi), i = 1, 2, for almost every (x, t) if

ηi(ρ
ε,mε) + qi(ρ

ε,mε)(1.13)

lie in a compact subset of H−1
loc as ε vanishes. If the Young measure satisfying (1.12)

reduces to a point mass for almost every (x, t), then the weak convergence becomes
strong, and the existence of a weak solution is established. Therefore theH−1 compact
condition is essential to the theory of compensated compactness.

For strictly hyperbolic systems with smooth flux, the H−1 compact condition is
easy due to the uniform boundness of approximate solutions and Murat’s lemma [17],
provided that the system has a strictly convex entropy. However, for isentropic gas
dynamics, not all entropy pairs can be applied to Tartar commutation relations (1.12),
since only weak entropy pairs are known to satisfy the H−1 compact condition. As
pointed out by Lions, Perthame, and Tadmor [14], strong entropies are useless for
the isentropic case. Fortunately, since all weak entropies obey famous EPD equation,
people (see [2, 6, 7, 10, 14, 15]) are able to imply that the Young measure is either
a single point or a subset of the vacuum by careful entropy analysis for the EPD
equation, and then prove the existence of a weak solution for the isentropic case.
More precisely, in the proof of [2, 6, 7, 10], the heart of the matter is to construct the
special weak entropies and apply them to the commutation relations. This is possible
because (1.12) represents an imbalance of regularity: the operator on the left is more
regular than the one on the right due to cancellation. The novel idea of applying
the technique of fractional derivatives was introduced in [6, 7, 8]. A new analysis of
(1.12) was proposed by Lions, Perthame, and Tadmor [14] and Lions, Perthame, and
Souganidis [15] for γ > 1. Motivated by a kinetic formulation of (1.1), they made
the crucial observation that the use of special weak entropies could be bypassed and
(1.12) be directly expressed with the entropy kernel of EPD equation. We refer to
[2, 6, 7, 10, 14, 15] for details. Even though only weak entropy pairs are used in
the case γ > 1, Diperna [10] conjectured that it may be possible to establish the
commutation relations for all entropy pairs, weak and strong ones. If it is true, the
proof is quite simple (see [10]).

In general, to exploit the classical theory of compensated compactness, the fol-
lowing steps are necessary

(1) to construct a sequence of approximate solutions and obtain the uniform bound-
ness of approximate solutions;

(2) to establish the H−1 compact condition for infinite entropy pairs;
(3) to apply the div-curl lemma into all entropy pairs satisfying (2) to establish

the commutation relations;
(4) to apply the commutation relations to reduce Young measure to a point mass

for almost every (x, t).
Similar to the isentropic case, it is also difficult for γ = 1 to prove the H−1

compact condition for strong entropy pairs (step 2). In fact, we do not know whether
the strong entropy pairs satisfy the H−1 compact condition or not. Compared with
the isentropic case, the main difficulties for the isothermal flow arise on the following
two aspects: the infiniteness of eigenvalues due to the presence of a vacuum, and the
fact that the entropy equation is not of EPD type. Among them, the second one is
essential. Thus all approaches of [2, 6, 7, 10, 14, 15] fail here.

Since only weak entropies are known to satisfy H−1 compact condition for γ = 1,
it seems that the strong entropies are useless, as in the isentropic case. However, the
use of strong entropies is the key point of our proofs. The main novelty of this paper
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is that we establish the commutation relations not only for the weak entropies but
also for the strong ones by using the analytic extension theorem even though we do
not know whether or not strong entropies satisfy H−1 compact conditions.

To achieve our goal, we first choose a special formula of entropies parameterized by
a complex variable ξ. The formula includes both weak and strong entropies determined
by the value of ξ. Then we prove that there exists a segment such that for any ξ
belonging to the segment, the entropy pair is of weak type and satisfies the H−1

compact condition. Therefore the commutation relations are established for some
weak entropies in this segment. It is observed that the two sides of (1.12) are regular
for ξ. In fact, they are analytic functions with respect to ξ. So the commutation
relations exactly hold for the whole complex space except two points (−1, 0) and
(1, 0) due to the analytic extension theorem. It is noted that the entropies are strong
if |ξ| > 1 (see (2.9)). Therefore Diperna’s conjecture [10] is partially verified for
isothermal flow; i.e., the commutation relations hold for some weak and strong entropy
pairs. We note that the H−1 compact condition for strong entropies (step 2) can be
bypassed. Since both weak and strong entropy pairs are applied to (1.12), we establish
a strong convergence theorem of approximate solutions and prove the existence of
a weak entropy solution for isothermal gas dynamics. Finally, it is worthwhile to
point out that our approximate solutions are constructed by adding the viscosity
perturbation to (1.1) due to the infiniteness of eigenvalues. It is observed that the
eigenvalues λ1 = u−1 and λ2 = u+1 increase with the speed of | ln ρ|. This indicates
the possibility of constructing approximate solutions by numerical scheme. We will
discuss this in the future.

This paper is organized as follows: In section 2, we give a formula of entropy pairs,
parameterized by a complex variable ξ. In section 3, we study the viscosity solutions
(ρε,mε) and prove that the weak entropy fields lie in a compact subset of H−1

loc when
ξ ∈ (−1, 1) as ε vanishes. In section 4, we prove a strong convergence theorem of
approximate solutions and obtain the existence of a weak solution for isothermal gas
dynamics.

2. Entropy waves. This section is devoted to the entropy for isothermal flow.
We recall that (η, q) is an entropy-flux pair if for any smooth solutions of (1.1), it
satisfies an additional equation,

ηt(ρ, u) + qx(ρ, u) = 0.(2.1)

By definition, weak entropy is an entropy η that vanishes at the vacuum.
Let γ = 1. Equation (2.1) yields �η�f = �q with the flux f = (ρu, ρu2 + ρ)T ,

i.e.,

qρ = uηρ +
1

ρ
ηu, qu = ρηρ + uηu,(2.2)

which indicates

ηρρ =
1

ρ2
ηuu.(2.3)

We choose the form η = h(ρ)eku; then (2.3) implies

h′′ − k2

ρ2
h = 0.(2.4)
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Thus, we have h(ρ) = ρm with m(m − 1) = k2. Now we consider the parameter
k in the complex space. Let k = ξ

1−ξ2 , ξ ∈ C; then m = 1
1−ξ2 . Therefore we have the

following formula of entropy pairs:

η = ρ
1

1−ξ2 e
ξ

1−ξ2
u
,

q = (u+ ξ)η.
(2.5)

We note that these entropies are analytic functions with respect to ξ. It is easy
to see that the points (−1, 0) and (1, 0) are singular for (η, q).

On the other hand, it is convenient to introduce a coordinate system of Riemann
invariants (w, z) with

�w · r1 = 0, �z · r2 = 0,(2.6)

where r1 = (1, u − 1)T , r2 = (1, u + 1)T are the right eigenvectors of the Jacobian
matrix of f : �fri = λiri, i = 1, 2. In the setting of isothermal flow, the Riemann
invariants read

w = ρeu, z = ρe−u.(2.7)

Thus we rewrite (2.5) as

η = w
1

2(1−ξ) z
1

2(1+ξ) ,

q = (u+ ξ)η.
(2.8)

It is observed that the formula (2.8) includes two kinds of entropies determined
by the new complex variable ξ. By definition, η is a weak entropy if and only if the
following hold:

Re
1

2(1− ξ)
> 0, Re

1

2(1 + ξ)
> 0,(2.9)

i.e., ξ ∈ Ωw = {ξ ∈ C;−1 < Reξ < 1}.
In fact, we can get more information from (2.8). If we consider ξ in the real space,

the entropies defined in (2.8) form a fundamental set of weak entropies for isothermal
flow. In other words, we have the following.

Lemma 2.1. Let γ = 1; then for any ϕ(ξ) ∈ C∞0 (−1, 1),

η =

∫ 1

−1

ϕ(ξ)w
1

2(1−ξ) z
1

2(1+ξ) dξ,

q =

∫ 1

−1

ϕ(ξ)(u+ ξ)w
1

2(1−ξ) z
1

2(1+ξ) dξ

(2.10)

is a weak entropy-flux pair of (1.1).

3. Viscosity solutions. We consider the viscous perturbation of the isothermal
flow, 

ρεt +mε
x = ερεxx,

mε
t +

(
(mε)2

ρε
+ ρε

)
x

= εmε
xx,

(3.1)
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with initial data

(ρε,mε)|t=0 = (ρε0(x),m
ε
0(x)),(3.2)

where (ρε0(x),m
ε
0(x)) satisfy

ε ≤ ρε0(x) ≤M, |mε
0(x)| ≤M.(3.3)

It is easy to see that (3.3) holds if ρε0(x) is given by smoothing out ρ0(x) with a
standard mollifier and adding ε.

In terms of the theory of the positive invariant region in Chueh, Conley, and
Smoller [5, 21], it is easy to see that {(w, z); w ≤ const, z ≤ const} is the invariant
region of (3.1), which indicates that the Riemann invariants wε, zε are uniformly
bounded in L∞. This implies that (ρε,mε) are also uniformly bounded in L∞. It
is noted that there always exists a local smooth solution for (3.1) due to Diperna
[10]. In order to prove the existence of a smooth solution for (3.1) and (3.2), it is
also important to obtain an a priori estimate of the lower bound for the density ρε.
Diperna first gave the lower bound by his Lemma 4.1 (see [10]), even though this
lemma was stated in an incorrect way. Chen [3] fixed this lemma. On the other hand,
Lu [16] also studied the lower bound for general pressure p(ρ) by maximum principle in
which the restriction of initial data on the infinity was not needed. Thus the uniform
L∞ estimates and the lower bound of ρε adding the local existence theorem gives the
following global existence result.

Lemma 3.1. If the initial data satisfy the condition (3.3), then for any fixed ε > 0,
there exists a smooth solution for the Cauchy problem (3.1), (3.2) in RT = R× [0, T ]
(for arbitrary T ) which satisfies

0 < c(ε, t) ≤ ρε(x, t) ≤ C, |mε(x, t)| ≤ ρε(x, t)(C + | log ρε(x, t)|),(3.4)

where c(ε, t) is an appropriate function and C depends only on M .
In order to apply the theory of compensated compactness, it is necessary to prove

the divergence of weak entropy-flux pair is in a compact subset of H−1 as ε vanishes.
Take the form (η, q) as in (2.8), and let ξ ∈ (−1, 1); we compute

ηρρ =
ξ2

(1− ξ2)2
(1− 2ξu+ u2)ρ

ξ2

1−ξ2
−1

e
ξ

1−ξ2
u
> 0,

ηρm =
ξ2

(1− ξ2)2
(ξ − u)ρ

ξ2

1−ξ2
−1

e
ξ

1−ξ2
u
,

ηmm =
ξ2

(1− ξ2)2
ρ

ξ2

1−ξ2
−1

e
ξ

1−ξ2
u
> 0,

(3.5)

and

ηρρηmm − η2
ρm =

ξ4

(1− ξ2)3
ρ

2ξ2

1−ξ2
−2

e
2ξ

1−ξ2
u
> 0,(3.6)

which indicates that η is strictly convex for any ξ ∈ (−1, 1). This implies that

η(ρε,mε)t + q(ρε,mε)x

is compact in H−1
loc due to Diperna [9, 10]. Therefore we have the following lemma.

Lemma 3.2. Assume that (ρε,mε) are the solutions of (3.1), (3.2); then for any
ξ ∈ (−1, 1),

ηt(ρ
ε,mε) + qx(ρ

ε,mε) is compact in H−1
loc ,(3.7)

where (η, q) is defined as in (2.8).
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4. Convergence of approximate solutions. This section is devoted to the
existence of a weak solution of isothermal gas dynamics. Choose (ρε,mε) as in (3.4);
there exists a subsequence of (ρε,mε) (still denoted by (ρε,mε)) such that, as ε→ 0,

ρε(x, t) ⇀ ρ(x, t), mε(x, t) ⇀ m(x, t)(4.1)

in L∞((0, T )×R) weak star for some measurable functions ρ(x, t),m(x, t).
Let us denote νx,t to be the Young measure associated to the weak limits (4.1).

For any two entropy pairs in (2.8),

η1 = w
1

2(1−ξ1) z
1

2(1+ξ1) , η2 = w
1

2(1−ξ2) z
1

2(1+ξ2) ,

q1 = (u+ ξ1)η1, q2 = (u+ ξ2)η2, ξ1, ξ2 ∈ (−1, 1),
Lemma 3.2 gives

〈νx,t, q1η2 − q2η1〉 = 〈νx,t, q1〉〈νx,t, η2〉
−〈νx,t, q2〉〈νx,t, η1〉 for almost every x, t,

(4.2)

i.e.,

(ξ1 − ξ2)〈νx,t, η1η2〉 = 〈νx,t, (u+ ξ1)η1〉〈νx,t, η2〉
−〈νx,t, (u+ ξ2)η2〉〈νx,t, η1〉 for almost every x, t.

(4.3)

We shall show that νx,t is either a point mass or concentrated in the vacuum. To
this end, we show that (4.2) holds for any ξ1, ξ2 ∈ C, except the two points (−1, 0)
and (1, 0), through analytic extension theorem. In other words, we establish the
commutation relations for both weak and strong waves.

Since w, z is bounded, it is convenient to study (4.2) in the w − z plane. Let

Ω = {(w, z); 0 ≤ w− ≤ w ≤ w+, 0 ≤ z− ≤ z ≤ z+}
be the smallest rectangle containing the support of a fixed νx,t. It is easy to see, if
w+ = 0 or z+ = 0, that Ω is supported in the vacuum. So we assume that w− < w+,
z− < z+ in what follows.

Let ξ1 = 1− 1
2n ; then η1 = ηn = wnz

n
4n−1 . From (4.2), we have

〈νx,t, qnη − qηn〉 = 〈νx,t, qn〉〈νx,t, η〉 − 〈νx,t, q〉〈νx,t, ηn〉.(4.4)

We define probability measure µz as follows: for any h ∈ C0(R
2),

〈µz, h〉 = lim
n→∞

〈νx,t, hwnz n
4n−1 〉

〈νx,t, wnz n
4n−1 〉 .(4.5)

Similar to [9], it is easy to check that the support of the probability measure µz
is contained in the line w = w+.

On the other hand, (4.4) yields

〈νx,t, qnη − qηn〉
〈νx,t, ηn〉 =

〈νx,t, qn〉
〈νx,t, ηn〉 〈νx,t, η〉 − 〈νx,t, q〉.(4.6)

Let n→∞; then we have

〈µz, q − λ2η〉 = 〈νx,t, q − λ+
2 η〉,(4.7)
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where λ+
2 = 〈µz, λ2〉 is finite even though λ2 = u + 1 = lnw−ln z

2 + 1 may go to

infinity. In fact, since the left term of (4.7) is finite and 〈νx,t, η〉 is positive, λ+
2 must

be bounded. In the same way, let ξ = −1 + 1
2n ; then we have

〈µw, q − λ1η〉 = 〈νx,t, q − λ+
1 η〉,(4.8)

with

〈µw, h〉 = limn→∞
〈νx,t, hw n

4n−1 zn〉
〈νx,t, w n

4n−1 zn〉 ∀h ∈ C0(R
2).

λ+
1 = 〈µw, λ1〉.

(4.9)

Combining (4.7) and (4.8), we have the following lemma.

Lemma 4.1. Let η = w
1

2(1−ξ) z
1

2(1+ξ) , q = (u+ ξ)η, ξ ∈ (−1, 1); then the following
holds:

(λ+
2 − λ+

1 )
〈νx,t,η〉
η(w+,z+) = (1 + ξ)

〈
µw,

( w

w+

) 1
2(1−ξ)

〉
+ (1− ξ)

〈
µz,
( z

z+

) 1
2(1+ξ)

〉
.

(4.10)

In view of Lemma 4.1, we can prove νx,t({ρ > 0}) = 1 for almost every x, t. This
means that there is no positive mass concentrated in the vacuum for the measure
νx,t. In fact, by the definitions of µw and µz, it is easy to check that µw({w > 0}) =
µz({z > 0}) = 1, and thus (4.10) can be rewritten as

(λ+
2 − λ+

1 )
〈νx,t, η〉

η(w+, z+)
=

〈
µw, (1 + ξ)

[( w

w+

) 1
2(1−ξ) − 1

]〉
+

〈
µz, (1− ξ)

[( z

z+

) 1
2(1+ξ) − 1

]〉
+ 2.

(4.11)

Letting Im ξ →∞, we get

(λ+
2 − λ+

1 )νx,t({ρ > 0}) = −1
2

〈
µw, ln

( w

w+

)〉
− 1

2

〈
µz, ln

( z

z+

)〉
+ 2

= (λ+
2 − λ+

1 )

(4.12)

due to 〈µw, lnw+〉 = 〈µz, lnw+〉 = lnw+ and 0 ≤ w
w+

, z
z+
≤ 1. This implies νx,t({ρ >

0}) = 1.

Since the functions 〈νx,t, η〉, 〈µw, w
1

2(1−ξ) 〉, and 〈µz, z
1

2(1+ξ) 〉 are analytic in the
domain Ωw and (4.10) holds in the segment (−1, 1), (4.10) must hold for all ξ ∈
Ωw = {ξ; − 1 < Re ξ < 1} due to analytic extension theorem. We now establish the
commutation relations for the whole complex space except the two singular points
(−1, 0) and (1,0); i.e., (4.10) holds not only for weak entropies but also for the strong
ones.

For any function h ∈ C0(R
2), we define a probability measure as follows:

〈µz, h〉 = lim
n→∞

〈νx,t, hwn〉
〈νx,t, wn〉 .(4.13)
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In the same way as in [9], it is easy to check supp µz ⊂ {(w, z);w = w+}. We compute
that, for all h ∈ C0(R

2),

〈µz, h〉 = lim
n→∞

〈νx,t, hwnz n
4n−1 〉

〈νx,t, wn〉 lim
n→∞

〈νx,t, wn〉
〈νx,t, wnz n

4n−1 〉

=
〈µz, hz

1
4 〉

〈µz, z 1
4 〉 ,

(4.14)

which implies that 〈µz, z
1

2(1+ξ) 〉 is analytic in the domain Re 1
2(1+ξ) > − 1

4 . In the same

way, 〈µw, w
1

2(1−ξ) 〉 is also analytic in the domain Re 1
2(1−ξ) > − 1

4 . Thus, the right term

of (4.10) is analytic in the domain Ω0 = {ξ ∈ C; Re 1
2(1+ξ) > − 1

4 , Re 1
2(1−ξ) > − 1

4}.
Next we show that (4.10) holds for any ξ ∈ Ω̄0 = {ξ ∈ C; |ξ| > 3} ⊂ Ω0 by the

analytic extension theorem. Since η = w
1

2(1−ξ) z
1

2(1+ξ) may be unbounded in Ω̄0, it is
necessary to show that 〈νx,t, η〉 is well defined for any ξ ∈ Ω̄0.

We compute

f(ξ;w, z) =

(
w

w+

) 1
2(1−ξ)

(
z

z+

) 1
2(1+ξ)

+

(
w

w+

) 1
2(1+ξ)

(
z

z+

) 1
2(1−ξ)

= e

ln w
w+

+ln z
z+

2(1−ξ2)

[
e

(ln w
w+

−ln z
z+

)ξ

2(1−ξ2) + e

−(ln w
w+

−ln z
z+

)ξ

2(1−ξ2)

]

= 2

1 +
∞∑
k=1

(
− ln w

w+
− ln z

z+

)k
2kk!

(
1
ξ2

1− 1
ξ2

)k
×

1 +
∞∑
j=1

(
ln w

w+
− ln z

z+

)2j

4j(2j)!

(
1
ξ

1− 1
ξ2

)2j


= 2

1 +
∞∑
m=1

 m∑
k=1

(
− ln w

w+
− ln z

z+

)k
2kk!

(
m− 1
k − 1

) 1

ξ2m


×

1 +
∞∑
l=1

 l∑
j=1

(
ln w

w+
− ln z

z+

)2j

4j(2j)!

(
l + j − 1
2j − 1

) 1

ξ2l


=
∞∑
p=0

c2p(w, z)

ξ2p
.

(4.15)

It is observed that ln w
w+

+ ln z
z+
≤ 0, we have c2p(w, z) ≥ 0 in supp νx,t.
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From (4.10), we have

(λ+
2 − λ+

1 )〈νx,t, f(ξ;w, z)〉 = 〈µw, f(ξ;w, z)〉+ 〈µz, f(ξ;w, z)〉

+

〈
µw, ξ

[(
w

w+

) 1
2(1−ξ)

−
(

w

w+

) 1
2(1+ξ)

]〉

+

〈
µz, ξ

[(
z

z+

) 1
2(1−ξ)

−
(

z

z+

) 1
2(1+ξ)

]〉
.

(4.16)

Similar to (4.15), we expand the last two terms of (4.16) to the Laurent series.
We compute

g(ξ;w) = ξ

[(
w

w+

) 1
2(1−ξ)

−
(

w

w+

) 1
2(1+ξ)

]

= ξ

[
e

ln w
w+

2(1−ξ2)

(
e

ξ ln w
w+

2(1−ξ2) − e

−ξ ln w
w+

2(1−ξ2)

)]

=

1 +
∞∑
m=1

 m∑
k=1

(
− ln w

w+

)k
2kk!

(
m− 1
k − 1

) 1

ξ2m


×


∞∑
l=0

 l∑
j=0

−
(
ln w

w+

)2j+1

4j(2j + 1)!

(
l + j
2j

) 1

ξ2l


=
∞∑
p=0

h2p(
w
w+

)

ξ2p
.

(4.17)

It is obvious that h2p(
w
w+

) ≥ 0. We note that 〈µw, f(ξ;w, z)〉, 〈µw, g(ξ;w)〉, 〈µz, g(ξ; z)〉,
and 〈µz, f(ξ;w, z)〉 are analytic in Ω0 due to (4.14). Thus 〈µw, c2p(w, z)〉, 〈µw, h2p(

w
w+

)〉,
〈µz, h2p(

z
z+

)〉, and 〈µz, c2p(w, z)〉 are bounded. Now we choose ξ ∈ R and |ξ| > 3;

then Levi’s lemma gives

〈µw, f(ξ;w, z)〉 =
∞∑
p=0

〈µw, c2p(w, z)〉
ξ2p

,

〈µz, f(ξ;w, z)〉 =
∞∑
p=0

〈µz, c2p(w, z)〉
ξ2p

,

〈µw, g(ξ;w)〉 =
∞∑
p=0

〈µw, h2p(
w
w+

)〉
ξ2p

,

〈µz, g(ξ; z)〉 =
∞∑
p=0

〈µz, h2p(
z
z+

)〉
ξ2p

(4.18)
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due to the fact that c2p(w, z), h2p(
w
w+

), h2p(
z
z+

) ≥ 0. This yields that

∞∑
p=0

〈µw, c2p(w, z)〉
ξ2p

(4.19)

is absolutely convergent for any ξ ∈ Ω̄0 because 〈µw, f(ξ;w, z)〉 is analytic in Ω̄0. In
the same way,

∞∑
p=0

〈µz, c2p(w, z)〉
ξ2p

,

∞∑
p=0

〈µw, h2p(
w
w+

)〉
ξ2p

, and

∞∑
p=0

〈µz, h2p(
z
z+

)〉
ξ2p

(4.20)

are also convergent in Ω̄0.
Thus, from (4.10) and (4.16)–(4.20), we have

(λ+
2 − λ+

1 )〈νx,t, f(ξ;w, z)〉 =
∞∑
p=0

〈µw, c2p(w, z) + h2p(
w
w+

)〉
ξ2p

+

∞∑
p=0

〈µz, c2p(w, z) + h2p(
z
z+

)〉
ξ2p

(4.21)

if ξ ∈ Ωw. We define

g(n)
p (w, z) = (−1)pn2p

(
f(ni;w, z)−

p−1∑
s=0

(−1)s c2s(w, z)

n2s

)
,

=

∞∑
s=p

(−1)p+s c2s(w, z)

n2(s−p) , p = 1, 2, . . . .

(4.22)

It is easy to see that g
(n)
p (w, z) ≥ 0, and it converges to c2p(w, z) for almost every νx,t

as n→∞. We note that c0(w, z) = 2, and 〈νx,t, c0(w, z)〉 is well defined. Furthermore,
direct computation yields

(λ+
2 − λ+

1 )〈νx,t, c0(w, z)〉
= 〈µw, c0(w, z) + h0(

w
w+

)〉+ 〈µz, c0(w, z) + h0(
z
z+

)〉.(4.23)

Now we assume that 〈νx,t, c2s(w, z)〉 are well defined and

(λ+
2 − λ+

1 )〈νx,t, c2s(w, z)〉

=

〈
µw, c2s(w, z) + h2s

(
w

w+

)〉
+

〈
µz, c2s(w, z) + h2s

(
z

z+

)〉(4.24)

for s = 0, 1, . . . , p − 1. We shall show 〈νx,t, c2p(w, z)〉 is also well defined and (4.24)
holds for s = p.

From (4.21), (4.22), and (4.24), it is easy to check that lim
n→∞〈νx,t, g

(n)
p (w, z)〉 exists.

By Fatou’s lemma, we have

〈νx,t, c2p(w, z)〉 ≤ lim
n→∞〈νx,t, g

(n)
p (w, z)〉,(4.25)
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which, together with (4.24), implies

(λ+
2 − λ+

1 )〈νx,t, c2p(w, z)〉

≤
〈
µw, c2p(w, z) + h2p

(
w

w+

)〉
+

〈
µz, c2p(w, z) + h2p

(
z

z+

)〉
.

(4.26)

To prove (4.24) for s = p, we use the way of contradiction. We assume that

(λ+
2 − λ+

1 )〈νx,t, c2p(w, z)〉

<

〈
µw, c2p(w, z) + h2p

(
w

w+

)〉
+

〈
µz, c2p(w, z) + h2p

(
z

z+

)〉
.

(4.27)

It is observed that

g(n)
p (w, z) = c2p(w, z)− 1

n2
g
(n)
p+1(w, z).(4.28)

Thus, we have

(λ+
2 − λ+

1 )

〈
νx,t,

1

n2
g
(n)
p+1(w, z)

〉
= (λ+

2 − λ+
1 )〈νx,t, c2p(w, z)〉 −

〈
µw, c2p(w, z) + h2p

(
w

w+

)〉
−
〈
µz, c2p(w, z) + h2p

(
z

z+

)〉

+

∞∑
s=p+1

(−1)p+s+1
〈µw, c2s(w, z) + h2s(

w
w+

)〉
ξ2(s−p)

+

∞∑
s=p+1

(−1)p+s+1
〈µz, c2s(w, z) + h2s(

z
z+

)〉
ξ2(s−p) ,

(4.29)

which yields limn→∞〈νx,t, 1
n2 g

(n)
p+1(w, z)〉 < 0. This contradicts the fact that g

(n)
p+1(w, z)

> 0.
By the induction principle, 〈νx,t, c2p(w, z)〉 are well defined and (4.24) holds for

all p = 0, 1, . . . . Therefore the Laurent series

∞∑
p=0

〈νx,t, c2p(w, z)〉
ξ2p

(4.30)

is convergent for any ξ ∈ Ω̄0.
Now we construct a sequence of νx,t-measurable functions

fm(ξ;w, z) =

m∑
p=0

c2p(w, z)

ξ2p
(4.31)

which converges to f(ξ;w, z) in {w > 0, z > 0}. Since

〈νx,t, |fm(ξ;w, z)|〉 ≤
∞∑
p=0

〈νx,t, c2p(w, z)〉
|ξ|2p <∞(4.32)
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for ξ ∈ Ω̄0, again using Fatou’s lemma, we have f(ξ;w, z) ∈ L(dνx,t) if ξ ∈ Ω̄0. In

particular, w−αz
α

4α+1 + z−αw
α

4α+1 ∈ L(dνx,t) for any 0 < α < 1
4 . Therefore, again

using the analytic extension theorem, (4.10) holds in the domain Ω̄0. We note that
η is exactly a strong entropy if ξ ∈ Ω̄0/Ωw; thus we establish (4.10) for some strong
entropies.

Choosing any constant α ∈ (0, 1
4 ), we define a probability measure µ1z like (4.13);

i.e., for any h ∈ C0(R
2),

〈µ1z, h〉 = lim
n→∞

〈νx,t, hwnz−α〉
〈νx,t, wnz−α〉 .(4.33)

We compute

〈µz, h〉 = lim
n→∞

〈νx,t, hwnz n
4n−1 〉

〈νx,t, wnz−α〉 lim
n→∞

〈νx,t, wnz−α〉
〈νx,t, wnz n

4n−1 〉

=
〈µ1z, hz

1
4+α〉

〈µ1z, z
1
4+α〉 .

(4.34)

In terms of previous argument, we have (4.10) for any ξ ∈ Ω̄1 = {ξ ∈ C; |ξ| >
2

1+4α + 1} ⊂ Ω1 = {ξ ∈ C; Re 1
2(1+ξ) > − 1

4 − α and Re 1
2(1−ξ) > − 1

4 − α}. Thus,

repeating the above arguments, we can establish (4.10) for any ξ ∈ Ω̄k = {ξ ∈ C; |ξ| >
2

1+4kα + 1} ⊂ Ωk = {ξ ∈ C; Re 1
2(1+ξ) > − 1

4 − kα and Re 1
2(1−ξ) > − 1

4 − kα}, where
k is an arbitrary positive integer. Therefore we have the following lemma.

Lemma 4.2. For any ξ1, ξ2 ∈ C/{(−1, 0), (0, 1)}, the following holds:

〈νx,t, q1η2 − q2η1〉 = 〈νx,t, q1〉〈νx,t, η2〉
−〈νx,t, q2〉〈νx,t, η1〉 for almost every x, t,

(4.35)

where ηi, qi, i = 1, 2, are chosen as in (2.8).
Remark 4.3. Lemma 4.2 indicates that the Tartar commutation relations hold

for both weak and strong waves chosen in (2.8).
Proof of Theorem 1.4. To prove Theorem 1.4, it is sufficient to show that νx,t is

a point mass.
Let ξ1 = 1− 1

2n and ξ2 = 1 + 1
2n in (4.35). We then have

〈νx,t, q(ξ1)η(ξ2)− q(ξ2)η(ξ1)〉
〈νx,t, η(ξ1)〉〈νx,t, η(ξ2)〉 =

〈νx,t, q(ξ1)〉
〈νx,t, η(ξ1)〉 −

〈νx,t, q(ξ2)〉
〈νx,t, η(ξ2)〉 .(4.36)

Letting n→∞ gives

lim
n→∞

〈νx,t, q(ξ2)〉
〈νx,t, η(ξ2)〉 = λ+

2 .(4.37)

On the other hand, let ξ ∈ Ωw, ξ2 = 1 + 1
2n in (4.35). Similar to (4.6) and (4.7),

we have, as n→∞,

〈µ−z, q − λ2η〉 = 〈νx,t, q − λ+
2 η〉,(4.38)

due to (4.37), where the probability measure µ−z is defined for any h ∈ C0(R
2), by

〈µ−z, h〉 = lim
n→∞

〈νx,t, hw−nz n
4n+1 〉

〈νx,t, w−nz n
4n+1 〉 .(4.39)
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It is easy to see that the support of the measure µ−z is contained in the line
{w = w−}.

By (4.7) and (4.38), we have

〈µz, q − λ2η〉 = 〈µ−z, q − λ2η〉(4.40)

for any ξ ∈ Ωw.
Let η = wnz

n
4n−1 , q = (u+ 1− 1

2n )η. We then compute

wn+〈µz, z
n

4n−1 〉 = wn−〈µ−z, z
n

4n−1 〉,(4.41)

which implies w− = w+ as n → ∞. In the same way, we also have z− = z+. Thus
νx,t is either a point mass or supported in the vacuum. This indicates Theorem 1.4
due to the standard theory of compensated compactness.

Proof of Theorem 1.2. Choose (ρε,mε) as in (3.4); then Lemma 3.1 gives, for any
test function φ ∈ C∞0 (R2

+),

∫∫
t>0

(ρεφt +mεφx) dxdt+

∫
R

ρε0(x)φ(x, 0) dx = −
∫∫

t>0

ερεφxxdxdt,∫∫
t>0

mεφt +

(
(mε)2

ρε
+ ρε

)
φx dxdt+

∫
R

mε
0(x)φ(x, 0) dx = −

∫∫
t>0

εmεφxxdxdt.

(4.42)

By Theorem 1.4, there exists a strong convergent subsequence of (ρε,mε) (still
denoted by (ρε,mε)) such that

(ρε(x, t),mε(x, t))→ (ρ(x, t),m(x, t)) a.e.(4.43)

Letting ε→ 0, (1.4) holds from (4.42). Thus (ρ(x, t),m(x, t)) is a weak solution of
(1.1) and (1.3) with γ = 1. Since (ρ(x, t),m(x, t)) is the limit of the viscosity solutions
(ρε,mε), it is easy to check that (1.5) holds for any weak convex entropy. Therefore
we complete the proof of Theorem 1.2.
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ON A FREE BOUNDARY PROBLEM FOR A STRONGLY
DEGENERATE QUASI-LINEAR PARABOLIC EQUATION WITH AN

APPLICATION TO A MODEL OF PRESSURE FILTRATION∗
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Abstract. We consider a free boundary problem of a quasi-linear strongly degenerate parabolic
equation arising from a model of pressure filtration of flocculated suspensions. We provide definitions
of generalized solutions of the free boundary problem in the framework of L2 divergence-measure
fields. The formulation of boundary conditions is based on a Gauss–Green theorem for divergence-
measure fields on bounded domains with Lipschitz deformable boundaries and avoids referring to
traces of the solution. This allows one to consider generalized solutions from a larger class than BV .
Thus it is not necessary to derive the usual uniform estimates of spatial and time derivatives of the
solutions of the corresponding regularized problem, as required by the BV approach. We first prove
the existence and uniqueness of the solution of the regularized parabolic free boundary problem and
then apply the vanishing viscosity method to prove the existence of a generalized solution to the
degenerate free boundary problem.

Key words. free boundary problem, strongly degenerate parabolic equation, divergence-measure
field, pressure filtration

AMS subject classifications. 35K65, 35R35

PII. S0036141002401007

1. Introduction. Conventional analyses of initial-boundary value problems of
strongly degenerate parabolic equations, which includes first-order conservation laws,
are usually based on the concept of generalized solutions in BV (QT ), where QT :=
Ω× [0, T ], Ω ⊂ R, is the computational domain (for simplicity, assumed to be cylindri-
cal here) [2, 4, 5, 25, 26, 27]. To prove that a generalized solution u of a conservation
law or of a strongly degenerate parabolic equation belongs to BV (QT ), it is neces-
sary to derive estimates of ‖∂xuε‖L1(QT ) and ‖∂tuε‖L1(QT ) which are uniform with
respect to the regularization parameter ε, where uε denotes the smooth solution of
the corresponding regularized initial-boundary value problem. These estimates (and
a uniform L∞ bound on uε) imply that the family {uε}ε>0 is compact in L1(QT );
i.e., there exists a sequence ε = εn with εn → 0 for n → ∞ such that {uεn} converges
in L1(QT ) to a limit u ∈ L∞(QT ) ∩ BV (QT ). It is usually straightforward to verify
that this limit is indeed a generalized solution.

The importance of the choice of the space BV (QT ) lies in the existence of traces
of the limit function u with respect to the lateral boundaries of QT . This well-known
property of BV functions is stated, e.g., in [11, sect. 5.32, Thm. 1]. As has become
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apparent in [4], traces are needed in the proof of uniqueness of generalized solutions.
For several reasons, the BV approach unfortunately imposes some severe limita-

tions on the analysis of initial-boundary value problems of hyperbolic and strongly
degenerate parabolic equations. The most obvious one is the apparent difficulty in
actually deriving the required uniform estimates of ‖∂xuε‖L1(QT ) and ‖∂tuε‖L1(QT ).
This worked out, e.g., for the spatially one-dimensional problems analyzed in [4].
However, for only marginally more involved equations (but still in one space dimen-
sion), and in particular for different boundary conditions, it seems no longer possible
to derive a uniform estimate of ‖∂tuε‖L1(QT ). An example of such an initial-boundary
problem is given in [24]. When passing to several space dimensions, i.e., to equations
of the type

∂tu+∇x · f(u) = ∆A(u), (x, t) ∈ QT := Ω× [0, T ], Ω ⊂ R
n,(1.1)

together with initial and boundary conditions and where the function A(u) is non-
negative, increasing, and Lipschitz continuous, it seems virtually impossible to derive
the required uniform estimates, where the estimate on the spatial derivative has to
be replaced, of course, by a uniform estimate of ‖∇xuε‖L1(QT ).

In the cases where only a uniform estimate of ‖∇xuε‖L1(QT ) (but not of the time
derivative) is feasible, one can utilize Kružkov’s “interpolation lemma” [14, Lem. 5]
in order to conclude that the sequence uε converges to a limit function u belonging to
the wider class BV1,1/2(QT ) ⊃ BV (QT ). This means that there exists a constant K
such that ∫∫

QT

∣∣u(x+∆x, t)− u(x, t)
∣∣dxdt ≤ K|∆x|,∫∫

QT

∣∣u(x, t+∆t)− u(x, t)
∣∣dxdt ≤ K|∆t|1/2.

Note that the BV1,1/2 estimates of {uε} are entirely sufficient to apply Kolmogorov’s
compactness criterion in order to show existence of a limit function. The problem is
with boundary conditions and uniqueness, since it is not ensured that a function u ∈
BV1,1/2(QT ) possesses traces at the boundaries of QT , such that boundary conditions
need to be defined in a fashion that avoids these traces; however, it is then not obvious
how to prove uniqueness.

Another general limitation of the BV approach has become apparent in [4] and
is due to the restriction that the initial datum u0 of that paper belongs to the class

B :=
{
u ∈ BV (Ω) : u(x) ∈ U0 ∀x ∈ Ω; TVΩ(∂xAε(u)) < M0 uniformly in ε

}
,

where A′ε(u) = aε(u) and aε is an appropriately regularized, positive diffusion coeffi-
cient. The condition u0 ∈ B is required to ensure that ‖∂tuε(·, t)‖L1(Ω) or ‖∂tuε‖L1(QT )

remain uniformly bounded. For a given, in general discontinuous function u0, member-
ship in B is difficult to verify due to the discontinuity of the diffusion coefficient a(u),
so B denotes a possibly very narrow class.

The mentioned difficulties associated with the BV approach make it desirable to
consider generalized solutions from a wider class. This wider class is associated here
with the notion of divergence-measure fields, which is a class of vector fields that was
first considered by Anzellotti [1]. This paper is based on the recent formulation by
Chen and Frid [9].
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The main idea is to replace the requirement u ∈ L∞(Q) ∩ BV (Q), where we
consider Q ⊂ R

N and which can be expressed as

‖u‖BV (Q) < ∞, ‖u‖BV (Q) := sup

{∫
Q

u∇ · ϕdx : ϕ ∈ (C1
0 (Q)

)N
, ‖ϕ‖L∞(Q) ≤ 1

}
,

by the requirement that a vector field F ∈ Lp(Q,RN ) associated with the sought
solution u satisfy

|divF |(Q) < ∞, |divF |(Q) := sup
{∫

Q

F · ∇ϕdx : ϕ ∈ C1
0 (Q;R), ‖ϕ‖L∞(Q) < 1

}
.

We define the class of Lp divergence-measure vector fields over Q by

DMp(Q) :=
{
F ∈ Lp(Q;RN ) : |divF |(Q) < ∞}.

We see that if F ∈ DMp(Q), then divF is a Radon measure over Q. If we assume that
the components of F are Lipschitz continuous functions of u, as in the application to
conservation laws (see below), then it becomes clear that u ∈ L∞(Q)∩BV (Q) implies
F ∈ DM∞(Q).

Properties of divergence-measure fields for the case p = ∞ are derived by Chen
and Frid in [9]. Most important, it is possible to prove a generalized Gauss–Green for-
mula for divergence-measure fields in bounded domains using the concept of domains
with deformable Lipschitz boundaries, which allows the definition of traces. For the
case of scalar conservation laws, the importance of divergence-measure fields accrues
from the fact that any convex entropy pair actually forms an L∞ divergence-measure
field over Q ⊂ R

N if we consider a bounded spatial domain Ω ⊂ R
N−1. Utilizing

the Gauss–Green formula, Chen and Frid [9] provide an appropriate formulation for
L∞ (not BV ) solutions of conservation laws with boundary conditions. They are
able to derive a formulation of an entropy boundary condition which was proposed
previously by Otto [17, 19, 20, 21] by advancing the concept of entropy boundary
fluxes.

Most properties of Lp, p = ∞, divergence-measure fields derived in [9] also hold
for 1 ≤ p < ∞, as is detailed in [10]. The case p = 2 is of particular interest for
the analysis of degenerate parabolic equations, since in light of standard a priori
estimates, it is possible to show that the appropriately defined entropy pair of a
strongly degenerate parabolic equation is an L2 divergence-measure field over QT ⊂
R
N−1 × [0, T ]. (More general domains can be considered, but we may limit the

discussion here to cylindrical domains.) This was first exploited in a recent paper
by Mascia, Porretta, and Terracina [18], who proved existence and uniqueness of
L∞ solutions to nonhomogeneous Dirichlet initial-boundary value problems of (1.1),
which in particular includes entropy boundary conditions.

In [6] entropy boundary conditions for strongly degenerate parabolic equations in
the context of an application to sedimentation with compression are derived. However,
the definition of traces of the solution with respect to the lateral boundary of the
computational domain is only possible if the diffusion coefficient a(u) is, for example,
Lipschitz continuous. This assumption does not hold for the cases we are interested
in here. Moreover, although Dirichlet boundary conditions in the context of solid-
liquid separation models lead to mathematically well-posed initial-boundary value
problems, their physical significance is questionable due to violation of a conservation
principle. Rather, kinematic “flux-type” or “wall” boundary conditions (such as that
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of Problem B of [4]) should be employed. In fact, it turned out that these boundary
conditions are satisfied in an a.e. pointwise sense on the lateral boundaries of QT , that
is, in a much stronger sense than are entropy boundary conditions, although they also
involve the concept of traces.

The above discussion motivates our interest in applying the recently developed
divergence-measure theory to initial-boundary value problems of strongly degenerate
parabolic equations. We could now treat again the initial-boundary value problems
studied, e.g., in [4] in an appropriate divergence-measure framework and obtain an
existence and uniqueness result. However, since the BV calculus is indeed applicable
to those problems, the chief gain in using the more general divergence-measure concept
would merely consist of the relaxation of the condition u0 ∈ B. Instead, the theory of
L2 divergence-measure fields is applied here to a free boundary problem, which is a
slight modification of a model of pressure filtration presented in [3]. The problem is
still one-dimensional, and its boundary conditions are of “flux-type,” similar to those
of [4]. Since the flux contains the derivative of the degenerate parabolic term which is
only bounded in L2, we cannot consider strong traces for this term. Moreover, there
is reason to believe that the mentioned BV estimate of ∂tuε cannot be derived. This
conjecture is based on the observation that in many other analyses it was necessary
to differentiate the corresponding regularized viscous equation with respect to t, to
multiply it with a suitable sign-type function, and to use integration by parts. The
problem with the filtration problem is the occurrence of the derivative (with respect
to t) of the free boundary as a coefficient in the equation, such that differentiating the
entire equation with respect to t would entail the necessity to estimate h′′(t). Due to
the coupling condition with the solution evaluated at one of the boundaries, however,
we have no control over this quantity. This seems to preclude the necessary uniform
estimate of ∂tu.

The remainder of this paper is organized as follows. In section 2 we briefly recall
the mathematical model of pressure filtration, state the free boundary problem, and
provide a brief definition of L2 divergence-measure fields together with the proper-
ties relevant for the subsequent analysis. In section 3 generalized solutions of the
free boundary problem are defined, where an equivalent problem transformed to fixed
boundaries is also considered. In section 4 we state the corresponding regularized
viscous free boundary problems and show that they have a unique solution for fixed
values of the regularization parameter. Finally we conclude in section 5 by the vis-
cosity method that there exists a generalized solution to the free boundary problem
in the sense of section 3.

The analysis of the free boundary problem has not yet been completed, since a
uniqueness proof is still lacking. It is, however, not obvious, for instance, how the
uniqueness proof for a comparable free boundary problem by Zhao and Li [28], which
is based on establishing a fixed boundary initial-boundary value problem for a suitably
complemented generalized solution of the free boundary problem, can be extended to
the free boundary problem studied in this paper.

2. Statement of the problem and preliminaries.

2.1. Pressure filtration of flocculated suspensions. To motivate the free
boundary problem, we briefly recall the one-dimensional mathematical model of pres-
sure filtration formulated in [3]. We consider a filter column closed at height z = 0 by
a filter medium, which lets only the liquid pass, and at a variable height z = h(t) by a
piston which moves downwards due to an applied pressure σ(t). The material behav-
ior of the suspension is described by two model functions, the flux density function
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or hindered settling factor f and the effective solid stress function σe, both functions
only of the local solids concentration u. Here f is a nonpositive Lipschitz continuous
function with compact support in [0, umax], where umax ≤ 1 is the maximum concen-
tration, and the function σe satisfies σe = 0 for u ≤ uc, where 0 ≤ uc ≤ umax is a
critical concentration value, and σ′e(u) > 0 for u > uc. According to the phenomeno-
logical sedimentation-consolidation theory [3, 7, 8], the evolution of the concentration
distribution is given by the equation

∂tu+ ∂z
(
h′(t)u+ f(u)

)
= ∂2

zA(u), 0 ≤ z ≤ h(t), 0 < t ≤ T,(2.1)

A(u) :=

∫ u

0

a(s) ds, a(u) := Cu−1f(u)σ′e(u),

where the parameter C < 0 expresses the solid-fluid density difference. Observe that
(2.1) is hyperbolic for u ≤ uc and u ≥ umax and parabolic for uc < u < umax and thus
of strongly degenerate parabolic type since the degeneration to hyperbolic type takes
place on an interval of solution values of positive length. Specifically for the filtration
problem, we assume that the solids flux through the moving piston and through the
filter medium is zero. Since (2.1) is derived from the solids continuity equation, this
implies the kinematic boundary conditions

(f(u)− ∂zA(u)
)(
h(t), t

)
= 0,

(
h′(t)u+ f(u)− ∂zA(u)

)
(0, t) = 0, t > 0.

At time t = 0, the column is filled with a suspension of the local initial volumetric
concentration u(z, 0) = u0(z) for 0 ≤ z ≤ h(0) := 1.

The salient mathematical difficulty of the pressure filtration model arises from
the coupling between the applied pressure σ = σ(t) and the piston trajectory h(t).
Resistance to the movement of the piston, i.e., to the flow rate of filtrate leaving
the filter, is exerted by the filter medium and by the so-called filter cake forming
above the medium. While the resistance of the filter medium is constant, that of the
filter cake depends on its thickness and composition, that is, on the solution u. The
growth of the filter cake during the initial stages of the filtration process therefore
slows down the downward movement of the piston if the applied pressure is kept
constant. Specifically, a vertical stress balance and an application of Darcy’s law
yield the following coupling equation between σ(t) and h(t) [3, 16], which is written
here as an ordinary differential equation for h:

h′(t) + β(t)h(t) + γ
(
t, u(0, t)

)
= 0, 0 < t ≤ T,(2.2)

β(t) :=
g!f

µfR
, γ

(
t, u(0, t)

)
:=

1

µfR

[
g
(
m0 − !f

)
+ σ(t)− σe

(
u(0, t)

)]
.

Here g is the acceleration of gravity, !f the density of the fluid, µf its viscosity, R the
resistance of the filter medium, and m0 the initial suspension mass divided by the
cross-sectional area of the filter column.

The observation that γ depends on σe(u(0, t)) and not on some arbitrary function
of u(0, t) is essential to making the problem amenable to mathematical analysis. In
fact, both functions σe and A vanish for u ≤ uc, strictly increase for uc < u < umax,
and remain constant for u ≥ umax. Thus we can express σe(u) as a function of A(u),
and the function γ takes the form

γ
(
t, u(0, t)

)
= γ̃(t) + α

(
A(u(0, t))

)
,(2.3)

where α is a monotonous function on [uc, umax] having an inverse α
−1.

For numerical examples and applications to experimental data we refer to [3, 12].
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2.2. Statement of the free boundary problem. A natural property of any
solution u of the free boundary problem in the context of the pressure filtration
model should be 0 ≤ u ≤ 1; i.e., solution values should be physically relevant as
concentration values. However, due to the presence of the linear transport term h′(t)u
in combination with the kinematic boundary condition prescribed at z = 0, we cannot
exclude that boundary layers involving nonphysical solution values form. This can be
avoided if we consider that from a physical point of view, the piston stops immediately
as soon as the filter is “clogged,” i.e., when the solid particles at z = 0 form a dense
packing. We consider this effect by replacing the coupling condition (2.2) by the
condition

h′(t) + c
(
A(u(0, t))

)[
β(t)h(t) + γ

(
t, u(0, t)

)]
= 0, 0 < t ≤ T,(2.4)

where c(ρ) = 1 for ρ ∈ (0, A(umax)) and c(ρ) = 0 otherwise.
Finally, we introduce a new space coordinate x = h(t) − z. Then x = 0 corre-

sponds to the piston and x = h(t) to the filter medium. Observing that ∂t(u(x, t)) =
∂tu(z, t) + h′(t)∂zu and replacing f(u) by −f(u), we get the following free boundary
value problem:

∂tu+ ∂xf(u) = ∂2
xA(u), (x, t) ∈ Q(h, T ),(2.5a)

u(x, 0) = u0(x), 0 ≤ x ≤ 1,(2.5b) (
f(u)− ∂xA(u)

)
(0, t) = 0, 0 < t ≤ T,(2.5c) (

f(u)− ∂xA(u)
)(
h(t), t

)
= h′(t)u

(
h(t), t

)
, 0 < t ≤ T,(2.5d)

h′(t) + c
(
A
(
u
(
h(t), t

)))[
β(t)h(t) + γ

(
t, u
(
h(t), t

))]
= 0, 0 < t ≤ T,(2.5e)

h(0) = 1,(2.5f)

where Q(h, T ) := {(x, t) ∈ (0, 1)× (0, T ] : 0 < x < h(t)}.
Also, after the change of variables above, the relation (2.3) becomes

γ
(
t, u(h(t), t)

)
= γ̃(t) + α

(
A(u(h(t), t))

)
.(2.6)

Since we are interested here exclusively in solutions that take values in the interval
[0, umax] ⊂ [0, 1] of admissible concentrations, we may assume that a(u) = 0 for u ≤ uc

and u ≥ umax such that A(u) = A(umax) for u ≥ umax and A(u) = 0 for u ≤ uc.
In particular, we have 0 = α(0) ≤ α(A(u(0, t))) ≤ α(A(umax)) =: Kα for all times.
Since, moreover, γ̃ is a control function given a priori, we may assume that there exist
positive constants kγ̃ and Kγ̃ with kγ̃ ≤ γ̃(t) ≤ Kγ̃ for all t ∈ [0, T ] and thus that
there exist kγ ,Kγ > 0 with kγ ≤ γ ≤ Kγ for all t ∈ [0, T ]. Similarly, we may assume
that there exist kβ ,Kβ > 0 with kβ ≤ β(t) ≤ Kβ for all t ∈ [0, T ]. Finally, to establish
well-posedness of the free boundary problem, we assume that T < 1/Kγ .

2.3. Divergence-measure fields. Here we briefly recall the basic facts of the
theory of divergence-measure fields as developed in [9, 10]. Since we will be interested
only in the L2 divergence-measure fields, we will focus our discussion on that case.

Let Ω ⊂ R
N be an open bounded subset. We denote by DM2(Ω) the space of all

L2(Ω) vector fields whose divergence is a bounded Radon measure on Ω:

DM2(Ω) :=

{
F ∈ (L2(Ω))N : ∃C > 0 : ∀ϕ ∈ C∞0 (Ω),

∣∣∣∣∫
Ω

F · ∇ϕdx

∣∣∣∣ ≤ C‖ϕ‖∞
}
,
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where, as usual, C∞0 (Ω) denotes the space of the infinitely differentiable functions with
compact support contained in Ω. Analogously, one may define DMp(Ω), 1 ≤ p ≤ ∞,
replacing L2 by Lp, and DMext(Ω) replacing L2(Ω)N byM(Ω)N , the space of vector-
valued Radon measures over Ω with N components.

Definition 2.1. We say that ∂Ω is a deformable Lipschitz boundary provided
that the following hold:

(a) For all x ∈ ∂Ω there exists a number r > 0 and a Lipschitz map h : R
N−1 → R

such that, after rotating and relabeling coordinates if necessary,

Ω ∩Q(x, r) =
{
y ∈ R

N : h(y1, . . . , yN−1) < yN
} ∩Q(x, r),

where Q(x, r) := {y ∈ R
N : |xi − yi| ≤ r, i = 1, . . . , N }.

(b) There exists a mapping Ψ : ∂Ω× [0, 1]→ Ω such that Ψ is a homeomorphism
bi-Lipschitz over its image and Ψ(ω, 0) = ω for all ω ∈ ∂Ω. The map Ψ
is called a Lipschitz deformation of the boundary ∂Ω. We denote Ψs(ω) =
Ψ(ω, s) and ∂Ωs = Ψs(∂Ω). We also denote by Ωs the bounded open set
whose boundary is ∂Ωs.

The following theorem is a particular case of a general result proved in [10],
following the guidelines in [9]; we refer to [10] for the proof. If C is a closed set, we
denote by Lip(C) the space of Lipschitz functions defined on C, equipped with the
norm ‖f‖Lip = ‖f‖∞ + Lip(f).

Theorem 2.2. Let F ∈ DM2(Ω), with Ω a bounded open set with Lipschitz
deformable boundary. Then there exists a continuous linear functional F · ν|∂Ω over
Lip(∂Ω) such that, for any φ ∈ Lip(RN ),

〈F · ν|∂Ω, φ|∂Ω〉 =
∫

Ω

φdivF +

∫
Ω

∇φ · F.(2.7)

Moreover, let ν : Ψ(∂Ω × [0, 1]) → R
N be such that ν(x) is the outer unit normal

to ∂Ωs at x ∈ ∂Ωs, defined for almost every x ∈ Ψ(∂Ω × [0, 1]). Then, for any
ψ ∈ Lip(∂Ω),

〈F · ν|∂Ω, ψ〉 = ess lim
s→0

1

s

∫ s

0

(∫
∂Ωs

E(ψ)F · ν dHN−1

)
ds,

where E(ψ) denotes any Lipschitz extension of ψ to all R
N and HN−1 is the (N −1)-

dimensional Hausdorff measure.

As an example, below we will consider a domain Ω of the form

Ω = { (x, t) ∈ R
2 : 0 < x < h(t), 0 < t < T },

where h is a nonincreasing Lipschitz function satisfying h(t) > h0 for some constant
h0 > 0. Clearly, in this case Ω satisfies (a) of Definition 2.1. We may also easily define
a Lipschitz deformation for ∂Ω. Indeed, since Ω is convex, given any point (x∗, t∗)
in its interior, we may define the map Ψ((x, t), s) = (x + sδ(x∗ − x), t + sδ(t∗ − t)),
from ∂Ω × [0, 1] to Ω, which, for δ > 0 sufficiently small, certainly gives a Lipschitz
deformation. But we will prefer to use deformations which, given δ > 0 sufficiently
small, on {(x, t) : x = 0, δ < t < T − δ} are given by Ψδ((0, t), s) = (δs, t), and on
{(x, t) : x = h(t), δ < t < T −δ} are given by Ψδ((h(t), t), s) = (h(t)−δs, t). Clearly,
Ψδ may be extended to all ∂Ω × [0, 1] in order to provide Lipschitz deformations
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for ∂Ω. By the above theorem, if F ∈ DM2(Ω) and φ ∈ Lip(R2) is such that
suppφ ∩ ∂Ω ⊂ {x = 0}, then, for δ > 0 sufficiently small,

〈F · ν|∂Ω, φ〉 = ess lim
s→0

1

s

∫ s

0

(∫ T

0

φ(δs, t)F1(δs, t) dt

)
ds.(2.8)

On the other hand, if φ ∈ Lip(R2) is such that suppφ ∩ ∂Ω ⊂ {(h(t), t), 0 < t < T},
then, for δ > 0 sufficiently small,

〈F · ν|∂Ω, φ〉 = ess lim
s→0

1

s

∫ s

0

(∫ T

0

φ(h(t)− δs, t)(F1 − h′(t)F2)(h(t)− δs, t) dt

)
ds.

(2.9)

3. Definition of generalized solutions. In what follows let K be a sufficiently
large constant, e.g., K = 2umax. As above, for fields F (x, t) = (F1(x, t), F2(x, t))
defined over domains of R2, which are distributions on these domains, the operator div
is defined as divF = ∂xF1 + ∂tF2 in the sense of distributions.

Definition 3.1. A pair of functions (u, h) with h ∈ C[0, T ] and u ∈ L∞(Q(h, T ))
is called a generalized solution of the free boundary problem (2.5) if the following
conditions are satisfied:

(a) The function h(·) is nonincreasing and Lipschitz continuous on (0, T ) with
h(0) = 1, and there exists a positive constant h0 such that h(t) > h0.

(b) The following regularity properties hold:

A(u) ∈ L2
(
0, T ;H1(0, h(·))),(3.1)

∀k ∈ R :
(
sgn(u− k)

(
f(u)− f(k)

)− ∂x
∣∣A(u)−A(k)

∣∣, |u− k|
)

∈ DM2
(
Q(h, T )

)
.

(3.2)

(c) The boundary conditions are satisfied in the following sense: For (F1, F2) =
(f(u) − ∂xA(u), u), δ > 0 sufficiently small, and every test function ϕ ∈
C1

0 (ΠT ), with ΠT = R × (0, T ), we have

ess lim
s→0

1

s

∫ s

0

(∫ T

0

ϕ(δs, t)F1(δs, t) dt

)
ds = 0,(3.3)

ess lim
s→0

1

s

∫ s

0

(∫ T

0

ϕ(h(t)− δs, t)(F1 − h′(t)F2)(h(t)− δs, t) dt

)
ds = 0.

(3.4)

(d) Let γx→h(t)A(u) denote the trace of A(u) for x → h(t) in the sense of
traces in L2(0, T ;H1(0, h(·))). Then (2.5e) is satisfied a.e. in (0, T ), where
in c(A(u(h(t), t))) and in γ(t, u(h(t), t)), given by (2.6), A(u(h(t), t)) must be
replaced by γx→h(t)A(u).

(e) The initial condition is valid in the sense that

lim
t→0

∫ h(t)

0

∣∣u(x, t)− u0(x)
∣∣ dx = 0.

(f) The following entropy inequality is satisfied for all nonnegative test functions
ϕ ∈ C∞0 (Q(h, T )) and all k ∈ R:

∫∫
Q(h,T )

{
|u− k|∂tϕ+ sgn(u− k)

[
f(u)− f(k)− ∂xA(u)

]
∂xϕ

}
dtdx ≥ 0.

(3.5)
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It is convenient to transform the free boundary value problem (2.5) to an equiv-
alent initial-boundary value problem with fixed boundaries by introducing a new
space coordinate ξ := x/h(t). Wherever notationally convenient, the argument t
in h(t) is omitted, and we denote by h−1 the function 1/h(t), etc. Then we can
rewrite (2.5) as the following initial-boundary value problem with fixed boundaries
for v(ξ, t) := u(h(t)ξ, t), where QT := (0, 1)× (0, T ):

∂ξv + h−1h′
(−∂ξ(ξv) + v

)
+ h−1∂ξf(v) = h−2∂2

ξA(v), (ξ, t) ∈ QT ,(3.6a)

v(ξ, 0) = u0(ξ), ξ ∈ [0, 1],(3.6b) (
f(v)− h−1∂ξA(v)

)
(0, t) = 0, t ∈ (0, T ],(3.6c) (

f(v)− h−1∂ξA(v)
)
(1, t) = h′(t)v(1, t), t ∈ (0, T ],(3.6d)

h′(t) + c
(
A
(
v
(
1, t
)))[

β(t)h(t) + γ
(
t, v
(
1, t
))]

= 0, 0 < t ≤ T,(3.6e)

h(0) = 1,(3.6f)

while the relation (2.6) becomes

γ
(
t, v(1, t)

)
= γ̃(t) + α

(
A(v(1, t))

)
.(3.7)

In what follows we use h′ := h′(t), h−1 := 1/h(t), h−2 := 1/(h(t))2, and similar
notation for the function hε(t) to be defined below. Moreover, we set g(v, ξ, t) :=
−h−1h′(t)ξv + h−1f(v).

The appropriate definition of entropy solution in terms of v is as follows.
Definition 3.2. A pair of functions (v, h) with h ∈ C[0, T ] and v ∈ L∞(QT )

is called a generalized solution of the transformed free boundary problem (3.6) if the
following conditions are satisfied:

(a) The function h(·) is nonincreasing and Lipschitz continuous on (0, T ) with
h(0) = 1, and there exists a positive constant h0 such that h(t) > h0.

(b) The following regularity properties hold:

h−2A(v) ∈ L2
(
0, T ;H1(0, 1)

)
,(3.8)

∀k ∈ R :
(
sgn(v − k)

(
g(v, ξ, t)− g(k, ξ, t)

)
− h−2∂ξ

∣∣A(v)−A(k)
∣∣, |v − k|

)
∈ DM2(QT ).

(3.9)

(c) The boundary conditions are satisfied in the following sense: For (F1, F2) =
(g(v, ξ, t) − h−2∂ξA(v), v), δ > 0 sufficiently small, and every test function
ϕ ∈ C1

0 (ΠT ), we have

ess lim
s→0

1

s

∫ s

0

(∫ T

0

ϕ(δs, t)F1(δs, t) dt

)
ds = 0,(3.10)

ess lim
s→0

1

s

∫ s

0

(∫ T

0

ϕ(1− δs, t)F1(1− δs, t) dt

)
ds = 0.(3.11)

(d) Let γξ→1A(v) denote the trace of A(v) for ξ → 1 in the sense of traces in
L2(0, T ;H1(0, 1)). Then (3.6e) is satisfied a.e. in (0, T ), where in c(A(v

(
1, t)))

and in γ(t, v(1, t)), given by (3.7), we must replace A(v(1, t)) by γx→1A(v).
(e) The initial condition is valid in the sense that

lim
t→0

∫ 1

0

∣∣v(ξ, t)− u0(ξ)
∣∣ dξ = 0.(3.12)
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(f) The following inequality holds for all nonnegative test functions ϕ ∈ C∞0 (QT )
and all k ∈ R: ∫∫

QT

{
|v − k|∂tϕ+

[
sgn(u− k)

(
g(v, ξ, t)− g(k, ξ, t)

)
− ∂ξ

∣∣A(v)−A(k)
∣∣]∂ξϕ} dξdt ≥ 0.

(3.13)

4. Regularized free boundary problem. As in [4] we prove the existence of
entropy solutions by the vanishing viscosity method. To this end, we consider the
regularized strictly parabolic free boundary problem

∂tuε + ∂xfε(uε) = ∂2
xAε(uε), (x, t) ∈ Q(hε, T ),(4.1a)

uε(x, 0) = uε0(x), 0 ≤ x ≤ 1,(4.1b) (
fε(uε)− ∂xAε(uε)

)
(0, t) = 0, 0 < t ≤ T,(4.1c) (

fε(uε)− ∂xAε(uε)
)(
hε(t), t

)
= h′ε(t)uε

(
hε(t), t

)
, 0 < t ≤ T,(4.1d)

h′ε(t) + cε

(
Aε

(
uε
(
hε(t), t

)))[
βε(t)hε(t) + γε

(
t, uε

(
hε(t), t

))]
= 0, 0 < t ≤ T,

(4.1e)

hε(0) = 1.(4.1f)

The regularized functions and initial and boundary data are assumed to satisfy first-
order compatibility conditions. Problem (4.1) is equivalent to the following initial-
boundary value problem with fixed boundaries for vε(ξ, t) := uε

(
hε(t)ξ, t

)
with (ξ, t) ∈

QT := (0, 1)× (0, T ):
∂tvε + h−1

ε h′ε(t)
[−∂ξ(ξvε) + vε

]
+ h−1

ε ∂ξfε(vε) = h−2
ε ∂2

ξAε(vε), (ξ, t) ∈ QT ,(4.2a)

vε(ξ, 0) = uε0(ξ), 0 ≤ ξ ≤ 1,(4.2b) (
fε(vε)− h−1

ε ∂ξAε(vε)
)
(0, t) = 0, 0 < t ≤ T,(4.2c) (

fε(vε)− h−1
ε ∂ξAε(vε)

)
(1, t) = h′ε(t)vε(1, t), 0 < t ≤ T,(4.2d)

h′ε(t) + cε
(
A
(
vε(1, t)

))[
βεhε(t) + γε

(
t, vε(1, t)

)]
= 0, 0 < t ≤ T,(4.2e)

hε(0) = 1.(4.2f)

We choose the regularization cε such that cε is smooth, nonnegative, cε(ρ) = 1 for
ε ≤ ρ ≤ A(umax) − ε, and cε(ρ) = 0 for ρ /∈ (0, A(umax)). We assume that the
regularization fε ≥ 0 is also compactly supported, that aε(u) ≥ ε, and that aε(u)− ε
is also compactly supported. We assume supp fε ∪ supp cε ⊂ U = [0, umax] and
supp(aε − ε) ⊂ U . Moreover, we define gε(u, ξ, t) := −h−1

ε h′εξu + h−1
ε fε(u) and

assume that there exist constants νε, Lε, and L̃ such that

Aε(u)−Aε(v)

u− v
≥ νε > 0,

∣∣gε(u, ξ, t)− gε(v, ξ, t)
∣∣ ≤ Lε|u− v| for u, v ∈ R.(4.3)

Lemma 4.1. Any solution uε of the regularized free boundary problem (4.1) sat-
isfies uε(x, t) ∈ U for all (x, t) ∈ Q(hε, T ). Equivalently, any solution vε of (4.2)
satisfies vε(x, t) ∈ U for all (x, t) ∈ QT . In particular, there exists a constant M0

independent of ε such that for all sufficiently small ε > 0,

‖uε‖L∞(Q(hε,T )) ≤ M0.(4.4)
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Proof. Consider the regularized problem (4.1), perturbed by adding to the right-
hand member the term λN(uε), where λ > 0 and N(u) = umax/2 − u. We may
assume hε to be a given smooth function, so the problem is in fact given by the
first four equations of (4.1), with the first one perturbed. If we prove the result
for the perturbed problem, then by the well-known stability for quasi-linear strictly
parabolic scalar equations, with respect to coefficients, the desired result will follow
sending λ → 0. Now, if the result is not true for the perturbed problem, there is
a time t0 at which the solution vε leaves U for the first time, that is, t0 = inf{t :
vε(x, t) /∈ U for some x ∈ [0, h(t)]}. In this case, there exists x0 ∈ [0, h(t0)] such
that uε(x0, t0) ∈ {0, umax}, say, uε(x0, t0) = umax. If x0 ∈ (0, h(t0)), as usual,
we get a contradiction using that ∂xuε = 0, ∂tuε ≥ 0, ∂2

xuε ≤ 0, aε(u) > 0, and
N(umax) < 0. On the other hand, if x0 ∈ {0, h(t0)}, using (4.1c)–(4.1e), we again
conclude that ∂xuε = 0. Hence, we must again have ∂tuε ≥ 0, ∂2

xuε ≤ 0, and so we
get a contradiction in the same way.

Lemma 4.2. Suppose that T < 1/Kγ and that the coefficients of the regularized
problem (4.1) satisfy compatibility conditions. Then this problem has a unique solution
(uε, hε) such that uε ∈ C2+α,1+α/2(Q(hε, T )) and hε ∈ C1+α/2[0, T ]. Precisely, the
function hε satisfies the following estimates uniformly in ε:

0 < h0 ≤ hε(t) ≤ 1, ‖h′ε‖L∞(0,T ) ≤ Mh := Kβ +Kγ .(4.5)

Proof. Suppose that (uε, hε) with uε ∈ C2,1(Q(hε, T )) and hε ∈ C1(0, T ) is
a solution of problem (4.1) or, equivalently, that vε satisfies the initial-boundary
value problem with fixed boundaries (4.2). In addition, consider for a fixed function
hε ∈ C1[0, T ] the initial-boundary value problem (4.2′) consisting of (4.2a) and the
initial and boundary conditions (4.2b)–(4.2d).

The proof of the following lemma is standard and can be found, e.g., in [15,
Chap. V].

Lemma 4.3. Under the assumptions of Lemma 4.2, the solution wε of the initial-
boundary value problem (4.2′) satisfies the following estimates, where the constant K1

is independent of ε:

0 ≤ wε ≤ K1, ‖wε‖Cβ(QT ) ≤ K2, ‖∂ξwε‖C1,1/2(QT ) ≤ K2, ‖wε‖W 2,1∞ (QT ) ≤ K2.

To prove the existence of a solution to problem (4.2), we follow Zhao and Li [28]
and use the Schauder fixed point theorem. To this end, define the set

H :=
{
h ∈ C1(0, T ) : ‖h′‖∞ ≤ Mh, h(0) = 1, h is nonincreasing

}
,

where the constant Mh is defined in (4.5). Note that H is a compact convex set in
the Banach space C0[0, T ]. Moreover, let β̂ε(t, u) := χε(Aε(u))βε(t) and γ̂ε(t, u) :=
χε(u)γε(t, u).

Lemma 4.4. Let the operator T : H → C0[0, T ] be defined by

(T h)(t) := exp
(
B̂ε

(
t;wε(1, ·)

))[
1−

∫ t

0

exp
(
−B̂ε

(
τ ;wε(1, ·)

))
γ̂ε
(
τ, wε(1, τ)

)
dτ

]
,

B̂ε(t;w) := −
∫ t

0

β̂ε
(
τ, w(τ)

)
dτ,

where wε is the solution of the initial-boundary value problem (4.2′) corresponding
to h. Then T h ∈ H, i.e., the operator T maps H into itself.
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Proof. Since we consider a fixed value of the regularization parameter ε, we
simplify notation in the remainder of the proof of Lemma 4.2 (including the proofs of
Lemmas 4.4 and 4.5) by omitting ε wherever possible.

Obviously, we have (T h)(0) = 1. Since the functions B̂(·;w) and γ̂
(·, w(1, ·)) are

smooth, as stated in Lemma 4.3, we see that T h ∈ C1[0, T ]. Furthermore, we have

(T h)′(t) =−β̂
(
t, w(1, t)

)
exp
(
B̂
(
t, w(1, t)

))
×
[
1−

∫ t

0

exp
(
−B̂

(
τ ;w(1, ·)))γ̂(τ, w(1, τ)) dτ]− γ̂

(
t, w(1, t)

)
.

(4.6)

Since γ̂(t, w(1, t)) ≤ Kγ for ε > 0 sufficiently small, the expression in the square
brackets in (4.6) is nonnegative, and thus T h is nonincreasing, if the condition T <
1/Kγ is satisfied. Moreover, this assumption implies that |(T h)′(t)| ≤ Kβ +Kγ . We
conclude that indeed T h ∈ H.

To apply the Schauder fixed point theorem, and thus to show existence of the
solution, we have to prove the following lemma.

Lemma 4.5. Suppose that {hn}n∈N ⊂ H and ‖hm−hn‖C0[0,T ] → 0 as m,n → ∞.
Then ‖T hm − T hn‖C0[0,T ] → 0 as m,n → ∞.

Proof. Assume that hn → h uniformly in [0, T ]. Since ‖h′n‖∞ ≤ Mh, we can
conclude that h′ ∈ L∞[0, T ] and h′n → h′ weakly in L1[0, T ]. Let wn and w denote
the solutions of the initial-boundary value problem (4.2′) associated with the func-
tions hn and h, respectively. From Lemma 4.3 it follows that there exist subsequences
{wnj

}j∈N and {∂xwnj
}j∈N of {wn}n∈N and {∂xwn}n∈N, respectively, converging uni-

formly on QT to limit functions w and wx. Multiplying (4.2a), with v replaced by wnj
,

by a test function ϕ ∈ C2
0 (QT ), integrating over QT , and using integration by parts,

we obtain∫∫
QT

{
wnj∂tϕ+ h−1

nj
h′nj

wnj (ϕ+ ξ∂ξϕ) +
(
h−1
nj

f(wnj )− h−2
nj

∂ξA(wnj )
)
∂ξϕ

}
dξdt = 0.

Letting j → ∞, we get∫∫
QT

{
w∂tϕ+ h−1h′w(ϕ+ ξ∂ξϕ) +

(
h−1f(w)− h−2∂ξA(w)

]
∂ξϕ

}
dξdt = 0.

Since solutions of the initial-boundary value problem (4.2′) are unique, we obtain
w = w; hence the sequences {wn}n∈N and {∂xwn}n∈N converge uniformly on QT .
Lemma 4.5 is then an immediate consequence of

(T hn − T hm)(t)

= exp
(
B̂
(
t, w(1, ·)))∫ t

0

exp
(
−B̂

(
τ, w(1, ·)))[γ̂(τ, wm(1, τ)

)−γ̂
(
τ, wn(1, τ)

)]
dτ.

We continue with the proof of Lemma 4.2. By Lemma 4.5, T is a continuous
operator on H. We are now in a position to conclude from the Schauder fixed point
theorem that T has a fixed point h ∈ H; in particular h ∈ C1+α/2[0, T ]. This also
proves the estimates (4.5).

Substituting the fixed point h into the initial-boundary value problem (4.2′) pro-
duces a solution w ∈ C2+α,1+α/2(QT ) with the property that the pair (w, h) also
satisfies the fixed point equation T h = h, which is equivalent to (2.5f). Consequently,
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(v ≡ w, h) is a solution of the initial-boundary value problem (4.2), and setting
u(x, t) = v(x/h(t), t) produces a solution (u, h) of the regularized free boundary prob-
lem (4.1) with u ∈ C2+α,1+α/2(Q(h, T )). Thus the existence part of Lemma 4.2 is
proved.

We now turn to the uniqueness part. From boundary condition (4.1d) we get

1

2
h2(t) =

∫ t

0

h(s)h′(s) ds+
1

2
=

∫ t

0

h(s)

u

(
f(u)− ∂xA(u)

)(
h(s), s

)
ds+

1

2
.

We now choose a test function ω ∈ C2(R) satisfying ω(x) = 0 for x ≤ h0/2 and
ω(x) = 1 for x ≥ 3h0/4. We then get∫ t

0

h(s)

u

(
f(u)− ∂xA(u)

)(
h(s), s

)
ds =

∫∫
Q(h,t)

∂x

(
xω(x)

u

(
f(u)− ∂xA(u)

))
dxds

=

∫∫
Q(h,t)

{(
ω(x) + xω′(x)

)f(u)− ∂xA(u)

u
+ xω(x)∂x

(
f(u)− ∂xA(u)

u

)}
dxds

=

∫∫
Q(h,t)

(
ω(x) + xω′(x)

)f(u)− ∂xA(u)

u
dxds

+

∫∫
Q(h,t)

xω(x)
(
f(u)− ∂xA(u)

)
∂x

( 1
u

)
dxds+

∫∫
Q(h,t)

xω(x)

u
(−∂su) dxds

=: I1 + I2 + I3.

Defining

Ã(u) :=

∫ u

0

a(r)

r
dr, p(u) :=

∫ u

0

f ′(r)
r

dr, q(u) :=

∫ u

u0

f(r)

r2
dr,

with u0 > 0, we obtain by using integration by parts and the boundary condition

I2 =

∫∫
Q(h,t)

xω(x)∂x

(
f(u)− ∂xAε(u)

u

)
dxds

−
∫∫

Q(h,t)

xω(x)

u
∂x
(
f(u)− ∂xAε(u)

)
dxds

=

∫ t

0

h(s)

(
f(u)− ∂xAε(u)

u

)
ds

−
∫∫

Q(h,t)

(
ω(x) + xω′(x)

)(−p(u) + q(u)− ∂xÃε(u)
)
dxds

+

∫∫
Q(h,t)

xω(x)

u
∂su dxds

=

∫ t

0

h(s)
{
−p
(
u(h(s), s)

)
+ q
(
u(h(s), s)

)− ∂xÃ
(
u(h(s), s)

)}
ds

−
∫∫

Q(h,t)

{(
2ω′(x) + xω′′(x)

)
Ã(u) +

(
ω(x) + xω′(x)

)(
p(u)− q(u)

)}
dxds

+

∫∫
Q(h,t)

xω(x)

u
∂su dxds+

∫ t

0

Ãε

(
u
(
h(s), s

))
ds.
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Consequently,

1

2
h2(t) =

1

2
+

∫∫
Q(h,t)

(ω + xω′)
f(u)− ∂xA(u)

u
dxds

+

∫ t

0

h(s)
{
−p
(
u(h(s), s)

)
+ q
(
u(h(s), s)

)− ∂xÃ
(
u(h(s), s)

)}
ds

+

∫ t

0

Ã
(
u(h(s), s)

)
ds−

∫∫
Q(h,t)

{
(ω + xω′)

(
p(u)− q(u)

)
+ (2ω′ + xω′′)Ã

}
dxds.

Now let (u1, h1) and (u2, h2) be two solutions of the regularized free boundary prob-
lem (4.1). Let

t1 := max
{
t ∈ [0, T ] : h1(τ) = h2(τ) for τ ∈ [0, t]}.

We now show that t1 = T . To this end, we first suppose that t1 < T . Without loss
of generality, we suppose that t1 = 0. Moreover, define h−(t) := min{h1(t), h2(t)},
h+(t) := max{h1(t), h2(t)}, j(t) := 1 if h1(t) > h2(t) and j(t) := 2 if h1(t) ≤ h2(t),
and i(t) := 3− j(t). Then we obtain

1

2

(
(h1)2(t)− (h2)2(t)

)
=

∫∫
Q(h−,t)

(ω + xω′)
[
f(u1)− ∂xA(u

1)

u1
− f(u2)− ∂xA(u

2)

u2

]
dxds

−
∫ t

0

(−1)j(s)
∫ h+(s)

h−(s)

(ω + xω′)
f(uj(s))− ∂xA(u

j(s))

uj(s)
dxds

+

∫ t

0

{
h1(s)

[
−p
(
u1(h1(s), s)

)
+ q
(
u1(h1(s), s)

)− ∂xÃ
(
u1(h1(s), s)

)]
− h2(s)

[
−p
(
u2(h2(s), s)

)
+ q
(
u2(h2(s), s)

)− ∂xÃ
(
u2(h2(s), s)

)]}
ds

+

∫ t

0

{
Ã
(
u1(h1(s), s)

)− Ã
(
u2(h2(s), s)

)}
ds

+

∫∫
Q(h−,t)

{
(ω + xω′)

(−p(u1) + q(u1) + p(u2)− q(u2)
)

− (2ω′ + xω′′)
(
Ã(u1)− Ã(u2)

)}
dxds

−
∫ t

0

(−1)j(s)
∫ h+(s)

h−(s)

{(
ω(x) + xω′(x)

)(−p
(
uj(s)

)
+ q
(
uj(s)

))
− (2ω′ + xω′′)Ã

(
uj(s)

)}
dxds

=: I4 + · · ·+ I9.

We now set δ(t) := |h1(t)− h2(t)|. First note that∣∣(h1)2(t)− (h2)2(t)
∣∣ = ∣∣h1(t) + h2(t)

∣∣δ(t) ≥ M1δ(t), M1 := 2h(0).
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We now estimate the integrals I4 to I9. In light of

I4 =

∫∫
Q(h−.t)

(ω + xω′)
(
f(u1)

u1
− f(u2)

u2

)
dxds

−
∫ t

0

{
Ã
(
u1(h−(s), s)

)− Ã
(
u2(h−(s), s)

)}
ds

+

∫∫
Q(h−,t)

(2ω′ + ω′′)
(
Ã(u1)− Ã(u2)

)
dxds

and the inequality∣∣Ã(u1(h−(s), s)
)− Ã

(
u2(h−(s), s)

)∣∣ ≤ ε−1‖a‖∞
∣∣u1(h−(s), s)− u2(h−(s), s)

∣∣,
it is easy to see that there exist constants C2 and C3 such that

|I4| ≤ C2

∫ t

0

∣∣u1(h−(s), s)− u2(h−(s), s)
∣∣ds+ C3

∫ t

0

∫ h−(t)

0

∣∣u1(x, s)− u2(x, s)
∣∣ dxds.

Next, noting that in light of boundary condition (4.1c)∣∣f(uj(s)(x, s))− ∂xA
(
uj(s)(x, s)

)∣∣
=
∣∣f(uj(s)(x, s))− f

(
uj(s)(h+(s), s)

)
− ∂xA

(
uj(s)(x, s)

)
+ ∂xA

(
uj(s)(h+(s), s)

)∣∣
≤
(
‖f ′‖∞‖∂xu(·, s)‖∞ + ‖a′‖∞‖∂xu(·, s)‖∞
+ ‖a‖∞‖∂2

xu(·, s)‖∞
)∣∣x− h+(s)

∣∣,
(4.7)

we obtain that there exists a constant C4 satisfying |I5| ≤ C4δ
2(t). Observe that∣∣Ã(u1

(
h1(s), s

))− Ã
(
u2
(
h2(s), s

))∣∣
≤ ∣∣Ã(uj(s)(h+(s), s)

)− Ã
(
uj(s)(h−(s), s)

)∣∣
+
∣∣Ã(uj(s)(h−(s), s))− Ã

(
ui(s)(h−(s), s)

)∣∣
≤ ε−1‖a‖∞‖∂xu(·, s)‖∞δ(t)

+ ε−1‖a‖∞
∣∣uj(s)(h−(s), s)− ui(s)

(
h−(s), s

)∣∣.
From this inequality and similar ones for the functions ∂xÃ, p, and q, we obtain that
there exist constants C5 and C6 such that

|I6|+ |I7| ≤ C5

∫ t

0

δ(τ) dτ + C6

∫ t

0

∣∣u1
(
h−(s), s

)− u2
(
h−(s), s

)∣∣ ds.
By similar arguments it follows that there exist constants C7 and C8 satisfying

|I8| ≤ C7

∫ t

0

δ(τ) dτ + C8

∫ t

0

∫ h−(s)

0

∣∣u1(x, s)− u2(x, s)
∣∣ dxds.

Finally, since the integrand of I9 is bounded, there exists a constant C9 such that

|I9| ≤ C9

∫ t

0

δ(τ) dτ.
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Summarizing the estimates of I4 to I9, we obtain

δ(t) ≤ C4δ
2(t) + C10

∫ t

0

∣∣u1
(
h−(s), s

)− u2
(
h−(s), s

)∣∣ ds
+ C11

∫ t

0

δ(s) ds+ C12

∫ t

0

∫ h−(s)

0

∣∣u1(x, s)− u2(x, s)
∣∣ dxds(4.8)

with suitable new constants C10 to C12. To estimate the right-hand part of (4.8), let
z(x, s) := u1(x, s)− u2(x, s). This function satisfies in Q(h−, t) the linear equation

∂tz − ã∂2
xz + b̃∂xz + c̃z = 0,

where the coefficients ã to c̃ are given by (the argument (x, s) is omitted wherever
appropriate)

ã = a(u1), b̃ = a′(∂xu1 + ∂xu
2) + f ′(u1), c̃ = ∂2

xu
2a′ + (∂xu2)2a′′ + ∂xu

2f ′′,

where

g(x, s) :=

∫ 1

0

g
(
λu1(x, s) + (1− λ)u2(x, s)

)
dλ, g ∈

{
a′, a′′, f ′, f ′′, ∂2γ̂, ∂2β̂

}
.

The function z satisfies the initial condition z(x, 0) = 0 for 0 ≤ x ≤ 1. From boundary
condition (4.1c) and estimate (4.7) we obtain(

(f ′ − ∂xu
2a′)z − a

(
u1
)
∂xz
)
(0, s) = ψ1(s).

Similarly, boundary condition (4.1d) implies([
f ′ +

[
β̂
(
s, u1

)
h1(s) + γ̂

(
s, u1

)]
+ ∂2β̂h

2(s)u2

+ ∂2γ̂u
2 + a′(∂xu)2

]
z − a(u1)∂xz

)(
h−(s), s

)
= ψ2(s),

ψ2(s) := −β̂
(
s, u1(h−(s), s)

)(
h1(s)− h2(s)

)
u2
(
h−(s), s

)
.

Since the functions ã to c̃ are bounded and since there exist constants C13 to C15 such
that |d̃(x, s)| ≤ C13δ(t), |ψ1(s)| ≤ C14δ(s), and |ψ2(s)| ≤ C15δ(s), we obtain from the
maximum principle that there exists a constant C16 independent of t with∣∣z(x, t)∣∣ ≤ C16 max

0≤s≤t
δ(s);

hence inequality (4.8) reduces to

δ(t) ≤ C4δ
2(t) + C17

∫ t

0

max
0≤τ≤s

δ(τ) ds.

Since δ(0) = 0 and δ′(s) is uniformly bounded, we can choose a time t0 ∈ (0, T ] such
that C4δ(t) ≤ 1/2 for all t ∈ (0, t0]. Thus

δ(t) ≤ 1

2
max

0≤τ≤t
δ(τ) + C17

∫ t

0

max
0≤τ≤s

δ(τ) ds for 0 ≤ t ≤ t0.
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Consequently, there exists a constant C18 such that

δ(t) ≤ C18

∫ t

0

max
0≤τ≤s

δ(τ) ds for 0 ≤ t ≤ t0.

This shows that δ(t) = 0, i.e., h1(t) = h2(t) =: h(t) for 0 ≤ t ≤ t0. The maximum
principle then implies u1(x, t) = u2(x, t) for (x, t) ∈ Q(h, t0), which contradicts the
definition of t1. Consequently, we obtain u1(x, t) = u2(x, t) in Q(h, T ). This concludes
the proof of Lemma 4.2.

5. Existence of generalized solutions. To prove the existence of a generalized
solution, we have to establish uniform estimates (with respect to the regularization
parameter ε) of the solutions uε of the regularized free boundary problem (4.1). It
is convenient to formulate these estimates in terms of the solutions {vε}ε>0 of the
problem (4.2) with fixed boundaries.

Lemma 5.1. Let (vε, hε) be a solution of the regularized boundary problem (4.2).
Then the following uniform estimates are valid, where the constant M2 is independent
of ε:

sup
t∈[0,T ]

‖∂xvε(·, t)‖L1(0,1) ≤ M2.(5.1)

Proof. The proof closely follows that of Lemma 11 in [4]. Define approximations
sgnη and | · |η of the sign and modulus functions by

sgnη(τ) :=

{
sgn(τ) if |τ | > η,

τ/η if |τ | ≤ η,
|x|η :=

∫ x

0

sgnη(ζ)dζ, η > 0.

Setting yε := ∂ξvε, we obtain the following by differentiating (4.2a) with respect
to ξ, multiplying it by sgnη(yε), integrating over QT0

, where 0 < T0 ≤ T , and using
integration by parts:

∫∫
QT0

sgnη(yε)∂tyε dξdt =

∫ T0

0

sgnη(yε)
(−∂ξgε(vε, ξ, t) + h−2

ε ∂2
ξAε(vε)

)∣∣∣ξ=1

ξ=0
dt

+

∫∫
QT0

sgn′η(yε)∂ξyε
{
−h−1

ε h′εξ + h−1
ε f ′ε(vε)− h−2

ε a′ε(vε)yε
}
yε dξdt

−
∫∫

QT0

sgn′η(yε)aε(vε)(∂ξyε)
2 dξdt−

∫∫
QT0

sgnη(yε)h
−1
ε h′εyε dξdt

=: I1
η + I2

η + I3
η + I4

η .

(5.2)

We now estimate the integrals I1
η to I4

η . Using (4.2a), we see that

I1
η =

∫ T0

0

{
sgnη

(
∂ξvε(1, t)

)
∂tvε(1, t)− sgnη

(
∂ξvε(0, t)

)
∂tvε(0, t)

}
dt.

The boundary conditions (4.2c) and (4.2d) imply that

∂ξvε(0, t) =
hεfε(vε(0, t))

aε(vε(0, t))
≥ 0, ∂ξvε(1, t) =

hε[fε(vε(1, t))− h′εvε(1, t)]
aε(vε(1, t))

≥ 0.(5.3)
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In light of Lemma 4.1, we see from (5.3) that ∂ξvε(0, t) = 0 implies that vε(0, t)
assumes the constant value vεmin := inf Uε or vεmax := supUε. Letting E0 :=
{t ∈ [0, T ] : vε(0, t) = vεmin or vε(0, t) = vεmax}, we see that ∂tvε(0, t) = 0 a.e. in E0.
We therefore conclude that

−
∫ T0

0

sgnη
(
yε(0, t)

)
∂tvε(0, t) dt

η→0−→ −
∫ T0

0

∂tvε(0, t) dt = vε(0, 0)− vε(0, T0).

Applying a similar argument to the boundary condition (4.2d), we obtain

I1
η
η→0−→ vε(1, T0)− vε(1, 0) + vε(0, 0)− vε(0, T0).

From Saks’ lemma [2, 22] we infer that I2
η → 0 for η → 0. In light of I3

η ≤ 0 and

I4
η
η→0−→ −

∫∫
QT0

h−1
ε h′ε|yε| dξdt,

we get from (5.2)∥∥∂xvε(·, T0)
∥∥
L1(0,1)

≤ ‖(u0
ε)
′‖L1(0,1) − vε(1, 0) + vε(1, T0)− vε(0, T0)

+ vε(0, 0) +

∫ T0

0

∥∥∂xvε(·, t)∥∥L1(0,1)
dt.

An application of Gronwall’s lemma yields estimate (5.1).
For the present problem it is probably impossible to obtain a uniform L1(QT ) es-

timate of the time derivative ∂tvε, in contrast to several analyses of problems with
fixed boundaries [4, 5]. For example, in [4] such an estimate was derived by differen-
tiating the regularized parabolic equation with respect to t, multiplying the resulting
equation by sgnη(∂xvε), integrating the result over the computational domain, and
using the boundary conditions and Gronwall’s lemma. In the present case, differen-
tiating (4.2a) with respect to t will produce an equation with a coefficient involving
h′′ε (t). However, we cannot bound this quantity, since differentiating the coupling
equation (4.2f) with respect to t will lead to an equation for h′′ε (t) in terms of ∂tvε,
and we cannot control the variation of vε with respect to t along the boundary ξ = 0.

To apply the compactness criterion to the family of regularized solutions {vε}ε>0,
we apply the following variant of Kružkov’s [14] interpolation lemma (see, e.g., [13]
for a proof).

Lemma 5.2. Assume that there exist finite constants c1 and c2 such that the
function u : (0, 1)× [0, T ]→ R satisfies ‖u(·, t)‖L∞(0,1) ≤ c1 and TV(0,1)(u(·, t)) ≤ c2

for all t ∈ [0, T ], and that u is weakly Lipschitz continuous with respect to t in the
sense that ∣∣∣∣∫ 1

0

(
u(x, t2)− u(x, t1)

)
ϕ(x) dx

∣∣∣∣ ≤ O(t2 − t1)

n∑
i=0

‖ϕ(i)‖L∞(0,1)

for all ϕ ∈ Cn
0 (0, 1), 0 ≤ t1 ≤ t2 ≤ T . Then there exists a constant C, depending in

particular on c1 and c2, such that the following interpolation result is valid:∥∥u(·, t2)− u(·, t1)
∥∥
L1(0,1)

≤ C(t2 − t1)
1/(n+1), 0 ≤ t1 ≤ t2 ≤ T.
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We calculate here that∫ 1

0

(
vε(ξ, t2)− vε(ξ, t1)

)
ϕ(ξ) dξ

=

∫ t2

t1

∫ 1

0

{
h−1
ε h′ε(ξ∂ξvε − vε)− h−1

ε ∂ξfε(vε) + h−2
ε ∂2

ξAε(vε)
}
ϕ(ξ) dξdt

=

∫ t2

t1

∫ 1

0

{
h−1
ε h′εvεϕ(ξ) +

(−h−1
ε h′ε(t)ξvε + h−1

ε fε(vε)− h−2
ε aε(vε)∂ξvε

)
ϕ′(ξ)

}
dξdt.

From the proof of Lemma 4.4 it follows that there exists a constant M̃h such that
the estimate ‖1/h2

ε‖L∞(0,T ) + ‖h′ε/hε‖L∞(0,T ) ≤ M̃h holds uniformly in ε. Using the
estimate (5.1), we get∣∣∣∣∫ 1

0

(
vε(ξ, t2)− vε(ξ, t1)

)
ϕ(ξ) dξ

∣∣∣∣
≤ (t2 − t1)M̃h

[
M0‖ϕ‖L∞(0,1) +

(‖fε‖∞ + ‖aε‖∞M2 +M0

)‖ϕ′‖L∞(0,1)

]
.

Thus we have proved the following.
Lemma 5.3. Let (vε, hε) be a solution of the regularized boundary problem (4.2).

Then the following uniform estimates are valid, where the constant M3 is independent
of ε: ∥∥vε(·, t2)− vε(·, t1)

∥∥
L1(0,1)

≤ M3(t2 − t1)
1/2, 0 ≤ t1 ≤ t2 ≤ T.(5.4)

In light of estimates (4.4), (5.1), and (5.4) of vε, a standard application of Kol-
mogorov’s compactness criterion [23] yields that the family {vε} is compact in L1(QT ).
Thus there exists a sequence εn → 0 such that {vεn} converges in L1(QT ) to a
function v ∈ BV1,1/2(QT ). Moreover, since the estimates of hε in (4.5) are uni-
form in ε, there exists a subsequence {hεn} of {hε} and a function h such that
|h(t2) − h(t1)| ≤ Mh(t2 − t1) for 0 ≤ t1 ≤ t2 ≤ T , h(0) = 1 and h is nonincreas-
ing.

We now have to prove that the limit pair (v, h) is indeed a generalized solution of
the initial-boundary value problem (3.6). Obviously, the function h satisfies part (a)
of Definition 3.2.

Lemma 5.4. The limit function v of solutions vε of the regularized problem (4.2)
has the regularity properties stated in part (b) of Definition 3.2.

Proof. Multiplying (4.2a) by vε and integrating the result over QT , we get∫∫
QT

h−2
ε aε(vε)(∂ξvε)

2dξdt =−1
2

∫ 1

0

v2
ε

∣∣∣t=T

t=0
dξ −

∫
QT

h−1
ε h′εv

2
ε dξdt

+

∫∫
QT

gε(vε, ξ, t)∂ξvε dξdt,

and thus∥∥∂xAε(vε)
∥∥
L2(QT )

≤ ‖aε‖∞
{
M2

0 + TMh(2M
2
0 +M2‖fε‖∞)

}
=:Mε

4 .

The stated regularity of A(u) follows by letting ε → 0 and observing that Mε
4 is

uniformly bounded for ε sufficiently small. To show the stated DM2 property, we
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rewrite the regularized equation (4.2a) as follows, where |k| ≤ K and K is a suitable
large constant:

∂t(vε − k) + ∂ξ
(
gε(vε, ξ, t)− gε(k, ξ, t)

)
+ h−1

ε h′ε(vε − k) = h−2
ε ∂2

ξ

(
Aε(vε)−Aε(k)

)
.

(5.5)

Multiplying (5.5) by sgnη(Aε(vε) − Aε(k))ζ, where k ∈ R and ζ ∈ C∞(QT ) is an
arbitrary test function, and integrating by parts over QT then yields∫∫

QT

h−2
ε

[
∂ξ
(
Aε(vε)−Aε(k)

)]2
sgn′η

(
Aε(vε)−Aε(k)

)
ζ dξdt

=

∫ T

0

(
h−2
ε ∂ξAε(vε)− gε(vε, ξ, t)

)
sgnη

(
Aε(vε)−Aε(k)

)
ζ
∣∣∣ξ=1

ξ=0
dt(5.6)

+

∫ T

0

gε(k, ξ, t) sgnη
(
Aε(vε)−Aε(k)

)
ζ
∣∣∣ξ=1

ξ=0
dt

+

∫∫
QT

{(
gε(vε, ξ, t)− gε(k, ξ, t)

)− h−2
ε ∂ξ

(
Aε(vε)−Aε(k)

)}
× sgnη

(
Aε(vε)−Aε(k)

)
∂ξζ dξdt

+

∫∫
QT

(
gε(vε, ξ, t)− gε(k, ξ, t)

)
sgn′η

(
Aε(vε)− Aε(k)

)
× ∂ξ

(
Aε(vε)−Aε(k)

)
ζ dξdt

−
∫∫

QT

h−1
ε h′εvε sgnη

(
Aε(vε)−Aε(k)

)
ζ dξdt+

∫ 1

0

|vε − k|ηζ
∣∣∣t=T

t=0
dξ

−
∫∫

QT

(vε − k) sgn′η
(
Aε(vε)−Aε(k)

)
∂t
(
Aε(vε)−Aε(k)

)
ζdξdt

−
∫∫

QT

(vε − k) sgnη
(
Aε(vε)−Aε(k)

)
∂tζ dξdt =: I

5
η + · · ·+ I12

η .

We now consider the limit of the right-hand side of (5.6) for η → 0. First note that
I5
η = 0 due to the boundary conditions (4.2c) and (4.2d). By Lebesgue’s theorem, we
get

I6
η
η→0−→ I6

0 :=

∫ T

0

gε(k, ξ, t) sgn
(
Aε(vε(ξ, t))−Aε(k)

)
ζ(ξ, t)

∣∣∣ξ=1

ξ=0
dt,

which implies |I6
0 | ≤ T‖gε‖∞‖ζ‖∞. Using the properties of sgnη, Lebesgue’s theorem,

∂ξA(k) = 0, and the fact that sgn(vε−k) = sgn(Aε(vε)−Aε(k)) due the monotonicity
of Aε(·), we get

I7
η
η→0−→

∫∫
QT

{
sgn(vε − k)

(
gε(vε, ξ, t)− gε(k, ξ, t)

)− h−2
ε ∂ξ

∣∣Aε(vε)−Aε(k)
∣∣} ∂ξζdξdt.

Precisely as in [18], using that u sgn′η(u) ≤ χ{u: 0<|u|≤η} and recalling from assump-
tion (4.3) that the inverse function A−1

ε is for fixed ε Lipschitz continuous with
constant 1/νε, we get that∣∣(gε(vε, ξ, t)− gε(k, ξ, t)

)
sgn′η

(
Aε(vε)−Aε(k)

)
∂ξ
(
Aε(vε)−Aε(k)

)∣∣
≤ Lε

νε

∣∣∂ξ(Aε(vε)−Aε(k)
)∣∣χI(ε,η),
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where I(ε, η) := {(ξ, t) : 0 ≤ |Aε(vε(ξ, t))−Aε(k)| ≤ η}. Consequently,

|I8
η | ≤

Lε

νε
‖ζ‖L∞(QT )

∫∫
I(ε,η)

∣∣∂ξ(Aε(vε)−Aε(k)
)∣∣ dξdt.

Observe that meas I(ε, η) → 0 as η → 0, since this measure converges to that of the
empty set. Thus I8

η → 0 as η → 0. Next, we see that

I9
η
η→0−→ I9

0 := −
∫∫

QT

h−1
ε h′ε(t)vε sgn

(
Aε(vε)−Aε(k)

)
ζ dξdt

with |I9
0 | ≤ TMhM0‖ζ‖L∞(QT ). Furthermore,

I10
η

η→0−→ I10
0 :=

∫ 1

0

{∣∣vε(ξ, T )− k
∣∣ζ(ξ, T )− ∣∣uε0(ξ)− k

∣∣ζ(ξ, 0)}dξ,
and thus |I10

0 | ≤ 2(M0 +K)‖ζ‖L∞(QT ). The integrand of I
11
η satisfies

∣∣(vε − k) sgn′η
(
Aε(vε)−Aε(k)

)
∂t
(
Aε(vε)−Aε(k)

)
ζ
∣∣

=
∣∣(vε − k) sgn′η(vε − k)∂t

(
Aε(uε)−Aε(k)

)
ζ
∣∣

≤ ∣∣∂t(Aε(vε)−Aε(k)
)∣∣χ{(ξ,t): 0≤|vε(ξ,t)−k|≤η}.

An argument similar to that employed for I8
η reveals that I

11
η → 0 as η → 0. Finally,

we obtain

I12
η

η→0−→ I12
0 := −

∫∫
QT

|vε − k|∂ξζ dξdt.

Collecting the estimates of I5
η to I

12
η yields that all terms of the right-hand part of (5.6)

possess a limit as η → 0 and are in particular uniformly bounded with respect to η.
Thus, taking ζ ≡ 1 we see that there exists a constant C1, depending possibly on ε
(but not on η), such that

∫∫
QT

h−2
ε

[
∂ξ
(
Aε(vε)−Aε(k)

)]2
sgn′η

(
Aε(vε)−Aε(k)

)
dξdt ≤ C1(ε).

Consequently, the sequence

{Eε,η}η>0 :=
{(

hε(t)
)−2[

∂ξ
(
Aε(vε)−Aε(k)

)]2
sgn′η

(
Aε(vε)−Aε(k)

)}
η>0

is bounded in L1(QT ) with respect to η and therefore also in C(QT )
′, the dual of the

space C(QT ) of continuous functions on QT . By compactness of the weak-A topol-
ogy of C(QT )

′ we deduce that, up to subsequences, the sequence {Eε,η}η converges
towards an element Eε ∈ C(QT )

′ in the weak-A topology. Thus for any ζ ∈ C∞(QT )
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we can pass to the limit η → 0 in (5.6) to obtain

〈Eε, ζ〉 =
∫ T

0

gε(k, ξ, t) sgn
(
Aε(vε(ξ, t))−Aε(k)

)
ζ(ξ, t)

∣∣∣ξ=1

ξ=0
dt

−
∫∫

QT

h−1
ε h′ε(t)vε sgn

(
Aε(vε)−Aε(k)

)
ζ dξdt

+

∫∫
QT

{
sgn(vε − k)

(
gε(vε, ξ, t)− gε(k, ξ, t)

)
− h−2

ε ∂ξ
∣∣Aε(vε)−Aε(k)

∣∣}∂ξζ dξdt
+

∫ 1

0

{∣∣vε(ξ, T )− k
∣∣ζ(ξ, T )− ∣∣uε0(ξ)− k

∣∣ζ(ξ, 0)}dξ
−
∫∫

QT

|vε − k|∂tζ dξdt.

(5.7)

On the other hand, due to the properties of the function sgnη, we have Eε,η ≥ 0 for
every ε, η > 0. Therefore we get

|〈Eε, ζ〉|
‖ζ‖L∞(QT )

= lim
η→0

1

‖ζ‖L∞(QT )

∣∣∣∣∫∫
QT

h−2
ε

[
∂ξ
(
Aε(vε)−Aε(k)

)]2
sgn′η

(
Aε(vε)−Aε(k)

)
ζ dξdt

∣∣∣∣
≤ lim sup

η→0

∫∫
QT

h−2
ε

[
∂ξ
(
Aε(vε)−Aε(k)

)]2
sgn′η

(
Aε(vε)−Aε(k)

)
dξdt.

Thus we get from (5.7) with ζ ≡ 1

|〈Eε, ζ〉|
‖ζ‖L∞(QT )

≤−
∫∫

QT

h−1
ε h′ε(t)vε sgn

(
Aε(vε)−Aε(k)

)
dξdt

+

∫ T

0

gε(k, ξ, t) sgn
(
Aε(vε(ξ, t))−Aε(k)

)∣∣∣ξ=1

ξ=0
dt

+

∫ 1

0

{∣∣vε(ξ, T )− k
∣∣− ∣∣uε0(ξ)− k

∣∣}dξ.
(5.8)

Using the estimate (4.4) we deduce that there exists a constant C2, which does not
depend on ε, such that |〈Eε, ζ〉| ≤ C2‖ζ‖L∞(QT ) for all ε > 0. Consequently, Eε is
bounded in C(QT )

′, and up to a subsequence Eε converges in the weak-A topology to a
functional E ∈ C(QT )

′, i.e., a Radon measure. We now pass to the limit ε → 0 in (5.7).
Since gε(k, ξ, t) converges strongly to g(k, ξ, t) and sgn(Aε(vε) − Aε(k)) is bounded,
gε(k, ξ, t) sgn(Aε(vε(ξ, t))−Aε(k)) converges weakly in L1({ξ} × (0, T )), where ξ = 0
or ξ = 1, to g(k, ξ, t) sgn(A(v(ξ, t))−A(k)). Moreover, |vε − k| converges strongly to
|v − k| in C(0, T ;L1(0, 1)), gε(vε, ξ, t) converges strongly to g(v, ξ, t) in Lq(QT ) for
every q < ∞, and ∂x|Aε(vε)−Aε(k)| converges weakly in L2(QT ) to ∂ξ|A(v)−A(k)|.
Passing to the limit ε → 0 in (5.7) we conclude that for all ϕ ∈ C∞0 (QT ),

〈E,ϕ〉 = −
∫∫

QT

h−1h′v sgn
(
A(v)−A(k)

)
ϕdξdt−

∫∫
QT

|v − k|∂tϕdξdt

+

∫∫
QT

{
sgn(v − k)

(
g(v, ξ, t)− g(k, ξ, t)

)− h−2∂ξ
∣∣A(v)−A(k)

∣∣}∂ξϕdξdt.

(5.9)
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Since g, sgn(A(v)−A(k)), and ∂ξ|A(v)−A(k)| are all functions in L1(QT ), and since
E is a Radon measure, we obtain from (5.9) that for all ϕ ∈ C∞0 (QT ),∣∣∣∣∫∫

QT

{
|v − k|∂tϕ+

(
sgn(v − k)

(
g(v, ξ, t)− g(k, ξ, t)

)
− h−2∂ξ

∣∣A(v)−A(k)
∣∣)∂ξϕ} dξdt

∣∣∣∣ ≤ C‖ϕ‖L∞(QT ).

This in particular implies the stated DM2 property (3.9).
Lemma 5.5. The limit function v of solutions vε of the regularized initial-

boundary value problem satisfies the boundary conditions (3.3) and (3.4) stated in
Definition 3.1.

Proof. First of all we have from Lemma 4.2, passing to a subsequence if necessary,
that hε converges uniformly to a certain Lipschitz function h, which satisfies h(0) = 1,
h(t) ≥ h0 > 0. Multiplying (4.1a) by ϕ ∈ C1

0 (ΠT ), integrating over Q(hε, T ), using
integration by parts and the boundary conditions (4.1c), (4.1d), and then letting
ε → 0, we get ∫∫

Q(h,T )

{
u∂tϕ+

(
f(u)− ∂xA(u)

)
∂xϕ

}
dx dt = 0.(5.10)

From (5.10) there follow two conclusions about the DM2 field F = (F1, F2) =
(f(u)− ∂xA(u), u): divF = 0 (this is the obvious one) and 〈F · ν|∂Q(h,T ), ϕ〉 = 0, as
a consequence of the generalized Gauss–Green formula (2.7). Hence, using (2.8) and
(2.9) we deduce (3.3) and (3.4).

Lemma 5.6. The limit function (u, h) of solutions (uε, hε) of the regularized
problem (4.1) satisfies (2.5e) in the sense stated in (d) of Definition 3.1.

Proof. First, we observe that Aε(uε(x, t)) converges to A(u(x, t)) in L1
loc(Q(h, T )).

This follows by the convergence of Aε(vε(ξ, t)) to A(v(ξ, t)) in L1(QT ), the uniform
convergence of hε to h, and the uniform boundedness of ∂ξAε(vε(ξ, t)) in L2(QT ).
More specifically, for any compact K ⊂ Q(h, T ), for ε sufficiently small,∫∫

K

∣∣Aε

(
uε(x, t)

)−A
(
u(x, t)

)∣∣ dx dt

=

∫∫
K′

∣∣Aε

(
uε(h(t)ξ, t)

)−A
(
u(h(t)ξ, t)

)∣∣h(t) dξ dt
≤
∫∫

K′

{∣∣Aε

(
vε(ξ, t)

)−A
(
v(ξ, t)

)∣∣+ ∣∣Aε

(
uε(h(t)ξ, t)

)−Aε

(
uε(hε(t)ξ, t)

)∣∣}h(t) dξdt
≤
∫∫

K′

∣∣Aε

(
vε(ξ, t)

)−A
(
v(ξ, t)

)∣∣h(t) dξ dt
+ C‖hε − h‖∞ sup

ε
‖∂xAε(uε)‖L2(Q(hε,T ))

ε→0−→ 0,

where K ′ denotes the image of K by the transformation (x, t) !→ (ξ, t). Now, we
prove that Aε(uε(hε(t), t)) → γx→h(t)A(u(·, t)) in L1(0, T ) as ε → 0, after passing to
a suitable subsequence if necessary. Given any δ > 0, we have h(t) − δ < hε(t) <
h(t) + δ, 0 < t < T , for ε sufficiently small, due to the uniform convergence hε →
h. We may also assume that Aε(uε(h(t) − δ, t)) → A(u(h(t) − δ, t)) in L1(0, T )
due to the convergence of Aε(uε(x, t)) to A(u(x, t)) in L1

loc(Q(h, T )). Then, setting
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Bε(x, t) := Aε(uε(x, t)), B(x, t) := A(u(x, t)), and xδ(t) := h(t)− δ, we have∫ T

0

∣∣Bε

(
hε(t), t

)− γx→h(t)B(·, t)
∣∣ dt ≤ ∫ T

0

∣∣Bε

(
xδ(t), t

)−B
(
xδ(t), t

)∣∣ dt
+

∫ T

0

∣∣Bε

(
xδ(t), t

)−Bε

(
hε(t), t

)∣∣ dt+ ∫ T

0

∣∣B(xδ(t), t)− γx→h(t)B(·, t)
∣∣ dt

≤
∫ T

0

∣∣Bε

(
xδ(t), t

)−B
(
xδ(t), t

)∣∣ dt+ C
√
δ.

Since δ > 0 may be taken arbitrarily small, the assertion follows. Finally, by passing
to a further subsequence of ε’s if necessary, we see that, except for h′ε(t), all other
terms in (4.1e) converge a.e. in (0, T ) to the corresponding terms in (2.5e), replacing
A(u(h(t), t)) by γx→h(t)A(u(·, t)). Therefore, h′ε(t) also converges a.e. in (0, T ), and
since it clearly converges weakly to h′(t), we have h′ε(t)→ h(t) a.e. in (0, T ), and the
lemma is proved.

It is standard to conclude from Lemma 5.2 that the limit function v satisfies the
initial condition (3.12), and to prove that the entropy inequality (3.13) is satisfied by
multiplying (4.2a) by sgnη(vε − k)ϕ, k ∈ R, ϕ ∈ C∞0 (QT ), ϕ ≥ 0, and letting η → 0
and ε → 0. Thus we have shown the following.

Theorem 5.7. The initial-boundary value problem (3.6) admits an entropy so-
lution (v, h).

Since h(t) > 0 and h′ is bounded, we conclude that the following holds.
Corollary 5.8. The free boundary problem (2.5) admits an entropy solution

(u, h).
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Abstract. The aim of this article is to generalize the usual tools of diffractive optics in order
to allow the study of phenomena which are out of their range. This generalization relies on the
algebra of oscillations with a continuous oscillatory spectrum, which is wider than the usual spaces
of periodic or almost-periodic functions. We perform the analysis for general nonlinear hyperbolic
systems, both in the dispersive and in the nondispersive cases, and particularly focus on the behavior
of the nonlinearities. Our tools yield considerable simplifications in these nonlinearities, which allows
us to point out qualitative differences between the dispersive and the nondispersive cases. Finally,
we study in detail two physical examples which can be modeled with the present tools: lasers with
large spectrums, and those with ultrashort pulses.
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oscillatory spectrum, large spectrum, short pulse, nonlinear Schrödinger equation
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1. General comment.

1.1. Introduction. Maxwell equations and many of the physical systems en-
countered in optics may be written in the form{

Lε(∂)uε + f(uε) = 0,
uε|T=0(X,Y, Z) = u0

ε(X,Y, Z),
(1.1)

where uε takes its values in Rn, and Lε(∂) is a hyperbolic symmetric operator which
one writes as

Lε(∂) = A0∂T +A1∂X +A2∂Y +A3∂Z +
L0

ε
,

the matrices Ai being symmetric and L0 skew-symmetric.
In the study of the propagation of a diffractive laser beam with frequency ωl and

wavenumber
−→
kl = (0, 0, kl), an approximate solution uε of uε is generally sought in

the form

uε(T,X, Y, Z) = εp(U0(εT, T,X, Y, Z)e
i(ωlT−klZ)/ε + c.c.),(1.2)

the exponent p being chosen in order for the nonlinear and diffractive effects to come
into play at the same time scale. The method of diffractive optics (see [8], for instance)
consists of finding some equations which determine the profile U0.

The object of this article is to introduce a general framework for diffractive op-
tics, which generalizes classical studies in both dispersive and nondispersive diffractive
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optics, as shown in [10] and [11], for instance, and allows us also, without added diffi-
culty, to treat more pathological situations. Among these, we study here two physical
problems which cannot be modeled by oscillations of type (1.2). These physical phe-
nomena are large-spectrum lasers and ultrashort pulses.

Large spectrum. The oscillatory spectrum of a classical oscillation of type
(1.2) is located at two points, {±(ωl,−−→kl )}. Experimentally, such a localization
for the spectrum is never realized. Physically, the spectrum is concentrated around
{±(ωl,−−→kl )}, but it never reduces to these two points. These variations are generally
taken into account in the amplitude U0. However, modifying U0 can only make the
spectrum of uε expand around {±(ωl,−−→kl )} in an O(ε) range. Lasers with large spec-
trum typically have a spectrum of width O(1) and therefore cannot be modeled with
usual oscillations of type (1.2). Direct computations for lasers with large spectrums
have been carried out by Morice [13]. Here, we choose another approach and seek an
approximate solution of (1.1) in the form

uε(T,X, Y, Z) = εp
(U0,I,1(εT, T,X, Y, Z)e

i(ωlT−klZ)/ε + c.c.
)

+ εp U0,II

(
εT, T,X, Y, Z,

T

ε
,
Z

ε

)
,

where U0,II is an oscillation with a purely continuous spectrum. We introduce this
notion in Proposition 1.10 below; for the moment, just assume that U0,II is smooth
and decaying in its last two variables.

Considering a model of nonlinear Maxwell equations (system (M) in section 4.1),
we prove that the amplitude E0,I,1 of the oscillating component of the electric field
satisfies the usual nonlinear Schrödinger (NLS) equation

∂τE0,I,1 + iω
′(kl)
2kl

(∂2
X + ∂2

Y )E0,I,1 + i
ω′′(kl)

2
∂2
ZE0,I,1 = Cst |E0,I,1|2E0,I,1,

while the corrective term E0,II satisfies a linear equation,

∂τ∂z0E0,II −
ω′(Dz0)

2
(∂2
X + ∂2

Y )E0,II −
Dz0ω

′′(Dz0)

2
∂2
ZE0,II = 0.

The main interest of this latter equation is that all the nonlinearities one would find
by a direct computation have been dropped, making this equation linear when it was
a priori nonlinear. This fact is a striking consequence of the general results proved
thereafter.

Ultrashort pulses. Seeking an approximate solution in the form (1.2) supposes
that the profile U0 varies little compared with the scale of an oscillation. This condition
is satisfied for almost all lasers because the length of the pulse is great compared with
the wavelength. For the ultrashort pulses, obtained by recent lasers, this is no longer
the case (see Figure 1). We refer to [4] and the references therein for a brief history
of the study of short pulses in geometric optics. For diffractive time scales, the most
general studies we know have been performed by Alterman and Rauch; see [1], [2], [3],
and [15]. In the nondispersive case, these authors proved rigorously, using asymptotic
techniques, that the Schrödinger approximation used for wave trains must be replaced
by another approximation for short pulses,

2∂z0∂τV = v(∂2
X + ∂2

Y )V + ∂z0f(V),(1.3)

where v−→e Z denotes the group velocity.
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ultra-short pulse

wavetrain

Fig. 1. Example of a wave train and a short pulse.

One of the main interests of [1], [3], and [15] is that these papers address pulses
which may not have vanishing mean, as was the case in earlier papers [16], [17]. We use
here Alterman’s technique of infrared cutoffs to obtain this generality, but otherwise
our approach is completely different since it is based on oscillations with continuous
spectrum. We see three main interests in our method. First, it generalizes the usual
methods of diffractive optics [8], [10], [11], so that short pulses do not appear as a
pathological case, and “mixed” cases, such as the above lasers with large spectrums,
can be addressed without added difficulty. The second interest resides in the study
of the nonlinearities, since we prove that most of them can be dropped because their
influence is negligible. Finally, we are able to address dispersive models, which are
physically the most relevant.

More precisely, an approximate solution for the short pulse is sought in the form

uε(T,X, Y, Z) = εpU0,II

(
εT, T,X, Y, Z,

T

ε
,
Z

ε

)
,

where U0,II is a profile with a purely continuous oscillatory spectrum. Indeed, the
pulse here is too short for a sinusoidal oscillation to appear. In the nondispersive case,
we find of course that U0,II must satisfy Alterman and Rauch’s equation (1.3). The
dispersive case is both simpler and more complicated because if the nonlinearities of
(1.3) can be neglected, the group velocity v−→e Z then depends on the frequency.

Remark 1.1. As the common formalism suggests, short pulses and large spectrum
corrections to wave trains are essentially the same. The former focus on the time
domain, while the latter look at the Fourier domain.

1.2. The spaces. We seek approximate solutions of (1.1) for diffractive time
scales. Therefore, three scales of variables are used in this study:

• the fast scale O( 1
ε ) of the oscillations,• the intermediate scale O(1) of geometrical optics,

• the slow scale O(ε) related to diffractive effects.
In order to identify clearly the variations of the solutions in these scales, auxiliary

functions named profiles are introduced as in [8], and we look for exact solutions of
(1.1) in the form

uε = εpUε

(
εT, T,X, Y, Z,

T

ε
,
Z

ε

)
.
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The factor εp is chosen to have both nonlinear and diffractive effects on the same time
scale.

Before introducing the spaces associated to the profiles V(τ, T,X, Y, Z, t0, z0) that
we use to represent the exact and approximate solutions of (1.1), let us set some
notation.

Notation. From now on, we write θ := (ωlt0 − klz0) and denote by ξ := (ω, k)
and η := (η1, η2, η3) the Fourier dual variable of (t0, z0) and (X,Y, Z), respectively.
The letter s will always denote a positive real number s > 3/2.

We also denote by F and by ̂ the Fourier transforms with respect to the variables
(t0, z0) and (X,Y, Z), respectively.

Throughout this paper constants are invariably denoted by C.
The space we choose for the profiles must contain oscillations with a discrete spec-

trum such as U(τ, T,X, Y, Z)eiθ and oscillations with a purely continuous spectrum.
The spaces used here are a generalization to diffractive scales of those which have
been introduced in [12] to describe Raman scattering.

Definition 1.1. (i)We denote by As0 the set of the functions defined on R
3
X,Y,Z×

R
2
t0,z0 with values in C

n whose Fourier transform with respect to (t0, z0) belongs to
the set BV(R2

ξ , H
s(R3

X,Y,Z)
n) of bounded variation Borel measures defined on R

2
ξ and

with values in Hs(R3)n. This space is endowed with the norm

||V||As
0
:= |FV|BV ∀V ∈ As0;

(ii) We denote by Es
τ∗ the set of the functions defined on [0, τ∗]×RT ×R

3
X,Y,Z ×

R
2
t0,z0 with values in C

n whose Fourier transform with respect to (t0, z0) belongs to
C([0, τ∗]× RT ,BV(R2

ξ , H
s(R3

X,Y,Z)
n)). Moreover, for all T ∈ R, we define

||V(T )||Es
τ∗ := sup

0≤τ≤τ∗
|FV(τ, T )|BV ∀V ∈ Es

τ∗ ;

(iii) We denote by Asτ∗ the subspace of Es
τ∗ composed by all the functions of E

s
τ∗

bounded on [0, τ∗]× RT and endow this space with the norm

||V||As
τ∗ := sup

0≤τ≤τ∗
sup
T∈R

|FV(τ, T )|BV = sup
T∈R

||V(T )||Es
τ∗ ∀V ∈ Asτ∗ ;

(iv) We denote by Bs
τ∗ the subspace of Asτ∗ composed by all the functions of Asτ∗

which do not depend on T .
The well-known notion of the oscillatory spectrum of an (almost-)periodic func-

tion [9] can then be generalized as follows.
Definition 1.2. If V ∈ Es

τ∗ , then for all (τ, T ) ∈ [0, τ∗] × R, the spectrum Sp
V(τ, T ) of V(τ, T ) is the support of the Fourier transform FV(τ, T ).

We also define the spectrum of V as Sp V =
⋃

(τ,T )∈[0,τ∗]×R
Sp V(τ, T ).

The following proposition [12] states the main properties of these functional
spaces.

Proposition 1.3. (i) The two normed spaces (As0, ||.||As
0
) and (Asτ∗ , ||.||As

τ∗ ) are
complete.

(ii) Any J-linear mapping G defined on (Cn)J and with values in C
n extends to a

continuous J-linear mapping defined on As0 (resp., A
s
τ∗) and with values in As0 (resp.,

Asτ∗). Moreover, there exists a constant l > 0 such that for all J-uplet (V1, . . . ,VJ) ∈
As0 (resp., A

s
τ∗), one has

||G(V1, . . . ,VJ)|| ≤ l||V1|| . . . ||VJ ||,
where ||.|| represents the norm of As0 (resp., Asτ∗).
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(iii) Let V be in As0 (resp., Asτ∗). Then V is also in C(R5)n (resp., C([0, τ∗]×R
6)n).

Moreover, V is bounded, and there exists a positive number l′ such that
||V||∞ ≤ l′||V||As

0
(resp., ||V||∞ ≤ l′||V||As

τ∗ ).

(iv) Let V ∈ As0 (resp., Asτ∗). Then the function vε defined on R
3 (resp., [0, τ

∗
ε ]×

R
3) as vε(X,Y, Z) = V(X,Y, Z, 0, Zε ) (resp., vε(T,X, Y, Z) = V(εT, T,X, Y, Z, Tε , Zε ))
belongs to L2(R3)n (resp., C([0, τ∗

ε ], L
2(R3)n)). Moreover, one has

||vε||L2(R3) ≤ ||V||As
0

(resp., sup
0≤T≤τ∗/ε

||vε(T, .)||L2(R3) ≤ ||V||As
τ∗ ).

Examples.
Example 1. Oscillations with a discrete spectrum such as U(τ, T,X, Y, Z)eiθ,

with θ = ωlt0−klz0 and U ∈ C([0, τ∗]×RT , H
s(R3)n), are in Es

τ∗ . Indeed, taking the
Fourier transform of such oscillations yields

F(Ueiθ) = Uδ(ωl,−kl),

which belongs to C([0, τ∗]× RT ,BV(R2
ξ , H

s(R3
X,Y,Z)

n)).

Example 2. LetM be a submanifold of R
2 and α an L1 function defined onM

and with values in C([0, τ∗] × RT , H
s(R3)n). Then the density function [12] defined

as

V(τ, T,X, Y, Z, t0, z0) =
∫
M
ei(t0,z0)·(ω,k)α(ω, k)(τ, T,X, Y, Z)σ(dω, dk),

where σ denotes the Lebesgue measure ofM, is in Es
τ∗ , and its oscillatory spectrum

isM.

1.3. Solving the Cauchy problem (1.1). We recall that (1.1) is written as{
Lε(∂)uε + f(uε) = 0,
uε|T=0(X,Y, Z) = u0

ε(X,Y, Z).

We now make precise the assumptions we make on Lε(∂).
Assumption 1.1. The system (1.1) is symmetric hyperbolic. More accurately,

the operator Lε(∂) can be written

Lε(∂) = A0∂T +A1∂X +A2∂Y +A3∂Z +
L0

ε
,

where the Ai are real symmetric matrices and A0 is strictly positive. Moreover the
system (1.1) is conservative in the sense that (L0)

∗ = −L0.

Remark 1.2. Since A0 is strictly positive, we can take A
−1/2
0 uε as a new unknown.

Multiplying (1.1) byA0(0)
−1/2, the resulting system has the same properties as system

(1.1) and satisfies A0(0) = Id. Thus herein, we always consider that A0 = Id.
The following hypothesis gives the kind of nonlinearity f we study here.
Assumption 1.2. There exists a trilinear mapping F such that for all u ∈ C

n,
f(u) = F (u, u, u).

Remark 1.3. In this paper, we consider nonlinearities of order 3 since the two
examples we gave in the last section belong to this class. This limitation on the order
of the nonlinearity is only due to technical reasons, and the interested reader could
easily generalize our results to nonlinearities of different orders.
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The initial conditions for (1.1) must be general enough to allow a model of both
large spectrums and ultrashort pulses. The spaces introduced in the previous part are
adapted to such a general point of view, and we therefore consider initial conditions
of the form

u0
ε(X,Y, Z) = εpU0

(
X,Y, Z, 0,

Z

ε

)
,(1.4)

with U0 ∈ As0.
Choice of the size of the solutions. The choice of p is given [8] by the order

of the nonlinearity, p = 1/2. With this choice, nonlinear and diffractive effects occur
simultaneously.

The following theorem proves that the unique solution L2 of the Cauchy problem
(1.1) with initial condition (1.4) can be written using profiles from Bs

τ∗ .
Theorem 1.4. Let R > 0 and U0 in As0 be such that ‖U0‖As

0
≤ R. There exists

a positive real number τ∗1 > 0, which depends on R but not on ε, such that for all
ε > 0, the Cauchy problem{

Lε(∂)uε + f(uε) = 0,

uε|T=0(X,Y, Z) = ε
1
2U0(X,Y, Z, 0, Z/ε)

has a unique solution uε in C([0, τ∗
1

ε ]× R
3)n ∩ C([0, τ∗

1

ε ], L
2(R3)n).

Moreover, uε can be written uε(T,X, Y, Z) := ε
1
2Uε(εT,X, Y, Z, Tε ,

Z
ε ), where

Uε ∈ Bs
τ∗
1
is uniquely determined by the so-called singular equation,

(1.5){
∂τU

ε + ε−1(A1∂X +A2∂Y +A3∂Z)U
ε + ε−2(∂t0 +A3∂z0 + L0)U

ε + f(Uε) = 0,
Uε
|τ=0 = U0,

and for all ε ∈ (0, 1), Uε satisfies the uniform bound ‖Uε‖Bs
τ∗
1

≤ 2R.

Proof. The proof of this theorem is similar to the proof of the existence theorem
of [12], and we give only a sketch of it. First, we prove that the existence of uε is
a consequence of the existence of a profile Uε satisfying (1.5). This latter result is
obtained by Picard iterates using the following lemma, which gives linear estimates.

Lemma 1.5. Let V0 ∈ As0 and W ∈ Bs
τ∗
1
. The linear problem{

∂τV + ε−1(A1∂X +A2∂Y +A3∂Z)V + ε−2(∂t0 +A3∂z0 + L0)V =W,
V|τ=0 = V0

has a unique solution in Bs
τ∗
1
. Moreover, one has

||V||Bs
τ∗
1

= ||V0||As
0
+ τ∗1 ||W||Bs

τ∗
1

.

The existence of uε being established, one proves uniqueness using a classical
L2-uniqueness argument.

1.4. General method. We seek an approximate solution uε of the exact solu-
tion uε of (1.1) using the tools of diffractive optics. The approximate solution uε is
sought in the form

uε = ε
1
2Uε

(
εT, T,X, Y, Z,

T

ε
,
Z

ε

)
, with Uε = U0 + εU1 + ε

2U2,(1.6)

and U0,U1,U2 ∈ Es
τ∗ .
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The expansion of Lε(∂)uε + f(uε) in powers of ε yields

Lε(∂)uε + f(uε) =

7∑
j=−1

ε
1
2+jRj(τ, T,X, Y, Z, t0, z0)|τ=εT,t0=T/ε,z0=Z/ε,(1.7)

where

R−1(τ, T,X, Y, Z, t0, z0) = iL(Dt0,z0)U0,
R0(τ, T,X, Y, Z, t0, z0) = iL(Dt0,z0)U1 + L1(∂)U0,
R1(τ, T,X, Y, Z, t0, z0) = iL(Dt0,z0)U2 + L1(∂)U1 + ∂τU0 + f(U0),
R2(τ, T,X, Y, Z, t0, z0) = L1(∂)U2 + ∂τU1 + 〈f(Uε)〉1/2+2,
R3(τ, T,X, Y, Z, t0, z0) = ∂τU2 + 〈f(Uε)〉1/2+3,
Rj≥4(τ, T,X, Y, Z, t0, z0) = 〈f(Uε)〉1/2+j ,

(1.8)

with the notation

L(Dt0,z0) := Dt0 +A3Dz0 + L0/i, Dt0 = −i∂t0 , Dz0 = −i∂z0
L1(∂) := ∂T +A1∂X +A2∂Y +A3∂Z := ∂T +A(∂X,Y,Z),

while 〈f(Uε)〉k denotes the coefficient of the monomial εk in the expansion into powers
of ε of f(Uε).

Notation. We used the pseudodifferential notation Dt0 = −i∂t0 and Dz0 = −i∂z0
to define the operator L(Dt0,z0). This explains the factor i which appears in front of
it in expansion (1.8). Recalling that (ω, k) denote the dual variables of (t0, z0), the
symbol of this operator reads L(ω, k) = ωId+ kA3 + L0/i.

The strategy of diffractive optics consists of seeking U0, U1, and U2 in order to
cancel the profiles Rm(τ, T,X, Y, Z, t0, z0), m = −1, 0, 1. We then prove that the
associated function uε given by (1.6) is indeed an approximate solution of (1.1) and
give a stability theorem.

1.5. A few tools. The following definition introduces some concepts of diffrac-
tive optics.

Definition 1.6. (i) The characteristic variety associated to the operator L is the
set

CL = {(ω, k) ∈ R
2,det(L(ω, k)) = det(ωId+ kA3 + L0/i) = 0}.

(ii)We denote by π(ω, k) the orthogonal projector onto kerL(ω, k) and by L−1(ω, k)
the partial inverse of L(ω, k) defined as

L−1(ω, k)π(ω, k) = 0 and L−1(ω, k)L(ω, k) = Id− π(ω, k).
(iii) Near every smooth point (ω, k) of CL, we denote by ω(k) a local parameteri-

zation of CL.
The following lemma expresses the resolubility condition of a linear equation with

the tools introduced in the previous definition.
Lemma 1.7. Let a, b ∈ C

n. Then the following two assertions are equivalent:
(i) L(ω, k)a = b;
(ii) π(ω, k)b = 0 and (Id− π(ω, k))a = L−1(ω, k)b.
We want to generalize these resolubility conditions to equations of type L(Dt0,z0)V

=W, where V andW are in Es
τ∗ . Following [12], we first have to introduce the notion

of L−1-regularity.



A GENERAL FRAMEWORK FOR DIFFRACTIVE OPTICS 643

Definition 1.8. Let V ∈ Es
τ∗ and µ(τ, T ) := FV(τ, T ). We say that V is

L−1-regular if for all (τ, T ) ∈ [0, τ∗]× RT , L−1 is µ(τ, T )-integrable.
We can now generalize Lemma 1.7 in the following way.
Lemma 1.9. Let V and W be in Es

τ∗ . The following assertions are equivalent:
(i) L(Dt0,z0)V =W;
(ii) π(Dt0,z0)W = 0, W is L−1-regular, and (Id− π(Dt0,z0))V = L−1(Dt0,z0)W.
Remark 1.4. The L−1-regularity condition may not be satisfied in the physical

phenomena we are interested in here. Indeed, the mapping (ω, k)→ L−1(ω, k) is not
bounded at the neighborhood of the origin. When low frequencies are excluded, as in
most applications in optics, L−1 remains bounded for the frequencies considered, and
the L−1-regularity condition is easily satisfied. But when low frequencies are allowed,
as they have to be here, L−1 effectively blows up and the L−1-regularity condition is
in general not satisfied. In that case, we have to use tools similar to those introduced
by Alterman [1].

It is also interesting to decompose the profiles of Es
τ∗ into a discrete spectrum

(sinusoidal) component and a purely continuous one. Such a decomposition is assured
by the foregoing proposition.

Proposition 1.10. Let V ∈ As0 (resp., Es
τ∗). The profile V is written uniquely

as V = VI + VII , with VI , VII ∈ As0 (resp., Es
τ∗) such that

(i) VI (resp., VI(τ, T, .) for all (τ, T ) ∈ [0, τ∗]× RT ) has a discrete spectrum;
(ii) VII has a purely continuous spectrum, i.e., every point of R

2 has zero measure
for FVII (resp., for FVII(τ, T, .) for all (τ, T ) ∈ [0, τ∗]× RT ).

Notation. From now on, and for every profile V of As0 or Es
τ∗ , we denote by VI

the component with a discrete spectrum and by VII the component with a purely
continuous one.

Proof. First, the existence of the decomposition of a profile V ∈ Es
τ∗ is proved.

We introduce

µ(τ, T ) := FV(τ, T ) ∀(τ, T ) ∈ [0, τ∗]× RT ,

and Sτ,T the set of points with nonzero measure for µ(τ, T ),

Sτ,T = {p ∈ R
2, µ(τ, T )({p}) �= 0}.

We decompose µ(τ, T ) in the form

µ(τ, T ) = ISτ,T
µ(τ, T ) + (1− ISτ,T

)µ(τ, T ),

and the proposition will be proved if we can show that F−1(ISτ,T
µ(τ, T )) and F−1[(1−

ISτ,T
)µ(τ, T )] are in Es

τ∗ . Indeed, one would then have for all (τ, T ),

VI(τ, T ) = F−1(ISτ,T
µ(τ, T )) and VII(τ, T ) = F−1([1− ISτ,T

]µ(τ, T )).

It is clear that for all (τ, T ) ∈ [0, τ∗] × RT , the measures ISτ,T
µ(τ, T ) and (1 −

ISτ,T
)µ(τ, T ) belong to BV(R2

ξ , H
s(R3)n). The main difficulty is to prove the contin-

uous dependence on (τ, T ) of these two measures. As the mapping (τ, T ) �→ µ(τ, T )
is continuous by assumption, it is sufficient to prove that the mapping

[0, τ∗]× RT −→ BV(R2, Hs(R3)n),

(τ, T ) �−→ ISτ,T
µ(τ, T )
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is continuous, i.e., that ISτ,T
µ(τ, T ) − ISτ′,T ′µ(τ

′, T ′) tends to 0 in BV(R2
ξ , H

s(R3)n)
when (τ ′, T ′) tends to (τ, T ). One has

ISτ,T
µ(τ, T )− ISτ′,T ′µ(τ

′, T ′) = (ISτ,T
− ISτ′,T ′ )µ(τ, T ) + ISτ′,T ′ (µ(τ, T )− µ(τ ′, T ′)).

The second term of the right-hand side of this equation tends to 0 when (τ ′, T ′) tends
to (τ, T ) thanks to the continuity of the mapping (τ, T ) �→ µ(τ, T ). Moreover, the
first term of the right-hand side of the equation reads

(ISτ,T
− ISτ′,T ′ )µ(τ, T ) = ISτ,T \Sτ′,T ′µ(τ, T )− ISτ′,T ′\Sτ,T

µ(τ, T ).

But one has ISτ′,T ′\Sτ,T
µ(τ, T ) = 0, because if p ∈ Sτ ′,T ′ \Sτ,T , then µ(τ, T )({p}) = 0.

On the other hand, one has ISτ,T \Sτ′,T ′ ({p})→ 0 for all p ∈ R
2 when (τ ′, T ′)→ (τ, T ).

Indeed, for all p ∈ Sτ,T , µ(τ, T )({p}) �= 0. By continuity of the mapping (τ, T ) �→
µ(τ, T ), one has µ(τ ′, T ′)({p}) −→ µ(τ, T )({p}) in Hs(R3)n when (τ ′, T ′) → (τ, T ).
Consequently, µ(τ ′, T ′)({p}) �= 0 if (τ ′, T ′) is close enough to (τ, T ). In other words,
p ∈ Sτ ′,T ′ , and hence p /∈ Sτ,T \ Sτ ′,T ′ . The proof of the continuous time dependence
is then achieved by a dominated convergence argument.

The existence of the decomposition for every profile of Es
τ∗ , and a fortiori of

As0, is thus proved. The proof of the uniqueness of the decomposition is straightfor-
ward.

1.6. Organization of the paper. We first address in section 2 general dis-
persive hyperbolic systems. Section 2.1 is devoted to the derivation of the profile
equations under a simplifying assumption of absence of low frequencies. In section
2.2, we perform a sharp analysis of the nonlinearities found for the profile equations.
We show that many of these nonlinearities vanish, which is of crucial importance for
the resolubility theorems given in section 2.3. The fact that the approximate solution
associated to the profiles found in the previous sections converges towards the exact
solution of (1.1) is then proved in section 2.4. The general case (presence of low fre-
quencies) is addressed in section 2.5. Using Alterman’s technique of infrared cutoffs,
we use the results of the previous sections to give profile equations in the general case,
as well as a stability theorem which generalizes the one given in section 2.4.

In section 3, we treat the nondispersive case. Since the methods used in this
section are the same as in the dispersive case, we do not extend the proofs. However,
the main difference between both cases is by itself interesting enough to justify this
section: nonlinear interactions between components with a purely continuous spectrum
can be observed in the nondispersive case, while they are negligible in the dispersive
case.

The two physical examples used as guidelines throughout this paper are studied
in section 4. These examples are lasers with large spectrums and short pulses and
illustrate the notable simplifications yielded by our general theory with respect to
direct computations.

Finally, an intermediate case between dispersive and nondispersive systems, called
weakly dispersive, is briefly commented on in section 5. In particular, we find that
for large-spectrum lasers, equations for the continuous spectrum component are still
linear but, as opposed to the dispersive case, coupled with the discrete spectrum
component.

2. Dispersive case. In this part, we consider problems of type (1.1) which are
dispersive. More precisely, we suppose that the following assumption is satisfied.
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Assumption 2.1. One has {0,±(ωl,−kl)} ⊂ CL, but for all j ∈ Z \ {0,±1}, the
point j(ωl,−kl) is not on CL. We also assume that CL is a union of smooth curves
which are never parallel, asymptotic, nor tangent to one another, and which intersect
only on the vertical axis (Oω).

Remark 2.1. The different nonlinear models whose linearization gives the Maxwell–
Lorentz equations (see the last section for an example) do not exactly satisfy this
assumption since CL then contains three horizontal lines, which are a fortiori parallel.
Moreover, two of these lines are also tangent to curved sheets of the characteristic
variety. However, this is not important since the horizontal lines are excluded by the
divergence-free conditions one has to add to these systems. Therefore, the Maxwell–
Lorentz model, and its nonlinear versions, fall into the range of this assumption.

2.1. The ansatz in the absence of infrared frequencies. As we have said
in Remark 1.4, low frequencies make the analysis far more difficult because L−1-
regularity of the profiles may fail. That is why in this section we focus on profiles
U0 whose spectrum is outside the band {(ω, k), |k| ≤ δ}. More precisely, we assume
throughout this section that the continuous spectrum component of the leading term
U0 satisfies the following assumption.

Assumption 2.2. The spectrum Sp U0,II of the continuous spectrum component
of U0 is in {(ω, k), |k| > δ}, where δ > 0.

The following lemma makes the link between absence of low frequencies and L−1-
regularity.

Lemma 2.1. Let VII be a profile of Es
τ∗ such that Sp VII ⊂ CL.

If, moreover, Sp VII ⊂ {(ω, k), |k| > δ}, then VII is L−1-regular, and for all
T ∈ R,

‖L−1VII(T )‖Es
τ∗ ≤

C

δ
‖VII(T )‖Es

τ∗ .

In particular, if VII ∈ Asτ∗ , one has

‖L−1VII‖As
τ∗ ≤

C

δ
‖VII‖As

τ∗ .

Proof. For all (ω, k) ∈ R
2, L−1(ω, k) reads

L−1(ω, k) =
∑

j,ωj(k) �=ω

1

ω − ωj(k)π(ωj(k), k),

where the ωj are parameterizations of the different sheets of CL. If (ω, k) ∈ CL, i.e.,
if there exists j0 such that (ω, k) = (ωj0(k), k), then

L−1(ω, k) = L−1(ωj0(k), k) =
∑
j �=j0

1

ωj0(k)− ωj(k)
π(ωj(k), k).(2.1)

Saying that VII is L−1-regular means that for all (τ, T ) ∈ [0, τ∗] × R, L−1(ω, k) is
integrable for µ(τ, T ) := FVII(τ, T ). As we have supposed that Sp VII ⊂ CL, we must
prove that the expression given by (2.1) is integrable for µ(τ, T ).

Since we supposed in Assumption 2.1 that the different sheets of CL are not
asymptotic, (2.1) is bounded for large |k|. The only points where this expression is
not bounded are those where the different sheets intersect. Thanks to Assumption 2.1,
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these points are all on the axis (Oω). We now consider what happens in the neighbor-
hood of such a point. Consider j and j0 such that limk→0 ωj0(k) = limk→0 ωj(k) = ω0.
Near 0, one has

1

ωj0(k)− ωj(k)
=

1

(ωj0(k)− ω0)− (ωj(k)− ω0)
∼ 1

k(v0 − v) ,

where v0 = limk→0 ω
′
j0
(k) and v = limk→0 ω

′
j(k). We know that v0 − v �= 0 since

Assumption 2.1 assures us that two different sheets are never tangent.
Therefore, the expression given by (2.1) can be bounded for |k| > δ by C/δ, which

yields both the L−1-regularity result for VII and the estimate of the lemma.

2.1.1. Annihilating R−1. Annihilating the ε−
1
2 term in expansion (1.7) is

equivalent to L(Dt0,z0)U0 = 0. Thanks to Lemma 1.7, this equation is equivalent to
the polarization condition

π(Dt0,z0)U0 = U0.

Moreover, thanks to Proposition 1.10, U0 can be decomposed in the form U0 = U0,I +
U0,II , where U0,I has a discrete spectrum and U0,II a purely continuous one.

Looking for U0,I of the form U0,I,1(τ, T,X, Y, Z)e
iθ + c.c., the polarization con-

dition π(Dt0,z0)U0 = U0 gives

π(ωl,−kl)U0,I,1 = U0,I,1 and π(Dt0,z0)U0,II = U0,II .(2.2)

Remark 2.2. The notation c.c. used above denotes the complex conjugate of
the preceding expression. As we are concerned with real-valued solutions of (1.1)
and (1.5), we always assume that in the Fourier expansion of the discrete spectrum
components, one has Uj,I,k = Uj,I,−k.

2.1.2. Annihilating R0. Annihilating the ε
1
2 term in expansion (1.7) reads

iL(Dt0,z0)U1 + L1(∂)U0 = 0.
As for U0, decompose U1 in the form U1 = U1,I + U1,II , where U1,I has a dis-

crete spectrum and U1,II a purely continuous one. We also look for U1,I in the form
U1,I,1(τ, T,X, Y, Z)e

iθ + c.c., so that the equation R0 = 0 may read{
iL(ωl,−kl)U1,I,1 + L1(∂)U0,I,1 = 0,

iL(Dt0,z0)U1,II + L1(∂)U0,II = 0.
(2.3)

With the polarization condition (2.2) and Lemma 1.7, the first equation of (2.3) is
equivalent to{

π(ωl,−kl)L1(∂)π(ωl,−kl)U0,I,1 = 0,

(Id− π(ωl,−kl))U1,I,1 = iL−1(ωl,−kl)A(∂X,Y,Z)U0,I,1.
(2.4)

Since Assumption 2.2 and Lemma 2.1 assure us that A(∂X,Y,Z)U0,II is L−1-regular,
we know, thanks to Lemma 1.9, that the second equation of (2.3) is equivalent to{

π(Dt0,z0)L1(∂)π(Dt0,z0)U0,II = 0,

(Id− π(Dt0,z0))U1,II = iL−1(Dt0,z0)A(∂X,Y,Z)U0,II .
(2.5)

Remark 2.3. At this stage, only the component (Id − π(ωl,−kl))U1,I,1 is deter-
mined. We can therefore choose to take the other component equal to zero, i.e.,

π(ωl,−kl)U1,I,1 = 0.(2.6)

We cannot do the same thing for π(Dt0,z0)U1,II because this component will play an
important role in the solvability of the profile equations.
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2.1.3. Annihilating R1. Annihilating the ε
3
2 term in expansion (1.7) yields

iL(Dt0,z0)U2+L1(∂)U1+∂τU0+f(U0) = 0. Thanks to Proposition 1.10, this equation
can be decomposed into a discrete spectrum component,

−iL(ωl,−kl)U2,I = L1(∂)U1,I + ∂τU0,I + f(U0)I ,(2.7)

and a purely continuous one,

−iL(Dt0,z0)U2,II = L1(∂)U1,II + ∂τU0,II + f(U0)II .(2.8)

The nonlinearity f(U0)I in (2.7) is given by f(U0)I = f(U0,I), which is a trigonometric
polynomial,

f(U0,I) = f ′(U0,I,1)(U0,I,1)e
iθ + f(U0,I,1)e

i3θ + c.c.(2.9)

Since the third harmonic is created by the nonlinearity, we must seek U2,I in the form

U2,I(τ, T,X, Y, Z, θ) = U2,I,1(τ, T,X, Y, Z)e
iθ + U2,I,3(τ, T,X, Y, Z)e

i3θ + c.c.

According to Assumption 2.1, the component U2,I,3 can be found by elliptic inversion
since L(3ωl,−3kl) is then nonsingular,

U2,I,3 = L(3ωl,−3kl)−1f(U0,I,1).(2.10)

The remaining component U2,I,1 satisfies

iL(ωl,−kl)U2,I,1 + L1(∂)U1,I,1 + ∂τU0,I,1 + f
′(U0,I,1)(U0,I,1) = 0,

and thanks to Lemma 1.7, we get{
π(ωl,−kl)

(
L1(∂)U1,I,1 + ∂τU0,I,1 + f

′(U0,I,1)(U0,I,1)
)
= 0,

(Id− π(ωl,−kl))U2,I,1 = iL−1(ωl,−kl)
(
L1(∂)U1,I,1 + ∂τU0,I,1 + f

′(U0,I,1)(U0,I,1)
)
.

Using the polarization condition (2.2) and equations (2.4) and (2.6), the first equation
of the previous system reads

∂τU0,I,1 + iπ(ωl,−kl)A(∂X,Y,Z)L−1(ωl,−kl)A(∂X,Y,Z)π(ωl,−kl)U0,I,1

+ π(ωl,−kl)f ′(U0,I,1)(U0,I,1) = 0,(2.11)

while the second equation gives (Id− π(ωl,−kl))U2,I,1 in terms of U0,I,1,

(I − π(ωl,−kl))U2,I,1

= iL−1(ωl,−kl)
(
iL1(∂)L−1(ωl,−kl)A(∂X,Y,Z)U0,I,1 + f

′(U0,I,1)(U0,I,1)
)
.(2.12)

While the analysis of the discrete and the continuous spectrum components was
formally the same in section 2.1.2, this is no longer true here. This is due to the fact
that Assumption 2.2 cannot ensure that the right-hand side of (2.8) is L−1-regular.
Therefore, Lemma 1.9 cannot be invoked to solve this equation.

Because of this difficulty, we cannot in general find U2 in Es
τ∗ such that R1 = 0.

However, U2 ∈ Es
τ∗ may be chosen in such a way that R1 is very small. We first

introduce Alterman’s infrared cutoff filter.
Definition 2.2. Let ψ be defined as follows: ψ(k) = 1 for |k| > 1 and ψ(k) = 0

otherwise. For all k ∈ R, ψδ(k) is defined as ψδ(k) = ψ(k/δ), where δ > 0 is the
same as in Assumption 2.2.
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Remark 2.4. The function ψ introduced above is not smooth, while Alterman’s
filter is smooth. Since our framework allows it, we have made this choice in order to
lighten a few equations. In particular, we have the equivalence Sp V ⊂ {(ω, k), |k| >
δ} ⇐⇒ ψδ(Dz0)V = V.

Since no condition has been found at this stage on π(Dt0,z0)U1,II , we can impose
a condition of absence of low frequencies on this component and, more precisely, that

ψδ(Dz0)π(Dt0,z0)U1,II = π(Dt0,z0)U1,II .(2.13)

Instead of solving (2.8), we solve the approximate equation (2.8)δ defined as

−iL(Dt0,z0)U2,II = L1(∂)U1,II + ∂τU0,II + ψ
δ(Dz0)f(U0)II .

Using (2.5), this equation reads

−iL(Dt0,z0)U2,II = iL1(∂)L−1(Dt0,z0)A(∂X,Y,Z)U0,II + L1(∂)π(Dt0,z0)U1,II

+∂τU0,II + ψ
δ(Dz0)f(U0)II .(2.14)

Thanks to the presence of the filter ψδ, to (2.13), and to Assumption 2.2, the right-
hand side of this equation is L−1-regular, so that (2.14) is equivalent to

∂τU0,II + iπ(Dt0,z0)A(∂X,Y,Z)L−1(Dt0,z0)A(∂X,Y,Z)π(Dt0,z0)U0,II

+ π(Dt0,z0)L1(∂)π(Dt0,z0)U1,II

+ π(Dt0,z0)ψ
δ(Dz0)[f(U0)]II = 0(2.15)

and

(Id− π(Dt0,z0))U2,II = −L−1(Dt0,z0)L1(∂)L−1(Dt0,z0)A(∂X,Y,Z)U0,II

+iL−1(Dt0,z0)A(∂X,Y,Z)π(Dt0,z0)U1,II

+iL−1(Dt0,z0)ψ
δ(Dz0)f(U0)II .(2.16)

Remark 2.5. (i) As said above, R1 = 0 is not solved exactly. If we can find U0, U1,
and U2 solutions of (2.2), (2.4)–(2.6), (2.10), (2.11)–(2.12), (2.13), and (2.15)–(2.16),
we then have R−1 = R0 = 0 but only

R1 = (1− ψδ(Dz0))f(U0)II .(2.17)

We will see later that this term tends towards zero as δ → 0.
(ii) Only the components (Id−π(ωl,−kl))U2,I,1 and (Id−π(Dt0,z0))U2,II of U2,I,1

and U2,II are determined. We can therefore choose to take

π(ωl,−kl)U2,I,1 = 0 and π(Dt0,z0)U2,II = 0.(2.18)

2.1.4. Simplification of the profile equations. According to the previous
results, one has

U0(τ, T,X, Y, Z, t0, z0) = U0,I,1(τ, T,X, Y, Z)e
iθ + c.c.+ U0,II(τ, T,X, Y, Z, t0, z0),

with

π(ωl,−kl)U0,I,1 = U0,I,1 and π(Dt0,z0)U0,II = U0,II .(2.19)
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Moreover U0,I,1 must satisfy
π(ωl,−kl)L1(∂)π(ωl,−kl)U0,I,1 = 0,

∂τU0,I,1 + iπ(ωl,−kl)A(∂X,Y,Z)L−1(ωl,−kl)A(∂X,Y,Z)π(ωl,−kl)U0,I,1

+π(ωl,−kl)f ′(U0,I,1)(U0,I,1) = 0,

(2.20)

and the purely continuous spectrum component U0,II must satisfy
π(Dt0,z0)L1(∂)π(Dt0,z0)U0,II = 0,

∂τU0,II + iπ(Dt0,z0)A(∂X,Y,Z)L−1(Dt0,z0)A(∂X,Y,Z)π(Dt0,z0)U0,II

+π(Dt0,z0)L1(∂)π(Dt0,z0)U1,II + π(Dt0,z0)ψ
δ(Dz0)[f(U0)]II = 0,

(2.21)

where we recall that π(Dt0,z0)U1,II must satisfy the condition of absence of low fre-
quencies (2.13).

Before these systems are simplified, a new symbol,M, is introduced.
Definition 2.3. We denote byM(ω,K) the symbol defined for all (ω,K) ∈ R

1+3

as

M(ω,K) = wId+K1A1 +K2A2 +K3A3 + L0/i,

where K = (K1,K2,K3).
We also define the orthogonal projector πM(ω,K) onto kerM(ω,K), the partial

inverse M−1(ω,K) of M(ω, k), and denote by CM the characteristic variety associ-
ated toM, i.e., the set of points (ω,K) whereM(ω,K) is singular.

We also make the following assumption, satisfied, for instance, by Maxwell sys-
tems in isotropic media.

Assumption 2.3. CM is axisymmetric around (Oω).
We can now state the following proposition.
Proposition 2.4. Suppose that Assumption 2.3 is satisfied and that {(ωl,−kl)}

is a smooth point of CL. One then has the following:
(i) π(ωl,−kl)L1(∂)π(ωl,−kl) = π(ωl,−kl)(∂T + ω′(kl)∂Z);

(ii)
π(ωl,−kl)A(∂X,Y,Z)L−1(ωl,−kl)A(∂X,Y,Z)π(ωl,−kl)

= ω′(kl)
2kl

π(ωl,−kl)(∂2
X + ∂2

Y ) +
ω′′(kl)

2 π(ωl,−kl)∂2
Z .

(iii) If VII is a profile with a purely continuous spectrum, then one also has
π(Dt0,z0)L1(∂)π(Dt0,z0)VII = π(Dt0,z0)

(
∂T − ω′(Dz0)∂Z

)VII .
(iv) If, moreover, A(∂X,Y,Z)π(Dt0,z0)VII is L−1-regular, then

π(Dt0,z0)A(∂X,Y,Z)L−1(Dt0,z0)A(∂X,Y,Z)π(Dt0,z0)VII
=
ω′(Dz0)

2Dz0

π(Dt0,z0)(∂
2
X + ∂2

Y )VII +
ω′′(Dz0)

2
∂2
ZVII .

Proof. If (ω,K) is a smooth point of CM, then we can define a local parameteri-
zation ωM(K) of CM near (ω,K). We know [8] that

πM(ω,K)AjπM(ω,K) = −∂jωM(K)πM(ω,K), j = 1, 2, 3.

As (ωl,−kl) ∈ CL, it is easy to see that (ωl, (0, 0,−kl)) ∈ CM. Moreover, since
(ωl,−kl) is a smooth point of CL, (ωl, (0, 0,−kl)) is a smooth point of CM thanks to
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Assumption 2.3. Thanks to the same assumption, a local parameterization may be
used to write ωM(K) = ω(|K|), where ω(·) is a local parameterization of CL near
(ωl,−kl).

Taking K = (0, 0,−kl), one therefore has

πM(ωl, (0, 0,−kl))AjπM(ωl, (0, 0,−kl)) = −
Kj

kl
ω′(kl).

Since K1 = K2 = 0, K3 = −kl, and πM (ωl,K) = π(ωl,−kl), we obtain
π(ωl,−kl)A1π(ωl,−kl) = 0,
π(ωl,−kl)A2π(ωl,−kl) = 0,
π(ωl,−kl)A3π(ωl,−kl) = ω′(kl),

which proves point (i).
The same proof shows that π(ω, k)A1π(ω, k) = π(ω, k)A2π(ω, k) = 0 and similarly

π(ω, k)A3π(ω, k) = −ω′(k) for every smooth point (ω, k) of CL. Since we know by
Assumption 2.1 that the set of the singular points of CL is discrete and hence has
zero measure for FVII (because the spectrum of VII is purely continuous), we can
conclude that

π(Dt0,z0)A1π(Dt0,z0)VII = π(Dt0,z0)A2π(Dt0,z0)VII = 0

and that π(Dt0,z0)A3π(Dt0,z0)VII = −ω′(Dz0)VII , which proves point (iii).
For (ii), we still write (0, 0,−kl) = K. Thanks to [8], we know that

πM(ωl,K)AiM−1(ωl,K)AjπM(ωl,K) =
1

2
πM(ωl,K)∂2

ijωM(K)

=
1

2
πM(ωl,K)

(
−KiKj

|K|3 ω
′(|K|) + KiKj

|K|2 ω
′′(|K|) + δij

|K|ω
′(|K|)

)
,

where δij denotes Kronecker’s symbol, δij = 1 if i = j and 0 otherwise.
Since K1 = K2 = 0, one has

πM(ωl,K)A1M−1(ωl,K)A2πM(ωl,K) = 0,

πM(ωl,K)A2M−1(ωl,K)A1πM(ωl,K) = 0,

and since K3 = −kl,
πMA1M−1(ωl,K)A1πM = πMA2M−1(ωl,K)A2πM

=
ω′(kl)
2kl

πM(ωl,K)

and πMA3M−1(ωl,K)A3πM = ω′′(kl)
2 πM.

Since πM(ωl,K) = π(ωl,−kl) andM−1(ωl,K) = L−1(ωl,−kl) we obtain (ii).
The same reasoning as in (iii) yields (iv).
Therefore, according to Proposition 2.4 and systems (2.20), (2.21), the leading

term U0(τ, T,X, Y, Z, t0, z0) = U0,I,1(τ, T,X, Y, Z)e
iθ+ c.c.+ U0,II(τ, T,X, Y, Z, t0, z0)

is found by solving (if possible)

π(ωl,−kl)U0,I,1 = U0,I,1,

(∂T + ω′(kl)∂Z)U0,I,1 = 0,

∂τU0,I,1 + i
ω′(kl)
2kl

(∂2
X + ∂2

Y )U0,I,1 + i
ω′′(kl)

2
∂2
ZU0,I,1

+π(ωl,−kl)f ′(U0,I,1)(U0,I,1) = 0

(2.22)
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and 

π(Dt0,z0)U0,II = U0,II ,

(∂T − ω′(Dz0)∂Z)U0,II = 0,

∂τU0,II + (∂T − ω′(Dz0)∂Z)π(Dz0)U1,II + i
ω′(Dz0)

2Dz0

(∂2
X + ∂2

Y )U0,II

+i
ω′′(Dz0)

2
∂2
ZU0,II + ψ

δ(Dz0)π(Dt0,z0)[f(U0)]II = 0.

(2.23)

Remark 2.6. (i) The notation
ω′(Dz0 )

2Dz0
is ambiguous since one could think that this

Fourier multiplier does not depend on Dt0 . In fact, for any k ∈ R, there are several ωj
such that (ωj , k) ∈ CL. In Fourier variables, ω′(Dz0) therefore reads Fω′(Dz0)(ω, k) =
ω′j(k), where the subscript j is such that (ωj , k) = (ω, k) and thus depends on w.

(ii) In general
ω′(Dz0 )

2Dz0
is not a Fourier multiplier of Es

τ∗ . However, it is well defined

here since it is applied to U0,II , which satisfies Assumption 2.2.

2.2. Analysis of the nonlinearity. We have to work more on these profile
equations before trying to solve them. In particular, it is essential to simplify the
nonlinearity [f(U0)]II which appears in (2.23). In this section, we show a striking
result. The nonlinearity [f(U0)]II is in fact linear.

We recall that there exists a trilinear mapping F such that F (u, u, u) = f(u) for
all u ∈ Cn. The nonlinearity f(U0)II which appears in the evolution equation of U0,II

therefore reads

F (U0,I + U0,II ,U0,I + U0,II ,U0,I + U0,II)]II = F (U0,II ,U0,II ,U0,II)

+ F (U0,I ,U0,II ,U0,II) + F (U0,II ,U0,I ,U0,II) + F (U0,II ,U0,II ,U0,I)

+
(
F (U0,I,1,U0,I,1,U0,II) + F (U0,II ,U0,I,1,U0,I,1) + F (U0,I,1,U0,II ,U0,I,1)

)
e2iθ

+
(
F (U0,I,1,U0,I,1,U0,II) + F (U0,II ,U0,I,1,U0,I,1) + F (U0,I,1,U0,II ,U0,I,1)

)
e−2iθ

+ F (U0,I,1,U0,I,1,U0,II) + F (U0,I,1,U0,I,1,U0,II) + F (U0,I,1,U0,II ,U0,I,1)

+ F (U0,I,1,U0,II ,U0,I,1) + F (U0,II ,U0,I,1,U0,I,1) + F (U0,II ,U0,I,1,U0,I,1).

This expression can be simplified a lot because the role of the components with a
purely continuous spectrum in the nonlinearity is not often efficient. This is the
object of the following lemma.

Lemma 2.5. Suppose Assumption 2.1 is satisfied and let VII ∈ Es
τ∗ be a profile

with purely continuous spectrum and such that Sp VII ⊂ CL. Take also a, b ∈ C
n.

Then one has
(i) π(Dt0,z0)F (VII ,VII ,VII) = 0;
(ii) π(Dt0,z0)F (ae

iθ,VII ,VII) = π(Dt0,z0)F (ae
−iθ,VII ,VII) = 0;

(iii) π(Dt0,z0)F (ae
iθ, beiθ,VII) = π(Dt0,z0)F (ae

−iθ, be−iθ,VII) = 0.
Proof. Let VII ∈ Es

τ∗ be as in the lemma. For (τ, T ) fixed, we introduce
µ := FVII(τ, T ) and denote by v(µ) the total variation of µ. Thanks to the Radon–
Nikodým property, we can write, for all Borel sets E of R

2,

µ(E) =

∫
E

rµ(ξ)v(µ)(dξ),

where rµ is an Hs(R3)n-valued integrable function such that ||rµ(ξ)||Hs = 1 for v(µ)
for almost all ξ.
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Introducing ν := F(π(Dt0,z0)F (VII ,VII ,VII)), the first point of the lemma will
be proved if we can show that ν = 0, i.e., that v(ν)(R2) = 0. One has

v(ν)(R2) =

∫
R2

∫
R2

∫
R2

||π(ξ1 + ξ2 + ξ3)F (rµ(ξ1), rµ(ξ2), rµ(ξ3))||Hs(R3)n

×v(µ)(dξ1)v(µ)(dξ2)v(µ)(dξ3).

Since Sp VII ⊂ CL, one can take rµ(ξ) = 0 if ξ /∈ CL. Hence,

v(ν)(R2) =

∫
CL

∫
CL

∫
CL
||π(ξ1 + ξ2 + ξ3)F (rµ(ξ1), rµ(ξ2), rµ(ξ3))||Hs(R3)n

×v(µ)(dξ1)v(µ)(dξ2)v(µ)(dξ3)
=

∫
CL

∫
CL

[∫
CL
||π(ξ1 + ξ2 + ξ3)F (rµ(ξ1), rµ(ξ2), rµ(ξ3))||Hs(R3)nv(µ)(dξ3)

]
×v(µ)(dξ1)v(µ)(dξ2).

Notice that if ξ1+ ξ2 �= 0, then the set of ξ ∈ CL such that ξ1+ ξ2+ ξ ∈ CL is discrete.
Indeed following [6] and [5], the set of ξ ∈ CL such that ξ1 + ξ2 + ξ ∈ CL is either a
sheet of CL or an algebraic submanifold of CL of strictly lower dimension. Since CL is
an algebraic manifold of dimension one, the set of ξ ∈ CL such that ξ1 + ξ2 + ξ ∈ CL
is then either a sheet of CL or a discrete set. The first case is not possible thanks to
Assumption 2.1 because we would have two parallel sheets of CL. Therefore, the set of
points ξ ∈ CL such that ξ1 + ξ2 + ξ ∈ CL is discrete if ξ1 + ξ2 �= 0. Since v(µ)({ξ}) = 0
for all ξ ∈ R

2, we can conclude that∫
CL
||π(ξ1 + ξ2 + ξ3)F (rµ(ξ1), rµ(ξ2), rµ(ξ3))||Hs(R3)nv(µ)(dξ3) = 0,

when ξ1 + ξ2 �= 0.
Therefore, one has

v(ν)(R2) =

∫
CL

∫
CL
||π(ξ3)F (rµ(ξ1), rµ(−ξ1), rµ(ξ3))||Hs(R3)nv(µ)({−ξ1})

×v(µ)(dξ1)v(µ)(dξ3).

Since v(µ)({ξ}) = 0 for all ξ ∈ R
2, the above quantity is equal to 0, i.e., v(ν)(R2) = 0,

which proves point (i).
For (ii), introduce λ := F(π(Dt0,z0)F (ae

iθ,VII ,VII)). One has

v(λ)(R2) =

∫
CL

∫
CL
||π((ωl,−kl) + ξ1 + ξ2)F (a, rµ(ξ1), rµ(ξ2))||Hs(R3)n

×v(µ)(dξ1)v(µ)(dξ2).

With the same reasoning as in (i), one can prove that this expression vanishes, thus
yielding point (ii).

Point (iii) is a direct consequence of Assumption 2.1 and, more precisely, of the
fact that two different sheets of CL are never parallel.

Remark 2.7. Lemma 2.5 can easily be generalized to N -linear nonlinear functions
F . When VII appears twice or more in the arguments of F , the term vanishes. When
it appears once only, the spectrum of this nonlinear term is a translation of the
spectrum of VII , and hence this nonlinear term vanishes unless the intersection of
this spectrum with CL has the same dimension as CL.
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Thanks to Lemma 2.5, many terms vanish when we apply the operator π(Dt0,z0) to
the nonlinearity. One then finds π(Dt0,z0)[f(U0)]II = π(Dt0,z0)F

S(U0,I,1,U0,I,1,U0,II),
where the symmetrized function FS associated to F is defined as

FS(a, b, c) = F (a, b, c) + F (a, c, b) + F (b, a, c) + F (c, a, b) + F (b, c, a) + F (c, b, a)

for all a, b, c ∈ C
n.

The equations for the profile U0,II are thus

π(Dt0,z0)U0,II = U0,II ,

(∂T − ω′(Dz0)∂Z)U0,II = 0,

∂τU0,II + (∂T − ω′(Dz0)∂Z)U1,II + i
ω′(Dz0)

2Dz0

(∂2
X + ∂2

Y )U0,II

+i
ω′′(Dz0 )

2 ∂2
ZU0,II + ψ

δ(Dz0)π(Dt0,z0)F
S(U0,I,1,U0,I,1,U0,II) = 0,

(2.24)

and are therefore coupled with the equations found above for the amplitude U0,I,1,

π(ωl,−kl)U0,I,1 = U0,I,1,

(∂T + ω′(kl)∂Z)U0,I,1 = 0,

∂τU0,I,1 + i
ω′(kl)
2kl

(∂2
X + ∂2

Y )U0,I,1 + i
ω′′(kl)

2
∂2
ZU0,I,1

+π(ωl,−kl)f ′(U0,I,1)(U0,I,1) = 0.

(2.25)

Remark 2.8. One can see that the evolution equation for the oscillating mode is
the usual uncoupled NLS equation. The evolution equation of U0,II is in turn linear
but coupled with U0,I,1. The next step is to prove that this coupling is not efficient.
This is the object of the next section.

2.3. Solving the profile equations in absence of low frequencies. If sys-
tem (2.25) can easily be solved by standard Picard iterates (see [8], for instance), this
is not the case for system (2.24), which deals with the continuous spectrum compo-
nent of U0. Moreover, one can see that it is not possible to take π(Dt0,z0)U1,II =
0 as for the discrete spectrum component, since the term FS(U0,I,1,U0,I,1,U0,II)
makes the last equation of (2.24) obviously incompatible with the transport equa-
tion (∂T − ω′(Dz0)∂Z)U0,II = 0.

In fact, as in the papers where various group velocities are studied [10], [11], only
a good choice of π(Dt0,z0)U1,II = 0 can allow the solubility for (2.24). Inspired by
the method and arguments of [10] and [11] (i.e., interactions between components
traveling at different speeds do not affect the main profile), we decompose (2.24) as
follows: 

π(Dt0,z0)U0,II = U0,II ,

(∂T − ω′(Dz0)∂Z)U0,II = 0,

∂τU0,II + i
ω′(Dz0)

2Dz0

(∂2
X + ∂2

Y )U0,II + i
ω′′(Dz0)

2
∂2
ZU0,II = 0,

(∂T − ω′(Dz0)∂Z)U1,II = −ψδ(Dz0)π(Dt0,z0)F
S(U0,I,1,U0,I,1,U0,II).

(2.26)

We can now state a solubility result, provided that the function U0
II has no low

frequencies.
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Proposition 2.6. Let σ ≥ s, and let R > 0 be such that U0 = U0
I +U0

II ∈ Aσ0
and ‖U0‖Aσ

0
≤ R. Suppose, moreover, that U0

I = U0
I,1e

iθ + c.c. and

π(ωl,−kl)U0
I,1 = U0

I,1, π(Dt0,z0)U
0
II = U0

II ,

and that there exists δ > 0 such that Sp U0
II ⊂ {(ω, k), |k| > δ}.

Then there exists τ∗2 > 0, which depends on R but not on ε nor on δ, such that
there exists
• a unique U0,I,1 = π(ωl,−kl)U0,I,1 ∈ Cb([0, τ∗2 ]× RT , H

σ(R3)n) solving

(∂T + ω′(kl)∂Z)U0,I,1 = 0,

∂τU0,I,1 + i
ω′(kl)
2kl

(∂2
X + ∂2

Y )U0,I,1 + i
ω′′(kl)

2
∂2
ZU0,I,1

+π(ωl,−kl)f ′(U0,I,1)(U0,I,1) = 0,

U0,I,1|τ=T=0 = U0
I,1;

(2.27)

• a unique U0,II = π(Dt0,z0)U0,II ∈ Aστ∗
2
solving

(∂T − ω′(Dz0)∂Z)U0,II = 0,

∂τU0,II + i
ω′(Dz0)

2Dz0

(∂2
X + ∂2

Y )U0,II + i
ω′′(Dz0)

2
∂2
ZU0,II = 0,

U0,II |τ=T=0 = U0
II ;

(2.28)

• a unique U1,II ∈ Eσ
τ∗
2
solving

(Id− π(Dt0,z0))U1,II = iL−1(Dt0,z0)A(∂X,Y,Z)U0,II ,

ψδ(Dz0)π(Dt0,z0)U1,II = π(Dt0,z0)U1,II ,

(∂T − ω′(Dz0)∂Z)π(Dz0,t0)U1,II

= −ψδ(Dz0)π(Dt0,z0)F
S(U0,I,1,U0,I,1,U0,II),

U1,II |τ=T=0 = 0.

(2.29)

Moreover U0,II satisfies Assumption 2.2 with the same δ as above, and we have the
upper bound ‖U0‖Aσ

τ∗
2

≤ 2R.

Proof. The proof of the existence and the uniqueness of the solution of (2.27) is
done by standard Picard iterates, as in [8], for instance. Since U0,I,1 must solve the
transport equation (∂T + ω′(kl)∂Z)U0,I,1 = 0, there exists U0,I,1 ∈ C([0, τ∗2 ], Hs(R3)n)
such that

U0,I,1(τ, T,X, Y, Z) = U0,I,1(τ, Z − ω′(kl)T,X, Y ).(2.30)

Moreover, the Schrödinger equation that U0,I,1 must satisfy implies, for U0,I,1,

∂τU0,I,1 + i
ω′(kl)
2kl

(∂2
X + ∂2

Y )U0,I,1 + i
ω′′(kl)

2
∂2
ZU0,I,1 + π(ωl,−kl)f ′(U0,I,1)(U0,I,1) = 0.

Existence and uniqueness of such a U0,I,1 ∈ C([0, τ∗2 ], Hs(R3)n) can be proved by
standard Picard iterates, and we thus obtain point (i) of the theorem.

In order to prove (ii), introduce λ := FU0,II and λ0 := FU0
II . There is a unique

solution of (2.28) in the sense of distributions, given by

λ̂(τ, T ) = e−iτ(
ω′(k)
2k (η2

1+η2
2)+

ω′′(k)
2 η2

3)eiTω
′(k)η3 λ̂0,(2.31)
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where ̂ denotes the Fourier transform with respect to the variables (X,Y, Z), and

the measure λ̂ is defined for all Borel sets E of R
2 by λ̂(E) := λ̂(E).

The distribution λ defined above is in Cb([0, τ∗2 ]× RT ,BV(R2
ξ , H

σ(R3)n)), as one
can prove with the same arguments as in Theorem 4 of [12], which proves point (ii)
of the theorem.

By the explicit expression (2.31) and under the assumption made on U0
II , we also

know that U0,II satisfies Assumption 2.2 and that ||U0,II ||Aσ
τ∗
2

≤ R.

Before solving the next equation, notice that π(Dt0,z0)F
S(U0,I,1,U0,I,1,U0,II) ∈

Aστ∗
2
, thanks to the above results and to Proposition 1.3 . We denote by µ the Fourier

transform of this profile and also denote by ν the Fourier transform of the profile
U1,II . The last equation of system (2.29) has a unique solution in the sense of the
distributions, which reads

ν̂(τ, T ) = −
∫ T

0

ei(T − u)ω′(k)η3ψδ(k)µ̂(τ, u)du.(2.32)

Here again, we can prove that ν is in C([0, τ∗2 ]×RT ,BV(R2
ξ , H

σ(R3)n)) so that U1,II ∈
Eσ
τ∗
2
. From this expression it is also clear that Sp U1,II ⊂ {(ω, k), |k| > δ}, i.e., that

the first equation of (2.29) is also satisfied.
Remark 2.9. (i) The profile equations are solved in Eσ

τ∗
2
for all σ ≥ s, not only

in Es
τ∗
2
, because if one wants the residual term Rε to be in Es

τ∗
2
, U0 must be in Es+4

τ∗
2

,

as we will see in the next section.
(ii) The remaining profiles (Id − π(ωl,−kl))U1,I,1, (Id − π(Dt0,z0))U1,II , and U2

can be found in terms of the profiles given by the above theorem, thanks to the
expressions given by (2.4)–(2.5), (2.12), (2.16), and (2.18).

2.4. Stability in the absence of low frequencies. In this part, we want to
prove that the solution of diffractive optics gives a good approximation of the exact
solution of (1.1), provided that low frequencies are excluded. To get this result, we
prove that the residual associated to the approximate solution is small and that the
approximate solution is close to the exact solution uε of (1.1).

Suppose U0 and π(Dt0,z0)U1,II are given by Proposition 2.6 with initial condi-
tion U0 without frequencies lower than δ > 0. U0,II then satisfies Assumption 2.2,
π(Dt0,z0)U1,II fulfills condition (2.13), and U2,I and U2,II can then be constructed
with the results of section 2.1. Before proving that Uε = U0 + εU1 + ε2U2 is an ap-
proximate solution of the singular equation (1.5) in the sense that the residual remains
small, we need estimates of the profiles Uj , j = 0, 1, 2, and of the residual terms Rj ,
j ≥ 2.

Lemma 2.7. Let σ ≥ s + 4, σ′ ≥ s, and δ ∈ (0, 1) and suppose U0 ∈ Aστ∗
2
and

π(Dt0,z0)U1,II ∈ Eσ
τ∗
2
are given by Proposition 2.6. Take U1,I , (Id − π(Dt0,z0))U1,II

and U2 as computed in section 2.1. Then
(i) the two components U1,I and U1,II of U1 are controlled as follows:

‖U1,I‖Aσ′
τ∗
2

≤ C‖U0,I‖Aσ′+1

τ∗
2

, ‖(Id− π(Dt0,z0))U1,II‖Aσ′
τ∗
2

≤ C

δ
‖U0,II‖Aσ′+1

τ∗
2

,

and

‖π(Dt0,z0)U1,II(T )‖Eσ′
τ∗
2

≤ CT‖U0,I‖2Aσ′
τ∗
2

‖U0,II‖Aσ′
τ∗
2

∀T ≥ 0;
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(ii) the discrete spectrum component U2,I of U2 is controlled as follows:

‖U2,I‖Aσ′
τ∗
2

≤ C
(
‖U0,I‖Aσ′+2

τ∗
2

+ ‖U0,I‖3Aσ′
τ∗
2

)
,

while U2,II satisfies

‖U2,II‖Aσ′
τ∗
2

≤ C

δ

(
1

δ
‖U0,II‖Aσ′+2

τ∗
2

+ ‖U0‖3Aσ′
τ∗
2

+ T‖U0,I‖2Aσ′+1

τ∗
2

‖U0,II‖Aσ′+1

τ∗
2

)
;

(iii) rough estimates of the profiles Rj≥2 are given by

‖Rj,I‖Aσ′
τ∗
2

≤ h1

(
‖U0,I‖Aσ′+4

τ∗
2

)
and ‖Rj,II(T )‖Eσ′

τ∗
2

≤ T

δ6
h2

(
‖U0‖Aσ′+4

τ∗
2

)
∀T ≥ 0,

where h1 and h2 are smooth positive functions defined on R
+ and independent of

δ ∈ (0, 1) and of T ≥ 0.
Proof. The estimate of U1,I is easily deduced from (2.4) and (2.6), while Lemma

2.1 and (2.5)–(2.6) yield the estimate of (Id − π(Dt0,z0))U1,II . The estimate of
π(Dt0,z0)U1,II is a consequence of (2.32).

The modes ±3 of U2,I are controlled using (2.10) together with the algebra prop-

erties of Aσ
′

τ∗
2
. The modes ±1 are controlled as stated in the lemma as a consequence

of (2.12) and (2.18). Lemma 2.1 and (2.16), (2.18) are used to estimate U2,II .
The estimates of the profiles Rj follow directly from the explicit formulae of these

profiles given in (1.8), from Lemma 2.1 and the equations satisfied by U1≤j≤3, and
from the estimates of these profiles computed above.

Proposition 2.8. Let σ ≥ s+4 and δ ∈ (0, 1) and suppose U0 and π(Dt0,z0)U1,II

are as given by Proposition 2.6. Take U1,I , (Id− π(Dt0,z0))U1,II and U2 as computed
in section 2.1 and let Uε = U0 + εU1 + ε

2U2 ∈ Es+2
τ∗
2
⊂ Es

τ∗
2
.

Then the profile Uε defined as Uε(τ,X, Y, Z, t0, z0) = Uε(τ, τ/ε,X, Y, Z, t0, z0) is
in Bs+2

τ∗
2
and is bounded uniformly in ε ∈ (0, 1).

If δ is small enough, Uε is an approximate solution of the singular equation (1.5).
More precisely, for any µ > 0 there exists δ(µ) > 0 such that if 0 < δ < δ(µ), Uε
satisfies

lim sup
ε→0

‖∂τUε+ε−1(A1∂X+A2∂Y +A3∂Z)Uε+ε−2(∂t0+A3∂z0+L0)Uε+f(Uε)‖ < µ/3,

where the norm is taken in Bs
τ∗
2
.

Proof. Define, for j = 1, 2, 3, Uεj(τ,X, Y, Z, t0, z0) = Uj(τ, τ/ε,X, Y, Z, t0, z0).
One has Uε0 ∈ Bs+2

τ∗
2

since U0 ∈ As+2
τ∗
2

. Similarly, Uε1,I and (Id− π(Dt0,z0))Uε1,II are in

Bs+2
τ∗
2

. Their norm in this space is obviously uniformly bounded in ε ∈ (0, 1).

Since π(Dt0,z0)U1,II �∈ As+2
τ∗
2

, we cannot apply the same reasoning for this com-

ponent. However, point (i) of Lemma 2.7 asserts that επ(Dt0,z0)U1,II satisfies, for all
T ≥ 0,

‖επ(Dt0,z0)U1,II(T )‖Es+2

τ∗
2

≤ εT‖U0,I‖2As+2

τ∗
2

‖U0,II‖As+2

τ∗
2

,

and since one has

‖π(Dt0,z0)Uε1,II‖Bs+2

τ∗
2

≤ sup
T∈[0,τ∗

2 /ε]

‖π(Dt0,z0)U1,II(T )‖Es+2

τ∗
2

,
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we can conclude that

‖επ(Dt0,z0)Uε1,II‖Bs+2

τ∗
2

≤ τ∗2 ‖U0,I‖2As+2

τ∗
2

‖U0,II‖As+2

τ∗
2

.

Thus, επ(Dt0,z0)Uε1,II is in Bs+2
τ∗
2

and is uniformly bounded with respect to ε ∈ (0, 1).

The same thing can be said about Uε2,II , which proves that Uε ∈ Bs+2
τ∗
2

, with uniformly

bounded norm.
We recall that

∂τUε+ε−1(A1∂X+A2∂Y +A3∂Z)Uε+ε−2(∂t0+A3∂z0+L0)Uε+f(Uε) =
7∑

j=−1

εj−1Rεj ,

where the profiles Rεj are defined as Rεj(τ,X, Y, Z, t0, z0) = Rj(τ, τ/ε,X, Y, Z, t0, z0)
with Rj given in (1.8).

Thanks to the results of the previous section, we know that Rε−1 = Rε0 = 0 and

that Rε1 = (1− ψδ(Dz0))F
S(U0,I,1,U0,I,1,U0,II). Therefore,

‖Rε1‖Bs
τ∗
2

≤ ‖U0,I‖2As
τ∗
2

‖(1− ψδ(Dz0))Uε0,II‖Bs
τ∗
2

.

The following lemma says that this term goes to zero as δ → 0 uniformly in ε ∈ (0, 1).
Lemma 2.9. Let σ ≥ s and U0,II ∈ Aστ∗

2
be as given by Proposition 2.6; let

Uε0,II ∈ Bσ
τ∗
2
be defined as Uε0,II(τ,X, Y, Z, t0, z0) = U0,II(τ, τ/ε,X, Y, Z, t0, z0).

Then one has (1− ψδ(Dz0))Uε0,II → 0 in Bσ
τ∗
2
as δ → 0 uniformly in ε ∈ (0, 1).

Proof. Let λε := FUε0,II ∈ C([0, τ∗2 ],BV(R2
ξ , H

σ(R3
X,Y,Z)

n)) and λ0 := FU0
II .

Thanks to (2.31), we have

λ̂ε(τ) = e−iτ(
ω′(k)
2k (η2

1+η2
2)+

ω′′(k)
2 η2

3)ei
τ
εω

′(k)η3 λ̂0.

We also know by the Radon–Nikodým property that there exists anHσ-valued integral
function r0 such that ‖r0(ξ)‖ = 1 for v(λ0) for almost all ξ = (ω, k) and such that for
all Borel sets E ⊂ R

2,

λ0(E) =

∫
E

r0(ξ)v(λ0)(dξ),

where v(λ0) denotes the total variation measure associated to λ0. Hence,

λ̂ε(τ)(E) =

∫
E

e−iτ(
ω′(k)
2k (η2

1+η2
2)+

ω′′(k)
2 η2

3)ei
τ
εω

′(k)η3 r̂0(ξ)v(λ0)(dξ),(2.33)

and also

(1− ψδ(k))λ̂ε(τ)(E) =
∫
E

(1− ψδ(k))e−iτ(ω′(k)
2k (η2

1+η2
2)+

ω′′(k)
2 η2

3)ei
τ
εω

′(k)η3

×r̂0(ξ)v(λ0)(dξ).

Therefore

‖(1− ψδ(Dz0))Uε0,II‖Bσ
τ∗
2

= sup
τ∈[0,τ∗

2 ]

|(1− ψδ(k))λ̂ε|BV ≤
∫
E

(1− ψδ(k))v(λ0)(dξ)

and hence tends to zero as δ → 0 uniformly in ε ∈ (0, 1) as a consequence of the
dominated convergence theorem.
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We now turn to investigating the residual terms εj−1Rεj for j ≥ 2.
Using point (iii) of Lemma 2.7 and with the same techniques used above to prove

that επ(Dt0,z0)Uε1,II is uniformly bounded in Bs+2
τ∗
2

, one can prove that εRεj is uni-

formly bounded in Bs
τ∗
2
with respect to ε ∈ (0, 1). Therefore, if j ≥ 3, then the residual

terms εj−1Rεj tend to 0 in Bs
τ∗
2
when ε→ 0 (and with δ > 0 being fixed).

The only remaining term to treat is therefore εRε2. In fact, only its continuous
spectrum component needs care; so far, we know only that it is uniformly bounded
in Bs

τ∗
2
. We recall that R2,II is given by

R2,II = −L1(∂)L−1(Dt0,z0)A(∂X,Y,Z)U0,II + L1(∂)L−1(Dt0,z0)ψ
δ(Dz0)f(U0)II

+iL1(∂)L−1(Dt0,z0)A(∂X,Y,Z)π(Dt0,z0)U1,II + iL−1(Dt0,z0)A(∂X,Y,Z)∂τU0,II

+∂τπ(Dt0,z0)U1,II +
(
f ′(U0)(U1)

)
II
.

In this expression, all the terms which do not involve π(Dt0,z0)U1,II are in Asτ∗
2
, and

their contribution to Rε2 is therefore in Bs
τ∗
2
. Hence, the only possible problems come

from the terms which involve π(Dt0,z0)U1,II . We need the following lemma.
Lemma 2.10. Let σ ≥ s + 4 and π(Dt0,z0)U1,II ∈ Eσ

τ∗
2
be as given by Proposi-

tion 2.6.
Then one has

lim
ε→0

ε‖Uε1,II‖Bσ
τ∗
2

= 0 and lim
ε→0

ε‖∂τUε1,II‖Bσ−2

τ∗
2

= 0.

Proof. For all τ ∈ [0, τ∗2 ], let ν
ε(τ) := FUε1,II(τ). Thanks to (2.32), one then has

ν̂ε(τ) = −
∫ τ/ε

0

e−( τ
ε−t)ω′(k)η3ψδ(k)µ̂(τ, t)dt,(2.34)

where, for all (τ, T ), µ(τ, T ) is defined as µ(τ, T ) := F(FS(U0,I,1,U0,I,1,U0,II)(τ, T )
)
.

We also recall that ̂ denotes the Fourier transform with respect to the variables
(X,Y, Z).

As with (2.33), we can write λ(τ, T ) := FU0,II(τ, T ) in the form

λ̂(τ, T ) =

∫
E

e−iτ(
ω′(k)
2k (η2

1+η2
2)+

ω′′(k)
2 η2

3)eiTω
′(k)η3 r̂0(ξ)v(λ0)(dξ)

for all Borel sets E ⊂ R
2.

Hence, µ̂(τ, T )(E) ∈ Hσ(R3) is given, for all Borel sets E ⊂ R
2 and η ∈ R

3, by

µ̂(τ, T )(E)(η) =

∫
E

∫
R3×R3

FS
(
Û0,I,1(η − η′),̂U0,I,1(η

′′ − η′),

e−iτ(
ω′(k)
2k (η′2

1 +η′2
2 )+

ω′′(k)
2 η′2

3 )eiTω
′(k)η′

3 r̂0(ξ)(η
′)
)
dη′dη′′v(λ0)(dξ).

Combining this equation with (2.34) then yields

|ν̂ε(τ)|BV ≤
∫

R2

‖
∫

R3×R3

∫ τ/ε

0

FS
((
Û0,I,1(· − η′),̂U0,I,1(η

′′ − η′),

e−iτ(
ω′(k)
2k (η′2

1 +η′2
2 )+

ω′′(k)
2 η′2

3 )eitω
′(k)η′

3 r̂0(ξ)(η
′)
)
dtdη′dη′′‖F(Hσ)v(λ0)(dξ)

:=

∫
R2

Gε(ξ)v(λ0)(dξ).
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The family εGε(ξ) can be bounded by a constant (and constants are v(λ0)-integrable);
thanks to Lemma 6 of [11], we also know that εGε(ξ) → 0 as ε → 0, provided that
ω′(k) �= ω′(kl). Since this equality occurs only when k = kl, and since v(λ0)({kl}) = 0,
we thus have εGε(ξ)→ 0 v(λ0) almost everywhere, so that the first part of the lemma
follows from the dominated convergence theorem.

The second part of the lemma can be established with the same techniques.
From the above lemma, it is clear that εRε2 = o(1), which achieves the last step

of the proof of the proposition.
We know that uε almost solves (1.1), but we have not yet proved that the differ-

ence uε − uε remains small. This is what the following theorem shows.
Theorem 2.11. Suppose the characteristic variety CL is as in Assumptions 2.1

and 2.3.
Let U0 = U0

I +U
0
II ∈ As+4

0 such that U0
I = U0

I,1e
iθ+ c.c. and suppose, moreover,

that

π(ωl,−kl)U0
I,1 = U0

I,1 and π(Dt0,z0)U
0
II = U0

II ,

and that Sp U0
II ⊂ {(ω, k), |k| > δ} for a given δ > 0.

Then, for 0 < τ∗ ≤ inf(τ∗1 , τ
∗
2 ), the following holds:

(i) The profile U0 = U0,I +U0,II given by Propostion 2.6 satisfies Assumption 2.2,
and the associated profile Uε0 ∈ Bs

τ∗ approximates the singular equation (1.5) in the
sense that for all µ > 0 there exists a δ(µ) such that if 0 < δ < δ(µ), then

‖Uε
I − Uε0,I‖Bs

τ∗ = O(ε) and lim sup
ε→0

‖Uε
II − Uε0,II‖Bs

τ∗ < µ/3,

where we have decomposed the profile Uε of the exact solution uε, given by Theorem
1.4, into Uε = Uε

I +Uε
II .

(ii) We also have stability of the approximate solution defined with U0,

‖uεI − uε0,I‖ = O(ε3/2) and lim sup
ε→0

1√
ε
‖uεII − uε0,II‖ < µ/3,

where the norm can be taken either in C([0, τ∗
ε ]× R

3)n or in C([0, τ∗
ε ], L

2(R3)n).
Notation. We have used in this theorem the notation

uεI =
√
εUε

I(εT,X, Y, Z, T/ε, Z/ε), uε0,I =
√
εUε0,I(εT,X, Y, Z, T/ε, Z/ε),

and similarly

uεII =
√
εUε

II(εT,X, Y, Z, T/ε, Z/ε), uε0,II =
√
εUε0,II(εT,X, Y, Z, T/ε, Z/ε).

Proof. (i) Since Rε−1 = Rε0 = 0, the error profile Wε = Uε − Uε satisfies
∂τWε + ε−1(A1∂X +A2∂Y +A3∂Z)Wε + ε−2(∂t0 +A3∂z0 + L0)Wε

= f(Uε)− f(Uε) +Rε1 +
7∑

j=2

εj−1Rεj .

Thanks to Taylor’s theorem, there exists a regular function G such that f(Uε)−
f(Uε) = G(Uε,Uε)Wε. Therefore, the profile Wε satisfies

∂τWε + ε−1(A1∂X +A2∂Y +A3∂Z)Wε + ε−2(∂t0 +A3∂z0 + L0)Wε

−G(Uε,Uε)Wε = Rε1 +
7∑

j=2

εj−1Rεj .(2.35)
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Let R > 0 such that ‖U0‖As+4
τ∗
≤ R. We recall that τ∗1 and τ∗2 are chosen (in

Theorem 1.4 and Proposition 2.6, respectively) in such a way that ‖Uε‖As
τ∗
1

≤ 2R

and ‖U0‖As+4

τ∗
2

≤ 2R. Since τ∗ ≤ inf(τ∗1 , τ
∗
2 ), we can replace τ∗1,2 by τ∗ in these

inequalities. Hence, we can deduce from Lemma 2.7 that

‖Uε‖Bs
τ∗ ≤ CR

(
R2 + ε

(
1 +

1 +R2

δ

)
+ ε2(1 +R2)

(
1

δ
+

1

δ2

))
.

Thus

‖G(Uε,Uε)‖Bs
τ∗ ≤ h

(
R

(
R2 + ε

(
1 +

1 +R2

δ

)
+ ε2(1 +R2)

(
1

δ
+

1

δ2

))
, R

)
,

where h(·, ·) is a smooth positive function which does not depend on R, δ, nor ε.
By a Gronwall-type argument, we can therefore deduce from (2.35) that

‖Wε‖Bs
τ∗ ≤ τ∗

‖Rε1‖Bs
τ∗ +

7∑
j=2

εj−1‖Rεj‖Bs
τ∗

 eh(R(R2+ε(1+ 1+R2

δ )+ε2(1+R2)( 1
δ + 1

δ2
)),R
)
τ∗
.

(2.36)
It is now easy to deduce from (2.36), Lemma 2.7(iii), and Proposition 2.8 that Uε =
Uε0 + εUε1 + ε2Uε2 satisfies the asymptotic properties of point (i) of the theorem. This
point will be proved if we can replace Uε by Uε0. This is obviously the case since, as
a consequence of Lemmas 2.7 and 2.10, εUε1 + ε2Uε2 goes to 0 in Bs

τ∗ as ε→ 0.
Taking the discrete spectrum component of (2.35) yields the usual equations of

diffractive optics (in particular, R1,I = 0) so that the techniques of [8], [10], and [11]
can be used to obtain a better estimate O(ε) of the error term.

(ii) This point is a direct consequence of (i) and of the embedding results of
Proposition 1.3.

2.5. Stability in the general case. In this section, we consider the general
case, i.e., we allow low frequencies. Therefore, we consider initial conditions with
profile U0 = U0

I +U0
II ∈ As+4

0 without making any assumption on the spectrum of
U0
II . Alterman’s methods [1] are used to relax this assumption. We first introduce

the following notation.
Notation. We denote by U0,δ

II and U0,δ the “filtered” profiles

U0,δ
II = ψδ(Dz0)U

0
II and U0,δ = U0

I +U0,δ
II ,(2.37)

where 0 < δ < 1.
The exact solution of (1.1) with initial condition

√
εU0,δ(X,Y, Z, 0, Z/ε) deter-

mined by Theorem 1.4 is denoted by uε,δ and its associated profile by Uε,δ, so that
one has uε,δ(T,X, Y, Z) =

√
εUε,δ(εT,X, Y, Z, T/ε, Z/ε).

The dominated convergence theorem shows that U0,δ
II → U0

II in A
s
0. We also have

convergence of the exact solutions of (1.1) associated to these initial conditions, as
the following proposition shows.

Proposition 2.12. Let U0 = U0
I +U0

II ∈ As0 and U0,δ = U0
I + ψ

δ(Dz0)U
0
II .

There exists τ∗1 > 0, independent of ε and δ, such that the exact solutions Uε and
Uε,δ of the singular equation (1.5) with initial conditions U0 and U0,δ, respectively,
exist in Bs

τ∗
1
. Moreover, one has

Uε −Uε,δ → 0 in Bs
τ∗
1

as δ → 0

uniformly in ε ∈ (0, 1).
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Proof. It is easy to see that ‖U0,δ‖Bs
τ∗
1

≤ ‖U0‖Bs
τ∗
1

. Hence, if R is such that

‖U0‖Bs
τ∗
1

≤ R, one also has ‖U0,δ‖Bs
τ∗
1

≤ R. Therefore, Theorem 1.4 implies that

the profile Uε,δ also exists on the existence interval [0, τ∗1 ] of U
ε, since this interval

depends only on R.
Moreover, on [0, τ∗1 ], the difference W

δ = Uε −Uε,δ satisfies

∂τW
δ + ε−1(A1∂X +A2∂Y +A3∂Z)W

δ + ε−2(∂t0 +A3∂z0 + L0)W
δ

= G(Uε,δ,Uε)Wδ,

where, as for (2.35), G is a regular function satisfying G(Uε,δ,Uε)Wδ = f(Uε,δ) −
f(Uε).

As in the proof of Theorem 2.11, we obtain

‖G(Uε,δ,Uε)‖Bs
τ∗
1

≤ h(R,R),

where h(·, ·) is a smooth positive function independent of δ and ε.
A Gronwall-type argument then yields

‖Wδ‖Bs
τ∗
1

≤ ‖W0,δ‖As
0
eh(R,R)τ∗

1 ,

so that the desired result is now a consequence of the dominated convergence theo-
rem.

We now study the convergence of the approximate solutions. If we take U0,δ as
the initial condition, all the results of sections 2.1–2.4 remain valid. In particular,
we can construct an approximate profile Uε,δ = Uε,δ0 + εUε,δ1 + ε2Uε,δ2 of Uε,δ. The

leading term Uε,δ0 satisfies

Uε,δ0 (τ,X, Y, Z, t0, z0) = Uδ0 (τ, τ/ε,X, Y, Z, t0, z0),
with Uδ0 = U0,I+Uδ0,II . The discrete spectrum component U0,I (which does not depend

on δ) is given as before by system (2.27), while Uδ0,II = π(Dt0,z0)Uδ0,II is found solving
(∂T − ω′(Dz0)∂Z)Uδ0,II = 0,

∂τUδ0,II + iω
′(Dz0 )

2Dz0
(∂2
X + ∂2

Y )Uδ0,II + iω
′′(Dz0 )

2 ∂2
ZUδ0,II = 0,

Uδ0,II |τ=T=0 = U0,δ
II .

(2.38)

The following proposition shows that when δ → 0, the profile Uδ0,II tends to the profile
U0,II obtained formally by taking δ = 0 in (2.38).

Proposition 2.13. Let σ ≥ s such that U0
II ∈ Aσ0 . Suppose, moreover, that

π(Dt0,z0)U
0
II = U0

II .
Then there exists τ∗2 > 0 such that the solution Uδ0,II of (2.38) exists in Aστ∗

2
for

all 0 < δ < 1 and such that the limit system
(∂T − ω′(Dz0)∂Z)U0,II = 0,

∂τ∂z0U0,II − ω′(Dz0 )

2 (∂2
X + ∂2

Y )U0,II − Dz0ω
′′(Dz0 )

2 ∂2
ZU0,II = 0,

U0,II |τ=T=0 = U0
II

(2.39)

admits a unique solution in Aστ∗
2
.
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Moreover, Uδ0,II → U0,II in A
σ
τ∗
2
as δ → 0.

Proof. The results of the proposition are easily obtained from the explicit expres-
sion of Uδ0,II given by (2.31) and from the dominated convergence theorem.

Remark 2.10. (i) Since ω′(k) is an even function and ω′′(k) an odd function of
(ω, k), the Fourier multipliers ω′(Dz0) and Dz0ω

′′(Dz0) transform real functions of
the variable (t0, z0) into real functions.

(ii) System (2.39) is formally obtained by differentiating (2.38) and letting δ → 0.
In (2.39), there is no Dz0 inverse (which is not a Fourier multiplier), and therefore
this system can be solved explicitly in the Fourier domain.

We are now ready to state our main theorem.
Theorem 2.14. Suppose the characteristic variety CL is as in Assumptions 2.1

and 2.3.
Let U0 = U0

I +U
0
II ∈ As+4

0 such that U0
I = U0

I,1e
iθ+ c.c. and suppose, moreover,

that

π(ωl,−kl)U0
I,1 = U0

I,1 and π(Dt0,z0)U
0
II = U0

II .

Then for τ∗3 = min{τ∗1 , τ∗2 } we have
(i) the exact solution uε of (1.1) exists on [0, τ∗3 /ε] and can be written u

ε(T,X, Y, Z)
=
√
εUε(εT,X, Y, Z, T/ε, Z/ε), with Uε = Uε

I +Uε
II ∈ Bs+4

τ∗
3
;

(ii) U0,I,1 is defined in Cb([0, τ∗3 ]×RT , H
s+4(R3)n) as the unique solution of (2.27);

(iii) U0,II is defined in A
s+4
τ∗
3
as the unique solution of (2.39);

(iv) the profile Uε0 ∈ Bs
τ∗
3
associated to U0 = U0,I + U0,II ∈ Asτ∗

3
, with U0,I =

U0,I,1e
iθ + c.c., approximates the singular equation (1.5) in the sense that

‖Uε
I − Uε0,I‖Bs

τ∗
3

= O(ε) and ‖Uε
II − Uε0,II‖Bs

τ∗
3

= o(1) as ε→ 0;

(v) we also have stability of the approximate solution uε0 defined with U0,

‖uεI − uε0,I‖ = O(ε3/2) and ‖uεII − uε0,II‖ = o(
√
ε) as ε→ 0,

where the norm can be taken either in C([0, τ∗
3

ε ]× R
3)n or in C([0, τ∗

3

ε ], L
2(R3)n).

Notation. We have used the same notation uεI , u
ε
II , u

ε
0,I , and u

ε
0,II as in Theo-

rem 2.11.
Proof. (i)–(iii) The first three points have been proved in Theorem 1.4, Proposi-

tion 2.6, and Proposition 2.13.
(iv) Convergence of the discrete spectrum components is exactly the same as in

Theorem 2.11 since the assumption of the absence of low frequencies only affects the
continuous spectrum components.

We now want to prove that Uε
II → Uε0,II in Bs

τ∗
3
, i.e., for all µ > 0, there exists

ε0 > 0 such that for 0 < ε < ε0, ‖Uε
II − Uε0,II‖Bs

τ∗
3

< µ.

Now, write

‖Uε
II − Uε0,II‖Bs

τ∗
3

≤ ‖Uε
II −Uε,δ

II ‖Bs
τ∗
3

+ ‖Uε,δ
II − Uε,δ0,II‖Bs

τ∗
3

+ ‖Uε,δ0,II − Uε0,II‖Bs
τ∗
3

,

where δ > 0 and Uε,δ
II and Uε,δ0,II are defined as usual.

Thanks to Propositions 2.12–2.13, we know that for δ ≤ δ0 small enough and for
all ε ∈ (0, 1), one has

‖Uε
II −Uε,δ

II ‖Bs
τ∗
3

< µ/3 and ‖Uε,δ0,II − Uε0,II‖Bs
τ∗
3

≤ ‖Uδ0,II − U0,II‖As
τ∗
3

< µ/3.
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Moreover, the profile Uε,δ0,II satisfies all the assumptions required to apply Theo-
rem 2.11. Therefore, taking 0 < δ < inf{δ0, δ(µ)}, we know that for ε small enough,

‖Uε,δ
II − Uε,δ0,II‖Bs

τ∗
3

< µ/3.

The above three inequalities thus yield

‖Uε
II − Uε0,II‖Bs

τ∗
3

< µ,

which proves the result.
(v) This point is a direct consequence of point (iv) and of the embedding properties

of Proposition 1.3.

3. Nondispersive case. In section 2, we have considered dispersive systems. If
most of the physical applications fall into this class, nondispersive systems are also
physically relevant. Ultrashort pulses, for instance, are often modeled with such a
framework. There is also a mathematical reason why we study nondispersive prob-
lems in this section: We have seen in the previous section that interactions between
oscillations with a purely continuous spectrum are not possible. The proof of this re-
sult relies strongly on the dispersive properties of the characteristic variety. We show
in this section that when these properties do not hold, nonlinearities can be observed
on the continuous spectrum components.

As already mentioned, this nondispersive framework has already been investigated
by Alterman and Rauch in [1], [2], [3], and [15]. Of course, our results coincide with
theirs, but our method is completely different, and the nondispersive case appears to
be a particular case of the general framework presented in this paper and does not
require an ad hoc analysis.

The systems we consider here are in the form{
L(∂)uε + f(uε) = 0,uε|T=0(X,Y, Z) = u0

ε(X,Y, Z),

with L(∂) = A0∂T +A1∂X +A2∂Y +A3∂Z . We thus consider problems of type (1.1)
with L0 = 0. As we have seen in Remark 1.2, we can suppose that A0 = Id.

The symbol L(ω, k) then reads L(ω, k) = ωId+A3k and is therefore homogeneous
of degree one in (ω, k) so that Assumption 2.1 is never realized. Nevertheless without
any additional hypothesis on L(∂), we know some properties on the characteristic
variety CL. Since L(ω, k) is homogeneous of degree one, CL is a union of lines which
all go through the origin. Moreover, if (ω, k) and (ω′, k′) are on the same line of
CL, then one has π(ω, k) = π(ω′, k′). From this point onward, we use the following
notation.

Notation. We denote by D1, . . . ,DN the lines such that CL = D1 ∪ · · · ∪ DN .
We denote by −vj the slope of line Dj . If (ω, k) ∈ Dj , write πj := π(ω, k) and
L−1
j := L−1(ω, k). Up to a renumbering, we can also suppose that (ωl,−kl) ∈ D1.

As the study of the nondispersive case does not raise many other difficulties than
in the dispersive case, most of the following results are given without proof.

3.1. The profile equations. As in section 2, an approximate solution is sought
in the form

uε(T,X, Y, Z) =
√
εUε

(
εT, T,X, Y, Z,

T

ε
,
Z

ε

)
,
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where the profile Uε is written

Uε = U0 + εU1 + ε
2U2,

with U0,U1,U2 ∈ Es
τ∗ .

Thanks to Proposition 1.10, these profiles are decomposed into a component with
a discrete spectrum and a component with a purely continuous one,

Uj = Uj,I + Uj,II , j = 0, 1, 2.

We recall that the profiles which are labeled I always have a discrete spectrum and
the profiles which are labeled II always have a purely continuous one.

The analysis of the discrete spectrum components slightly differs from the analysis
performed for the dispersive case. Indeed, the superior harmonics created by the
nonlinearity are noncharacteristic in the dispersive case and thus do not play any
important role because they are not propagated; conversely, in the nondispersive
case, the superior harmonics are characteristic, and so we must seek U0,I ,U1,I , and
U2,I as periodic functions. Since the nonlinearity is odd, only odd harmonics are
created by the nonlinearity, if no even harmonic is present initially. Therefore, we
look for profiles of the form

Ul,I(τ, T,X, Y, Z, θ) =
∑
j∈Z
Ul,I,2j+1(τ, T,X, Y, Z)e

i(2j+1)θ, l = 0, 1, 2.

In order for these profiles to be in Es
τ∗ , one must have normal convergence of the

harmonics, and that is why we introduce the following spaces.
Definition 3.1. We denote by Ds

0 (resp., D
s
τ∗) the set of the sequences of profiles

(V2j+1)j∈Z , with V2j+1 ∈ Hs(R3)n (resp., Cb([0, τ∗]× RT , H
s(R3)n)) and such that∑

j∈Z
||V2j+1|| <∞,

where ||.|| represents the norm of Hs(R3)n (resp., Cb([0, τ∗]× RT , H
s(R3)n)).

This finite positive number endows Ds
0 (resp., D

s
τ∗) with a norm, denoted by ‖·‖Ds

0

(resp., ‖ · ‖Ds
τ∗ ).

Annihilating R−1,I yields as usual the polarization condition

π1U0,I,2j+1 = U0,I,2j+1 ∀j ∈ Z.(3.1)

As in section 2.1.2 and thanks to Lemma 1.7, the annihilation of R0,I is equivalent to
π1L1(∂)π1U0,I,2j+1 = 0,

(Id− π1)U1,I,2j+1 =
i

2j + 1
L−1

1 A(∂X,Y,Z)U0,I,2j+1,
(3.2)

and as in the dispersive case, we can impose

π1U1,I,2j+1 = 0 ∀j ∈ Z.(3.3)

When we annihilate R1,I the need for periodic functions appears clearly. Indeed, in
the dispersive case, all harmonics different from ±θ are solved by elliptic inversion.
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This kind of inversion is not possible in the nondispersive case because all harmonics
are characteristic. Since all harmonics are odd, the nonlinearity f(U0)I can be written

f(U0)I = Λ(U0,I,.) =
∑
j∈Z

Λ2j+1(U0,I,.)e
i(2j+1)θ,(3.4)

where the notation U0,I,· stands for the sequence (U0,I,2j+1)j∈Z . The annihilation of
R1,I is then equivalent to

i(2j + 1)L(ωl,−kl)U2,I,2j+1 + L1(∂)U1,I,2j+1 + ∂τU0,I,2j+1

+ Λ2j+1(U0,I,.) = 0

for all j ∈ Z. These equations are decomposed, thanks to Lemma 1.7 and (3.2)–(3.3),
into

(Id− π1)U2,I,2j+1 = − 1

(2j + 1)2
L−1

1 L1(∂)L−1
1 A(∂X,Y,Z)U0,I,2j+1

+
i

2j + 1
L−1

1

(
∂τU0,I,2j+1 + Λ2j+1(U0,I,.)

)
and

∂τU0,I,2j+1 + iπ1A(∂X,Y,Z)L−1
1 A(∂X,Y,Z)π1U0,I,2j+1 + π1Λ2j+1(U0,I,.) = 0.

Under Assumption 2.3, the same simplifications as in section 2.1.4 can be made using
(3.1)–(3.3) and Proposition 2.4, so that U0,I,. is found solving

π1U0,I,. = U0,I,.,

(∂T + v1∂Z)U0,I,. = 0,

∂τU0,I,. + i
v1
2kl

(∂2
X + ∂2

Y )U0,I,. + π1Λ(U0,I,.) = 0

(3.5)

in Ds
τ∗ .
If the nonlinearities are not studied in detail, the analysis of the components with

a purely continuous spectrum is strictly the same as in the dispersive case. Provided
that the continuous spectrum component U0,II of U0 satisfies Assumption 2.2 (absence
of low frequencies), we find as in section 2 that U0,II must satisfy

π(Dt0,z0)U0,II = U0,II ,

(∂T − ω′(Dz0)∂Z)U0,II = 0,

∂τU0,II + i
ω′(Dz0)

2Dz0

(∂2
X + ∂2

Y )U0,II + (∂T − ω′(Dz0)∂Z)π(Dt0,z0)U1,II

+π(Dt0,z0)ψ
δ(Dz0)[f(U0)]II = 0,

(3.6)

where ψδ denotes the infrared cutoff introduced in Definition 2.2.
Yet, we can still simplify these equations in decomposing U0,II in the form

U0,II = U0,II,1 + · · ·+ U0,II,N

such that the spectrum of U0,II,j is included in Dj for all j = 1, . . . , N .
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Hence, (3.6) read



πjU0,II,j = U0,II,j , j = 1, . . . , N,

(∂T + vj∂Z)U0,II,j = 0, j = 1, . . . , N,

∂τU0,II,j − i vj
2Dz0

(∂2
X + ∂2

Y )U0,II,j + (∂T + vj∂Z)πjU1,II,j

+ πjψ
δ(Dz0)[f(U0)]II,j = 0, j = 1, . . . , N,

where we recall that −vj is the slope of line Dj .
We now study the nonlinearity πj [f(U0)]II,j which appears in the profile equa-

tions. With the same kind of argument as in the proof of Lemma 2.5, we can obtain
the following lemma.

Lemma 3.2. Let VII,j ∈ Asτ∗ , j = 1, . . . , N , be N profiles with a purely continuous
spectrum such that Sp VII,j ⊂ Dj. Take also a, b ∈ C

n. Then one has
(i) πjF (VII,k,VII,l,VII,m) = 0, unless j = k = l = m;
(ii) πjF (ae

ikθ,VII,l,VII,m) = 0 for all k ∈ Z unless j = k = l = m = 1;
(iii) πjF (ae

ikθ, beilθ,VII,m) = 0 for all (k, l) ∈ Z2, unless l + k = 0 and j = m.
Remark 3.1. The main difference between the dispersive and nondispersive cases

is that we can have nonzero interactions between oscillations with a purely continuous
spectrum in the nondispersive case. What the lemma says is that, in order to produce
a nonzero interaction, these oscillations must have support on the same line as the
characteristic variety. Therefore, the evolution equations of the modes U0,II,j can be
nonlinear.

Thanks to Lemma 3.2, the nonlinearity πj [f(U0)]II,j may be written in the form

π1[f(U0)]II,1 =
∑
k∈Z

π1F
S(U0,I,2k+1,U0,I,2k+1,U0,II,1)

+ π1f
′(U0,II,1)(U0,I) + π1f(U0,II,1),

and, when j ≥ 2,

πj [f(U0)]II,j =
∑
k∈Z

πjF
S(U0,I,2k+1,U0,I,2k+1,U0,II,1) + πjf(U0,II,j).

3.2. Solving the profile equations. Inspired here again by [10] and [11], and
using the expression of the nonlinearities given above, we decompose the equations
on U0,II,j as follows:

π1U0,II,1 = U0,II,1,

(∂T + v1∂Z)U0,II,1 = 0,

∂τU0,II,1 − i v1
2Dz0

(∂2
X + ∂2

Y )U0,II,1

+ ψδ(Dz0)π1

∑
k∈Z

FS(U0,I,2k+1,U0,I,2k+1,U0,II,1)

+ ψδ(Dz0)π1f
′(U0,II,1)(U0,I) + ψ

δ(Dz0)π1f(U0,II,1) = 0

(∂T + v1∂Z)U1,II,1 = 0

(3.7)
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and for j ≥ 2,

πjU0,II,j = U0,II,j ,

(∂T + vj∂Z)U0,II,j = 0,

∂τU0,II,j − i vj
2Dz0

(∂2
X + ∂2

Y )U0,II,j + ψ
δ(Dz0)πjf(U0,II,j) = 0

(∂T + vj∂Z)πjU1,II,j = −ψδ(Dz0)πj
∑
k∈Z

FS(U0,I,2k+1,U0,I,2k+1,U0,II,1).

(3.8)

These profile equations can be solved. However, we will restrict ourselves to the case
where U0,II = U0,II,1, i.e., where the spectrum of U0,II is included in D1. The general
case would be technically more difficult and is irrelevant for the physical examples
considered in this paper.

Proposition 3.3. Let σ ≥ s and R > 0 such that U0 = U0
I +U0

II,1 ∈ Aσ0 and
‖U0‖Aσ

0
≤ R. Suppose, moreover, that U0

I =
∑

j∈Z U
0
I,2j+1e

i(2j+1)θ with U0
I,· ∈ Dσ

0 .
Assume finally that

π1U
0
I,1,. = U0

I,1,., Sp U0
II,1 ⊂ D1, and π1U

0
II,1 = U0

II,1.

Then there exists τ∗2 > 0, which depends only on R, such that there exists:
• a unique U0,I,· = π1U0,I,· ∈ Dσ

τ∗
2
solution of

(∂T + v1∂Z)U0,I,· = 0,

∂τU0,I,· + i
v1
2kl

(∂2
X + ∂2

Y )U0,I,1 + π1Λ(U0,I,·) = 0,

U0,I,·|τ=T=0 = U0
I,·,

(3.9)

where Λ(U0,I,.) is given by (3.4);
• a unique Uδ0,II,1 = π1Uδ0,II,1 ∈ Aστ∗

2
solution of

(∂T + v1∂Z)Uδ0,II,1 = 0,

∂τUδ0,II,1 − i
v1

2Dz0

(∂2
X + ∂2

Y )Uδ0,II,1
+ ψδ(Dz0)π1

∑
k∈Z

FS(U0,I,2k+1,U0,I,2k+1,Uδ0,II,1)

+ ψδ(Dz0)π1f
′(Uδ0,II,1)(U0,I) + ψ

δ(Dz0)π1f(Uδ0,II,1) = 0

Uδ0,II,1|τ=T=0 = ψδ(Dz0)U
0
II,1.

(3.10)

Proof. The first equation of (3.9) is automatically solved by looking for U0,I,· in
the form U0,I,2j+1(τ, T,X, Y, Z) = U0,I,2j+1(τ, Z − v1T,X, Y ) for all j ∈ Z. System
(3.9) then reduces to the Cauchy problem ∂τU0,I,· + i

v1
2kl

(∂2
X + ∂2

Y )U0,I,1 + π1Λ(U0,I,·) = 0,

U0,I,·|τ=0 = U0
I,·,

which is easily solved by Picard iterates in C([0, τ∗2 ], Dσ
0 ) since its linear part defines

a unitary group on Dσ
0 , which is a Banach algebra.
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For the continuous spectrum component, we cannot give an explicit expression
of the solution as in Proposition 2.6, because we have to deal with the nonlinearities.
However, the presence of nonlinearities is counterbalanced by the simple form of the
transport equation. (We have here a common group velocity for all the frequencies.)
In order for Uδ0,II,1 to satisfy this transport equation, we look for it in the form

Uδ0,II,1(τ, T,X, Y, Z, t0, z0) = Uδ0,II,1(τ, Z − v1T,X, Y, t0, z0),

so that (3.10) reduces to the Cauchy problem

∂τU
δ
0,II,1 − i

v1
2Dz0

(∂2
X + ∂2

Y )U
δ
0,II,1

+ ψδ(Dz0)π1

∑
k∈Z

FS(U0,I,2k+1, U0,I,2k+1, U
δ
0,II,1)

+ ψδ(Dz0)π1f
′(Uδ0,II,1)(U0,I) + ψ

δ(Dz0)π1f(U
δ
0,II,1) = 0

Uδ0,II,1|τ=0 = ψδ(Dz0)U
0
II,1.

This Cauchy problem is solved in Bσ
τ∗
2
by Picard iterates, using estimates similar to

those of Lemma 1.5.
Remark 3.2. (i) With U0 being given by Proposition 3.3, system (3.7) is then

solved by taking π1U1,II,1 = 0.
(ii) The results of Proposition 3.3 also hold for δ = 0, i.e., there exists a unique

solution U0,II = U0,II,1 = π1U0,II,1 to

(∂T + v1∂Z)U0,II,1 = 0,

∂τ∂z0U0,II,1 +
v1
2
(∂2
X + ∂2

Y )U0,II,1

+ π1

∑
k∈Z

∂z0F
S(U0,I,2k+1,U0,I,2k+1,U0,II,1)

+ π1∂z0f
′(U0,II,1)(U0,I) + π1∂z0f(U0,II,1) = 0,

U0,II,1|τ=T=0 = U0
II,1,

(3.11)

and the convergence property of Proposition 2.13 can easily be extended to the present
case.

3.3. Validity of the approximation. We show here that the approximate
solution

uε(T,X, Y, Z) =
√
εUε

(
εT, T,X, Y, Z,

T

ε
,
Z

ε

)
,

with Uε = U0 + εU1 + ε2U2, is a good approximation of the exact solution of (1.1).
As in section 2, the proof cannot be direct because the presence of low frequencies
and L−1-regularity are not compatible. But we can mimic the reasoning of section 2
to obtain a stability result. Before stating the theorem, we recall that to any profile
V ∈ Aστ∗ , we associate the profile Vε defined as

Vε(τ,X, Y, Z, t0, z0) := V
(
τ,
τ

ε
,X, Y, Z, t0, z0

)
.

Theorem 3.4. Suppose the characteristic variety CL is as in Assumption 2.3.



A GENERAL FRAMEWORK FOR DIFFRACTIVE OPTICS 669

Let U0 = U0
I +U0

II,1 ∈ As+4
0 such that U0

I =
∑

j∈Z U
0
I,2j+1e

i(2j+1)θ, with U0
I,· ∈

Ds+4
0 , and suppose that

π1U
0
I,· = U0

I,·, Sp U0
II,1 ⊂ D1, and π1U

0
II,1 = U0

II,1.

Then for τ∗3 = min{τ∗1 , τ∗2 }, we have the following:
(i) The exact solution uε of (1.1) exists on [0, τ∗3 /ε] and can be written u

ε(T,X, Y, Z)
=
√
εUε(εT,X, Y, Z, T/ε, Z/ε), with Uε = Uε

I +Uε
II ∈ Bs+4

τ∗
3
.

(ii) U0,I,· is defined in Ds+4
τ∗
3
as the unique solution of (3.9), and we define U0,I as

U0,I =
∑

j∈Z U0,I,2j+1e
i(2j+1)θ.

(iii) U0,II = U0,II,1 is defined in A
s+4
τ∗
3
as the unique solution of (3.11).

(iv) The profile Uε0 ∈ Bs
τ∗
3
associated to U0 = U0,I +U0,II ∈ Asτ∗

3
approximates the

singular equation (1.5) in the sense that

‖Uε
I − Uε0,I‖Bs

τ∗
3

= O(ε) and ‖Uε
II − Uε0,II‖Bs

τ∗
3

= o(1).

(v) We also have stability of the approximate solution uε0 defined with U0,

‖uεI − uε0,I‖ = O(ε3/2) and ‖uεII − uε0,II‖ = o(
√
ε),

where the norm can be taken either in C([0, τ∗
3

ε ]× R
3)n or in C([0, τ∗

3

ε ], L
2(R3)n).

4. Examples.

4.1. Lasers with large spectrums. As said in the introduction, we want to
study the effects due to the fact that certain lasers have frequencies and wavenumbers
which dribble around the theoretical value in a range greater than O(ε) (typically
O(1)). In order to make a model out of this phenomenon, we add to the theoretical
(sinusoidal) oscillations a corrector with a purely continuous spectrum.

To describe the evolution of the electromagnetic field we use Maxwell equations
coupled to a response of the medium by the polarization p, which is described by
the anharmonic oscillator model [14]. Once nondimensionalized [7], and omitting the
divergence-free equations, the system reads

(M)



∂Te
ε − curl bε +

√
γa

ε
gε = 0,

∂Tb
ε + curl eε = 0,

∂Tp
ε − ηa

ε
qε = 0,

∂Tq
ε − 1

ε
(
√
γae

ε − ηapε)− αγ3/2
a |pε|2pε = 0.

This system (M) is of type (1.1),

Lε(∂)uε + f(uε) = 0,

with

uε = (eε,bε,pε,qε)T ∈ C12,

and the nonlinearity is of order 3 and reads

f(eε,bε,pε,qε) = (0, 0, 0, αγ3/2
a |pε|2pε)T .
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Remark 4.1. The fact that the mapping F associated to f is not trilinear as
in Assumption 1.2—since it is semilinear in one of its variables—is not important.
Indeed, considering ũε = (uε,uε) ∈ C24 brings us back to this case.

The operator Lε(∂) reads Lε(∂) = ∂T +A1∂X +A2∂Y +A3∂Z + L0/ε, with

A1∂X +A2∂Y +A3∂Z =


0 −curl 0 0

curl 0 0 0
0 0 0 0
0 0 0 0


and

L0 =


0 0 0

√
γaId

0 0 0 0
0 0 0 −ηaId

−√γaId 0 ηaId 0

 .
The characteristic variety CL associated to the symbol L(ω, k) = ωId+ kA3 +L0/i is
defined by the algebraic equation

ω2(ω2 − 1− γa)[(ω2 − η2
a)(ω

2 − k2)− γaω2]2 = 0.

This characteristic variety has three singular points which are all of abscissa k = 0
and ordinate 0;±√1 + γa. If (ωl,−kl) is on a curved sheet of CL, i.e., if (ω2

l −η2
a)(ω

2
l −

k2
l )− γaω2

l = 0, then the group velocity ω′(kl) is given by

ω′(kl) =
kl
ωl

ω2
l − η2

a

(ω2
l − k2

l ) + (ω2
l − η2

a)− γa
,(4.1)

while the dispersive factor ω′′(kl) reads

ω′′(kl) = ω′(kl)
ωl − ω′(kl)

ωlkl
− 4

ωlω
′(kl)2

kl

ωlω
′(kl)− kl
ω2
l − η2

a

.(4.2)

Notice that CL contains three plane sheets, so that Assumption 2.1 is not satisfied
since these sheets are parallel. However, as mentioned earlier, the divergence-free
conditions satisfied by the electromagnetic field allow us to consider that Assumption
2.1 is fulfilled.

We consider initial conditions of the form

u0
ε = ε1/2U0(X,Y, Z, 0, Z/ε) = ε1/2(E0,B0,P0,Q0)(X,Y, Z, 0, Z/ε),

where U0 is written U0(X,Y, Z, t0, z0) = U0
I,1(X,Y, Z)e

iθ+c.c.+U0
II(X,Y, Z, t0, z0),

with the component U0
II having a purely continuous spectrum. As mentioned above,

U0
I,1 corresponds to the usual (small-spectrum) laser, i.e., the laser with time-space

wavenumber equal to (ωl,−kl), while U0
II corresponds to the large dribbling.

Moreover, the initial conditions are polarized,

π(ωl,−kl)U0
I,1 = U0

I,1 and π(Dt0,z0)U
0
II = U0

II .

The solution of diffractive optics reads

uε(T,X, Y, Z) = ε1/2(U0,I,1(εT, T,X, Y, Z)e
i(ωl

T
ε −kl Z

ε ) + c.c.

+ U0,II

(
εT, T,X, Y, Z,

T

ε
,
Z

ε

)
,
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and the results of section 2 state that the profile U0,I,1 is given by

∂τU0,I,1 + i
ω′(kl)
2kl

(∂2
X +∂2

Y )U0,I,1 + i
ω′′(kl)

2
∂2
ZU0,I,1 +π(ωl,−kl)f ′(U0,I,1)(U0,I,1) = 0,

with here

f ′(U0,I,1)(U0,I,1) =
(
0, 0, 0, αγ

3/2
a

(
2|−→P 0,I,1|2−→P 0,I,1 + (

−→P 0,I,1.
−→P 0,I,1)

−→P 0,I,1

))T
and ω′ and ω′′ given by (4.1)–(4.2).

As the waves which we consider here propagate along (OZ) with a wavenumber−→
kl = (0, 0, kl), the electric field is polarized on the plane (OXY ). We can assume that

it is polarized along (OX), i.e.,
−→E 0,I,1 = (E0,I,1, 0, 0)T . Since π(ωl,−kl)U0,I,1 = U0,I,1,

one therefore has
−→P 0,I,1 = ηaχ(ωl)

−→E 0,I,1, where the dielectric susceptibility χ(ωl) is
given by

χ(ωl) =

√
γa

η2
a − ω2

l

.

The nonlinearity therefore reads

f ′(U0,I,1)(U0,I,1) = (0, 0, 0, 3αγ
3/2
a η3

aχ(ωl)
3|E0,I,1|2E0,I,1, 0, 0)T .

In order to obtain the evolution equation on E0,I,1, one needs to compute the nonlin-
earity π(ωl,−kl)f ′(U0,I,1)(U0,I,1) (in fact, computing its first component is enough).
For all vectors a = (a1, 0, 0)

T ∈ C3, one has

π(ωl,−kl)


0
0
0
a

 = − iωl
√
γa

η2
a − ω2

l


a1

N2

.

.

.


with

N2 = 1 +
k2
l

ω2
l

+ η2
aχ

2(ωl) + ω
2
l χ

2(ωl)

=
√
γa

(
k2
l + ω

2
l

k2
l − ω2

l

+
η2
a + ω

2
l

η2
a − ω2

l

)
χ(ωl)

:=
√
γaβ(ωl, kl)χ(ωl).

We thus find

π(ωl,−kl)f ′(U0,I,1)(U0,I,1) = −3iαγaη3
a

ωl
β(ωl, kl)

χ(ωl)
3(|E0,I,1|2E0,I,1, . . .),

and the evolution equation on E0,I,1 is therefore

∂τE0,I,1 + iω
′(kl)
2kl

(∂2
X + ∂2

Y )E0,I,1 + i
ω′′(kl)

2
∂2
ZE0,I,1

= −3iαγaη3
a

ωl
β(ωl, kl)

χ(ωl)
3|E0,I,1|2E0,I,1.
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The purely continuous spectrum component of U0 is found solving

∂τ∂z0U0,II − ω
′(Dz0)

2
(∂2
X + ∂2

Y )U0,II − Dz0ω
′′(Dz0)

2
∂2
ZU0,II = 0.

Supposing as above that E0,II is polarized along (OX), i.e.,
−→E 0,II = (E0,II , 0, 0)T , we

obtain

∂τ∂z0E0,II −
ω′(Dz0)

2
(∂2
X + ∂2

Y )E0,II −
Dz0ω

′′(Dz0)

2
∂2
ZE0,II = 0.

Remark 4.2. A usual direct computation of this equation without the help of
the general results proved above would have led to a nonlinear equation. It was not
obvious a priori that all the nonlinear terms would be negligible.

4.2. Short pulses. The second application we study concerns short-pulse lasers.
Normally, the length of the pulse of a laser is long enough to contain many oscillations
so that the phenomena considered can be described well enough by knowing the
evolution of the envelope of these oscillations. For ultrashort pulses, this is no longer
true (see Figure 1) since there may even be less than an oscillation. The profile we use
to make a model of this phenomenon therefore has only a purely continuous spectrum
component: the sinusoidal one (discrete spectrum) does not have time to appear.
More precisely, we consider an initial condition for (M) of the form

u0
ε = ε1/2U0(X,Y, Z, 0, Z/ε) = ε1/2(E0,B0,P0,Q0)(X,Y, Z, 0, Z/ε),

where U0 ∈ As0 has a purely continuous spectrum. Moreover the initial condition is
polarized as follows:

π(Dt0,z0)U
0 = U0.

In accordance with the results of section 2, the profile U0 = U0,II of the approximate
solution is found solving

∂τ∂z0U0 − ω
′(Dz0)

2
(∂2
X + ∂2

Y )U0 − Dz0ω
′′(Dz0)

2
∂2
ZU0 = 0.

Considering the same model (M) as in the previous section and using the same no-
tation thus yield the following equation for the nonzero component E0 of the electric
field:

∂τ∂z0E0 −
ω′(Dz0)

2
(∂2
X + ∂2

Y )E0 −
Dz0ω

′′(Dz0)

2
∂2
ZE0 = 0,

where ω′ and ω′′ are given by (4.1)–(4.2).
Remark 4.3. Here again the fact that we would obtain a linear equation is not

obvious. We also point out the fact that our framework allows us to find this equation
in the physical dispersive case.

In a nondispersive framework, the nonlinearities would not have vanished. As-
suming that the spectrum of U0 = U0,II is located on the line D1 of CL to which
(ωl,−kl) belongs, we would find

∂τ∂z0U0 +
v1
2
(∂2
X + ∂2

Y )U0 + π1∂z0f(U0) = 0,

where −v1 is the slope of D1. This is Alterman and Rauch’s equation [1], [2], [3].
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5. Weakly dispersive case. We have seen in the previous sections that there is
a radical difference between the behavior of the approximate solution of the dispersive
case and that of the nondispersive case. In the former, the evolution of the continuous
spectrum mode is uncoupled with the discrete spectrum mode and is linear; in the
latter, it is coupled and nonlinear.

This behavioral gap means that the estimate o(1) of Theorem 2.14 is somewhat
critical for weakly dispersive systems.We propose in this section a few hints to improve
this result.

In terms of BKW strategy, solving (2.23) or the following equations is equivalent:

π(Dt0 , Dz0)U0,II = U0,II ,

(∂T + ω′(kl)∂Z)U0,II = 0,

∂τU0,II + i
ω′(Dz0)

2Dz0

(∂2
X + ∂2

Y )U0,II +
−ω′(kl)− ω′(Dz0)

ε
∂ZU0,II

+ i
ω′′(Dz0)

2
∂2
ZU0,II = 6π(Dt0 , Dz0)F

S(U0,I,1,U0,I,1,U0,II).

(5.1)

Note that the nonlinearity has been simplified according to the results of Lemmas 2.5
and 3.2, and that here π1(Dt0 , Dz0)U1,II = 0.

In general, the Fourier multiplier
−ω′(kl)−ω′(Dz0

)

ε is of size O(1/ε) and solving
(2.23) is much more relevant than solving (5.1) since this former system does not
involve ε. However, if the model considered is weakly dispersive in the sense that one

can choose ω′0 in such a way that
−ω′(kl)−ω′(Dz0

)

ε = O(1), system (5.1) becomes more
interesting because the transport equation is the same for all frequencies, as in the
nondispersive case. Since it is also reasonable to suppose that such weakly dispersive
systems also satisfy ω′′(Dz0) = O(ε), system (5.1) is equivalent in terms of BKW
strategy to

π(Dt0 , Dz0)U0,II = U0,II ,

(∂T + ω′(kl)∂Z)U0,II = 0,

∂τ∂z0U0,II +
ω′(kl)
2

(∂2
X + ∂2

Y )U0,II +
−ω′(kl)− ω′(Dz0)

ε
∂Z∂z0U0,II

= 6π(Dt0 , Dz0)∂z0F
S(U0,I,1,U0,I,1,U0,II),

(5.2)

where we also have differentiated the last equation with respect to z0.
Therefore, in the weakly dispersive case, one can obtain profile equations for

U0,II which are linear but coupled with the evolution equation of the discrete spectrum
mode U0,I,1. System (5.2) thus provides an intermediate model between the dispersive
case of section 2 and the nondispersive case of section 3, and hence partially fills the
behavioral gap between these two situations.

Example. With the same notation as in section 4.1, the equation for the electric
field E0,II associated to a large-spectrum laser reads

∂τ∂z0E0,II +
ω′(kl)
2

(∂2
X + ∂2

Y )E0,II +
−ω′(kl)− ω′(Dz0)

ε
∂Z∂z0E0,II

= −6iαγaη3
aχ

2
ωl

Dt0χ(Dz0)

β(Dt0 , Dz0)
|E0,I,1|2E0,II ,

which is still linear but coupled with E0,I,1. We recall that by weakly dispersive we

mean that
−ω′(kl)−ω′(Dz0

)

ε = O(1), and that we must simultaneously solve (∂T +
ω′(kl)∂Z)E0,II = 0.
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Abstract. We study the transition from the Zeldovich–von Neumann–Doring (ZND) theory
to the Chapman–Jouguet (CJ) theory as the reaction rate tends to infinity for a nonconvex scalar
combustion model. The Riemann solution of the nonconvex ZND combustion model is constructed,
and the limit of solutions as the reaction rate goes to infinity is investigated. We classify the
reaction solutions of the ZND combustion model as detonation and deflagration waves according
to the essential difference that the former contains the von Neumann spike but the latter does
not. Based on the analysis of this limit, we propose a set of entropy conditions for combustion and
noncombustion waves to the nonconvex CJ combustion model, which is the indispensable preparation
for the study of multidimensional combustion problems.

Key words. Zeldovich–von Neumann–Doring theory, Chapman–Jouguet theory, detonation,
deflagration, von Neumann spike, reaction entropy condition
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1. Introduction. The Zeldovich–von Neumann–Doring (ZND) theory and the
Chapman–Jouguet (CJ) theory play an important role in gas dynamics combustion
theory. The former describes the combustible gas with a finite reaction rate and the
latter with an infinite reaction rate or, equivalently, the infinitely thin reaction region.
Formally the CJ theory is regarded as the limit of the ZND theory as the reaction rate
tends to infinity [1]. Interesting discussions on this transition can be found in [3, 16].
The Riemann problem for the CJ gas dynamic combustion is constructively solved
in [22] to display rich combustion wave patterns satisfying the so-called geometrical
entropy conditions. Yet, the study of combustion waves of gas dynamics based on the
ZND theory is notoriously complex and difficult, and far from being complete [21].
This motivates us to consider simpler combustion models.

In [2, 14], Fickett and Majda independently proposed a simplified model to study
combustion waves, as the Burgers equation models in gas dynamics,

(u+ qz)t + f(u)x = µuxx,

zt + kφ(u)z = 0,
(1.1)

where x ∈ R, t > 0. This model corresponds to the ZND model in gas dynamics.
The first equation resembles the conservation law of energy in gas dynamics, leading
to nonlinear phenomena such as shocks; the second is the reaction equation, which
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may give rise to a linear discontinuity in the solution. The dependent variable u is a
lumped quantity, representing density, velocity, or temperature, but not the chemical
binding energy, which is represented by q. z is the percentage of unburned gas, k is the
reaction rate, and φ(u) is the standard Heaviside function. We take the ignition point
u = 0 for simplicity. That is, the material begins to burn just as the temperature
becomes higher than zero. Using this model, combustion problems were extensively
investigated, such as the stability and asymptotic behavior of combustion waves (see
[5, 9, 10, 11] and the references therein). The well-posedness of the general Cauchy
problem and the zero viscosity limit of (1.1) was studied in [5]. Ying and Teng [17]
studied the Riemann solution of (1.1) at µ = 0 and obtained the limit of the solution
as k tends to infinity and defined the limit function as the solution of the Riemann
problem for the corresponding CJ model

(u+ qz)t + f(u)x = 0,

z(x, t) =

{
z(x, 0) if max

0≤τ≤t
u(x, τ) ≤ 0,

0 otherwise.

(1.2)

In [13], Liu and Zhang extracted from the properties of CJ solutions in [17] to propose
a set of entropy conditions, under which the existence and uniqueness of the Riemann
solutions were shown constructively and the ignition and extinction problems were
investigated as well. A slightly different model was considered in [7, 8, 12, 15]. All of
these results were obtained under the assumption that f(u) is strictly convex.

Based on these results in one dimension, one would naturally wish to study com-
bustion phenomena in several dimensions. The generalization of (1.1) may be a rea-
sonable trial in this aspect, for which the theory of well-posedness of a multidimen-
sional scalar ZND model was established in [6]. As is well known, the fluxes must
be nonconvex in some directions at this moment [4]. Therefore, it is interesting to
investigate scalar combustion models with nonconvex fluxes f(u) so as to make a good
preparation for the study of structure of multidimensional combustion waves.

To this end, the Riemann problem for (1.2) with nonconvex fluxes f(u) was
solved constructively in [18] under the entropy restriction that mimics those in [13]
and generalizes the classical Oleinik entropy condition for scalar conservation laws.
A crucial issue here is just how to propose and justify entropy conditions to single
out physically admissible solutions. There are some plausible ways: One is, most
naturally, to consider the viscosity vanishing limit for corresponding models like (1.1)
with nonconvex fluxes, which is found to be a very difficult issue, even only to discuss
traveling wave solutions. Another is, as in the classical gas dynamics combustion
theory [1], to investigate the limit of the nonviscous Fickett–Majda model (1.1) as the
reaction rate k goes to infinity. This is what we do in this paper.

The self-similar combustion model corresponding to (1.1) with sufficiently large
reaction rates reads

(u+ qz)t + f(u)x = 0,

zt +
k
t φ(u)z = 0,

(1.3)

where f(u) is nonconvex. The second author began to study this model and announced
the very partial results in [19]; the Riemann problem was discussed there for some
cases and the large reaction rate limit was taken into account to get the associated
Riemann solutions of the corresponding CJ model (1.2). However, this result is far
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from understanding the entropy combustion solutions which we clarify below. As
pointed out in [13], even the Riemann solution to (1.3) is not unique, provided that
it is restricted by the classical Oleinik-type entropy condition (2.7). Motivated by
the physical consideration that the temperature in the combustion wave front is as
high as possible or, equivalently, the propagation speed of combustion wave front is as
small as possible, we propose in this paper a reaction entropy condition to guarantee
the uniqueness of solutions, under which the Riemann solution to (1.3) is uniquely
constructed. Since we focus our attention on the transition from the ZND theory to
the CJ theory as the reaction rate k goes to infinity, we mainly display the structure
of solutions with the large reaction rate k. Our main contribution is to clarify the
reaction solution as detonation and deflagration waves in accord with the essential
difference that the former has a von Neumann spike in the reaction region while
the latter does not, although it was already noticed earlier, e.g., in [1, 22, 16, 19].
Indeed, the temperature (the lumped variable u) is not monotone for the former
but is monotone increasing for the latter. Then we study the limit of solutions by
letting the reaction rate k tends to infinity. It is found that although both of these
combustion waves in the limit become jump-ups, they still inherit the above intrinsic
difference. Finally we formulate a set of entropy conditions based on the analysis of
limit solutions, which enables us to greatly improve the result in [18] to get the unique
entropy solution of (1.2) with nonconvex flux f(u). Indeed, this entropy condition
can be used to justifiably construct two-dimensional Riemann solutions for the CJ
combustion model associated with (1.2); see [20].

The rest of this paper consists of three parts. In section 2, we give some prelim-
inaries containing the general property of smooth solutions, the Rankine–Hugoniot
jump conditions of combustion waves, and the reaction entropy condition. The Rie-
mann solutions of (1.3) are constructed in section 3 for two typically distinct fluxes
with just one inflection point. The limit behavior of solutions is also studied as the
reaction rate goes to infinity. We propose the entropy condition from the limit be-
havior of solutions in the preceding sections for the CJ nonconvex combustion model
(1.2) in section 4.

2. Self-similar solutions to the ZND model. This section serves as a prelim-
inary for the forthcoming sections. We will discuss the general properties of smooth
solutions, the Rankine–Hugoniot jump conditions of combustion waves, and the reac-
tion entropy condition.

We begin by considering the Riemann problem for (1.3) with initial data

(u, z)|t=0 =

{
(u−, z−), x < 0,

(u+, z+), x > 0,
(2.1)

where (u−, z−) and (u+, z+) are two different states. For the self-similar solutions
(u(ξ), z(ξ)), ξ = x/t, the Riemann problem for (1.3) becomes a boundary value prob-
lem with boundary values at infinity,

(f ′(u)− ξ)
du

dξ
= qkφ(u)z,

ξ
dz

dξ
= kφ(u)z,

(2.2)

and

(u, z)|ξ=±∞ = (u±, z±).(2.3)
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ξ

u

ũ

u = R1(ξ)

u = R2(ξ)

(a) The branches with assumption (A1).

ξ

u

ũ

u = R1(ξ)

u = R2(ξ)

(b) The branches with assumption (A2).

Fig. 2.1. The branches of the inverse function of ξ = f ′(u).

Without loss of generality, we consider this Riemann problem with the data

z− = 1, z+ = 0; u− ≤ 0 < u+.(2.4)

The left state (u−, 1) is unburned and the right state (u+, 0) is burnt. For clarity of
presentation, we restrict f(u) to be the following two typical cases since the general
case for f(u) with a finite number of isolated inflection points is treated similarly
without substantial difficulties.

Assumptions.
(A1) f(u) has one inflection point ũ and f ′(±∞) = +∞;
(A2) f(u) has one inflection point ũ and f ′(±∞) = −∞.
These assumptions are reasonable in the application to the multidimensional gen-

eralization. Consider a two-dimensional counterpart of (1.1) (see [6]),

(u+ qz)t + f(u)x + g(u)y = ε∆u,

zt + kφ(u)z = 0,
(2.5)

where ∆ is the Laplacian, the fluxes f(u) and g(u) satisfy that f ′′(u) > 0, g′′(u) > 0,
and (f ′′(u)/g′′(u))′ > 0. It is easily shown that for any given direction (µ, ν) ∈ S1,
the directional flux F (u;µ, ν) = µf(u) + νg(u) has at most one inflection point.

For each case of these assumptions, the inverse function of ξ = f ′(u) has two
branches, denoted by R1(ξ) and R2(ξ), where R1(ξ) < R2(ξ). More specifically, with
assumption (A1), the flux f(u) is convex when u > ũ, while it is concave when u < ũ.
Therefore, u = R1(ξ) is defined via ξ = f ′(u) as u < ũ and u = R2(ξ) via ξ = f ′(u)
as u > ũ. Thus, u = R1(ξ) is decreasing while u = R2(ξ) is increasing. For (A2), we
have converse statements. See Figure 2.1 for the graphs of R1(ξ) and R2(ξ).

Thus, the smooth solutions of (2.2) are in the following:
(1) Constant states, (u, z) = (constant, constant).
(2) (u, z) = (Ri(ξ), constant), where i = 1 or 2.
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(3) z(ξ) = | ξη |k, where η is an arbitrary constant, u(ξ) > 0 satisfies

(f ′(u)− ξ)
du

dξ
= qk

∣∣∣∣ ξη
∣∣∣∣k .

We now turn to discuss discontinuous solutions. At this moment, we have to
understand (2.2) in the sense of distributions. Let (u(ξ), z(ξ)) be a piecewise smooth
solution with a discontinuity point at ξ = σ. Then we get the Rankine–Hugoniot
jump condition

−σ[u] + [f ] = 0,

σ[z] = 0.
(2.6)

Throughout this paper, we fix the notation [u] to be the jump of u across ξ = σ, etc.
Then the Rankine–Hugoniot condition (2.6) provides two possibilities: (i) if [z] �= 0,

then σ = 0 and [f ] = 0; (ii) if [z] = 0, then σ = [f ]
[u] . The first corresponds to a slip

line and the second a shock wave, provided that it satisfies the following Oleinik-type
entropy condition:

f(u)− f(ul)

u− ul
≥ f(ur)− f(ul)

ur − ul
for (u− ul)(u− ur) ≤ 0.(2.7)

The pair (u, z) is an entropy solution of (2.2) and (2.4) if the equations are satisfied
at smooth points in the classical sense and the requirement of Oleinik-type entropy
condition (2.7) is met at discontinuity points. This solution has the following property.

Lemma 2.1. Let (u(ξ), z(ξ)) be an entropy solution of (2.2) and (2.4). Then there
exists η ∈ (−∞, 0] such that z(ξ) has the structure

z(ξ) =


1, ξ < η,

( ξη )
k, η ≤ ξ ≤ 0,

0, 0 < ξ.

(2.8)

Proof. With the above arguments and the Oleinik-type entropy condition (2.7),
z(ξ) consists of some constants and functions with the form | ξη |k. The only possi-

ble discontinuity point of z(ξ) is ξ = 0. Since z(+∞) = 0, z(ξ) ≡ 0 for ξ > 0.
Note that z(−∞) = 1. We assert z(ξ) ≡ 1 in a neighborhood of negative infin-
ity. If z(ξ) ≡ 1 for all ξ < 0, then z(ξ) has the structure of (2.8) with η = 0.
Otherwise, there exists a constant η < 0 satisfying the Rankine–Hugoniot condition
σ = η = (f(u(η − 0)) − f(u(η + 0))/(u(η − 0)) − u(η + 0)), where u undergoes a
jump (shock wave). Since z is continuous there, we conclude that z(η) = 1, and so
z(ξ) = (ξ/η)k for ξ ∈ (η, 0) by (2.2). Thus z(ξ) has three different stages as expressed
in (2.8).

Lemma 2.1 gives the following corollary.
Corollary 2.2. The entropy solution (u(ξ), z(ξ)) of (2.2) and (2.4) has the

structure

(u(ξ), z(ξ)) =


(A(ξ), 1), −∞ < ξ < η,

(B(ξ), ( ξη )
k), η ≤ ξ ≤ 0,

(C(ξ), 0), 0 < ξ < +∞,

(2.9)
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where A, B, and C satisfy the following equations at smooth points:

(f ′(A)− ξ)
dA

dξ
= 0, ξ ∈ (−∞, η),

A(−∞) = u−, A(η − 0) ≤ 0,

(2.10)

(f ′(B)− ξ)
dB

dξ
= qk

(
ξ

η

)k
, ξ ∈ [η, 0],

B(ξ) ≥ 0,

(2.11)

and

(f ′(C)− ξ)
dC

dξ
= 0, ξ ∈ (0,+∞),

C(+∞) = u+.

(2.12)

The states A(ξ), B(ξ), and C(ξ) are called the unburned, burning, and burnt
parts of u(ξ), respectively. The pair (u, z) is a combustion solution if it contains a
burning part; otherwise, it is a noncombustion solution.

Analogous to [13], where f(u) is convex (or concave), it can be shown that the
entropy solution of (2.2) and (2.4) is not unique for some binding energy q and initial
data (2.4) even though we impose the requirement of the entropy condition (2.7).
Motivated by the physical consideration that the temperature in the wave front is as
high as possible or, equivalently, the propagation speed of combustion wave front is
as small as possible (cf. [22]), we propose the following reaction entropy condition
to guarantee the uniqueness of solutions, in addition to the Oleinik-type entropy
condition (2.7).

Reaction entropy condition (BE). If the Riemann problem of (2.2) and
(2.4) has several entropy solutions, we choose a solution so that its speed η in the
wave front of the burning part achieves the absolute minimum value.

A solution (u, z) is admissible if it satisfies both the Oleinik-type entropy condition
(2.7) and the reaction entropy condition (BE). We call (2.7) and (BE) together as the
entropy condition of the reaction solution of (2.2) and (2.4).

3. The entropy solution and the limit of the infinite reaction rate. In
this section, we seek the entropy solution to (2.2) and (2.4) when the flux f(u) satisfies
the assumptions in the last section. We not only prove the solvability of this problem
but display the explicit structure of solutions as well. Furthermore, we consider the
limit behavior of entropy solutions as the reaction rate k goes to infinity. We achieve
our goals through two cases according to the shape of flux f(u) in the assumptions in
the preceding section.

3.1. The solution of (2.2) and (2.4) when f(u) satisfies (A1). We consider
the solution of (2.2) and (2.4) when f(u) has only one inflection point and the slope
at infinity is positive infinity. The main results are stated in Theorems 3.7–3.9. We
investigate this problem using three cases depending on the position of u+.

Let ũ be the inflection point of f(u). If f ′(ũ) ≥ 0, then f(u) is a monotone
increasing function. It is easy to verify that the Riemann problem of (2.2) and (2.4)
has a unique noncombustion solution (cf. [13]). Therefore, the admissible solution
exists and is unique subject to the above entropy conditions. In the following, we
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(b)(a)

ξ

u

u1

u2

u∗

u∗

ũ

u−

w = f(u)

w

u

ξ = f ′(u)

Fig. 3.1. The graphs of w = f(u) and ξ = f ′(u) when f ′(±∞) = +∞.

consider the case that f ′(ũ) < 0. Then there are two critical points u1 < u2 such that
f ′(u1) = f ′(u2) = 0 since f ′(ũ) < 0 and f ′(±∞) = +∞. For definiteness, we assume
u1 > 0. The graphs of w = f(u) in the (w, u) plane and ξ = f ′(u) in the (ξ, u) plane
are shown in Figures 3.1(a) and (b).

Let u− < 0 be a given state. Since our attention in this paper is paid on nonconvex
cases, we assume that u− < u1. If f(u

−) ≤ f(u2), then we have a unique admissible
noncombustion solution consisting of a forward wave (a shock or a compound wave—a
sonic shock plus a rarefaction wave),

(u(ξ), z(ξ)) =


(u−, 1), ξ < 0,

(u−, 0), ξ ∈ (0, ξ̄),
(u+, 0), ξ > ξ̄,

where ξ̄ = f(v)−f(u−)
v−u− = f ′(v). Therefore, it is sufficient to consider the case that

f(u−) > f(u2).
First, we fix the notation ū, u∗, u∗, q̄, q∗, a0, a1, and a2. Let ū, u∗, u∗ be so

defined that u1 < ū < u2, u
∗ > u∗, f(ū) = f(u−), and

f ′(u∗) =
f(u∗)− f(u−)

u∗ − u−
= f ′(u∗).(3.1)

Let q̄, q∗ be such that

q̄ = ū− u−,
f(u∗)− f(u−)
u∗ − (u− + q∗)

= f ′(u∗).(3.2)

Then we have u∗ > ū and q̄ < q∗. Note that q∗ is the distance between the tangential
lines of f(u) at (u∗, f(u∗)) and at (u∗, f(u∗)) vertically. We restrict ourselves to
dealing with the case where u∗ > ū and 0 < q < q∗ since the other cases can be
treated similarly.
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u

ξ

u = B1(ξ)

u = B2(ξ)

u = B3(ξ) ξ = f ′(u)

Fig. 3.2. The branches of integral curve of (3.3).

Draw a straight line w− f(u−) = f ′(u∗)(u− (u− + q)) in the (u,w) plane, which
intersects w = f(u) at three points (ai, f(ai)), i = 0, 1, 2, a0 < a1 < a2. Then we have
the relation

u2 > u∗ > a1 > u∗ > a0 > u−.

We also denote η∗ = f ′(u∗).
Fix u− and q. Then the structure of solution will strongly depend on the value

of u+. Therefore we discuss the issue by the following three cases.
Case 3.1.1. u+ ∈ (a1,+∞).
Case 3.1.2. u+ ∈ (ū, a1].
Case 3.1.3. u+ ∈ (0, ū).
Before proceeding to discuss these cases, some lemmas are given in the following.
Lemma 3.1. All integral curves of the ordinary differential equation

(f ′(u)− ξ)
du

dξ
= qk

(
ξ

η

)k
(3.3)

intersecting with ξ = f ′(u) in the (ξ, u) plane are shown in Figure 3.2. Each of the
integral curves consists of three branches: u = Bi(ξ), i = 1, 2, 3, having the property
that B3(ξ) > R2(ξ) > B2(ξ) > R1(ξ) > B1(ξ).

Proof. Denote the integral curve of (3.3) by u = B(ξ). Let (ξ0, u0) be the
intersection point of u = B(ξ) and u = R2(ξ). Then (ξ0, u0) is the singularity point
of (3.3).

Denote by u = B3(ξ) the branch that lies in the upper side of u = R2(ξ) in the
neighborhood of (ξ0, u0), i.e., B3(ξ) > R2(ξ). Then it suffices to show that B3(ξ) will
not intersect with R2(ξ) for the finite reaction rate k < ∞ as ξ > ξ0. Indeed, using
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(3.3), we obtain

d

dξ
(B3(ξ)−R2(ξ)) =

kq( ξη )
k

f ′(B3(ξ))− ξ
− 1

f ′′(R2(ξ))

=
kq( ξη )

kf ′′(R2(ξ))− (f ′(B3(ξ))− ξ)

(f ′(B3(ξ))− ξ)f ′′(R2(ξ))
.

Recall that u = R2(ξ) is the branch associated with the convex part of f(u). Then
f ′′(R2(ξ)) > 0. Observe that once u = B3(ξ) is close to u = R2(ξ), f

′(B3(ξ)) − ξ
becomes small. Therefore, at this moment, the numerator is positive, which forces
u = B3(ξ) to leave away u = B2(ξ) for the upper side of R2(ξ).

Similarly, we can prove the lemma for u = B2(ξ) and u = B1(ξ).
The solution u = Bi(ξ) (i = 1, 2, 3) of (3.3) depends on the parameters η and k.

When there is no risk of confusion, we suppress the dependence of Bi on η and k.
Otherwise, we denote u = Bi(ξ; η, k).

Lemma 3.2. Let u = Bi(ξ), i = 2, 3, be the branches of integral curve of (3.3)
through the point (η∗, u∗). Then

(a) limk→+∞B3(ξ) = max{a2, R2(ξ)} for all ξ ∈ (η∗, 0];
(b) limk→+∞B2(ξ) = max{a1, R1(ξ)} for all ξ ∈ (η∗, 0].
Proof. We prove in two steps part (a) only. Part (b) can be treated in the same

way. Note that B3(ξ) depends on k.
(i) The first step is to prove

lim
k→+∞

B3(ξ) ≥ max{a2, R2(ξ)}.

We write limk→+∞ =: lim for short. SinceB3(ξ) ≥ R2(ξ), it suffices to prove limB3(ξ) ≥
a2. Assume to the contrary that this inequality is not true. Then there exists
ξ0 ∈ (η∗, 0] such that limB3(ξ0) < a2. Setting η = η∗, B3(η

∗) = u∗ in (3.3), and
integrating (3.3), from η∗ to ξ0, we get

f(B3(ξ0))− f(u∗)− ξ0B3(ξ0) + η∗u∗ +
∫ ξ0

η∗
B3(ξ)dξ =

qkη∗

k + 1

[(
ξ0
η∗

)k+1

− 1

]
.

(3.4)

Since B3(ξ) is increasing, we have∫ ξ0

η∗
B3(ξ)dξ < B3(ξ0)(ξ0 − η∗).

Letting k → +∞ in (3.4) gives

f(B)− f(u∗)− η∗(B − u∗ − q) ≥ 0,(3.5)

where B = limB3(ξ0). Since a2 is so defined that

f(a2)− f(u−) = f ′(u∗)(a2 − (u− + q)),

we get from (3.5)

f(a2)− f(B)− η∗(a2 −B) ≤ 0,(3.6)
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where we use the definition of u∗, f ′(u∗)(u∗ − u−) = f(u∗)− f(u−) < 0.
On the other hand, it follows from u∗ ≤ B = limB3(ξ0) < a2 and the convexity

of f(u) that

f(a2)− f(B)

a2 −B
> η∗,(3.7)

which contradicts (3.6). Hence limB3(ξ) ≥ a2 for all ξ ∈ (η∗, 0].
(ii) The second step is to verify

lim
k→+∞

B3(ξ) ≤ max{a2, R2(ξ)}.

For any ξ0 ∈ (η∗, 0], we get from (3.4) that

f(B3(ξ0)) ≤ f(u∗) + ξ0B3(ξ0)−
∫ ξ0

η∗
B3(ξ)dξ − η∗(u∗ + q)

≤ f(u∗) + ξ0B3(ξ0)− u∗(ξ0 − η∗)− η∗(u∗ + q)

< f(u∗)− η∗q,

since ξ0 < 0 and B3(ξ0) > u∗. This implies that {B3(ξ0)} is bounded uniformly.
Hence limB3(ξ0) := limki→+∞B3(ξ0) exists for any ξ0 ∈ (η∗, 0], denoted by B(ξ0).
Choose a subsequence {ki} from {k} such that

lim
ki→+∞

B3(ξ0) = B(ξ0).

Using Fatou’s lemma, we get

lim
ki→+∞

∫ ξ0

η∗
B3(ξ)dξ ≥ lim

ki→+∞

∫ ξ0

η∗
B3(ξ)dξ ≥

∫ ξ0

η∗
lim

ki→+∞
B3(ξ)dξ

≥
∫ ξ0

η∗
max(a2, R2(ξ))dξ.

(3.8)

Setting ki → +∞ in (3.4) and noting (3.8), we arrive at

f(B(ξ0))− f(u∗)− ξ0B(ξ0) + η∗u∗ +
∫ ξ0

η∗
max{a2, R2(ξ)}dξ ≤ −qη∗.(3.9)

By the definition of a2, we have a2 > u∗. Let ξ̄ ∈ (η∗, ξ0] such that R2(ξ̄) = a2. (If
a2 > R2(ξ) for all ξ ∈ (η∗, ξ0], then we take ξ̄ = ξ0.) Then∫ ξ̄

η∗
a2dξ = (ξ̄ − η∗)a2

and ∫ ξ0

ξ̄

R2(ξ)dξ = f(a2)− ξ̄a2 − (f(R2(ξ0))− ξ0R2(ξ0)).

Note that

f(u∗)− f(u−) = η∗(u∗ − u−), f(a2) = f(u−) + η∗(a2 − (u− + q)).
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Then it is calculated that

(ξ̄ − η∗)a2 = f(u∗)− f(a2) + ξ̄a2 − η∗(u∗ + q).

Consequently, we obtain∫ ξ0

η∗
max{a2, R2(ξ)}dξ

= f(u∗)− f(max{a2, R2(ξ0)}) + ξ0 max{a2, R2(ξ0)} − η∗(u∗ + q),

(3.10)

which, combining with (3.9), provides

f(B(ξ0))− f(max{a2, R2(ξ0)})− ξ0(B(ξ0)−max{a2, R2(ξ0)}) ≤ 0.(3.11)

Then there is θ ∈ (max{a2, R2(ξ0)}, B(ξ0)) such that

f(B(ξ0))− f(max{a2, R2(ξ0)}) = f ′(θ)(B(ξ0)−max{a2, R2(ξ0)}).

Note that f ′′(u) > 0 for all u > ũ and B(ξ0) > θ > max{a2, R2(ξ0)} > ũ. We have

f ′(θ)− ξ0 = f ′(θ)− f ′(R2(ξ0)) > 0.

Hence, (3.11) implies B(ξ0)−max{a2, R2(ξ0)} < 0.
Lemma 3.3. Let u = B2(ξ) be the integral curve of (3.3) through (0, u+), where

u1 < u+ < u2. Then

lim
k→+∞

B2(ξ) = max{u+, R1(ξ)} for all ξ ∈ (f ′(u+), 0].(3.12)

Proof. By Lemma 3.1, we have for a finite reaction rate k,

B2(ξ) > u+, B2(ξ) > R1(ξ) for all ξ ∈ (f ′(u+), 0],

and B2(ξ) is decreasing. Note that u+ > R1(ξ) for all ξ ∈ (f ′(u+), 0). Hence it
suffices to prove that

lim
r→∞B2(ξ) = u+.(3.13)

Assume to the contrary that there exists ξ0 ∈ (f ′(u+), 0) such that limk→∞B2(ξ0)
=: v > u+. Then we integrate (3.3) from ξ0 to 0 and obtain

f(u+)− f(B2(ξ0)) + ξ0B2(ξ0) +

∫ 0

ξ0

B2(ξ)dξ =
kqξ0
k + 1

(
ξ0
η

)k
.

Since ∫ 0

ξ0

B2(ξ)dξ > −ξ0u+,

we obtain that as k goes to infinity,

f(u+)− f(v) + ξ0(v − u+) < 0,
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i.e.,

f(u+)− f(v)

u+ − v
> ξ0.

Therefore, there exists θ ∈ (u+, v) such that

f ′(θ) =
f(u+)− f(v)

u+ − v
> ξ0.(3.14)

(a) If θ ∈ (u1, ũ), then since f ′′(u) < 0 and v > θ > u+, we have f ′(v) < f ′(θ) <
f ′(u+). This contradicts the fact that f ′(θ) > ξ0 > f ′(u+).

(b) If θ ∈ [ũ, u2), then f ′(v) > f ′(θ) since f ′′(u) > 0 for all u ∈ (ũ, u2). Note that
ξ0 > f ′(v). We obtain the contradiction to (3.14).

In the remainder of this section, we will suppress the subscript of B when doing
so causes no confusion.

Lemma 3.4. Let η ∈ (η∗, 0) and B(0; η, k) = u+ ∈ (ū, a1). Then there exists a
constant k0 > 0 such that whenever k > k0,

B(ξ; η, k) < u∗ uniformly for all ξ ∈ [η, 0], η ∈ (η∗, 0).(3.15)

Proof. If (3.15) fails, then for any n > 0 there exist kn > n, ηn ∈ (η∗, 0), and
ξn ∈ [ηn, 0] such that B(ξ; ηn, kn) > u∗ for all ξ ∈ (ξn, 0] and B(ξn; ηn, kn) = u∗.

Since ηn ∈ (η∗, 0), we choose a convergent subsequence from {ηn}, still denoted by
{ηn}. Set η = lim ηn, ξ = lim ξn. Substituting η, k, and u by ηn, kn, and B(ξ; ηn, kn)
in (3.3), respectively, and then integrating it from ξn to 0, we obtain

f(u+)− f(u∗) + ξnu
∗ +

∫ 0

ξn

B(ξ; ηn, kn)dξ = −qξn kn
kn + 1

(
ξn
ηn

)kn
.(3.16)

Letting n→ +∞ and noting B(ξ; ηn, kn) ≥ u+, we have from (3.16) that

f(u∗)− f(u+)

u∗ + q − u+
≥ ξ.(3.17)

On the other hand, when u+ ∈ (ū, a1),

f(u∗)− f(u+)

u∗ + q − u+
< η∗.(3.18)

Then η∗ > ξ, which contradicts ξ ≥ η ≥ η∗. Thus, we complete the proof.
Lemma 3.5. Let B(0; η1, k) = B(0; η2, k) = u+ ∈ (ū, a1). If η1 ≥ η2 > η∗, then,

for sufficiently large k,

B(ξ; η1, k) > B(ξ; η2, k) for all ξ ∈ [η1, 0].(3.19)

Proof. Letting w(ξ; η, k) = ∂B(ξ;η,k)
∂η , and differentiating (3.3) with respect to ξ,

we obtain 
dw

dξ
+

f ′′(B)qk( ξη )
k

(f ′(B)− ξ)2
w =

−qk( ξη )k
η(f ′(B)− ξ)

, η < ξ < 0,

w(0; η, k) = 0.
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From Lemma 3.1, it follows that f ′(B(ξ; η, k))− ξ < 0. Then the fact that the right-
hand side of the above equation is negative implies w > 0 for all ξ ∈ (η, 0). Hence,
B(ξ; η, k) increases in η. Thus we obtain (3.19).

Lemma 3.6. Let B(0; η, k) = u+ ∈ (ū, a1). Then, for sufficiently large k, there
exists ηk ∈ (η∗, 0) such that

ηk =
f(B(ηk; ηk, k))− f(u−)

B(ηk; ηk, k)− u−
.(3.20)

Proof. Let Hk(η) = f(B(η; η, k)) − f(u−) − η(B(η; η, k) − u−). By Lemma 3.1,
we have u+ < B(η∗; η∗, k) < u∗. Then

Hk(η
∗) = f(B(η∗; η∗, k))− f(u−)− η∗(B(η∗; η∗, k)− u−) > 0

and

Hk(0) = f(u+)− f(u−)− 0(u+ − u−) < 0,

which implies the existence of ηk satisfying (3.20).
Now we turn to consider the admissible solution of (2.2) and (2.4) corresponding

to Cases 3.1.1–3.1.3. In the following arguments, we need to notice the dependence
of solutions (u(ξ), z(ξ)) of (2.2) and (2.4) on the reaction rate k.

Case 3.1.1. u+ ∈ (a1,+∞).
Theorem 3.7. For Case 3.1.1, the Riemann problem (2.2) and (2.4) has a unique

admissible solution (u(ξ), z(ξ)),

(u(ξ), z(ξ)) =


(u−, 1), ξ < η∗,

(B(ξ; η∗, k), ( ξη∗ )
k), ξ ∈ [η∗, 0],

(C(ξ), 0), ξ > 0,

(3.21)

where C(ξ) is the solution of the following boundary value problem:
(f ′(C)− ξ)dCdξ = 0, C(ξ) ≥ 0, ξ ∈ (0,+∞),

C(0) = B(0; η∗, k),

C(+∞) = u+.

(3.22)

The infinite reaction rate limit is

lim
k→+∞

(u(ξ), z(ξ)) =

{
(u−, 1), ξ < η∗,

(U(ξ), 0), ξ ≥ η∗,
(3.23)

where U(ξ) is the solution of{
(f ′(U)− ξ)dUdξ = 0, η∗ < ξ < +∞,

U(η∗) = a2, U(+∞) = u+.
(3.24)

Note that here η∗ = f(a2)−f(u−)
a2−(u−+q) < f ′(a2).

Proof. Note that B3(0; η
∗, k) > u2 and limk→∞B3(ξ; η

∗, k) = max{R2(ξ), a2} for
ξ ∈ [η∗, 0]. Also note that

f(u2)− f(u)

u2 − u
≥ 0 for u ∈ [u2,∞)(3.25)
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and

f(u2)− f(u)

u2 − u
< 0 for u ∈ (a1, u2).(3.26)

Then there exists v ∈ (a1, u2) such that for the sufficiently large k, f(B3(0; η
∗, k)) =

f(v). Thus we have two subcases:
(i) u+ ∈ [v,∞). Then

f(B3(0; η
∗, k))− f(u)

B3(0; η∗, k))− u
≥ 0 for all u ∈ [v,∞).(3.27)

Hence the boundary problem (3.22) has the unique solution C(ξ) for all ξ > 0 with
C(0 + 0) = B3(0; η

∗, k). Thus the solution (u(ξ), z(ξ)) can be expressed as in (3.21),
where u(ξ) = B3(ξ; η

∗, k) as ξ ∈ [η∗, 0). This is obviously the admissible solution of
(2.2) and (2.4), as shown in Figure 3.3(a).

Next we prove the uniqueness. Let (u(ξ), z(ξ)) be the solution of (2.2) and (2.4)
for this case. According to Lemma 2.1, z(ξ) has the structure (2.8). When ξ < η,
u satisfies (2.10), of which the unique solution is u = u−. When ξ ≥ 0, u satisfies
(2.12). When u+ > u2, there exists a unique solution of (2.12) for a fixed u(0 + 0) if
u(0+0) > u2. So, we only need to prove η = η∗ and u(ξ) = B(ξ; η∗, k), as ξ ∈ (η∗, 0).

Indeed, we know from the Rankine–Hugoniot jump condition (2.6) that η ≥ η∗.
If η > η∗, then the Rankine–Hugoniot jump condition (2.6) and the Oleinik-type
entropy condition (2.7) imply u(η+0) < u∗. Therefore the solution of (2.11) must be
continuous and decreasing. Thus, u(0 − 0) < u∗. However, the discontinuity, which
is the jump at ξ = 0 from u(0 − 0) < u∗ to u(0 + 0) > u2, does not satisfy the
Oleinik-type entropy condition (2.7). Therefore, η = η∗ and u(η∗ + 0) = u∗. Note
from (2.9) that u(ξ) = B3(ξ; η

∗, k) lies in the right-hand side of η∗. We conclude that
u(ξ) is continuous in (η∗, 0). Otherwise, suppose ξ0 to be a discontinuity point of u(ξ).
Then, by the Oleinik-type entropy condition (2.7) (observe Figure 3.1), it is easy to
see that u(ξ0 + 0) < u∗, which, combined with the entropy condition, implies that
u(ξ) is decreasing and continuous in (η∗, 0). Consequently, u(0 − 0) < u∗. However,
the discontinuity at ξ = 0 does not satisfies the Oleinik-type entropy condition (2.7).
This is a contradiction.

By Lemma 3.2, we have

lim
k→∞

B3(ξ; η
∗, k) = max{a2, R2(ξ)}, ξ ∈ (η∗, 0),

which is the same as the solution of (3.24) for ξ ∈ (η∗, 0).
(ii) u+ ∈ [a1, v). Note that

f(B3(0; η
∗, k))− f(u)

B3(0; η∗, k))− u
< 0 for all u ∈ [a1, v).(3.28)

Then we cannot find a solution to (3.22) such that C(0 + 0) = B3(0; η
∗, k). Instead,

we construct a solution in the form of (3.21), in which B(ξ; η∗, k), at this moment,
becomes

B(ξ; η∗, k) =

{
B3(ξ; η

∗, k), ξ ∈ [η∗, ξk),
B2(ξ; η

∗, k), ξ ∈ [ξk, 0),
(3.29)
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ξ

u

u∗

u1

u2

u−

u+

η∗

A(ξ)

B(ξ)
C(ξ)C(0)

(a) The solution when u+ ∈ (v,+∞).

ξ

u

u∗

u1

u2

u−

u+

η∗

A(ξ)

B(ξ)

C(ξ)
B(ξ)

ξk

(b) The solution when u+ ∈ (a1, v).

Fig. 3.3. The structure of the entropy solution to the ZND model when u+ ∈ (a1,∞).

where B3(ξ; η
∗, k) =: B3(ξ) and B2(ξ; η

∗, k) =: B2(ξ) are defined in Lemmas 3.2 and
3.3, respectively, and ξk ∈ [η∗, 0) is to be determined. Next we show that this is
indeed the solution of (2.2) and (2.4) for a suitable ξk.

In fact, set η = η∗ in (3.3). Then we integrate (3.3) from η∗ to ξk and from ξk to
0, respectively, to obtain

f(B3(ξk))− f(u∗)− ξkB3(ξk) + η∗u∗ +
∫ ξk

η∗
B3(ξ)dξ =

kqη∗

k + 1

((
ξk
η∗

)k+1

− 1

)(3.30)

and

f(u+)− f(B2(ξk)) + ξkB2(ξk) +

∫ 0

ξk

B2(ξ)dξ = − kqη∗

k + 1

(
ξ

η∗

)k+1

.(3.31)

We add these two identities to get

f(B2(ξk))− f(B2(ξk))− ξk(B3(ξk)−B2(ξk))

+ f(u+)− f(u∗) + η∗u∗ +
kqη∗

k + 1
+

∫ ξk

η∗
B3(ξ)dξ +

∫ 0

ξk

B2(ξ)dξ = 0.
(3.32)

Set

H(ξ) = f(B3(ξ))− f(B2(ξ))− ξ(B3(ξ)−B2(ξ)).(3.33)

Then

dH

dξ
= B2(ξ)−B3(ξ) < 0.(3.34)
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Note that

f(a2)− f(u+)

a2 − u+
> η∗.(3.35)

Hence, in light of Lemmas 3.2 and 3.3, for the sufficiently large k, there exists η∗ <
ξ̄ < 0 such that H(ξ̄) > 0. Since f(B3(0)) = f(v) < f(u+), H(0) < 0. Therefore,
there exists a unique ξk ∈ (ξ̄, 0) such that H(ξk) = 0. Take

ξk =
f(B3(ξk))− f(B2(ξk))

B3(ξk)−B2(ξk)
.(3.36)

Then the solution u = u(ξ) has a discontinuity at ξ = ξk, which satisfies the Oleinik
entropy condition (2.7) since B3(ξk) > B2(ξk) and B3(ξk) > u∗.

In light of (3.32), the solution (u(ξ), z(ξ)) constructed above satisfies (2.2) and
(2.4) in the sense of distributions and therefore is admissible. We display this solution
in Figure 3.3(b).

The uniqueness can be proved similarly to that in (i).
By Lemmas 3.2 and 3.3, the limit of this solution as the reaction rate k goes to

infinity is expressed in (3.23).

Case 3.1.2. u+ ∈ (ū, a1].
Theorem 3.8. When k is sufficiently large, then
(1) there exists ηk ∈ (η∗, 0) such that the Riemann problem for Case 3.1.2 has the

unique admissible solution

(u(ξ), z(ξ)) =


(u−, 1), ξ ∈ (−∞, ηk),

(B(ξ; ηk, k), (
ξ
ηk
)k), ξ ∈ (ηk, 0),

(u+, 0), ξ ∈ (0,+∞),

(3.37)

where B(ξ; ηk, k) satisfies (3.3) with B(0; ηk, k) = u+ ∈ (ū, a1] and

ηk =
f(B(ηk; ηk, k))− f(u−)

B(ηk; ηk, k)− u−
;

(2) there holds

lim
k→+∞

(u(ξ), z(ξ)) =

{
(u−, 1), ξ ∈ (−∞, η0),

(U(ξ), 0), ξ ∈ (η0,+∞),
(3.38)

where U(ξ) = max{R1(ξ), u
+} and η0 satisfies

η0 =
f(U(η0))− f(u−)
U(η0)− u− − q

≥ f ′(U(η0)).(3.39)

Proof. (1) If (u(ξ), z(ξ)) is the solution of (2.2) and (2.4), then u(ξ) satisfies
(2.10) and (2.12) when ξ ∈ (−∞, η) and ξ ∈ (0,+∞), respectively. By the Oleinik-
type entropy condition (2.7) and under the assumption that u− < a0 and u+ ∈ (ū, a1],
we have u(ξ) = u− for ξ ∈ (−∞, η) and u(ξ) = u+ for ξ ∈ (0,+∞). By Lemma 3.6,
there exists ηk ∈ (η∗, 0) such that

ηk =
f(B(ηk; ηk, k))− f(u−)

B(ηk; ηk, k)− u−
.
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xi

u

u1

u2

u−
ηk

u(ηk)

ξ = f ′(u)

u = u+

u = u−

0

Fig. 3.4. The structure of entropy solution to the ZND model when u+ ∈ (ū, a1).

It is evident that the entropy condition (2.7) is satisfied at the jump ξ = ηk. Thus, the
admissible solution exists (see Figure 3.4). Arguments similar to those in Theorem
3.7 show that such a solution is unique.

(2) Integrating (3.3) from ηk to 0, we have

f(u+)− f(B(ηk; ηk, k)) + ηkB(ηk; ηk, k)

+

∫ 0

ηk

B(ξ; ηk, k)dξ + qηk
k

k + 1
= 0.

(3.40)

Substituting H(ηk) = 0 (where H(ηk) is defined in Lemma 3.6) into (3.40) gives

f(u+)− f(u−) + ηku
− + qηk

k

k + 1
+

∫ 0

ηk

B(ξ; ηk, k)dξ = 0.(3.41)

Let η̄0 = limk→+∞ηk. Then, in light of Lemma 3.3, we get from (3.41)

f(u+)− f(u−) + η̄0u
− + qη̄0 +

∫ 0

η̄0

U(ξ)dξ = 0,(3.42)

where U(ξ) = max{u+, R1(ξ)). Therefore, we have∫ 0

η̄0

U(ξ)dξ =

{
−η̄0u

+, η̄0 > f ′(u+),

−η̄0U(η̄0)− f(u+) + f(U(η̄0)), η̄0 ≤ f ′(u+).
(3.43)

Equations (3.42) and (3.43) imply that η̄0 satisfies (3.39).
Analogously, it is proved that η

0
= limk→+∞ ηk satisfies (3.39). Therefore, η0 =

limk→+∞ ηk = η̄0 = η
0
and satisfies (3.39).
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w = f(u)

0

u

u1

u2

ũ

u−

ξ = f ′(u)

0 ξ

η0

(a) (b)

Fig. 3.5. The graphs of w = f(u) and ξ = f ′(u) when of f ′(±∞) = −∞.

For any given ξ0 ∈ (η0, 0), choose a small ε > 0 so that η0+ ε < ξ0. Then we have
ηk < η0 + ε < ξ0 for sufficiently large k. From Lemma 3.6, we get

U(ξ0) < B(ξ0; ηk, k) < B(ξ0; η0 + ε, k).

Thus, letting k → +∞, we obtain

lim
k→∞

B(ξ0; ηk, k) = U(ξ0).

Due to the arbitrariness of ξ0, limk→∞B(ξ; ηk, k) = U(ξ) for all ξ ∈ (η0, 0).

Case 3.1.3. u+ ∈ (0, ū]. For this case, we have the following theorem.
Theorem 3.9. For Case 3.1.3, the unique admissible solution of (2.2) and (2.4)

is the noncombustion solution

(u(ξ), z(ξ)) =

(u
−, 1), ξ < f(u−)−f(u+)

u−−u+ ,

(u+, 0), ξ > f(u−)−f(u+)
u−−u+ .

(3.44)

3.2. The solution of (2.2) and (2.4) when f(u)satisfies (A2). Parallel to
section 3.1, we solve (2.2) and (2.4) as f(u) has just one inflection point and the slope
at infinity is negative infinity. The results are stated in Theorems 3.12 and 3.13. We
omit some proofs because they are similar to those in section 3.1.

Let ũ be the inflection point of f(u). When f ′(ũ) ≤ 0, there is no combustion
solution (cf. [13]). Therefore, we only need to consider f ′(ũ) > 0. Let u1, u2, and
u3 be such that u3 > u2 > u1 > 0 and f ′(u1) = f ′(u2) = 0. Recall that u = 0 is
assumed to be the ignition point and therefore plays an important role in the current

context. We set q̂ to satisfy f ′(0) = f(u2)−f(0)
u2−q̂ . The value of the binding energy q

is distinguished into two classes: 0 < q < q̂ and q ≥ q̂. We restrict our study to the
solution to the case that q ∈ (0, q̂). The case that q ≥ q̂ can be treated similarly.

Draw the straight line w − f(0) = f ′(0)(u − q) in the (u,w) plane. Then it
intersects w = f(u) at three points (ai, f(ai)), i = 1, 2, 3, where a2 > a1 > a0. It is
evident that a2 > u2 > a1 > 0 > a0.
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For the fixed q ∈ (0, q̂) and u− ∈ (−∞, 0), the structure of the solution of the
Riemann problem (2.2) and (2.4) will depend on the value of u+. We proceed our
discussion through two cases.

Case 3.2.1. u+ ∈ (0, a2).
Case 3.2.2. u+ ∈ [a2,∞).

Case 3.2.1. u+ ∈ (0, a2). The main result is stated in Theorem 3.12 by fol-
lowing Lemmas 3.10 and 3.11.

Lemma 3.10. Let B(ξ; η0, k) be the smooth solution of the problem

(f ′(B)− ξ)
dB

dξ
= qk

(
ξ

η0

)k
, η0 < ξ ≤ 0,

B(η0; η0, k) = 0,

(3.45)

where η0 = f ′(0). Then u = B(ξ; η0, k) does not increase until it intersects with
ξ = f ′(u) and limk→∞B(ξ; η0, k) = max {a1, R1(ξ)}, ξ ∈ (η0, 0].

Lemma 3.11. Let B(ξ; η0, k) be the smooth solution of the problem(f
′(B)− ξ)

dB

dξ
= qk

(
ξ

η0

)k
, ξ < 0,

B(0; η0, k) = u+.

(3.46)

Then for all u+ ∈ (u2, a2) or u
+ ∈ (0, u1), f

′(B(ξ; η0, k) < ξ, and therefore B(ξ; η0, k)
does not decrease until it intersects with ξ = f ′(u). Furthermore, the limit of B(ξ; η0, k)
as the reaction rate goes to infinity is

lim
k→∞

B(ξ; η0, k) = u+(3.47)

for all ξ ∈ (f ′(u+), 0).
Note that B(η0; η0, k) does not need to be zero, which is different from Lemma

3.10.
The proof of Lemmas 3.10 and 3.11 is similar to that of Lemmas 3.1 and 3.3.

Using a method similar to that in Theorem 3.7, we can construct the solution of (2.2)
and (2.4) for Case 3.2.1.

Theorem 3.12. When k is large enough, the Riemann problem of (2.2) and (2.4)
for Case 3.2.1 has the unique admissible solution with the structure

(u(ξ), z(ξ)) =


(max{u−, R1(ξ)}, 1), −∞ < ξ < η0,

(B(ξ; η0, k), (
ξ
η0
)k), η0 < ξ < 0,

(C(ξ; η0, k), 0), 0 ≤ ξ < +∞
(3.48)

and

lim
k→∞

(u(ξ), z(ξ)) =

{
(max{u−, R1(ξ)}, 1), −∞ < ξ ≤ η0,

(C(ξ), 0), η0 < ξ < +∞,
(3.49)

where C(ξ) is the solution of{
(f ′(C)− ξ)dCdξ = 0, η0 ≤ ξ < +∞,

C(η0) = a1, C(+∞) = u+.
(3.50)
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Note here that η0 =
f(a1)−f(0)

a1−q < f ′(a1).

Proof. Let (u(ξ), z(ξ)) = (max{u−, R1(ξ)}, 1) when ξ ∈ (−∞, η0). Let B1(ξ; η0, k)
and B2(ξ; η0, k) be the solutions of (3.45) and (3.46), respectively.

(i) If f(u+)−f(B1(0;η0,k))
u+−B1(0;η0,k)

≥ 0, then we choose u(ξ) = B1(ξ; η0, k) as the smooth

solution of equation (3.45) when η0 < ξ < 0. By Lemma 3.10, limk→∞B1(ξ; η0, k) =
max {a1, R1(ξ)}, as ξ ∈ (η0, 0]. Thus we have u1 < B(0; η0, k) < u2, as k is large
enough, due to u1 < a1 < u2. Then the problem{

(f ′(C)− ξ)dCdξ = 0, 0 ≤ ξ < +∞,

C(0) = B1(0; η0, k), C(+∞; η0, k) = u+
(3.51)

has a unique entropy solution since f(u+)−f(B1(0;η0,k))
u+−B1(0;η0,k)

≥ 0.

(ii) If f(u+)−f(B1(0;η0,k))
u+−B1(0;η0,k)

< 0, then we choose u(ξ) = u+ as ξ ≥ 0, u(ξ) =

B1(ξ; η0, k) as ξ ∈ (η0, ξk), and u(ξ) = B2(ξ; η0, k) as ξ ∈ (ξk, 0), where ξk is
to be determined. Note that now u+ /∈ (u1, u2) since B1(0; η0, k) ∈ (u1, u2) and
f(B1(0;η0,k)−f(v)
B1(0;η0,k)−v > 0 for all v ∈ (u1, u2).

The summation of the integration of (3.45) from η0 to ξk and the integration
(3.46) from ξk to 0 results in

[f(B1(ξk; η0, k))− f(B2(ξk; η0, k))]

− ξk[B1(ξk; η0, k)−B2(ξk; η0, k)]− [f(0)− f(u+)] + qη0
k

k + 1

+

∫ ξk

η0

B1(ξ; η0, k)dξ +

∫ 0

ξk

B2(ξ; η0, k)dξ = 0.

(3.52)

Set

H(ξ) = [f(B1(ξ; η0, k))− f(B2(ξ; η0, k))]

− ξ[B1(ξ; η0, k)−B2(ξ; η0, k)].
(3.53)

When u+ ∈ (0, u1), we have

dH

dξ
= B2(ξ; η0, k)−B1(ξ; η0, k) < 0 for all ξ ∈ (f ′(u+), 0)(3.54)

and

H(0) = f(B1(0; η0, k))− f(u+) < 0.(3.55)

In light of Lemmas 3.10 and 3.11, limk→∞B1(ξ; η0, k) = max{a1, R1(ξ)} and limk→∞
B2(ξ; η0, k) = u+ as ξ ∈ (f ′(u+), 0). Since

f(a1)− f(u+)

a1 − u+
> f ′(u+),

H(ξ) > 0 for sufficiently large k as ξ > f ′(u+), and ξ is close to f ′(u+). Therefore,
there exists ξk ∈ (f ′(u+), 0) such that H(ξk) = 0.

When u+ ∈ (u2, a2), we have

H(0) = f(B1(0; η0, k))− f(u+) > 0
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and

H(η0) = f(0)− f(B2(η0; η0, k))− η0(0−B2(η0; η0, k) < 0;

there also exists ξk ∈ (η0, 0) such that H(ξk) = 0. Thus, define

ξk =
f(B1(ξk; η0, k))− f(B2(ξk; η0, k))

B1(ξk; η0, k)−B2(ξk; η0, k)
.(3.56)

By Lemmas 3.10 and 3.11, we have

lim
k→∞

B1(ξ; η0, k) = max{a1, R1(ξ)}, lim
k→∞

B2(ξ; η0, k) = u+.

Then, as k is sufficiently large, B1(ξk; η0, k) is close to max{a1, R1(ξk)} and
B2(ξk; η0, k) is close to u+. Therefore, the discontinuity of u at ξ = ξk satisfies
the Oleinik entropy condition (2.7). By (3.52), we conclude that this solution satisfies
(2.2) and (2.4) in the sense of distributions. Thus we have constructed the admissible
solution. The uniqueness is obvious.

Using Lemmas 3.10 and 3.11, the limit of the solution is obtained.

Case 3.2.2. u+ ∈ [a2,+∞). Set

(u(ξ), z(ξ)) =


(max{u−, R1(ξ)}, 1), ξ ∈ (−∞, ηk),

(B(ξ; ηk, k), (
ξ
ηk
)k), ξ ∈ (ηk, 0],

(u+, 0), ξ ∈ (0,+∞),

(3.57)

where ηk is to be determined, and B(ξ; ηk, k) satisfies

(f ′(B)− ξ)
dB

dξ
= qk

(
ξ

ηk

)k
, ηk < ξ < 0,

B(0; ηk, k) = u+.

(3.58)

Since u+ ≥ a2, the Riemann problem of (2.2) and (2.4) does not have the same kind
of solution as that in Case 3.2.1. This implies that ηk < η0. Denote η

− = f ′(u−). The
summation of the integration of (3.3) from η− to ηk when q = 0 and the integration
from ηk to 0 when q > 0 is

f(max{u−, R1(ηk)})− f(B(ηk; ηk, k))− ηk(max{u−, R1(ηk)} −B(ηk; ηk, k))

+ f(u+)− f(u−) + η−u− +

∫ ηk

η−
max{u−, R1(ξ)}dξ +

∫ 0

ηk

B(ξ; ηk, k)dξ +
kqηk
k + 1

= 0.

(3.59)

Set

H(η) = f(B(η; η, k))− f(max{u−, R1(η)})
− η[B(η; η, k)−max{u−, R1(η)}].

(3.60)

Then we claim that there exists ηk < η0 such that H(ηk) = 0.
Draw a line w − f(u−) = f ′(u−)(u − (u− + q)). It has an intersection point,

denoted by (b1, f(b1)), b1 > a2, with w = f(u). Then we prove the above claim using
two cases.
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(i) u+ ∈ [a2, b1). Then we can find u∗ ∈ (u−, 0] such that

f ′(u∗) =
f(u+)− f(u∗)
u+ − (u∗ + q)

=: η∗.(3.61)

In light of Lemma 3.11, for sufficiently large k, the solution B(η; η, k) of (3.58) is close
to u+. Therefore,

H(η∗) = f(u∗)− f(B(η∗; η∗, k))− η∗(u∗ −B(η∗; η∗, k)) > 0.(3.62)

On the other hand,

H(η−) = f(u−)− f(B(η−; η−, k))− η−(u− −B(η−; η−, k)) < 0.(3.63)

Hence, there exists ηk ∈ (η−, η∗) such that H(ηk) = 0.
(ii) u+ ∈ [b1,+∞). Now we set

η∗ =
f(u+)− f(u−)
u+ − (u− + q)

.(3.64)

Then we assert

η− > η∗ > η+ := f ′(u+).(3.65)

Making use of (3.59), we can conclude that

H(η+) < 0 and H(η−) > 0.(3.66)

Therefore, there also exists ηk ∈ (η+, η−) such that H(ηk) = 0.
Thus we construct an admissible solution of (2.2) and (2.4) for Case 3.2.2. The

uniqueness is obvious. Therefore, we summarize to obtain the following theorem.
Theorem 3.13. The Riemann problem for Case 3.2.2 has a unique admissible

solution with the structure

(u(ξ), z(ξ)) =


(max {u−, R1(ξ)}, 1), ξ ∈ (−∞, ηk),

(B(ξ; ηk, k), (
ξ
ηk
)k), ξ ∈ (ηk, 0),

(u+, 0), ξ ∈ [0,+∞)

(3.67)

and

lim
k→+∞

(u(ξ), z(ξ)) =

{
(max {u−, R1(ξ)}, 1), ξ ∈ (−∞, η∗),

(u+, 0), ξ ∈ (η∗,+∞).
(3.68)

4. Entropy condition for combustion waves of the CJ model. In this
section, we will propose the entropy condition for combustion waves of the CJ model
(1.2) with nonconvex fluxes f(u) by taking into account the limit behavior of the
solutions (u(ξ), z(ξ)) of (2.2) and (2.4) as the reaction rate goes to infinity. As we
discussed in section 3, the Riemann solutions are essentially classified into two kinds:
noncombustion solutions and combustion solutions. The combustion solutions have
two types.

(i) For Type 1, as shown in Cases 3.1.2 and 3.2.2, the gas is ignited through a
shock at ξ = ηk. The position of the reaction wave front depends on the reaction rate
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k. The solution u is increasing as ξ < ηk, while it is decreasing as ξ > ηk. There is
a von Neumann spike u = B(ηk; ηk, k) on the curve of u = u(ξ) in a neighborhood
of ξ = ηk. Denote η̄ = limk→+∞ ηk, ū(ξ) = limk→+∞B(ξ; ηk, k) for ξ ∈ (η̄, 0) and
ūR = limk→+∞B(ηk; ηk, k).

Then, at ξ = η̄, we have the relation

η̄ =
f(ūr)− f(ūl)

ūr − ūl − q
< 0, f ′(ūl) ≥ η̄ ≥ f ′(ūr),(4.1)

and ūR > ūr such that

f(ūR)− f(ūl)

ūR − ūl
=

f(ūr)− f(ūl)

ūr − ūl − q
≤ f(u)− f(ūl)

u− ūl
for all u ∈ (ūl, ūR),(4.2)

where ūr = ū(η̄ + 0), ūl = ū(η̄ − 0).
(ii) For Type 2, as shown in Cases 3.1.1 and 3.2.1, the gas will burn when its

temperature reaches the ignition point continuously at ξ = η0 or jumps over the
ignition point through a shock at ξ = η∗. The position of the reaction wave front ξ = η0

(or ξ = η∗) does not depend on the reaction rate k. In the neighborhood of ξ = η0 or
ξ = η∗, u is increasing. There is no von Neumann spike on the curve of u = u(ξ) in
the neighborhood of ξ = η0 or ξ = η∗. Denote η̄ = η0 or η

∗, ū(ξ) = limk→+∞B(ξ; η̄, k)
for ξ ∈ (η̄, 0), and ūR = limk→+∞B(η̄; η̄, k). Then, at ξ = η̄, we have the relation

η̄ =
f(ūr)− f(ūl)

ūr − ūl − q
< 0, η̄ ≤ f ′(ūr),(4.3)

and ūR ∈ [0, ūr) such that

f(ūR)− f(ūl)

ūR − ūl
=

f(ūr)− f(ūl)

ūr − ūl − q
≥ f(u)− f(ūl)

u− ūl
for all u ∈ (ūl, ūr),(4.4)

where ūr = ū(η̄ + 0), ūl = ū(η̄ − 0).
Definition 4.1. For the CJ combustion model (1.2), we define the limit of

the interface between the unburned and reaction states in Type I as a generalized
detonation wave and in Type II as the generalized deflagration wave.

From this definition, we extract the following entropy condition on combustion
waves for the nonconvex CJ combustion model (1.2).

Entropy condition. Let x = x(t) be a combustion wave of the CJ combustion
model (1.2). Let ul = u(x(t)− 0, t) and ur = u(x(t) + 0, t) be the limit values of u in
the wave front and the wave back, respectively. Then

(1) x = x(t) is a generalized CJ deflagration wave if

dx

dt
=

f(ur)− f(ul)

ur − ul − q
< 0,

dx

dt
≤ f ′(ur),(4.5)

and there exists uR ∈ [0, ur) such that

f(uR)− f(ul)

uR − ul
=

f(ur)− f(ul)

ur − ul − q
≥ f(u)− f(ul)

u− ul
for all u ∈ (ul, ur);(4.6)

(2) x = x(t) is a generalized detonation wave if

dx

dt
=

f(ur)− f(ul)

ur − ul − q
< 0, f ′(ul) ≥ dx

dt
≥ f ′(ur),(4.7)
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and there exists uR ∈ (ur,+∞) such that

f(uR)− f(ul)

uR − ul
=

f(ur)− f(ul)

ur − ul − q
≤ f(u)− f(ul)

u− ul
for all u ∈ (ul, uR).(4.8)

Furthermore the detonation wave is a CJ detonation wave if dx
dt = f ′(ur); otherwise,

it is a strong detonation wave.
As we have seen, this entropy condition for the nonconvex CJ combustion model

(1.2) inherits the essential difference between detonation and deflagration waves in
that the former contains a von Neumann spike in the finite reaction rate region but
the latter does not, which reflects the intrinsic feature of combustion waves in gas
dynamics (cf. [1, 22]). With this, we can improve the results in [18] greatly to justify
the (entropy) solutions of the Riemann problem for (1.2). Actually this entropy con-
dition can be used in the construction of two-dimensional Riemann problems for the
counterpart of (1.2), the generalization of (1.2) in two-dimensions; see [20]. Therefore,
to some extent, this entropy condition lays a foundation and gives insight into the
study of the structure of multidimensional combustion solutions.
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Abstract. The wave function {ψε(t, x)} of single particle approximation, which is used in
the study of quantum transportation in some semiconductive devices, satisfies Schrödinger–Poisson
equations. It is well known that the Wigner transformation fε(t, x, ξ) of the corresponding wave
function ψε(t, x) satisfies the so-called Wigner–Poisson equations. We prove here that in any space

dimension, with the initial data of the form
√
ρε0(x) exp(

i
ε
Sε(x)) to the wave function, and before

the formation of vortices, the Wigner measure f(t, x, ξ), which is the weak limit of fε(t, x, ξ) as the
normalized Planck constant ε approaches 0, satisfies Vlasov–Poisson equations, and the limits of
the quantum density and momentum to the Schrödinger–Poisson equations satisfy the pressureless
Euler–Poisson equations.

Key words. Schrödinger–Poisson, Euler–Poisson, Vlasov–Poisson, Wigner measure, Wigner
transformation, pseudodifferential operator
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1. Introduction. In this paper, we consider the local-in-time semiclassical limit
of Schrödinger–Poisson equations in any space dimension. The wave function {ψε(t, x)}
of single particle approximation, which is used in the study of quantum transportation
in some semiconductive devices, satisfies Schrödinger–Poisson equations,{

iε∂tψ
ε = − ε22 �ψε + V εψε, x ∈ R

d, t ≥ 0,

ψε(t = 0, x) =
√
ρε0(x) exp(

i
εS

ε(x)),
(1.1)

where ε is the normalized Planck constant, and the potential V ε(t, x) is assumed to
be given self-consistently by Poisson’s equation,

−�V ε = ρε − b(x), ρε(t, x) = |ψε(t, x)|2,(1.2)

where V ε and∇xV vanish as |x| → ∞, and the function b(x) denotes the doping profile
in the semiconductor applications, and, in general, it denotes a fixed background
charge. One may see [17] or [5] for more physical explanations..

As was commented in [5], it is a fundamental principle in quantum mechanics
that when the time and distance scales are large enough relative to the Planck’s con-
stant, the quantum density, |ψε|2, and the quantum momentum, εIm(ψε∇ψε), will
approximately obey the laws of classical, Newtonian mechanics. And the quantum-
mechanical pressure disappears in the semiclassical limit, and Euler equations for an
isentropic compressible flow are formally recovered from the nonlinear Schrödinger
equation. In one space dimension with V ε = |ψε|2 − 1, the global character of the
semiclassical limit was established by Jin, Levermore, and McLaughlin [10], [11] using
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the inverse scattering method; for d ≥ 2, V ε = f(|ψε|2) with f ′ > 0, before the forma-
tion of singularities in the limit system, Grenier [9] solved the limit by applying the
symmetric hyperbolic equation theory. The semiclassical limit of the general modified
nonlinear Schrödinger equation (see [3]) can be compared to the similar strategy of
Grenier’s. But we will see that this method does not work for the semiclassical limit
of the Schrödinger–Poisson equations if we follow the idea of [9], as the resulting limit
equations are not a symmetric hyperbolic system; thus the standard energy estimate
which works well there fails here.

Traditional method suggests that, at least for short time, the wave function
ψε(t, x) for (1.1) will be of the following form:

ψε(t, x) =
√
ρε(t, x) exp

(
i

ε
Sε(t, x)

)
.(1.3)

Then by substituting (1.3) to (1.1) and separating the real and imaginary part in
(1.1), the irrotational flow equations{

∂tρ
ε + divJε = 0,

∂tJ
ε + div

(
Jε⊗Jε

ρε

)
+ ρε∇V ε = ε2

2 ρ
ε∇[ 1√

ρε
�√ρε],(1.4)

where Jε = ρε∇Sε = εIm(ψε∇ψε) and ⊗ denotes the tensor product of vectors (see
the notation at the end of the introduction), are obtained in [12]. Equations (1.4)
represent a fluid dynamic formulation of (1.1) and are known as Madelung’s fluid
equations [15]. The semiclassical limit of (1.1) just means the vanishing dispersion
limit to (1.4). Unfortunately, we can do almost nothing for the vanishing dispersion
limit due to the strong singularity on the set {(t, x)|ρε(t, x) = 0}.

Motivated by recent work of Brenier [1], where the author proved the local-in-
time convergence of the scaled Vlasov–Poisson equations to the incompressible Euler
equations, we are going to use the Wigner measure approach to study the semiclas-
sical limit of (1.1). In 1932, Wigner [23] introduced the following transformation in
quantum mechanics:

f ε(t, x, ξ) =
1

(2π)d

∫
Rd

e−iξyψε
(
t, x+

εy

2

)
ψε
(
t, x− εy

2

)
dy.(1.5)

Then trivial calculation shows that f ε(t, x, ξ) satisfies the equation{
∂tf

ε + ξ∇f ε + θ[V ε]f ε = 0,
f ε(t = 0, x, ξ) = f εI (x, ξ),

(1.6)

where θ[V ε]f ε(t, x, ξ) is the pseudodifferential operator

θ[V ε]f ε(t, x, ξ) =
i

(2π)d

∫
Rd

∫
Rd

V ε(t, x+ εy
2 )− V ε(t, x− εy

2 )

ε
f ε(t, x, η)e−i(ξ−η)y dη dy.

(1.7)
Formally passing ε→ 0 in (1.6), we get{

∂tf + ξ∇xf − E∇ξf = 0, E = ∇�−1(b(x)− ρ),
f(t = 0, x, ξ) = f0(x, ξ),

(1.8)

where f(t, x, ξ) is the weak limit of f ε(t, x, ξ), which is a nonnegative Radon mea-
sure (see [14] or [7] for more details). Recently we [25] rigorously justified the limit
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from (1.6) to (1.8) in one space dimension with very general initial data to the wave
function.

On the other hand, with the initial data of the form ψε0(x) =
√
ρε0(x) exp(

i
εS

ε(x)),
and assuming that {ρε0(x)}, {∇Sε(x)} converge to ρ0(x) and u0(x) in some sense
(see assumption (A3) below), we can easily calculate that the corresponding Wigner
measure f0(x, ξ) is ρ0(x)δ(ξ − u0(x)). Taking this f0(x, ξ) as initial data for (1.8),
formally we can expect that there is a positive constant T ∗ such that (1.8) has a
solution of the form ρ(t, x)δ(ξ− u(t, x)) for t < T ∗, and (ρ(t, x), u(t, x)) is smooth for
t < T ∗. Then by the velocity average to (1.8), we find{

∂tρ+ div(ρu) = 0,
∂t(ρu) + div(ρu⊗ u) + ρ∇V = 0, �V = b(x)− ρ.

(1.9)

In the following, we will give a rigorous justification to the above formal explanation.
It should be noticed that this idea has been used by Gasser and Markowich [4] in the
study of the semiclassical limit of the linear Schrödinger equation, where the limit
from (1.6) to (1.8) was proved in [14].

Before the presentation of the main result of this paper, let us first make the
following assumptions:

(A1) b(x),
√
ρε0(x), S

ε(x) ∈ Hs(Rd) for s ∈ Z
+ and s > d

2 + 2;

(A2) b(x) ∈ L1(Rd), ρε0(x) is uniformly bounded in L1(Rd)∩L2(Rd), and∇√ρε0(x)

and
√
ρε0∇Sε(x) are uniformly bounded in L2(Rd);

(A3) ∇�−1(ρε0 − ρ0)(x) → 0,
√
ρε0(∇Sε − u0)(x) → 0 in L2(Rd), and ρ0(x) ∈

Hs−1(Rd), u0(x) ∈ Hs(Rd), with s ∈ Z
+ and s > d

2 + 2;
(A4) when d = 1, 2, we further need that∫

Rd

ρε0(x) dx =

∫
Rd

b(x) dx =

∫
Rd

ρ0(x) dx,∫
Rd

|x||ρε0(x)− b(x)| dx < C,

with C an ε-independent positive constant.
From now on, let us denote by (ρ, u) the local smooth solution to the following

equations: 
∂tρ+ div(ρu) = 0,
∂tu+ u∇u+∇V = 0, �V = b(x)− ρ,
ρ(t = 0, x) = ρ0, u(t = 0, x) = u0,

(1.10)

where V and ∇xV vanish as |x| → ∞. Notice that any smooth solution of (1.10)
must be a smooth solution of (1.9). Because of the degeneracy of the second equation
of (1.9) on the set {(t, x) : ρ(t, x) = 0}, we will consider (1.10) as the limit system
instead of (1.9).

For the convenience of the reader, let us recall the test function space from [14],

A =
{
φ ∈ C∞c (Rdx × R

d
ξ)|, (Fξφ)(x, η) ∈ L1(Rdη, Cc(R

d
x))
}
,(1.11)

with the norm

‖φ(x, ξ)‖A =

∫
Rd

sup
x
|(Fξφ)(x, η)| dη,(1.12)
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where (Fξφ)(x, η) is the Fourier transformation of φ(x, ξ) with respect to ξ.
Definition 1.1. We call f ε(t, x, ξ) theWigner transformation of ψε(t, x) for any

fixed t. The corresponding weak limit f(t, x, ξ), which we will detail in what follows,
of f ε(t, ·, ·) as ε→ 0 is called the Wigner measure of ψε(t, x).

Remark 1.1. The Wigner measure f(t, x, ξ) is in fact a nonnegative Radon mea-
sure for any fixed time t. See [14] and [7] for more details. Moreover, f(t, x, ξ) has a
very close relation with the H-measure of {ψε(t, x))} (see [20], [6], or [14]).

Then we have the following theorem.
Theorem 1.1. Let (ρε0(x), S

ε(x)), (ρ0(x), u0(x)) satisfy (A1)–(A4), and let ψε(t, x),
(ρ(t, x), u(t, x)) be the solutions of (1.1)–(1.2) and (1.10), respectively. Then there ex-
ists a positive constant T ∗ such that for all T < T ∗, ρ(t, x) ∈ L∞([0, T ], Hs−1(Rd)),
u(t, x) ∈ L∞([0, T ], Hs(Rd)). Moreover, for any fixed t < T ∗, the following hold:

(1)

f ε(t, x, ξ) ⇀ f(t, x, ξ) =: ρ(t, x)δ(ξ − u(t, x)) in A′(R2d),(1.13)

|ψε(t, x)|2 ⇀ ρ(t, x) in M+(Rd),(1.14)

εIm
(
ψε(t, x)∇ψε(t, x))⇀ (ρu)(t, x) in M(Rd),(1.15)

as ε tends to 0, and T ∗ is the first time such that

lim
T→T∗

‖∇u(t, ·)‖L∞([0,T ]×Rd) =∞.(1.16)

(2) f(t, x, ξ) ∈ Lip([0, T ∗), H−s(R2d)) for s > d + 1 and f(t, x, ξ) satisfies (1.8)
on [0, T ∗)× R

2d in the sense of distribution.
Remark 1.2. When d = 1 and ρε0(x), S

ε(x) are smooth, we can prove that the
Wigner measure f(t, x, ξ) globally solves the one-dimensional Vlasov–Poisson equa-
tions (see [25] for more details). Then by (3.35) and the proof of (3.41), up to a
subsequence of {ψε}, which we denote by {ψεj} for any fixed t ≥ T ∗, there holds

f ε(t, x, ξ) ⇀ f(t, x, ξ) in A′(R2d),

εIm
(
ψε(t, x)∇ψε(t, x))⇀ ∫

R

ξf(t, x, dξ) in M(Rd)

as ε → 0, where f(t, x, ξ) is the global weak solution of the one-dimensional Vlasov–
Poisson equations 

∂tf + ξ∂ξ − E∂ξf = 0, x ∈ R, t ≥ 0,
∂xE = b(x)− ∫

R
f(t, x, dξ),

f(t = 0, x, ξ) = ρ0(x)δ(ξ − u0(x)).
(1.17)

But from [11], we cannot expect that the limits of the quantum density and momentum
to the Schrödinger–Poisson equations satisfy (1.9) after the formation of singularities
in the limit system.

Remark 1.3. Recently Lin and Zhang [13] rigorously proved that before the
formation of singularities in the limit system, the limit equation obtained by the
hydrodynamic limit of Ginzburg–Landau wave vortices is again (1.10).

Notation used throughout this paper. Let a = (a1, a2, . . . , ad), b = (b1, b2, . . . , bd)
be two vectors; then we denote

a⊗ b = (aibj)n×n .
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Let Mk(x) =
(
mk
ij(x)

)
n×n, k = 1, 2, be two C1(Rd) matrix functions; then

M1 : M2 =

d∑
i,j=1

m1
ijm

2
ij , ∇ : M1(x) =


div&m1

1(x)
·
·
·

div&m1
d(x)

 ,

with &m1
i (x) =

(
m1
i1(x),m

1
i2(x), . . . ,m

1
id(x)

)
.

We denote by M (Rd) the Radon measure space over R
d, by f̂(ξ) the Fourier

transform of f(x), by α = (α1, α2, . . . , αd) the multi-index, Dx = 1
i∇x, and by the

letter C a uniform constant, which may change from line to line.

2. Preliminaries. In this section, we will present some uniform estimates to the
smooth solution of the quantum Schrödinger–Poisson equations and prove the local
existence of the smooth solution to (1.10).

Lemma 2.1. Let (ρε0(x), S
ε(x)) satisfy (A1); then for any fixed ε, (1.1)–(1.2)

has a unique global smooth solution ψε(t, x) ∈ L∞([0, T ], Hs(Rd)) for any T < ∞.
Moreover, the following hold:

(1)

‖ψε(t, ·)‖L2 = ‖ρε0‖
1
2

L1 ;(2.1)

(2)

d

dt

{
ε2

2
‖∇ψε(t, ·)‖2L2 + ‖∇V ε(t, ·)‖2L2

}
= 0.(2.2)

Proof. First, for any fixed ε, by modifying the method in [8] or [2], we easily
obtain that (1.1) has a global smooth solution ψε(t, x) ∈ L∞([0, T ], Hs(Rd)) for any
T <∞, with initial data

√
ρε0(x) exp(

i
εS

ε(x)). Details are omitted.

By multiplying ψε(t, x) by both sides of (1.1), then integrating with respect to x
over R

d and taking integration by parts, we obtain part (1) of Lemma 2.1.

Next, let us multiply ∂tψε(t, x) by both sides of (1.1), then integrating with respect
to x and integrating by parts again, we have

iε

∫
Rd

|∂tψε|2 dx =
ε2

2

∫
Rd

∇ψε∂t∇ψε dx+

∫
Rd

V εψε∂tψε dx.(2.3)

Taking the real part of (2.3), we find

ε2

2

d

dt

∫
Rd

|∇ψε(t, ·)|2 dx = −
∫

Rd

V ε∂t|ψε(t, ·)|2 dx(2.4)

=

∫
Rd

V ε∂t�V ε dx = − d

dt

∫
Rd

|∇V ε(t, ·)|2 dx,

where we used (1.2) in the next-to-last step of (2.4). Then (2.2) is a direct consequence
of (2.4), which completes the proof of the lemma.
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Remark 2.1. By (A2) and (A4), we can prove that {∇V ε(0, x)} is uniformly
bounded in L2(Rd). In fact, for d ≥ 3, for any fixed positive constant M, we have

‖∇V ε(0, x)‖L2=

(∫
Rd

|∇�−1(ρε0 − b)(x)|2 dx
) 1

2

=

(∫
Rd

∣∣∣∣ ξ

|ξ|2 (ρ̂ε0 − b̂)(ξ)

∣∣∣∣2 dξ
) 1

2

≤
(∫
|ξ|≤M

1

|ξ|2 |(ρ̂
ε
0 − b̂)(ξ)|2 dξ

) 1
2

+
1

M

(∫
Rd

|(ρ̂ε0 − b̂)(ξ)|2 dξ
) 1

2

≤ CM
d−2
2 ‖(ρ̂ε0 − b̂)‖L∞ +

1

M
‖ρε0 − b‖L2 ,(2.5)

but by [19], we have

‖(ρ̂ε0 − b̂)‖L∞ ≤ ‖ρε0 − b‖L1 .(2.6)

By combining (A2) and (2.5) with (2.6), we get the estimate for ‖∇V ε(0, x)‖L2 for
d ≥ 3, while for d = 1, 2, by (A4), we have

∫
Rd(ρ

ε
0 − b)(x) dx = 0, which directly

implies that

(ρ̂ε0 − b̂)(0) = 0;

then by the calculations in (2.5), we have

‖∇V ε(0, x)‖L2=

(∫
Rd

∣∣∣∣ ξ

|ξ|2 {(ρ̂
ε
0 − b̂)(ξ)− (ρ̂ε0 − b̂)(0)}

∣∣∣∣2 dξ
) 1

2

≤ CM
d
2 ‖∇ξ(ρ̂ε0 − b̂)(ξ)‖L∞ +

1

M
‖ρε0 − b‖L2

≤ CM
d
2

∫
Rd

|x||ρε0 − b| dx+
1

M
‖ρε0 − b‖L2 ,(2.7)

which, together with (A2) and (A4), provides the estimate for ‖∇V ε(0, x)‖L2 .
Lemma 2.2. Let s ∈ Z

+, s > d
2 + 2, (ρ0(x), u0(x)) satisfy (A3); then there

exists a positive constant T ∗ > 0 such that (1.10) has a unique solution ρ(t, x) ∈
L∞([0, T ], Hs−1(Rd)), u(t, x) ∈ L∞([0, T ], Hs(Rd)) for all T < T ∗; moreover,

d

dt

∫
Rd

(ρ|u|2 + |∇V |2)(t, x) dx = 0, t < T ∗,(2.8)

where T ∗ is the first time such that

lim
T→T∗

‖∇u(t, x)‖L∞([0,T ]×Rd) =∞.(2.9)

Proof. From the standard theory on the hyperbolic system of equations [16], we
know that we can find a positive constant T such that (1.10) has a local solution (ρ, u)
with ρ(t, x) ∈ L∞([0, T ], Hs−1(Rd)), u(t, x) ∈ L∞([0, T ], Hs(Rd)); moreover, it holds
that

‖ρ(t, ·)‖L∞([0,T ],Hs−1(Rd)) + ‖u(t, ·)‖L∞([0,T ],Hs(Rd)) ≤ C(T, ‖ρ0‖Hs−1 , ‖u0‖Hs).(2.10)
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Hence to complete the lemma, we only need to show that if ‖∇u(t, x)‖L∞([0,T ]×Rd) <
∞, then (2.8) and (2.10) hold for t ≤ T. As a convention in the rest of this section,
we always assume that all the calculations are to be done for t ≤ T.

First, by multiplying (ρu) by the second equation of (1.10) and integrating over
R
d, we find

1

2

d

dt

∫
Rd

ρ|u|2 dx+

∫
Rd

ρu∇V dx = 0,(2.11)

where we used the first equation of (1.10); then by integration by parts and (1.10)
again, we have∫

Rd

ρu∇V dx = −
∫

Rd

div(ρu)V dx =

∫
Rd

∂tρV dx = −
∫

Rd

∂t�V V dx

=
1

2

d

dt

∫
Rd

|∇V |2 dx.(2.12)

By summing up (2.11) and (2.12) together, we prove (2.8).
On the other hand, by (A2), (A4), and Fatou’s lemma, we have

‖ρ0 − b‖L1 ≤ lim
ε→0
‖ρε0 − b‖L1 ,∫

Rd

|x||ρ0 − b| dx ≤ limε→0

∫
Rd

|x||ρε0 − b| dx for d = 1, 2.(2.13)

Thus by exactly the same proof as that of Remark 2.1, we get ∇V (0, x) ∈ L2(Rd).
This together with (2.8) shows that∫

Rd

(
1

2
ρ|u|2 + |∇V |2

)
(t, x) dx ≤

∫
Rd

(
1

2
ρ0|u0|2 + |∇V (0, x)|2

)
dx ≤ C.(2.14)

Next we multiply (ρ, u) by (1.10) and integrate over R
d to obtain

1

2

d

dt

∫
Rd

(ρ2 + |u|2)(t, x) dx

≤ 1

2
‖divu‖L∞

∫
Rd

(ρ2 + |u|2) dx+ ‖∇V (t, ·)‖L2‖u(t, ·)‖L2 .(2.15)

On the other hand, by taking ∂α−1
x (resp., ∂αx ) to the first (resp., second) equation

of (1.10) for |α| ≤ s, and multiplying ∂α−1
x ρ(t, x) (resp., ∂αx u(t, x)) to the resulting

equation and integrating over R
d, we find

1

2

d

dt

(‖∂α−1
x ρ(t, ·)‖2L2 + ‖∂αx u(t, ·)‖2L2

)
(2.16)

≤
∣∣∣∣∫

Rd

{
∂α−1
x div(ρu)∂α−1

x ρ+ ∂αx (u∇u)∂αx u+ ∂αx∇V ∂αx u
}
dx

∣∣∣∣ ;
however, by a Moser-type calculus inequality (see [16]), we find

(2.17)∣∣∣∣∫
Rd

∂α−1
x div(ρu)∂α−1

x ρ dx

∣∣∣∣
=

∣∣∣∣∫
Rd

u∇∂α−1
x ρ∂α−1

x ρ dx+

∫
Rd

(∂α−1
x div(ρu)− u∇∂α−1

x ρ)∂α−1
x ρ dx

∣∣∣∣
≤ 1

2
‖∇u‖L∞‖∂α−1

x ρ‖2L2 + {‖∇u‖L∞‖∂|α|−1
x ρ‖L2 + ‖ρ‖L∞‖∂|α|x u‖L2}‖∂α−1

x ρ‖L2 .
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Exactly as in the proof of (2.17), we have∣∣∣∣∫
Rd

∂αx (u∇u)∂αx u dx
∣∣∣∣ ≤ 1

2
‖∇u‖L∞‖∂αx u‖2L2 + 2‖∇u‖L∞‖∂|α|x u‖L2‖∂αx u‖L2 ,(2.18)

and, trivially, ∣∣∣∣∫
Rd

∂αx∇V ∂αx u dx
∣∣∣∣ = ∣∣∣∣∫

Rd

∂αx∇�−1(ρ− b)∂αx u dx

∣∣∣∣
≤ (C + ‖∂α−1

x ρ‖L2)‖∂αx u‖L2 .(2.19)

By summing up (2.15)–(2.19), and doing summation for |α| ≤ s, we finally get

(2.20)

d

dt

(‖ρ(t, ·)‖2Hs−1 + ‖u(t, ·)‖2Hs

) ≤ C(1 + ‖∇u‖L∞)
(‖ρ(t, ·)‖2Hs−1 + ‖u(t, ·)‖2Hs

)
.

Equation (2.20) together with the Gronwall inequality implies that if

‖∇u(t, ·)‖L∞([0,T ]×Rd) <∞,

then (2.10) holds. This completes the proof of the lemma.

3. Proof of Theorem 1.1. With the fundamental lemmas, Lemmas 2.1 and 2.2,
motivated by [1], for t < T ∗, let us define

Hε
u(t) =

1

2

∫
Rd

∫
Rd

|ξ − u(t, x)|2f ε(t, x, ξ) dξ dx+
1

2

∫
Rd

|∇�−1(ρε − ρ)|2 dx,(3.1)

where (ρ, u) is the unique local smooth solution of (1.10), and T ∗ is the positive
constant determined by Lemma 2.2. In the following, we are going to show that
limε→0 H

ε
u(t) = 0 for 0 ≤ t < T ∗, which directly implies that the Wigner measure

f(t, x, ξ), which is the weak limit of f ε(t, x, ξ) in some sense (see [14] or [7]), equals
ρ(t, x)δ(ξ−u(t, x)). The idea of the proof is somewhat similar to that used in [22] and
[24], where we needed to control the variance of the Lp Young measures associated
with the approximate solution sequences to the problems there. So now we need to
derive an evolution equation for Hε

u(t).
To begin, let us calculate the first two moment equations of (1.6).
Lemma 3.1. Let ρε(t, x) =: |ψε(t, x)|2, Jε(t, x) =: εIm(ψε∇ψε)(t, x); then the

following hold:
(1)

∂tρ
ε + divJε = 0,(3.2)

∂tJ
ε +∇x :

∫
Rd

ξ ⊗ ξf ε dξ +∇V ερε = 0;(3.3)

(2)

d

dt

{
1

2

∫
Rd

∫
Rd

f ε|ξ|2 dx dξ +

∫
Rd

|∇V ε|2 dx
}

= 0.(3.4)
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Proof. First, notice by [14] (or [7]) that we have
∫

Rd f
ε(t, x, ξ) dξ = ρε(t, x), and

by Lemma 2.1, for any fixed ε > 0, t, x, Dy{ψε(t, x+ εy
2 )ψε(t, x− εy

2 )} ∈ (L1
y∩Hs

y)(R
d)

with s > d
2 + 1. Thus by Remark 3.1, we have∫

Rd

ξf ε(t, x, ξ) dξ =
1

(2π)d

∫
Rd

∫
Rd

e−iξyξψε
(
t, x+

εy

2

)
ψε
(
t, x− εy

2

)
dy dξ

=
1

(2π)d

∫
Rd

∫
Rd

e−iξyDy

{
ψε
(
t, x+

εy

2

)
ψε
(
t, x− εy

2

)}
dy dξ

= Dy

{
ψε
(
t, x+

εy

2

)
ψε
(
t, x− εy

2

)} ∣∣∣
y=0

= Jε(t, x).(3.5)

And by (1.7), we have

(3.6)∫
Rd

ξαθ[V ε]f ε(t, x, ξ) dξ

=
i

(2π)d

∫
Rd

f ε(t, x, η)

∫
Rd

∫
Rd

e−i(ξ−η)yξα
V ε(t, x+ εy

2 )− V ε(t, x− εy
2 )

ε
dy dξ dη

=
i

(2π)d

∫
Rd

f ε(t, x, η)

∫
Rd

∫
Rd

e−iξyDα
y

(
V ε(t, x+ εy

2 )− V ε(t, x− εy
2 )

ε
e−iηy

)
dy dξ dη.

In particular, by taking |α| = 0 and |α| = 1 in (3.6), Remark 3.1 directly implies that∫
Rd

θ[V ε]f ε(t, x, ξ) dξ = 0,(3.7) ∫
Rd

ξθ[V ε]f ε(t, x, ξ) dξ =

∫
Rd

f ε(t, x, η)∇V ε(t, x) dη = (ρε∇V ε)(t, x).

With (3.5)–(3.7), by integrating (1.6) over R
d with respect to ξ, we get (3.2), and by

multiplying (1.6) by ξ and integrating over R
d with respect to ξ again, we find that

(3.3) holds.
On the other hand, exactly as in the proof of (3.5), we have∫

Rd

∫
Rd

|ξ|2f ε(t, x, ξ) dξ dx = −ε
2

4

∫
Rd

{ψε�ψε − 2∇ψε∇ψε + ψε�ψε} dx

= ε2
∫

Rd

|∇ψε|2 dx.(3.8)

Equation (2.2) together with (3.8) shows that (3.4) holds. This completes the proof
of Lemma 3.1.

Remark 3.1. Let s > d
2 , f(y) ∈ (L1 ∩Hs)(Rd); then we claim that

1

(2π)d

∫
Rd

∫
Rd

e−iξyf(y) dy dξ = f(0).(3.9)

In fact, as f(y) ∈ L1(Rd), by [19], f̂(ξ) = 1
(2π)d

∫
Rd e

−iξyf(y) dy. On the other

hand, by the fact that f(y) ∈ Hs(Rd) for s > d
2 , we have

f̂(ξ) =
1

(1 + |ξ|2) s
2
ψ̂s(D)f(ξ) ∈ L1(Rd),(3.10)
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where ψs(D) is the pseudodifferential operator (see [21]) with symbol (1 + |ξ|2) s
2 .

Hence by (3.10) and [19] again, we have

f(y) =

∫
Rd

eiξy f̂(ξ) dξ.(3.11)

In particular, by taking y = 0 in (3.11), we prove (3.9).
Next let us derive the evolution equation for Hε

u(t).
Lemma 3.2. For Hε

u(t) defined in (3.1), there holds

d

dt
Hε
u(t) = −

∫
Rd

Du :

∫
Rd

(ξ − u)⊗ (ξ − u)f ε dξ dx− 1

2

∫
Rd

divu|∇�−1(ρ− ρε)|2 dx

+

∫
Rd

Du :
(∇�−1(ρε − ρ)⊗∇�−1(ρε − ρ)

)
dx.(3.12)

Proof. First, by (3.4), we find

(3.13)

d

dt
Hε
u(t) =

1

2

d

dt

∫
Rd

|u|2ρε dx− d

dt

∫
Rd

uJε dx

+
1

2

d

dt

∫
Rd

|∇�−1(ρ− b)|2 dx− d

dt

∫
Rd

∇�−1(ρε − b)∇�−1(ρ− b) dx.

In the following, we are going to calculate the above four terms separately. First, by
(3.2), we have

1

2

d

dt

∫
Rd

|u|2ρε dx =

∫
Rd

{
u∂tuρ

ε +
1

2
|u|2∂tρε

}
dx

=

∫
Rd

{
∂tuρ

εu− 1

2
|u|2divJε

}
dx(3.14)

=

∫
Rd

{
∂tuρ

εu+
1

2
Jε∇|u|2

}
dx,

and by (3.3), we have

− d

dt

∫
Rd

Jεu dx =

∫
Rd

{−∂tJεu− Jε∂tu} dx

=

∫
Rd

{(
∇x :

∫
Rd

ξ ⊗ ξf ε dξ +∇V ερε
)
u− Jε∂tu

}
dx(3.15)

= −
∫

Rd

Du :

∫
Rd

ξ ⊗ ξf ε dξ dx+

∫
Rd

∇V ερεu dx−
∫

Rd

Jε∂tu dx,

while by (1.10), we have

1

2

d

dt

∫
Rd

|∇�−1(ρ−b)|2 dx =

∫
Rd

∇�−1(ρ− b)∇�−1∂tρ dx

= −
∫

Rd

∇�−1(ρ− b)∇�−1div(ρu) dx(3.16)

=

∫
Rd

�−1(ρ− b)div(ρu) dx

= −
∫

Rd

ρu∇�−1(ρ− b) dx.
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Then by (1.10), (3.2), and a calculation similar to that in (3.16), we have

− d

dt

∫
Rd

∇�−1(ρε − b)∇�−1(ρ− b) dx

= −
∫

Rd

∇�−1∂tρ
ε∇�−1(ρ− b) dx−

∫
Rd

∇�−1(ρε − b)∇�−1∂tρ dx

=

∫
Rd

Jε∇�−1(ρ− b) dx+

∫
Rd

ρu∇�−1(ρε − b) dx.(3.17)

By summing (3.13)–(3.17), we get

d

dt
Hε
u(t) =

∫
Rd

{(
∂tu+ u∇u−∇�−1(ρ− b)

)
ρεu− u∇uρεu+∇�−1(ρ− b)ρεu

+
1

2
Jε∇|u|2 −Du :

∫
Rd

ξ ⊗ ξf ε dξ +∇V ερεu

−Jε (∂tu+ u∇u−∇�−1(ρ− b)
)
+ u∇uJε + ρu∇�−1(ρε − ρ)

}
=

∫
Rd

{
−u∇uρεu−Du :

∫
Rd

ξ ⊗ ξf ε dξ +
1

2
Jε∇|u|2 + u∇uJε

+∇�−1(ρ− b)ρεu+∇V ερεu+ ρu∇�−1(ρε − ρ)

}
dx

= −
∫

Rd

Du :

∫
Rd

(ξ − u)⊗ (ξ − u)f ε dξ dx(3.18)

+

∫
Rd

{∇�−1(ρ− b)ρεu−∇�−1(ρε − b)ρεu+ ρu∇�−1(ρε − ρ)
}
dx,

where in the second step of the above derivation, we used (1.10).
On the other hand, notice that for any a(x) ∈ C1(Rd), it holds that

∇ : (∇a⊗∇a)− 1

2
∇|∇a|2 = ∇a�a,

and we get

(3.19)

−
∫

Rd

∇�−1(ρε − b)ρεu dx+

∫
Rd

∇�−1(ρε − b)bu dx

= −
∫

Rd

∇ :
(∇�−1(ρε − b)⊗∇�−1(ρε − b)

)
u dx

+
1

2

∫
Rd

∇ (|∇�−1(ρε − b)|2)u dx
=

∫
Rd

Du :
(∇�−1(ρε − b)⊗∇�−1(ρε − b)

)
dx− 1

2

∫
Rd

divu|∇�−1(ρε − b)|2 dx.

Exactly as in the proof of (3.19), we have

(3.20)

−
∫

Rd

∇�−1(ρ− b)ρu dx+

∫
Rd

∇�−1(ρ− b)bu dx

=

∫
Rd

Du :
(∇�−1(ρ− b)⊗∇�−1(ρ− b)

)
dx− 1

2

∫
Rd

divu|∇�−1(ρ− b)|2 dx.



SEMICLASSICAL LIMIT OF SCHRÖDINGER EQUATION 711

Moreover, for any two C1(Rd) functions a(x), b(x), it holds that

∇ : (∇a⊗∇b) +∇ : (∇b⊗∇a)−∇(∇a · ∇b) = ∇a�b+∇b�a,
and we have ∫

Rd

{∇�−1(ρ− b)ρεu+∇�−1(ρε − b)ρu
}
dx

−
∫

Rd

{∇�−1(ρ− b) +∇�−1(ρε − b)
}
bu dx

=

∫
Rd

{∇ :
(∇�−1(ρ− b)⊗∇�−1(ρε − b)

)
+∇ :

(∇�−1(ρε − b)⊗∇�−1(ρ− b)
)}u dx

−
∫

Rd

∇ (∇�−1(ρε − b) · ∇�−1(ρ− b)
)
u dx(3.21)

= −
∫

Rd

{(∇�−1(ρ− b)⊗∇�−1(ρε − b)
)

+
(∇�−1(ρε − b)⊗∇�−1(ρ− b)

)} : Dudx

+

∫
Rd

divu∇�−1(ρε − b) · ∇�−1(ρ− b) dx.

Then by summing up (3.19)–(3.21) and an appropriate rearrangement, we have

(3.22)∫
Rd

{∇�−1(ρ− b)ρεu−∇�−1(ρε − b)ρεu+ ρu∇�−1(ρε − ρ)
}
dx

=

∫
Rd

Du :
(∇�−1(ρε − ρ)⊗∇�−1(ρε − ρ)

)
dx− 1

2

∫
Rd

divu|∇�−1(ρε − ρ)|2 dx.

From (3.18) and (3.22), we get (3.12).
With (3.12), now we can prove that the Wigner measure of ψε(t, x) is ρ(t, x)δ(ξ−

u(t, x)) before the formation of singularities in (1.10).
Lemma 3.3. Let f ε(t, x, ξ) be the Wigner transformation of ψε(t, x); then for any

fixed t < T ∗, it holds that

f ε(t, x, ξ) ⇀ f(t, x, ξ) =: ρ(t, x)δ(ξ − u(t, x)) in A′(R2d) as ε→ 0.(3.23)

Proof. Compared with the situation in [1], a new difficulty arising here is the
sign changing of the Wigner transformation f ε(t, x, ξ). However, by the following
elementary calculations, we fortunately find that Hε

u(t) keeps its positive sign. In
fact, by (3.5) and (3.8), we have∫

Rd

∫
Rd

f ε(t, x, ξ)|ξ − u(t, x)|2 dx dξ

=

∫
Rd

∫
Rd

f ε(t, x, ξ)|ξ|2 dξ dx+

∫
Rd

|u|2|ψε|2 dx− 2

∫
Rd

uJε dx

=

∫
Rd

{
ε2|∇ψε|2 − 2εIm(ψε∇ψε)u+ |u|2|ψε|2} dx

=

∫
Rd

|(u− εD)ψε|2 dx,(3.24)
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with D = 1
i∇x, while by a calculation similar to that of (3.8), we have∫

Rd

ξiξjf
ε dξ = −ε

2

4

(
∂i∂jψ

εψε − ∂iψ
ε∂jψε − ∂iψε∂jψ

ε + ψε∂i∂jψε
)
,

from which we get

(3.25)∣∣∣∣∫
Rd

∂iuj

∫
Rd

(ξ − u)i(ξ − u)jf
ε dξ dx

∣∣∣∣
=

∣∣∣∣∫
Rd

{
∂iuj

(
ε2Re(∂iψ

ε∂jψε)− εuiIm(ψε∂jψ
ε)− εujIm(ψε∂iψ

ε) + uiuj |ψε|2
)

+
ε2

2
∂2
i ujRe(ψε∂jψ

ε)

}
dx

∣∣∣∣ .
Then by rearranging the above, we immediately get

(3.26)∣∣∣∣∫
Rd

Du :

∫
Rd

(ξ − u)⊗ (ξ − u)f ε dξ dx

∣∣∣∣
≤

d∑
i,j=1

∣∣∣∣∫
Rd

∂iuj

∫
Rd

(ξ − u)i(ξ − u)jf
ε dξ dx

∣∣∣∣
=

∣∣∣∣∣∣
d∑

i,j=1

{∫
Rd

∂iujRe
(
(ui − εDi)ψ

ε(uj − εDj)ψε
)
dx+

ε2

2

∫
Rd

∂2
i ujRe(ψε∂jψ

ε) dx

}∣∣∣∣∣∣
≤ C

{‖∇u‖L∞‖(u− εD)ψε‖2L2 + ε‖∇2
xu‖L∞‖ψε‖L2‖ε∇ψε‖L2

}
.

By summing up Lemma 2.1, (3.12), (3.24), and (3.26), we find, for any 0 ≤ t < T ∗, it
holds that

d

dt
Hε
u(t) ≤ C‖∇u(t, ·)‖L∞Hε

u(t) + Cε.(3.27)

And by (A2), (A3) in the introduction and (3.24), we have

Hε
u(t)|t=0 =

1

2

∫
Rd

|(u0 − εD)ψε0|2 dx+

∫
Rd

|∇�−1(ρε0 − ρ0)|2 dx

≤
∫

Rd

ρε0|u0 −∇Sε|2 dx+ ε

∫
Rd

|∇√ρε0|2 dx+

∫
Rd

|∇�−1(ρε0 − ρ0)|2 dx
= o(1).(3.28)

By summing up (3.27), (3.28), and Gronwall’s inequality, we find

lim
ε→0

Hε
u(t) = 0 for all t < T ∗.(3.29)

Now let us take a smooth cut-off function χ(x, ξ) ∈ C∞c (Rd × R
d) with

χ(x, ξ) = 1 for |x|+ |ξ| ≤ 1, suppχ ⊂ B(0, 2);(3.30)
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then by Proposition 1.1 of [7], we get∫
Rd

∫
Rd

χ2

(
x

R
,
ξ

R

)
|ξ − u(t, x)|2f ε(t, x, ξ) dx dξ

=

∫
Rd

∣∣∣∣χ( x

R
,
εD

R

)
[(u(t, x)− εD)ψε(t, x)]

∣∣∣∣2 dx+ rε,(3.31)

where |rε| ≤ εC(χ, u)‖ψε‖2L2 , and by Lemma 0.5 D of [21], we have∥∥∥∥χ( x

R
,
εD

R

)
[(u(t, x)− εD)ψε(t, x)]

∥∥∥∥
L2

≤ C‖(u(t, x)− εD)ψε(t, x)‖L2 .(3.32)

On the other hand, by [14] (or [7]), for any fixed t < T ∗ there is a subsequence
{f ε(t, x, ξ)} (we still denote it by {f ε} for convenience) and a nonnegative Radon
measure f(t, x, ξ), which is called the Wigner measure of {ψε(t, x)}, such that

f ε(t, x, ξ) ⇀ f(t, x, ξ) in A′(R2d) as ε→ 0.(3.33)

Furthermore, by (A2), Lemma 2.1, and Remark 2.1, we have

ε‖∇xψε(t, x)‖L2 ≤ C,(3.34)

which together with [14, Theorem III.1, Remark III.13] (or [7]) shows that

ρε(t, x) =

∫
Rd

f ε(t, x, ξ) dξ ⇀

∫
Rd

f(t, x, dξ) in M+(Rd),(3.35)

while by (3.29), we have ρε(t, x) → ρ(t, x) in L∞([0, T ], H−1
loc (R

d)) for any T < T ∗,
which together with (3.35) shows that∫

Rd

f(t, x, dξ) = ρ(t, x)(3.36)

for any fixed t < T ∗.
In particular, by (3.32)–(3.33) for the cut-off function χ(x, ξ) chosen as above, we

have ∫
Rd

∫
Rd

χ2

(
x

R
,
ξ

R

)
|ξ − u(t, x)|2f(t, dx, dξ)(3.37)

= lim
ε→0

∫
Rd

χ2

(
x

R
,
ξ

R

)
|ξ − u(t, x)|2f ε(t, x, ξ) dx dξ

≤ C lim
ε→0
‖(u(t, x)− εD)ψε(t, x)‖2L2 ≤ C lim

ε→0
Hε
u(t) = 0.(3.38)

Notice that f(t, ·, ·) ∈M+(R2d), and Fatou’s lemma implies that∫
Rd

∫
Rd

|ξ − u(t, x)|2f(t, dx, dξ) = 0.(3.39)

Thus for any test function φ(x, ξ) ∈ C∞c (Rd × R
d), it holds that∣∣∣∣∫

Rd

∫
Rd

φ(x, ξ) df(t, x, ξ)−
∫

Rd

φ(x, u(t, x))

∫
Rd

df(t, x, dξ)

∣∣∣∣
≤ sup
x,ξ∈Rd

|∇ξφ|
∫

Rd

∫
Rd

|ξ − u(t, x)| df(t, x, ξ)

≤ sup
x,ξ∈Rd

|∇ξφ|
(∫

Rd

∫
Rd

df(t, x, ξ)

) 1
2
(∫

Rd

∫
Rd

|ξ − u(t, x)|2 df(t, x, ξ)
) 1

2

,

= 0,
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which together with (3.36) implies that∫
Rd

∫
Rd

φ(x, ξ) df(t, x, ξ) =

∫
Rd

φ(x, u(t, x))

∫
Rd

df(t, x, dξ)

=

∫
Rd

φ(x, u(t, x))ρ(t, x) dx = (φ(x, ξ), ρ(t, x)δ(ξ − u(t, x))) ,

that is,

f(t, x, ξ) = ρ(t, x)δ(ξ − u(t, x)).(3.40)

But as (ρ, u) is the unique local solution of (1.10), the above argument in fact implies
that we do not need to take the subsequence of {f ε(t, x, ξ)}; that is, (3.23) holds for
any fixed t < T ∗. This completes the proof of the lemma.

Lemma 3.4. Let f(t, x, ξ) be the measure defined in (3.23); then for every fixed
t < T ∗, it holds that

εIm(ψε∇ψε)(t, x) ⇀
∫

Rd

ξf(t, x, dξ) = (ρu)(t, x) in M(Rd) as ε→ 0.(3.41)

Proof. For a clear presentation, as in [7], let us define

W ε(f, g) =
1

(2π)d

∫
Rd

e−izξf
(
x+

εz

2

)
g
(
x− εz

2

)
dz.(3.42)

Then for any test function φ(x) ∈ C∞c (Rd) and any cut-off function χ(ξ) ∈ C∞c (Rd),
with

χ(ξ) = 1 for |ξ| ≤ 1, suppχ(·) ⊂ B(0, 2),(3.43)

we claim that for f(x), g(x) ∈ Hs(Rd) for s > d
2 , it holds that(

W ε(f, g), φ(x)

(
1− χ

(
ξ

R

)))
=

(
fφ,

(
1− χ

(
εD

R

))
g

)
+ rε,(3.44)

where χ( εDR ) is the pseudodifferential operator with symbol χ( εξR ) (see [21]), (a, b)
denotes the (complex) L2 inner product, and

|rε| ≤ Cε

R
‖∇φ‖L∞‖f‖L2‖g‖L2 .(3.45)

In fact, by (3.42) and the change of variables that x′ = x+ εz
2 , we have

(3.46)(
W ε(f, g), φ(x)

(
1− χ

(
ξ

R

)))
=

1

(2π)d

∫
Rd

∫
Rd

∫
Rd

e−izξf(x′)g(x′ − εz)φ
(
x′ − εz

2

)(
1− χ

(
ξ

R

))
dz dx′ dξ

=

∫
Rd

f(x′)φ(x′)
1

(2π)d

∫
Rd

∫
Rd

eizξ
(
1− χ

(
ξ

R

))
g(x′ − εz) dz dξ dx′

− 1

2(2π)d

∫
Rd

f(x′)
∫ 0

−1

εz∇φ
(
x′ +

εθz

2

)
dθ

∫
Rd

∫
Rd

e−izξ
(
1− χ

(
ξ

R

))
g(x′ − εz) dz dξ dx′

=

(
fφ,

(
1− χ

(
εD

R

))
g

)
+ rε.
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But by Remark 3.1 again, we have

1

2(2π)d

∫
Rd

f(x′)
∫ 0

−1

εz∇φ
(
x′ +

εθz

2

)
dθ

∫
Rd

∫
Rd

e−izξg(x′ − εz) dz dξ dx′

=
ε

2

∫
Rd

∫ 0

−1

f(x′)
1

(2π)d

∫
Rd

∫
Rd

e−izξz∇φ
(
x′ +

εθz

2

)
g(x′ − εz) dz dξ dθ dx′

= 0.(3.47)

And for χ(ξ) ∈ C∞c (Rd), we can use integration by parts to obtain

(3.48)

|rε| =
∣∣∣∣ ε

2(2π)d

∫
Rd

f(x′)
∫ 0

−1

∇φ
(
x′ +

εθz

2

)
dθ

∫
Rd

∫
Rd

e−izξ
1

R
χ′
(
ξ

R

)
g(x′ − εz) dz dξ dx′

∣∣∣∣
=

∣∣∣∣ ε2
∫

Rd

∫
Rd

f(x′)
∫ 0

−1

∇φ
(
x′ +

εθz

2

)
dθg(x′ − εz)Rd−1χ̂′(Rz) dx′ dz

∣∣∣∣
≤ ε

2
Rd−1

∫
Rd

|χ̂′(Rz)| dz‖f‖L2‖g‖L2‖∇φ‖L∞

≤ Cε

R
‖∇φ‖L∞‖f‖L2‖g‖L2 .

By summing up (3.46)–(3.48), we complete the proof of (3.44) and (3.45). And if we
use the change of variables x′ = x− εz

2 in (3.46), then by the same proof as the above,
we get (

W ε(f, g), φ(x)

(
1− χ

(
ξ

R

)))
=

((
1− χ

(
εD

R

))
f, φg

)
+ rε,(3.49)

with rε satisfying (3.45).

On the other hand, by the definition of f ε(t, x, ξ), we have

ξif
ε(t, x, ξ) =

ε

2(2π)d

∫
Rd

e−izξ
(
Dxiψ

ε
(
t, x+

εz

2

)
ψε
(
t, x− εz

2

)
(3.50)

− ψε
(
t, x+

εz

2

)
Dxiψ

ε
(
t, x− εz

2

))
dξ;

hence by (3.44), (3.45), (3.49), and (3.50), we get

(3.51)∣∣∣∣∫
Rd

∫
Rd

φ(x)

(
1− χ

(
ξ

R

))
ξif

ε(t, x, ξ) dx dξ

∣∣∣∣
=

ε

2

{(
W ε(Dxi

ψε, ψε), φ

(
1− χ

(
ξ

R

)))
−
(
W ε(ψε, Dxi

ψε), φ

(
1− χ

(
ξ

R

)))}
≤
∣∣∣∣(φεDxiψ

ε,

(
1− χ

(
εD

R

))
ψε
)∣∣∣∣+ 2rε,
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but by (3.34), we have∥∥∥∥(1− χ

(
εD

R

))
ψε
∥∥∥∥
L2

≤
∫

Rd

(
1− χ

(
εξ

R

))2

|ψ̂ε(t, ξ)|2 dξ

≤
∫
|ξ|≥R

ε

|ψ̂ε(t, ξ)|2 dξ(3.52)

≤ 1

R2

∫
|ξ|≥R

ε

|εξ|2|ψ̂ε(t, ξ)|2 dξ ≤ C

R2
.

By summing up (3.51) and (3.52), we get

lim
R→∞

sup
ε>0

∣∣∣∣∫
Rd

∫
Rd

φ(x)

(
1− χ

(
ξ

R

))
ξif

ε(t, x, ξ) dx dξ

∣∣∣∣ = 0,(3.53)

while by (3.33) and any χ(ξ) chosen as that in (3.43), we have trivially that

(3.54)

lim
ε→0

∫
Rd

∫
Rd

φ(x)χ

(
ξ

R

)
ξf ε(t, x, ξ) dx dξ =

∫
Rd

∫
Rd

φ(x)χ

(
ξ

R

)
ξf(t, dx, dξ).

On the other hand, by taking u = 0 in (3.31), we then infer from (2.2) and the proof
of (3.38)–(3.39) that ∫

Rd

∫
Rd

|ξ|2f(t, dx, dξ) ≤ C,

which implies that

lim
R→∞

∣∣∣∣∫
Rd

∫
Rd

φ(x)

(
1− χ

(
ξ

R

))
ξif(t, dx, dξ)

∣∣∣∣ = 0.(3.55)

Thus by (3.23) and (3.53), for any fixed t < T ∗ we pass R→∞ in (3.54) to obtain

lim
ε→0

∫
Rd

φ(x)Jε(t, x) dx =

∫
Rd

φ(x)

∫
Rd

ξρ(t, x)δ(ξ − u(t, x)) dξ dx

=

∫
Rd

φ(x)ρ(t, x)u(t, x) dx.(3.56)

This proves (3.41), which completes the proof of the lemma.
Now we are in a position to complete the proof of Theorem 1.1.
Proof. By Lemma 2.2, (3.23), (3.35), (3.36), and (3.41), to complete the proof of

Theorem 1.1, we only need to show part (2) of the theorem. In fact, by (1.10) and
Lemma 2.2, for any test function φ(x, ξ) ∈ C∞c (R2d), we have∣∣∣∣ ddt

∫
Rd

∫
Rd

φ(x, ξ)ρ(t, x)δ(ξ − u(t, x)) dx dξ

∣∣∣∣
=

∣∣∣∣ ddt
∫

Rd

φ(x, u(t, x))ρ(t, x) dx

∣∣∣∣
=

∣∣∣∣∫
Rd

{∇ξφ(x, u)∂tuρ+ φ(x, u)∂tρ} dx
∣∣∣∣

≤ (‖∂tu‖L2‖ρ‖L2 + ‖∂tρ‖L2) ‖φ‖W 1,∞

≤ C‖φ‖Hs , s > d+ 1 for 0 ≤ t < T ∗.(3.57)
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This implies that f(t, x, ξ) ∈ Lip([0, T ∗), H−s(R2d)) for s > d+1. On the other hand,
to show that f(t, x, ξ) is a distribution solution of (1.6) on [0, T ∗)×R

2d, we need only
prove that∫ T∗

0

∫
Rd

{(∂tφ)(t, x, u) + u(∇xφ)(t, x, u)− E(∇ξφ)(t, x, u)} ρ dx dt = 0(3.58)

for any test function φ(t, x, ξ) ∈ C∞c ((0, T ∗)×R
2d). Notice that by Lemma 2.2, (ρ(t, x),

u(t, x)) is the unique local smooth solution of (1.10), and we have∫ T∗

0

∫
Rd

φ(t, x, u)(∂tρ+ div(ρu)) dx dt = 0(3.59)

and ∫ T∗

0

∫
Rd

∇ξφ(t, x, u){∂tu+ u∇u+ E}ρ dx dt = 0.(3.60)

By summing up (3.59), (3.60) and using integration by parts, we get (3.58). This
completes the proof of Theorem 1.1.
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Abstract. We consider the inverse problem to identify an anisotropic conductivity from the
Dirichlet-to-Neumann (DtN) map. We first find an explicit reconstruction of the boundary value of
less regular anisotropic (transversally isotropic) conductivities and their derivatives. Based on the
reconstruction formula, we prove Hölder stability, up to isometry, of the inverse problem using a local
DtN map.

Key words. inverse boundary value problem, Dirichlet-to-Neumann map, anisotropic conduc-
tivity, boundary determination
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1. Introduction and statements of results. The results of this paper are
twofold. We first find an explicit reconstruction of boundary values of anisotropic
conductivities and their derivatives. We then derive Hölder stability estimates for the
inverse problem to identify Riemannian metrics (up to isometry) on the boundary via
the local Dirichlet-to-Neumann (DtN) map using the same ideas and methods.

Boundary reconstruction. Let Ω be a bounded domain in R
n (n ≥ 2) with

the smooth boundary. If we recover the conductivity up to mth derivatives, then it
is enough to assume that ∂Ω is Cm+2-smooth. We consider the inverse problem of
identifying the positive definite symmetric matrix γ = (γij) entering the equation

Lγu :=

n∑
i,j=1

∂

∂xi

(
γij

∂u

∂xj

)
= 0 in Ω(1.1)

by the DtN map. The DtN map Λγ : H1/2(∂Ω)→ H−1/2(∂Ω) is defined to be

〈Λγf, h〉 =

∫
Ω

(γ∇u) · ∇vdx, f, h ∈ H1/2(∂Ω),

where u ∈ H1(Ω) is the solution to (1.1) with the Dirichlet data u|∂Ω = f , and
v ∈ H1(Ω) is such that v|∂Ω = h. Here 〈 , 〉 denotes the H−1/2(∂Ω)-H1/2(∂Ω)
pairing.

In this paper we are first concerned with an explicit reconstruction of the conduc-
tivity at the boundary. Quite recently, Nakamura and Tanuma [13, 14] obtained an
explicit formula to reconstruct conductivity and its normal derivatives at the bound-
ary. We will discuss more about their formula since the first main result of this paper
is an improvement of it.
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Let us suppose that ∂Ω is flat around x0 = 0 ∈ ∂Ω, namely, there exists δ > 0
such that

Ω ∩Bδ(0) = {x = (x′, xn) ∈ Bδ(0) | xn > 0},(1.2)

and in Ω ∩Bδ(0), γ is given by

γ =


0

γij
...
0

0 · · · 0 γnn

 .(1.3)

In fact, using the boundary normal coordinates [9], we can locally transform the
general conductivity γ to one of the form (1.2). One can even take γnn = 1. Here we
keep γnn in order to see how much we can recover.

Let t′ ∈ R
n−1, i.e., (t′, 0) is a tangent vector to ∂Ω at x0. Let η(x′) ∈ C∞0 (Rn−1)

be such that

0 ≤ η ≤ 1, ‖η‖L2 = 1, supp η ⊂ {|x′| < 1}.

For each large positive integer N , let

φN (x′) = exp (iNx′ · t′)η(N1/2x′),(1.4)

and for z ∈ ∂Ω ∩Bδ(0), let

φzN (x′) = φN (x′ − z′).(1.5)

The function φN plays the role of Dirichlet data and test functions. Observe that φN
oscillates rapidly as N becomes large. Kohn and Vogelius first used rapidly oscillating
boundary data in their proof of uniqueness of the boundary determination [6]. The
use of explicit functions such as φN for boundary reconstruction is due to Brown [3]
and Nakamura and Tanuma [13].

Let γk ∈ Cm(Ω) be an anisotropic conductivity such that

γk(x) := γ(x′, 0) + ∂nγ(x′, 0)xn + · · ·+ 1

(k − 1)!
∂k−1
n γ(x′, 0)xk−1

n(1.6)

near ∂Ω ∩Bδ(0). Let

Cγ(z) :=

√√√√γnn(z)−1

n−1∑
i,j=1

γij(z)titj .(1.7)

Nakamura and Tanuma proved that for k ≤ m
2 ,

lim
N→∞

N
n−3

2 +k〈(Λγ − Λγk)φzN , φ
z
N 〉(1.8)

= CkCγ(z)
−an−1

 n−1∑
i,j=1

∂kxn
γij(z)titj + Cγ(z)

2∂kxn
γnn(z)





BOUNDARY DETERMINATION 721

for some explicit constant Ck. (Even if they wrote the formula only for the isotropic
γ, the proof gives (1.8).) If γ is isotropic and |t′| = 1, then Cγ ≡ 1, and hence the
formula (1.8) reads

lim
N→∞

N
n−3

2 +k〈(Λγ − Λγk)φzN , φ
z
N 〉 = 2Ck∂

k
xn
γ(z).(1.9)

However, the reconstruction formula (1.8) is valid only for k ≤ m
2 . Moreover, in

the inductive reconstruction (1.8) or (1.9), it is required to know ∂k−1
xn

γ(x) for all
x ∈ ∂Ω ∩ Bδ(0) in order to recover ∂kxn

γ(z). It is also worth noting that in the
formula (1.8) or (1.9), stable recovery of the tangential derivatives does not seem

possible: If we take N
n−3

2 +k〈(Λγ − Λγk)φzN , φ
z
N 〉 as an approximation of 2Ck∂

k
xn
γ(z)

in (1.9), then its tangential derivatives do not seem to be good approximations of
those of 2Ck∂

k
xn
γ(z). It is our intention to improve these points.

The reason for the above-mentioned drawbacks in the formula (1.8) is that N1/2

is used in the definition (1.4). We use instead the following boundary data:

φN (x′) = exp (iNx′ · t′)η(Nα1x1, . . . , N
αn−1xn−1),(1.10)

where αj ’s are specified shortly. The definition (1.10) amounts to assigning each
partial differential operator ∂

∂xj
with the weight αj (j = 1, . . . , n) so that we can

distinguish each direction xj . The numbers αj are chosen as follows: throughout this
paper conductivities under consideration are Cm,p-smooth (m ≥ 0, p > 0), and Cm,p,
m nonnegative integer and 0 ≤ p ≤ 1, denotes the usual Hölder space. Choose λ so
that λ = 1

l for some integer l and satisfies the following: if m ≥ 1, then

λ < p, (1−mn−1λ)(m + p) ≥ m + λ.(1.11)

We then define a multi-index α by

α = (α1, . . . , αn) := (1−mn−1λ, 1−mn−2λ, . . . , 1−mλ, 1).(1.12)

If m = 0, choose λ so that λ < p and define α by

α = (α1, . . . , αn) := (1− (n− 1)λ, 1− (n− 2)λ, . . . , 1).(1.13)

We choose α and λ in this way so that they possess the following properties: |αi−αj | ≥
λ if i �= j. If a and b are multi-indices with |a| ≤ m and |b| ≤ m, then a · α �= b · α
if and only if a �= b. Thanks to these properties, we can define a linear ordering of
multi-indices: Let a = (a1, . . . , an) and b = (b1, . . . , bn) be two multi-indices. We
define a < b if a ·α < b ·α. Using the linear ordering, we are able to recover γ and its
derivatives inductively.

For the function η in the definition (1.10), we further assume that for each a′ =
(a1, . . . , an−1) with |a′| ≤ m ∫

|y′|≤1

(y′)a
′
η(y′)2dy′ �= 0,

and we define C(a) for a multi-index a = (a′, an) to be

C(a) :=
1

a!

∫ ∞
0

yann e−2yndyn

∫
|y′|≤1

(y′)a
′
η(y′)2dy′.(1.14)
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For a given anisotropic conductivity γ and a multi-index a with |a| ≤ m, define
γa,z to be a positive definite matrix-valued smooth function on Ω such that

γa,z(x) :=
∑
b<a

∂bγ(z)

b!
(x− z)b near z.(1.15)

Then the DtN map Λγa,z corresponding to γa,z is well defined. If a = 0, let Λγ0 = 0.
Here and throughout this paper ∂bγ denotes ∂bγ = ∂b1x1

· · · ∂bnxn
γ.

Then we have the following reconstruction formula.
Theorem 1.1. Suppose that γ ∈ Cm,p(Ω∩Bδ(0)). For z = (z′, 0) ∈ ∂Ω∩Bδ(0),

a multi-index a = (a′, an), and k ≤ m, we have

N−2+|α|+a·α〈(Λγ − Λγa,z )φzN , φ
z
N 〉(1.16)

= C(a)Cγ(z)
−an−1

 n−1∑
i,j=1

∂aγij(z)titj + Cγ(z)
2∂aγnn(z)

+ O(N−λ),

where O(N−λ) is independent of z. If a = 0, then C(0) = 1
2 , and hence we have

N−2+|α|〈ΛγφzN , φzN 〉 =

√√√√γnn(z)

n−1∑
i,j=1

γij(z)titj + O(N−λ).(1.17)

The formula (1.16) says that the boundary values of γ and its derivatives up to
order m can be recovered in a stable way (modulo γnn-terms).

In particular, if γ is isotropic, namely, γ = γ(δij), and |t′| = 1, then Cz ≡ 1, and
hence we have the following corollary.

Corollary 1.2. If γ ∈ Cm,p(Ω ∩ Bδ(0)) is an isotropic conductivity, then for
all multi-index a with |a| ≤ m, we have

N−2+|α|+a·α〈(Λγ − Λγa,z )φzN , φ
z
N 〉 = C(a)∂aγ(z) + O(N−λ).(1.18)

We note that Brown proved a reconstruction formula for γ and the normal deriva-
tive on ∂Ω [3]. In [2], Alessandrini and Gaburro considered reconstruction of special
types of anisotropic conductivity.

It turns out that a slight variance of the reconstruction (1.18) gives an interesting
stability result, which is the second subject of this paper.

Boundary determination of Riemannian metrics-stability. Let Ω be a
bounded domain in R

n (n ≥ 3) with the smooth boundary. We consider the inverse
problem of identifying a Riemannian metric or an anisotropic conductivity at the
boundary ∂Ω via the (local) DtN map. Let (gij) be a Riemannian metric on Ω and
g = (gij) := (gij)

−1. Then the corresponding DtN map Λg : H1/2(∂Ω)→ H−1/2(∂Ω)
is defined to be

〈Λgf, h〉 =

∫
Ω

(|g|−1/2g∇u) · ∇vdx, f, h ∈ H1/2(∂Ω),(1.19)

where u ∈ H1(Ω) is the solution to the problem

∆gu := |g|1/2
n∑

i,j=1

∂

∂xi

(
|g|−1/2gij

∂u

∂xj

)
= 0 in Ω,

u = f on ∂Ω,

and v ∈ H1(Ω) is such that v|∂Ω = h. Here |g| denotes the determinant of g.
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There is a well-known obstacle in identifying g: Let Ψ : Ω → Ω be a C1 diffeo-
morphism which is the identity on ∂Ω. Then it is well known that

ΛΨ∗g = Λg,

where Ψ∗g is the pull-back of g. So the general conjecture of the uniqueness in three
dimensions is that if Λg1 = Λg2 , then there exists a diffeomorphism Ψ on Ω such that
Ψ|∂Ω is the identity on ∂Ω and

Ψ∗g2 = g1.

Lee and Uhlmann proved the conjecture for three dimensions under some restrictions
when conductivities are real analytic in Ω [9]. Recently, Lassas and Uhlmann extended
the result to the case when g is real analytic up to a portion of ∂Ω and removed
the restrictions [8]. There are also similar kinds of uniqueness theorems for two
dimensions. See [15, 10, 8]. When γ is a scalar function, i.e., γ is isotropic, the
inverse problem has been extensively studied [4, 5, 6, 7, 11, 12, 16, 17].

In this paper we prove the following Hölder stability estimates for the boundary
determination: Let Γ be an open connected subset of ∂Ω. Define the localized DtN
map ΛΓ

g by

ΛΓ
g (f) := Λg(f)|Γ, f ∈ H1/2(∂Ω), supp(f) ⊂ Γ.

We will use the following notation: Let f be a Ck function in a neighborhood of
a compact set K. Then ‖f‖Ck

E(K) :=
∑k
|α|=0 supx∈K |∂αf(x)|. So, CkE(∂Ω)-norm

involves not only the tangential derivatives but also the normal derivative.
Theorem 1.3. Suppose that g1 and g2 are Riemannian metrics on a domain Ω

such that they are Cm,p (m ≥ 1, p > 0) in a neighborhood of Γ and the Cm,p-norms
are bounded by M and

gjξ · ξ ≥ A|ξ|2 for all ξ ∈ R
n (j = 1, 2).(1.20)

Let K be a compact subset of Γ. Then there are a neighborhood U of Γ, a Cm

diffeomorphism Ψ in U ∩ Ω with Ψ|Γ = Identity, and a positive constant C =
C(m, p,Γ,K,A,M) such that for k = 0, 1, . . . ,m,

‖g2 −Ψ∗g1‖Ck
E(K) ≤ C‖ΛΓ

g1 − ΛΓ
g2‖2

−k/λ

.(1.21)

The norm on the right-hand side of (1.21) is the operator norm from H1/2(Γ) into
H−1/2(Γ).

Thus the Riemannian metrics can be recovered at the boundary in a stable way
via the local DtN map.

Using the boundary normal coordinates, we may assume that ∂Ω is flat around
x0 = 0 ∈ ∂Ω, and g is given by

g =


0

gij
...
0

0 · · · 0 1

 .(1.22)

We prove stability estimates for the Riemannian metrics of the form (1.22) by using
methods similar to Theorem 1.1. Then Theorem 1.3 follows.
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As was observed in [9], if we take

gij := |γ|1/(n−2)γ−1 (n ≥ 3),

then γ = |g|−1/2g (g = (gij)
−1) and Λg = Λγ . Hence, we have the same stability

estimates for anisotropic conductivities.
A similar proof yields the following stability for the boundary determination of

isotropic conductivities.
Theorem 1.4. Suppose that γ1 and γ2 are isotropic conductivities. Letm, p,Γ,K,

A,M (m ≥ 0) be as before. Then there exists a positive constant C = C(m,Γ,K,A,M)
such that for k = 0, 1, . . . ,m,

‖γ2 − γ1‖Ck
E(K) ≤ C‖ΛΓ

γ1 − ΛΓ
γ2‖2

−k/λ

.(1.23)

Alessandrini proved the following stability for isotropic conductivities using sin-
gular solutions [1] (see also [18]):

‖γ2 − γ1‖Ck
E(∂Ω) ≤ C‖Λγ1 − Λγ2‖

1
2k+1 .

This stability estimate is better than (1.23). However, the stability estimate (1.23)
uses the local DtN map.

This paper is organized as follows: In section 2, we construct approximate solu-
tions of Lγu = 0 with u|∂Ω = φzN on which the proof of Theorem 1.1 is based. The
proof of Theorem 1.1 is given in section 3. Theorem 1.3 is proved in section 4.

2. Approximate solutions. Suppose that Ω and γ are of the forms (1.2) and
(1.3) and that γ ∈ Cm,p(Ω ∩Bδ(0)) for some integer m ≥ 0. Let

ΩN :=

{
x | |xj | < N−αj (j = 1, . . . , n− 1), 0 ≤ xn <

1√
N

}
.

The following lemma and its proof are based on an idea in [13].
Lemma 2.1. For each integer N there is an approximate solution ΦN of the form

ΦN (x) = exp (iNx′ · t′) exp(−Cγ(z)Nxn)

m/λ∑
k=0

N−kλvk(y)(2.1)

(yj = Nαjxj , j = 1, . . . , n),(2.2)

where v0(y
′, yn) = η(y′), and vl(y

′, yn) are polynomials of yn whose coefficients are
C∞ functions of y′ compactly supported in {|y′| < 1}, so that ΦN satisfies

ΦN |∂Ω = φzN

and

|∇ · (γ∇ΦN )(x)| ≤ CN (2−m)−λp(yn)e−Cγ(z)yn for all x ∈ ΩN(2.3)

for some constant C = C(m). Here p(yn) is a polynomial with positive coefficients.
Proof. Without loss of generality, assume that z = 0. Put C0 := Cγ(0). We seek

a solution ΦN (x) of the form

ΦN (x) = exp (iNx′ · t′)V (Nα1x1, . . . , N
αnxn).
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Then straightforward computations show that

∇x(γ(∇xΦN )) =

n∑
i,j=1

∂xi
(γij∂xj

ΦN )

=

 n−1∑
i,j=1

γij∂xi∂xj + γnn∂2
xn

+

n−1∑
i,j=1

∂xiγ
ij∂xj + ∂xnγ

nn∂xn

ΦN

= exp (iNx′ · t′)
−N2

n−1∑
i,j=1

γijtitj +
√−1N

n−1∑
i,j=1

γij(ti∂xj + tj∂xi)

+

n−1∑
i,j=1

γij∂xi∂xj + γnn∂2
xn

+
√−1N

n−1∑
i,j=1

(∂xiγ
ij)tj

+

n−1∑
i,j=1

(∂xiγ
ij)∂xj + (∂xn

γnn)∂xn

V (Nα1x1, . . . , N
αnxn).

After the scaling (2.2), we have ∂xj
= Nαj∂yj (i = 1, 2, . . . , n), and hence

∇x(γ(∇xΦN )) = exp(iNx′ · t′)
N2

γnn∂2
yn −

n−1∑
i,j=1

γijtitj

(2.4)

+ 2
n−1∑
j=1

N1+αj

(
n−1∑
i=1

γijti

)
∂yj

+

n−1∑
i,j=1

Nαi+αjγij∂yi∂yj

+ N

√−1

n−1∑
i,j=1

(∂xiγ
ij)tj + (∂xnγ

nn)∂yn


+

n−1∑
j=1

Nαj

(
n−1∑
i=1

∂xi
γij

)
∂yj

V (y′, yn).

Note that all the powers of N in the formula (2.4) are of the form 2 − kλ for some
integer k with 0 ≤ k ≤ 2/λ.

We now expand γ in Taylor series in ΩN :

γ(x) =
∑
|a|≤m

1

a!
∂aγ(0)xa + O(|x|m+p).

By the condition (1.11) imposed on λ, we have

α1(m + p) ≥ m + λ.(2.5)

Thus, after the scaling (2.2), we have

γ(x) =
∑
|a|≤m

1

a!
∂aγ(0)N−α·aya + E1(y),(2.6)
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where

|E1(y)| ≤ CN−α1(m+p)
m+1∑
k=0

ykn ≤ CN−m−λ
m+1∑
k=0

ykn.(2.7)

Similarly, we have, for j = 1, 2, . . . , n,

∂xjγ(x) =
∑

|a|≤m−1

1

a!
∂a∂xj

γ(0)N−α·aya + E2(y),(2.8)

where

|E2(y)| ≤ CN−m+1−λ
m∑
k=0

ykn.(2.9)

Note that this expansion holds uniformly for all x ∈ ΩN and hence for all y ∈ {|y′| <
1, 0 ≤ yn ≤ N

1
2 }. Note also that the powers of N in the expansions in (2.6) and (2.8)

are of the form −kλ for some integer k.
It then follows from (2.4), (2.6), and (2.8) that

∇x(γ(∇xΦN )) = exp (iNx′ · t′)
m/λ∑
k=0

N2−kλLk + LR

V (y′, yn),(2.10)

where Lk are at most second order differential operators in y′ and yn whose coefficients
are polynomials in y′ and yn, and LR is also a second order differential operator in y′

and yn whose coefficients are of the form O(N2−m−λ)×polynomial in yn with positive
coefficients, and

L0 = γnn(0)∂2
yn −

n−1∑
i,j=1

γij(0)titj .(2.11)

We look for V (y′, yn) of the form

V (y′, yn) =

m/λ∑
k=0

N−kλVk.

We have from (2.10) that

∇x(γ(∇xΦN )) = exp (iNx′ · t′)
m/λ∑

k=0

N2−kλLk

m/λ∑
j=0

N−jλVj

+ LRV

(2.12)

= exp (iNx′ · t′)
m/λ∑
l=0

N2−lλ ∑
k+j=l

LkVj + E

 ,
where

E :=

2m/λ∑
l=m/λ+1

N2−lλ ∑
k+j=l

LkVj + LRV.(2.13)
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We solve the system of differential equations∑
k+j=l

LkVj = 0 (l = 0, 1, 2, . . . ,m/λ),(2.14)

namely,

L0V0 = 0,

L0V1 + L1V0 = 0,

· · ·
L0Vm/λ + · · ·+ Lm/λV0 = 0,

with the boundary conditions

V0|yn=0 = ηN (x′) = η(y′),
Vl|yn=0 = 0 (l = 1, . . . ,m/λ).

We remark that this boundary value problem is underdetermined. Because of (2.11),
this system of equations can be solved iteratively from top to bottom:

V0(y
′, yn) = η(y′) exp(−C0yn),

V1(y
′, yn) =

1∑
k=0

P k1 (y′)ykn exp(−C0yn),

· · ·

Vm/λ(y
′, yn) =

m/λ∑
k=1

P km/λ(y
′)ykn exp(−C0yn)

for some Nj (j = 1, . . . ,m/λ), where P kj (y′) are C∞ functions supported in {|y′| < 1}.
It then follows from (2.12) that

∇x(γ(∇xΦN )) = exp (iNx′ · t′)E.

Recall that the coefficients of LR are of the form O(N2−m−λ) × polynomial in yn.
Thus there exists C = C(m) such that

|E| ≤ CN2−m−λp(yn) exp(−C0yn)

for some polynomial p. This completes the proof.
The following lemma can be proved by straightforward computations. Recall that

φN is defined in (1.10).
Lemma 2.2. For each s ≥ 0, there exists a constant Cs such that

‖φN‖Hs(∂Ω) + ‖ΦN‖Hs+1/2(ΩN ) ≤ CsN
s+ 1

2− |α|
2 .(2.15)

For each multi-index a, there exists a constant Ca such that

‖xa∇ΦN‖L2(ΩN ) ≤ CaN
1−a·α− |α|

2 .(2.16)
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3. Proof of Theorem 1.1. In this section we prove Theorem 1.1. Our proof is
parallel to that of [13].

Without loss of generality we assume that z = 0. Put C0 := Cγ(0) for convenience.
Let ζ(xn) ∈ C∞([0,∞)) be such that ζ(xn) = 1 for 0 ≤ xn ≤ 1/2 and 0 for 1 ≤ xn.
Put

ζN (xn) = ζ(
√
Nxn).

Let a be a multi-index such that |a| ≤ m. Let uN ∈ H1(Ω) be the solution of

∇x(γ∇xuN ) = 0 in Ω,

uN |∂Ω = φN ,

and let vN ∈ H1(Ω) be the solution of

∇x(γa∇xvN ) = 0 in Ω,

vN |∂Ω = φN .

Here γa = γa,0. Let ΦN and ΨN be the extensions of φN given in Lemma 2.1
corresponding to γ and γa, respectively. Note that since 〈ΛγaφN , φN 〉 is real, we have

〈ΛγaφN , φN 〉 = 〈ΛγaφN , φN 〉,
and hence

〈(Λγ − Λγa)φN , φN 〉
=

∫
Ω

(γ∇xuN ) · ∇x(ζNΨN )dx−
∫

Ω

(γa∇xvN ) · ∇x(ζNΦN )dx.

Put

uN := ΦN + sN and vN := ΨN + rN .(3.1)

Then we have

〈(Λγ − Λγa)φN , φN 〉(3.2)

=

∫
Ω

[
(γ∇xΦN ) · ∇x(ζNΨN )− (γa∇xΨN ) · ∇x(ζNΦN )

]
dx

+

∫
Ω

(γ∇xsN ) · ∇x(ζNΨN )dx−
∫

Ω

(γa∇xrN ) · ∇x(ζNΦN )dx

:= I + II + III.

We estimate I, II, and III separately.

Estimates of I. Put

Ω′N :=

{
x : |x′| ≤ N−αj (j = 1, . . . , n− 1),

1

2
√
N
≤ xn ≤ 1√

N

}
.

Since ζN = 1 on 0 ≤ xn ≤ 1
2
√
N

, we can rewrite I as

I =

∫
ΩN\Ω′

N

(γ − γa)∇xΦN · ∇xΨNdx

+

∫
Ω′

N

[
(γ∇xΦN ) · ∇x(ζNΨN )− (γa∇xΨN ) · ∇x(ζNΦN )

]
dx

:= I1 + I2.
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By (2.1), there exists a constant C such that

|ΨN |+ |ΦN | ≤ C exp(−C0Nxn).

Therefore it is easy to see that

|I2| ≤ C exp

(
−C0

2
N

1
2

)
.(3.3)

From (2.1), we get

∇xΦN =

[
N

(
it′

−C0

)
exp (iNx′ · t′)ηN (x′) + O(N1−λ)

]
exp (−C0Nxn).

Likewise, we have

∇xΨN =

[
N

(
it′

−C0

)
exp (iNx′ · t′)ηN (x′) + O(N1−λ)

]
exp (−C0Nxn).

It then follows that

I1 = N2

∫ 1
2
√

N

0

∫
|x′|≤ 1√

N

(
(γ(x)− γa(x))

(
it′

−C0

))
·
(−it′
−C0

)
× e−2C0NxnηN (x′)2dx′dxn

+ O(N2−λ)
∫ 1

2
√

N

0

∫
|x′|≤ 1√

N

e−2C0Nxn |γ(x)− γa(x)|dx′dxn.

Note that if two multi-indices a and b satisfy a < b, then

a · α + λ ≤ b · α.
Thus, applying the change of variables yj = Nαjxj , j = 1, . . . , n, we obtain

γ(x)− γa(x) =
∂aγ(0)

a!
xa +

∑
b>a,|b|≤m

∂bγ(0)

b!
xb + O(|x|m+1)

=
∂aγ(0)

a!
N−a·αya + O(N−a·α−λ)

m+1∑
k=0

ykn.

Therefore, we have

I1 =
N2−a·α−|α|

a!

∫ √
N
2

0

∫
|y′|≤1

ya∂aγ(0)

(
it′

−C0

)
·
(−it′
−C0

)
e−2C0ynη(y′)2dy′dyn

+ O(N2−a·α−λ−|α|)
∫ √

N
2

0

∫
|y′|≤1

yae−2C0yn [η(y′)2 + 1]

m+1∑
k=0

ykndy
′dyn

= N2−a·α−|α|

 n−1∑
i,j=1

∂aγij(0)titj + C2
0∂

aγnn(0)


× 1

a!

∫ ∞
0

∫
|y′|≤1

yae−2C0ynη(y′)2dy′dyn + O(N2−a·α−λ−|α|).
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From these estimates and (3.3), we obtain

N−2+a·α+|α|I = C(a)C−an−1
0

 n−1∑
i,j=1

∂aγij(0)titj + C2
0∂

aγnn(0)

+ O(N−λ),(3.4)

where C(a) is the quantity defined in (1.14).

Estimates of II and III. We prove that

|II|+ |III| ≤ CN2−m−|α|−λ.(3.5)

Once (3.5) is proved, then Theorem 1.1 follows from (3.2), (3.4), and (3.5).
We only give the proof of (3.5) for II. Equation (3.5) for III can be proved in

the same way. Note that

II =

∫
Ω

(γ∇xsN ) · ∇(ζNΨN )dx

=

∫
ΩN\Ω′

N

(γ∇xsN ) · ∇xΨNdx +

∫
Ω′

N

(γ∇xsN ) · ∇x(ζNΨN )dx

=

∫
ΩN\Ω′

N

(γ∇xsN ) · ∇xΦNdx +

∫
ΩN\Ω′

N

(γ∇xsN ) · ∇x(ΨN − ΦN )dx

+

∫
Ω′

N

(γ∇xsN ) · ∇x(ζNΨN )dx

:= II1 + II2 + II3.

In the same way as for (3.3), one can show that

|II3| ≤ C exp

(
−C0

4
N

1
2

)
.(3.6)

We now estimate II1. Set DN := ΩN \ Ω′N for convenience. By the definition
(3.1) of sN and Lemma 2.2, we have

‖sN‖H1(DN ) ≤ ‖ΦN‖H1(DN ) + ‖uN‖H1(DN )(3.7)

≤ ‖ΦN‖H1(DN ) + ‖φN‖H1/2(∂Ω)

≤ CN1− |α|
2 .

Put Γ1 := {|xj | = N−αj for some j (j = 1, . . . , n − 1), 0 ≤ xn ≤ 1
2
√
N
} and Γ2 :=

{|xj | ≤ N−αj (j = 1, . . . , n− 1), xn = 1
2
√
N
}. Then ∂DN = Γ ∪ Γ1 ∪ Γ2. Since

sN

(
x′,

1

2
√
N

)
=

∫ 1
2
√

N

0

∂xnsN (x′, t)dt,

it follows from the Cauchy–Schwarz inequality and (3.7) that

‖sN‖L2(Γ2) ≤
(

1

2
√
N

)1/2

‖sN‖H1(DN ) ≤ CN
3
4− |α|

2 .(3.8)
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Observe that ∇xΦN |Γ1 = 0 and ∇xΦN |Γ2 = O(e−
1
2C0N

1/2

). Since sN = 0 on Γ, it
follows from the divergence theorem that

II1 =

∫
DN

(γ∇xsN ) · ∇ΦNdx

= −
∫
DN

sN∇x
(
γ∇xΦN

)
dx + O(e−

1
4C0N

1/2

).

Note that∣∣∣∣∫
DN

sN∇x
(
γ∇xΦN

)
dx

∣∣∣∣ ≤ ‖xn∇x(γ∇xΦN )‖L2(DN )‖x−1
n sN‖L2(DN ).

By the Hardy inequality and (3.7), we have

‖x−1
n sN‖L2(DN ) ≤ C‖sN‖H1(DN ) ≤ CN1− |α|

2 .

On the other hand, we obtain from (2.3) that

‖xn∇x(γ∇xΦN )‖L2(DN ) ≤ CN2−m−λ‖xnp(yn)e−C0yn‖L2(DN )(3.9)

≤ CN1−m−λ− |α|
2 .

It thus follows that

|II1| ≤ CN2−m−|α|−λ.

We now estimate II2. Note that

(ΦN −ΨN )|Γ∪Γ1
= 0, (ΦN −ΨN )|Γ2

= O
(
e−

1
2C0N

1/2
)
.

Hence, an integration by parts yields

II2 = −
∫
DN

∇x(γ∇xsN )(ΨN − ΦN )dx + O(e−
1
4C0N

1/2

).

Since ∇ · (γ∇uN ) = 0, we have

II2 =

∫
DN

∇x(γ∇xΦN )(ΨN − ΦN )dx + O(e−
1
4C0N

1/2

).

In the same way as for II1, one can show that

|II2| ≤ CN2−m−|α|−λ.

This completes the proof of (3.5).

4. Proof of Theorem 1.3. In this section we prove Theorem 1.3. Suppose that
Ω and g are of the form (1.2) and (1.22). For such a metric g and a multi-index a
with |a| ≤ m, define ga,z to be a positive definite symmetric matrix-valued smooth
function on Ω such that

ga,z(x) :=
∑
b<a

∂bg(z)

b!
(x− z)b(4.1)
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near z. We then define Λga,z by

〈Λga,zf, h〉 =

∫
Ω

(|g|−1/2ga,z∇u) · ∇vdx, f, h ∈ H1/2(∂Ω),(4.2)

where u ∈ H1(Ω) is the solution to the problem

∇ · (|g|−1/2ga,z∇u) = 0 in Ω,

u = f on ∂Ω,

and v ∈ H1(Ω) is such that v|∂Ω = h. If a = 0, let Λg0 = 0. Note that Λga,z is
not a DtN map corresponding to an invariant Laplacian. Consider it as a DtN map
corresponding to a divergence equation.

Theorem 4.1. Suppose that g ∈ Cm,p(Ω∩Bδ(0)). For z = (z′, 0) ∈ ∂Ω∩Bδ(0),
let

Cg(z) :=

√√√√ n−1∑
i,j=1

gij(z)titj .(4.3)

Then for a multi-index a = (a′, an) and k ≤ m, we have

N−2+|α|+a·α〈(Λg − Λga,z )φzN , φ
z
N 〉(4.4)

= C(a)Cg(z)
−an−1|g(z)|−1/2

n−1∑
i,j=1

∂agij(z)titj + O(N−λ),

where O(N−λ) is independent of z. In particular, when a = 0, C(0) = 1
2 , and hence

we have

N−2+|α|〈ΛgφzN , φzN 〉 = 2

√√√√|g(z)|−1

n−1∑
i,j=1

gij(z)titj + O(N−λ).(4.5)

Despite a slight difference between Theorem 4.1 and Theorem 1.1, it can be proved
in the same way, and so we omit the proof. We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3. Suppose first that g1 and g2 are of the forms (1.22)
(j = 1, 2) and Ω is of the form (1.2). Let K be a compact subset of Γ such that
dist(K, ∂Γ) > δ0 for some δ0 > 0. If N is large enough so that suppφzN ⊂ Γ for all
z ∈ K, then we have from (2.15) that

N−2+|α||〈(Λ1 − Λ2)φ
z
N , φ

z
N 〉| ≤ N−2+|α|‖Λ1 − Λ2‖‖φzN‖2H1/2(∂Ω)

≤ ‖Λ1 − Λ2‖,

where the norm in the last term is the operator norm from H1/2(Γ) into H−1/2(Γ).
It follows from (4.5) that∣∣∣∣∣∣
√√√√|g1(z)|−1

n−1∑
i,j=1

gij1 (z)titj −
√√√√|g2(z)|−1

n−1∑
i,j=1

gij2 (z)titj

∣∣∣∣∣∣ ≤ C‖Λ1 − Λ2‖+ O(N−λ).
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Since t′ is arbitrary and gj satisfies (1.20), we have

||g1(z)|−1g1(z)− |g2(z)|−1g2(z)| ≤ C‖Λ1 − Λ2‖+ O(N−λ).(4.6)

Then, by taking determinants, we have

||g1(z)|2−n − |g2(z)|2−n| ≤ C‖Λ1 − Λ2‖+ O(N−λ),

and hence

||g1(z)| − |g2(z)|| ≤ C‖Λ1 − Λ2‖+ O(N−λ).(4.7)

It then follows from (4.6) and (4.7) that

|g1(z)− g2(z)| ≤ C‖Λ1 − Λ2‖.(4.8)

Suppose now that a is a multi-index and |a| > 0. Note that

〈(Λ1 − Λ2)φ
z
N , φ

z
N 〉 = 〈(Λ1 − Λga,z

1
)φzN , φ

z
N 〉 − 〈(Λ2 − Λga,z

2
)φzN , φ

z
N 〉

+ 〈(Λga,z
1
− Λga,z

2
)φzN , φ

z
N 〉.

Thus it follows from (4.4) that∣∣∣∣∣
∑n−1
i,j=1 ∂

agij1 (z)titj

Cg1(z)
an+1|g1(z)|1/2 −

∑n−1
i,j=1 ∂

agij2 (z)titj

Cg2(z)
an+1|g2(z)|1/2

∣∣∣∣∣(4.9)

≤ CN−2+|α|+a·α‖Λ1 − Λ2‖‖φzN‖2H1/2(∂Ω)

+ CN−2+|α|+a·α|〈(Λga,z
1
− Λga,z

2
)φzN , φ

z
N 〉|+ CN−λ.

Let ΦjN be approximate solutions of ∇· (|gj |−1/2ga,zj ∇u) = 0 with the boundary value
φzN on ∂Ω. Then in the same way as the proof of Theorem 1.1, we can show that

〈(Λga,z
1
− Λga,z

2
)φzN , φ

z
N 〉 =

∫
DN

|g|−1/2(ga,z1 − ga,z2 )∇Φ1
N · ∇Φ2

Ndx + O(N2−m−|α|−λ).

Since

ga,z1 − ga,z2 = |g1|−1/2
∑
b<a

∂bg1(z)

b!
(x− z)b − |g2|−1/2

∑
b<a

∂bg2(z)

b!
(x− z)b,

we have ∣∣∣∣∫
DN

(ga,z1 − ga,z2 )∇Φ1
N · ∇Φ2

Ndx

∣∣∣∣
≤ C

∣∣∣|g1|−1/2 − |g2|−1/2
∣∣∣ ‖∇Φ1

N‖L2(DN )‖∇Φ2
N‖L2(DN )

+ C
∑
b<a

∣∣∂bg1(z)− ∂bg2(z)
∣∣ ∣∣∣∣∫

DN

(x− z)b∇Φ1
N · ∇Φ2

Ndx

∣∣∣∣ .
By (2.15) and (2.16), we have

|〈(Λga,z
1
− Λga,z

2
)φzN , φ

z
N 〉| ≤ C(‖Λ1 − Λ2‖+ O(N−λ))N2−|α|

+ C
∑
b<a

|∂bg1(z)− ∂bg2(z)|N2−|α|−b·α + CN2−m−|α|−λ.
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It then follows from (4.9) and the above estimates that∣∣∣∣∣
∑n−1
i,j=1 ∂

agij1 (z)titj

Cg1(z)
an+1|g1(z)|1/2 −

∑n−1
i,j=1 ∂

agij2 (z)titj

Cg2(z)
an+1|g2(z)|1/2

∣∣∣∣∣
≤ C

(
‖Λ1 − Λ2‖Na·α +

∑
b<a

|∂bg1(z)− ∂bg2(z)|N (a−b)·α + N−λ
)
.

It then follows from (4.8) that

|∂ag1(z)− ∂ag2(z)|(4.10)

≤ C

(
‖Λ1 − Λ2‖Na·α +

∑
b<a

|∂bg1(z)− ∂bg2(z)|N (a−b)·α + N−λ
)
.

From (4.10), one can show that there exists C = C(m,λ) such that

|∂ag1(z)− ∂ag2(z)| ≤ C‖Λ1 − Λ2‖2−a·α/λ

.(4.11)

We will give a proof of (4.11) at the end of this paper.
If |a| = k, then a · α ≤ k, and hence we have the following stability: If K is a

subset of Γ such that dist(K,Γ) > δ0 for some δ0 > 0, then we have

‖g1 − g2‖Ck
E(K) ≤ C‖Λ1 − Λ2‖2−k/λ

.(4.12)

We now deal with the general case. Suppose that Γ is an open portion of ∂Ω
and K is a compact subset of Γ. For each x ∈ K, there exists an open neighborhood
Ux of x and a diffeomorphism (boundary normal coordinates) Φj,x on Ux ∩ ΩN such
that Φj,x(Ux ∩ΩN ) is of the form (1.2) and (Φ−1

j,x)
∗gj is of the form (1.22). Moreover

Φ1,x(z) = Φ2,x(z) for all z ∈ Ux ∩ ∂Ω. Let Kx be a relatively compact subset of
Ux ∩ Γ. Then by (4.8) we have

‖(Φ−1
1,x)
∗g1 − (Φ−1

2,x)
∗g2‖Ck

E(Kx) ≤ C‖Λ(Φ−1
1,x)∗g1 − Λ(Φ−1

2,x)∗g2‖2
−k/λ

.

Put φx(z) := Φ1,x(z) = Φ2,x(z) for z ∈ Ux ∩ ∂Ω. Then

Λ(Φ−1
j,x)∗gj = (φx)∗Λgj .

For the proof of this relation, see [15]. Therefore, we have

‖g1 − (Φ−1
2,x ◦ Φ1,x)

∗g2‖Ck
E(Kx) ≤ C‖(φx)∗(Λg1 − Λg2)‖2

−k/λ

.

Put Ψx := Φ−1
2,x ◦ Φ1,x. Then we have

‖g1 − (Ψx)
∗g2‖Ck

E(Kx) ≤ C‖Λg1 − Λg2‖2
−k/λ

.

By using a partition of unity, we have the theorem. Note that Ψx = Id on Ux ∩ ∂Ω
for each x. This completes the proof.

Derivation of (4.11). Since two multi-indices a, b satisfy b < a if and only if
b · α < a · α, and b · α = kλ for some integer k, we may assign a one-to-one relation
from multi-indices a with |a| ≤ m into the set {0, 1, . . . ,m/λ}. Let

a(k) := |∂bg1(z)− ∂bg2(z)|
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if b · α = kλ. Put a(0) := ‖Λ1 − Λ2‖. Then (4.10) reads

a(l) ≤ C

(∑
k<l

a(k)(Nλ)l−k + N−λ
)

for all large N.

From this one can show inductively that

a(l) ≤ Ca(0)2
−l

.

Thus (4.11) is obtained.
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REFERENCES

[1] G. Alessandrini, Singular solutions of elliptic equations and the determination of conductivity
by boundary measurements, J. Differential Equations, 84 (1990), pp. 252–273.

[2] G. Alessandrini and R. Gaburro, Determining conductivity with special anisotropy by bound-
ary measurements, SIAM J. Math. Anal., 33 (2001), pp. 153–171.

[3] R. M. Brown, Recovering conductivity at the boundary from the Dirichlet to Neumann map:
A pointwise result, J. Inverse Ill-Posed Probl., 9 (2001), pp. 567–574.

[4] R. M. Brown and G. Uhlmann, Uniqueness in the inverse conductivity problem for non-
smooth conductivities in two dimensions, Comm. Partial Differential Equations, 22 (1997),
pp. 1009–1027.

[5] V. Isakov, On uniqueness of recovery of a discontinuous conductivity coefficient, Comm. Pure
Appl. Math., 41 (1988), pp. 865–877.

[6] R. Kohn and M. Vogelius, Determining conductivity by boundary measurements, Comm.
Pure Appl. Math., 37 (1984), pp. 281–298.

[7] R. Kohn and M. Vogelius, Determining conductivity by boundary measurements II, Interior
results, Comm. Pure Appl. Math., 38 (1985), pp. 643–667.

[8] M. Lassas and G. Uhlmann, On determining a Riemannian manifold from the Dirichlet-to-
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Abstract. We study the following functional equation that has arisen in the context of mechan-
ical systems invariant under the Poincaré algebra:

n+1∑
i=1

∂

∂xi

∏
j �=i

f (xi − xj) = 0, n ≥ 2.

New techniques are developed and the general solution within a certain class of functions is given.
New solutions are found.

Key words. functional equation, mechanics

AMS subject classifications. 39B32, 33E05

PII. S0036141001393742

1. Introduction. The differential equation∣∣∣∣∣∣
1 1 1
f (u) f (v) f (w)
f ′ (u) f ′ (v) f ′ (w)

∣∣∣∣∣∣ = 0 subject to u+ v + w = 0(1.1)

is one form of the first of a series of differential equations that can be written as

n+1∑
i=1

∂

∂xi

∏
j �=i
f (xi − xj) = 0, n ≥ 2,(1.2)

subject to the constraint that f is an even function. Equation (1.1) appeared in the
context of a three-body integrable quantum mechanical problem and was studied by
Buchstaber and Perelomov [7] and later by Braden and Byatt-Smith [2]. Equations
(1.2), which have appeared in the context of constructing mechanical systems with
certain invariances, are the focus of this paper. (We will later review these connections
between functional equations and mechanical systems.) When n = 2, (1.2) gives

∂

∂x1
(f (x1 − x2) f (x1 − x3)) +

∂

∂x2
(f (x2 − x3) f (x2 − x1))

+
∂

∂x3
(f (x3 − x1) f (x3 − x2)) = 0.(1.3)

Using the evenness of f we may express this as

∂

∂x1
(f (x1 − x2) f (x3 − x1)) +

∂

∂x2
(f (x2 − x3) f (x1 − x2))

+
∂

∂x3
(f (x3 − x1) f (x2 − x3)) = 0.(1.4)
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Equation (1.1) can be written in this form if we put u = x1 − x2, v = x2 − x3, and
w = x3−x1, which automatically satisfies the constraint, although the assumption of
evenness is not required.

Braden and Byatt-Smith [2] proved, as part of a more general theorem, that the
complete solution set for the function f which satisfies (1.1) is

f (u) = a+ bu or a+ b ecu(1.5a)

or

f (u) = a+ b ℘ (cu+ d, g2, g3) .(1.5b)

Here ℘ is the Weierstrass ℘-function. Equation (1.5b) has six constants associated
with it, namely, {a, b, c, d, g2, g3}, where g2 and g3 are the two constants which relate
to the two periods of ℘ (z), and d is one-third of any period. However, ℘ (z) satisfies

the equation ℘′
2

= 4℘3 − g2℘− g3, with z2℘ (z) → 1 as z → 0. Hence ℘ satisfies the
scaling law ℘ (cu, g2, g3) ≡ c−2℘

(
u, c4g2, c

6g3
)
, so that without loss of generality we

may take c = 1 in (1.5b). The solution set represented by (1.5a), which is a subset of
(1.5b), does not require the constraint u+ v+w = 0 to be satisfied and is the general
solution of the differential equation

f ′f ′′′ − f ′′2 = 0.(1.6)

The solution set (1.5b) only satisfies (1.1) provided the constraint is satisfied and is
the general solution of

f ′
2

+Af3 +Bf2 + Cf +D = 0,(1.7)

or, upon eliminating the arbitrary constants A,B,C, and D,

f ′
2

f (v) − 3f ′f ′′f (iv) + 3f ′′
2

f ′′′ − f ′f ′′′2 = 0.(1.8)

When we consider (1.5b) as the general solution of (1.7) or (1.8), d appears as an
arbitrary constant. However, if (1.5b) is also to satisfy (1.1), then d is not arbitrary
and, by substituting the solution back into (1.1), can be shown to be either zero or
any integer multiple of one-third of any period of ℘ (z). A simpler proof that all of
the solutions of (1.1) are contained in the solution set of (1.5a, b), subject to the
above condition on d, can be obtained by eliminating the functions f (v) and f (w)
by taking suitable combinations of derivatives of (1.1). At various points in the proof
the equation factorizes to give (1.6) or (1.7) as factors. (This was the approach of
[2].)

For the last 15 years the nature of the solutions to (1.2) has remained open. One
can show [13] that (1.5b), with d = 0 to ensure the evenness of f , satisfy (1.2), and
it has been conjectured that such were the only solutions. Though the method of
eliminating functions just noted above for the case of (1.1) should be applicable in
the general case, the algebra involved to completely define the solution set is quite
considerable. In the case of (1.2), when n ≥ 3 the amount of algebra appears to be
so large that even a Maple calculation cannot handle the details necessary to provide
a definition of the solution set. Here we shall develop new techniques to handle the
equation. Our main result contains a surprise. To describe this let us introduce the
following.
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Definition 1. Let A and A′ denote the class of meromorphic functions f(z)
with the following properties:

(1) f(z) is an even function of z.
(2) The only singularity of f(z) in the strip |Im(z)| < a for some a > 0 is a

double pole at the origin. And (respectively)

(3) z2f(z)
2a2+z2 is L1 along any line |Im(z)| = t, −∞ < Re(z) <∞, where |t| < a.

(3′) (a) Either z2f(z) is L1 along any line |Im(z)| = t, −∞ < Re(z) < ∞,
where |t| < a, or (b) there exists a constant c such that z2f(z) − c is L1 along any
line |Im(z)| = t, −∞ < |Re(z) <∞, where |t| < a.

Definition 2. Let Ap denote the class of periodic, meromorphic functions f(z)
whose period is p (where p is real) with the following properties:

(1) f(z) is an even function of z.
(2) The only singularities of f(z) in the strip |Im(z)| < a for some a > 0 are a

periodic array of double poles of the form 1/(z − 2nπ)2 at the points z = 2nπ, n ∈ Z,
on the real axis.

With these definitions in hand we find the following.
Theorem 1. For functions f(z) ∈ A′ ∪ Ap the general even solution of (1.2) is
(a) for all even n ≥ 2 given by (1.5b) with d = 0, while
(b) for odd n ≥ 3 there are in addition to the solutions (1.5b) with d = 0 the

following:

h1(z) =
√

(℘(z) − e2)(℘(z) − e3) =
σ2(z)σ3(z)

σ2(z)
=

θ3(v)θ4(v)

θ21(v)

θ′21 (0)

4ω2θ3(0)θ4(0)
= b

dn(u)

sn2(u)
,

h2(z) =
√

(℘(z) − e1)(℘(z) − e3) =
σ1(z)σ3(z)

σ2(z)
=

θ2(v)θ4(v)

θ21(v)

θ′21 (0)

4ω2θ2(0)θ4(0)
= b

cn(u)

sn2(u)
,

h3(z) =
√

(℘(z) − e1)(℘(z) − e2) =
σ1(z)σ2(z)

σ2(z)
=

θ2(v)θ3(v)

θ21(v)

θ′21 (0)

4ω2θ2(0)θ3(0)
= b

cn(u) dn(u)

sn2(u)
.

Here

σα(z) =
σ(z + ωα)

σ(ωα)
e−zζ(ωα), u =

√
e1 − e3 z, v =

z

2ω
, b = e1 − e3,

with ω1 = ω, ω2 = −ω−ω′, and ω3 = ω
′, and we have given representations in terms

of the Weierstrass elliptic functions, theta functions, and the Jacobi elliptic functions
[16]. For appropriate ranges of z the solutions are real. These exhaust the even
periodic solutions of (1.2), and their degenerations yield all the even solutions with
only a double pole at x = 0 on the real axis. The assumption of only a double pole at
the origin comes from an elementary singularity analysis of (1.2). When n = 2, 3 the
theorem can be proved without the assumption that f(z) ∈ A′ ∪ Ap, provided it is
assumed that f is meromorphic with a double pole at the origin. We also conjecture
this latter assumption is all that is required for n ≥ 4 but have been unable to prove
this. The surprise is the appearance of these new solutions for odd n, which in turn
yield new Poincaré invariant mechanical systems.

Our paper is arranged as follows. First we will describe the origin of (1.2) and
of the several connections between functional equations and mechanical systems in
section 2. Section 3 is the heart of the paper where we introduce our new method.
Here we take a (suitable) Fourier transform of (1.2), turning that functional equation
into a functional equation for the transform. It is in taking this Fourier transform
that we encounter the class A, which is sufficient for the transform to exist. The
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functional equation we produce has a remarkable property: we can reduce the general
n equation to a consideration of the n = 2 and n = 3 cases. Subject to one or
two assertions proven in sections 4 and 5, we have essentially proven the theorem.
Section 4 considers the case of the n = 2 equation and section 5 considers the case
of the n = 3, which yields the new solutions. It is only at this stage in solving these
equations do we need the more restricted class A′. At this stage we have proven our
theorem, and the remaining two sections are included for completeness. In section 6
we consider using our Fourier transform method to rederive the general solution of
(1.1) found in [2]. Finally in section 7 we consider the more common series methods
for solving functional equations, as used, for example, in [2]. These methods yield
either a Laurent series for the solution set or a set of differential equations, whose
common solution the solution set must satisfy. The advantage of these methods is
that they define the solution set, or the differential equations that the set must satisfy,
for (1.2) when n = 2 or n = 3. Even though these methods appear intractable for
larger values of n, the equations derived for n = 2 and 3 can be solved, and we can
prove theorem 1 for cases n = 2 and 3 only, but under weaker conditions than those
required for the Fourier transform method.

2. Some mechanical systems. Some years ago Ruijsenaars and Schneider [13]
initiated the study of mechanical systems exhibiting an action of Poincaré algebra:

{H,B} = P, {P,B} = H, {H,P} = 0.(2.1)

Here H is the Hamiltonian of the system generating time-translations, P is a space-
translation generator, and B is the generator of boosts. The models they discovered
were found to posses other nice features: they were in fact integrable and a quantum
version of them naturally existed. These models also appear in various field theoretic
contexts (see [5]). Ruijsenaars and Schneider began with the ansatz for a system of
n+ 1 particles interacting on the line,

H =
n+1∑
j=1

cosh pj
∏
k �=j
F (xj − xk), P =

n+1∑
j=1

sinh pj
∏
k �=j
F (xj − xk),

and

B = −
n+1∑
j=1

xj .

With this ansatz and the canonical Poisson bracket {xi, pj} = δij the first two Poisson
brackets of (2.1) involving the boost operator B are automatically satisfied. Supposing
further that F (x) = ±F (−x), then the final Poisson bracket is equivalent to the
functional equation

{H,P} = 0⇐⇒
n+1∑
j=1

∂j
∏
k �=j
F 2(xj − xk) = 0.(2.2)

With f(x) = F (x)F (−x) this is precisely (1.2), and so solutions of this equation
yield Poincaré invariant mechanical systems. At the time, Ruijsenaars and Schneider
were able to show that (1.5b) (with d = 0) gave solutions to these equations for all n.
These solutions in fact yield n+1 independent, mutually Poisson commuting conserved
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quantities, and so are a completely integrable mechanical system. A scaling limit of
the Ruijsenaars–Schneider model yields the Calogero–Moser system with Hamiltonian

H =
1

2

n+1∑
i=1

p2i +
1

6

∑
i �=j
℘ (qi − qj) ,(2.3)

which is another well-studied completely integrable system [15].

We note that many connections exist between functional equations and integrable
quantum and classical systems [3, 4, 6, 7, 8, 9, 11, 12]. Functional equation (1.1)
(without any assumptions on the parity of the function f) arises, for example, when
characterizing quantum mechanical potentials whose ground state wavefunction (of a
given form) is factorizable [10, 14]. Buchstaber and Perelomov solved this equation
in [7]. More recently, it has been shown to characterize the Calogero–Moser system
[1]. Several functional equations appearing in this setting and whose general solutions
have still to be found are given in [4].

3. The Fourier transform method. Our strategy to solve (1.2) will be to
derive a functional equation for the Fourier transform of this equation, which we then
proceed to solve. Indeed, we will show that in order to solve the functional equation
for the Fourier transform, it suffices to solve for the n = 2 and n = 3 cases, and this
is done in later sections. In deriving the functional equation for the Fourier transform
we need to assume that f ∈ A. However, in order to derive the solutions to the
n = 2 and n = 3 equations via this Fourier transform method, we need to assume the
more restrictive condition f ∈ A′. (In section 7 we see that this further restriction is
unnecessary.)

Let us then look first to the problem of deriving the equation for the Fourier
transform of the solution of (1.1) and (1.2) for general integer n. There are a variety
of difficulties which are not immediately apparent. These will be treated as they arise.
They include requiring an appropriate generalized Fourier transform for functions
of x which are unbounded either at infinity or at points on the real axis, and the
consideration of distributional solutions both of (1.2), (1.3), and (1.4) and of the
transformed equation. We first consider the even solutions of (1.2) for a general
integer n. It will be convenient to write (1.2) as

g (x, xn+1) =

n+1∑
p=1

∂

∂xp

∏
q �=p
f (xp − xq) ,(3.1)

where f is even and x is the vector (x1, x2, . . . , xn). We then define the n-dimensional
Fourier transform ĝ(k, xn+1) of g (x, xn+1) by

ĝ (k, xn+1) =

∫
Rn

g (x, xn+1) e
−ik.xdx.(3.2)

However, there are problems with the double pole of f at the origin. Away from
these singularities g is identically zero for these solutions. However, to interpret (3.2)
correctly we find that g acts as a distribution over any plane through the origin, and
the 2-dimensional Fourier transform of g over this plane gives a nonzero contribution.
The contribution from all of these singularities becomes difficult to deal with. To
overcome this we assume that the arguments of g are complex, and we replace xj by
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xj + iεj , where εn+1 > εn > · · · > ε1 > 0, and assume that εn+1 is small. In other
words

g =

n+1∑
p=1

∂

∂xp

∏
q �=p
f (xp − xq + i (εp − εq)) .(3.3)

We then assume that in the definition of ĝ, (3.2), we integrate along the real axis in
the complex xj + iyj plane. If the function f (z) has double poles on the x = Re z
axis and no other singularities in the neighborhood of the x-axis, then, provided εn+1

is small enough, there will be no singularities of g within the domain of integration
of the integral occurring in (3.2). This is the motivation for item (2) in Definitions 1
and 2.

To calculate ĝ we make some changes of variables. Set ξq = x1 − xq + i (ε1 − εq)
for 2 ≤ q ≤ n + 1 and ξ1 = x1 − xn+1 + i (ε1 − εn+1). Then ξ1 = ξn+1. Further set
Xq = x1 − xq. Then focusing first on the p = 1 term in (3.2) consider

I =

∫ ∞
x1=−∞

∫
Rn−1

n+1∏
q=2

f (ξq) e
−ik.xdn−1x dx1

=

∫ ∞
x1=−∞

f(ξ1)e
−ik1x1

(
n∏
q=2

∫ ∞
xq=−∞

f (ξq) e
−ikqxqdxq

)
dx1

=

∫ ∞
x1=−∞

f(ξ1)e
−ik1x1

(
n∏
q=2

∫ ∞
Xq=−∞

f (ξq) e
ikq(Xq−x1)dXq

)
dx1.(3.4)

Now since εq > ε1 the singularities of f (z1) at z1 = i(εn+1 − ε1), and (for q > 1) of
f (zq) at zq = i(εq − ε1) lie in the upper half plane.

For functions f (z) which are analytic in the neighborhood of the Re z axis but

have a pole at z = 0 we define Fourier transforms f̂U and f̂L by

f̂U (k) =

∫ ∞
−∞
∩ f (x) e−ikxdx(3.5)

and

f̂L (k) =

∫ ∞
−∞
∪ f (x) e−ikxdx,(3.6)

which are suitably indented to go above and below the singularity at the origin. With
these definitions we have, in the limit as εn+1 → 0,

I =

∫ ∞
−∞
f (x1 − xn+1 + i (ε1 − εn+1)) e

−i
(

n∑
q=1

kq

)
x1

dx1

n∏
q=2

f̂L (−kq)

= e
−i
(

n∑
q=1

kq

)
xn+1

f̂L

(
n∑
q=1

kq

)
n∏
q=2

f̂L (−kq) .(3.7)

Assuming condition (3) of Definition 1, the Fourier transform of f exists and is
continuous. Thus the first term in the sum in (3.3) contributes a term ik1I to ĝ. A
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similar calculation gives

(3.8) ĝ =

 n∑
j=1

kj
(
j−1∏
q=1

f̂U (−kq)
) n∏

q=j+1

f̂L (−kq)
 f̂L

(
n∑
q=1

kq

)

−
 n∑
j=1

kj

( n∏
q=1

f̂U (−kq)
) ie−i

(
n∑

q=1

kq

)
xn+1

,

so that ĝ = 0 gives

n∑
j=1

ki
(
j−1∏
q=1

f̂U (−kq)
) n∏

q=j+1

f̂L (−kq)
f̂L

(
n∑
q=1

kq

)
−
 n∑
j=1

kj

( n∏
q=1

f̂U (−kq)
)
= 0.

(3.9)

We now define the Fourier transform of f (z) to be 1
2 (f̂U (k) + f̂L (k)). Also we

have the result that the difference f̂L (k)− f̂U (k) is 2πi multiplied by the residue of
the functions f (z) e−ikz at the origin, assuming that the only singularity of f (z) on
the real axis is at the origin. We further make the assumption that f (z) is an even
function of z with a double pole of the form 1/z2 at the origin. Hence with

f̂ (k) =
1

2

(
f̂U (k) + f̂L (k)

)
(3.10)

and

f̂L (k)− f̂U (k) = 2πi× Residue
(
f (z) e−ikz

)
= 2πk,(3.11)

we have

f̂L (k) = f̂(k) + πk(3.12)

and

f̂U (k) = f̂ (k)− πk.(3.13)

Hence the equation ĝ = 0, (3.9) gives

(3.14)

Sn ≡
n∑
j=1

kj j−1∏
q=1

(
f̂ (−kq) + πkq

) n∏
q=j+1

(
f̂ (−kq)− πkq

)(f̂ ( n∑
q=1

kq

)
+ π

n∑
q=1

kq

)

−
 n∑
j=1

kj

( n∏
q=1

(
f̂ (−kq) + πkq

))

=

n∑
j=1

kj j−1∏
q=1

(
f̂ (kq) + πkq

) n∏
q=j+1

(
f̂ (kq)− πkq

)(f̂ ( n∑
q=1

kq

)
+ π

n∑
q=1

kq

)

−
 n∑
j=1

kj

( n∏
q=1

(
f̂ (kq) + πkq

))
= 0,
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the final expression being obtained using the fact that f̂ (k) is an even function of k.

This equation is to be regarded as one which determines f̂ (k) and must be satisfied
for all {kq} in R

n. This is the desired functional equation for the Fourier transform
of our equation.

We note that, by inspection, f̂ (k) = ±π |k| satisfies (3.14) for all n, and we

may also show that f̂(k) = tπ|k| satisfies (3.4) for all values of t which satisfy
(1 + t)

n
(t− 1) = (t− 1)n (1 + t) . Apart from t = ±1, these are t = i cot jπ

n−1 , j =
1, . . . , n − 2. However, to satisfy the requirement that the inverse f (z) is such that
z2f (z)→ 1 as z → 0, we require the solution above with t = −1. This problem recurs
throughout the rest of the paper, and from now on it will be assumed that we take
only the multiple of f̂ (k) which satisfies the criterion that it has the correct double
pole either at the origin or at the sequence of double poles when f (z) is periodic.

At this stage we have identified a solution to (3.14), the Fourier transform of
(1.2). The following lemmas prove useful in finding the complete solution to (3.14)
for all n. We begin with a definition.

Definition 3. For each n let Fn be the solution set of Sn = 0, and let Gn be the
solution set of Sn = 0 and f̂ (0) �= 0.

Lemma 1. For n ≥ 4 and even, Fn ⊆ F2.
Lemma 2. For n ≥ 3, Gn ⊆ G2.
Proof of Lemma 1. In Sn+2 we put kn+2 = −kn+1, and using the fact that f̂ is

even, we find

Sn+2

∣∣∣
kn+2=−kn+1

=
(
f̂2 (kn+1)− π2k2

n+1

)
Sn.(3.15)

The factor f̂2 (k) − π2k2 produces the solutions f̂ (k) = ±π |k| if f̂ is even. This
function we have already shown belongs to all the solution sets Fn. Since the solution
set Fn+2 must be contained in the solution set of Sn+2

∣∣
kn+2=−kn+1 , (3.15) shows that

Fn+2 ⊆ (f̂(k) = ±π |k|) ∪ Fn ⊆ Fn. The result now follows by induction.
Proof of Lemma 2. In Sn+1 we put kn+1 = 0 and obtain

Sn+1

∣∣∣
kn+1=0

= f̂(0)Sn.(3.16)

Again if f̂(0) �= 0, the result follows by induction.
Definition 4. Let B denote the class of functions whose generalized Fourier

transform f̂ (k) arise from functions f(z) ∈ A′.
Although we have derived (3.14) for the class of functions A, only for the subclass

of functions given by A′ are we able to show the following theorem.
Theorem 2. For solutions with f̂ ∈ B, then Fn = F2 for all even n.
Proof. By Lemma 1 Fn ⊆ F2. In section 4 we will prove that F2 is the one

parameter family f̂ (k) = πk coth (πk/a0), together with its limit as a0 → 0, ±π |k|.
It can be verified by substitution that these satisfy Sn = 0, as we show in section 5
(see 5.9). This gives F2 ⊆ Fn, and the result now follows.

Theorem 3. For solutions with f̂ ∈ B, then Gn = G2 for all n.
The proof of Theorem 3 follows by the same method as the proof of Theorem 2.

However, we cannot exclude the possibility that there exist solutions of Sn = 0, with
n ≥ 3 and odd, which have f̂ (0) = 0 but are not contained in the solutions of S2 = 0.
This will be the way our new solutions arise. At this stage, subject to our assertions
regarding the n = 2 solutions to be proven, we have reduced the problem of solution
of the functional equation of the Fourier transform to the cases of n = 2 and n = 3
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with f̂ (0) = 0. Before we look at these cases we conclude this section by considering
the extensions of Lemmas 1 and 2 and the corresponding theorems about the solution
sets to functions f (z) which are periodic. This requires f (z) to have a periodic array

of double poles of the form 1/(z − 2nπ)2 at the points z = 2nπ, n ∈ Z.
To cater for the even periodic solutions of (1.5b) that are also bounded on the

real axis, apart from a periodic sequence of double poles, we assume that the solutions
f (x) are 2π-periodic and write

f (x) =
1

2π

∞∑
p=−∞

ape
ipx, with a−p = ap.(3.17)

The factor 2π is introduced so that the Fourier transform takes the form

f̂ (k) =

∞∑
p=−∞

apδ (k − p) .(3.18)

The Fourier coefficients for a well-behaved function are defined in the usual way
in terms of an integral over a period. The corresponding generalized definition for
functions with singularities is defined in the same way as the Fourier transform fU
and fL via (3.5) and (3.6) by taking the integrals, suitably indented, over a period.
The pole contributions to the Fourier series in (3.5) and (3.6) then give rise to a term∑∞
p=−∞ πkpδ (k − p), which replaces the corresponding term πkp in (3.14), using the

same interpretation as that in (3.18). We introduce these expressions into (3.14) and

then recognize that f̂(k) is only nonzero when k is an integer. Thus, by replacing f̂ (kq)
by aKq

δ(kq −Kq) and the pole contribution by Kqδ(kq −Kq), in the neighborhood of
the point {kp = Kp, p = 1, . . . , n} we obtain

(3.19)

Sn =

n∑
j=1

Kj j−1∏
q=1

(
(aKq

+ πKq)δ(kq −Kq)
) n∏
q=j+1

(
(aKq − πKq)δ(kq −Kq)

)
×


a n∑

q=1

Kq

+ π

n∑
q=1

Kq

 δ( n∑
q=1

(kq −Kq)
)

−
 n∑
j=1

Kj

( n∏
q=1

(
(aKq + πKq)δ(kq −Kq)

))
= 0.

This is a distribution supported at kq = Kq (q = 1, . . . , n) and is identically zero if

(3.20)
n∑
j=1

Kj j−1∏
q=1

(
aKq + πKq

) n∏
q=j+1

(
aKq − πKq

)
a n∑

q=1

Kq

+ π

n∑
q=1

Kq


−
 n∑
j=1

Kj

( n∏
q=1

(
aKq

+ πKq
))

= 0

for all integer values of Kq. Since f̂(k) satisfy the continuous version of (3.20), it is

clear that the solution aK = f̂ (K), K �= 0 with a0 arbitrary, will satisfy (3.20). It is
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also easy to construct the corresponding function f (x) that satisfies (1.4). If f (x) is

the function whose Fourier transform is f̂ (k), then we define

h (x) =
∞∑

p=−∞
f (x− 2πp) .(3.21)

This function is 2π-periodic and has Fourier series 1
2π

∑∞
K=−∞ aKe

iKx, where

aK =

∫ 2π

0

∞∑
p=−∞

f (x− 2pπ) e−iKxdx =
∫ ∞
−∞
f (x) e−iKxdx = f̂ (K) .(3.22)

The above solution for aK can also be obtained directly from (3.20) by successively
solving all equations with 1 ≤ |Kq| ≤ N, q = 1, . . . , n, for N = 1, 2, 3, . . . , the
equations where Kq = 0 being automatically satisfied. All the solutions to (3.20) are
obtained in section 4.

The conclusions can be summed up in the following theorem, which incorporates
the result of Braden and Byatt-Smith [2] for even functions as a special case.

Definition 5. Let B2π denote the class of functions whose generalized Fourier
transform f̂ (k) arises from 2π-periodic meromorphic functions f(z), bounded on the
real axis apart from double poles at 1/(z − 2πn)2, n ∈ Z.

Theorem 4. For f̂ ∈ B ∪ B2π,
1. the only even solutions of (1.2) with n even are those of (1.5b) with d = 0;

2. the only even solutions of (1.2) with n odd and for which f̂ (0) �= 0 are those
of (1.5b) with d = 0.

4. Even solutions of the transformed equation and their inverses. The-
orems 1–4 state that the only even solutions of (1.2) with f̂ (0) �= 0 are those of (1.5b)
with d = 0. We complete the proof of these theorems in this section and section 5
by deriving these solutions for the case n = 2 and then in section 5 by showing that
these solutions also satisfy (1.2) for arbitrary n; see (5.5)–(5.9). If there are no poles
of f on the real axis, then (3.14) for the Fourier transform, when n = 2, now reads(

kf̂ (l) + lf̂ (k)
)
f̂ (k + l) = (k + l) f̂ (k) f̂ (l) ,(4.1)

where for convenience we have written k1 = k and k2 = l. Clearly if f̂ (k) is a function

not identically zero, then (4.1) implies that k/f̂ (k) is linear so that f̂ (k) is constant.
This, however, gives only the distributional solution where f (x) is a constant multiple

of δ (x). If we allow distributions, then f̂ (k) = aδ (k) is also a solution of (4.1), as is

f̂ (k) = aδ (k) + b with the corresponding f(x) = bδ(x) + a. These are the only even
solutions of (4.1).

When we allow f to have a double pole at the origin, (3.14) for the Fourier
transform, when n = 2, becomes(

kf̂ (l) + lf̂ (k)
)
f̂ (k + l) = (k + l) f̂ (k) f̂ (l) + π2kl (k + l) .(4.2)

The Fourier transform of 1/x2 is −π |k|, and the identity

(k |l|+ l |k|) |k + l| = (k + l) (|k| |l|+ kl)(4.3)
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for all k, l ensures that the even functions f̂ (k) = ±π |k| satisfy (4.2), with the minus
sign required to satisfy the pole condition. However, f̂ (k) = ±π |k| are not the only
solutions of (4.2). We wish to consider only even functions, but also wish to include
functions like |k| which are not differentiable at k = 0. Hence we consider (4.2) defined
on the subspace k ≥ 0, l ≥ 0, with all derivatives at the origin defined by one-sided
derivatives. Thus in the interval k ≥ 0, |k| is defined as k with derivative 1 at the
origin. Writing (4.2) as

f̂(l)
(
k
(
f̂(k + l)− f̂(k)

)
− lf̂(k)

)
+ lf̂ (k) f̂ (k + l) = π2kl (k + l)(4.4)

and then dividing by l and taking the limit as l→ 0 gives

a0kf̂
′ (k)− a0f̂ (k) + f̂2 (k) = π2k2,(4.5)

where a0 = f̂ (0), and the solution of (4.5) with f̂ (0) = a0, when a0 �= 0, is

f̂ (k) = πk coth (πk/a0) .(4.6)

We note here that (4.6) requires only k−1(f̂(k)− f̂(0)−kf̂ ′(0)) = o(1) as k → 0. This

will be the case if f̂ ′(k) is continuous at the origin. This is provided for by property
(3′a) of Definition 1, which ensures that f̂(k) has a continuous second derivative. Of
course for an even function with this property, f̂ ′(0) ≡ 0. The function appearing in
(4.6) is the Fourier transform of the function

f (x) = −1
4
a0 |a0| / sinh2

(a0x
2

)
.(4.7)

Again, apart from the addition of a constant and a scaling of x, this produces the
unique (degeneration of a) ℘ function of imaginary period π and real period infinity.

As a0 → 0 the solution (4.6) tends to ±π |k|, which is also the solution of (4.5)
when a0 = 0. This requires k−1(f̂(k) − f̂(0) − |k|f̂ ′(0+)) = o(1) as k → 0, where

f̂ ′(0+) is defined to be the limit of f̂ ′(k) as k tends to zero through positive values.
This is provided for by the stronger property (3′b) of Definition 1.

For even functions f (x) which are 2π-periodic in addition to having a double pole

of the form 1/x2 at the origin following (3.18), we write f̂ (k) in the form

f̂ (k) =
∞∑

p=−∞
apδ (k − p) , with a−p = ap,(4.8)

to obtain the recurrence relation for the set {aK},
(KaL + LaK) aK+L = (K + L) aKaL + π

2KL(K + L).(4.9)

When K = 0, (4.9) is automatically satisfied with a0 arbitrary. Writing aK =
πKbK for K = 1, 2, . . . , we obtain

(bL + bK) bK+L = bKbL + 1,(4.10)

and with b1 =
β+1
1−β and L = 1, we have

bK+1 = (bK (β + 1) + 1− β) / (bK (1− β) + β + 1) .(4.11)
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This is easily solved to yield

bK =
1 + βK

1− βK or aK = π |K|
(
1 + β|K|

1− β|K|
)
.(4.12)

This reproduces the result that aK = f̂ (K) at integer values of K, where f̂ (K) is

given by the continuous equation. Also the Fourier series
∑∞
−∞ π |K|

(
1+q2|K|

1−q2|K|
)
eiKx

can be recognized as the Fourier series for the ℘ function again (up to the addition of
a constant). Here q = β1/2 is the usual notation for the nome.

At this stage we have found the solution set F2. The conclusion is that the only
even solutions of (1.2) with n = 2 are those of (1.5b) with d = 0.

5. New solutions. We now look at the solutions of (1.2) which have f̂ (0) = 0 to
see if there are solutions which do not belong to the set F2. Lemma 1 and Theorem
2 can be easily adapted to prove that when n is odd, Fn ⊆ F3. We first find this
solution set and then prove that when n is odd, Fn = F3. Hence we look for solutions
of (3.14), with f̂ (0) = 0, when n = 3. We wish to consider only even functions but
again wish to include functions like |k| which are not differentiable at k = 0. Hence
we consider (3.14) defined on the subspace kq ≥ 0 (q = 1, 2, 3) with all derivatives at
the origin defined by one-sided derivatives. Thus in the interval k ≥ 0, |k| is defined
as k with derivative 1 at the origin.

In (3.14) we write k1 = k and k2 = k3 = l and let l→ 0. Then (3.14) gives

a0

(
a0kf̂

′ (k)− a0f̂ (k) + f̂2 (k)− π2k2
)
= 0,(5.1)

where a0 = f̂ (0) . When a0 �= 0 this gives the same equation as (4.5) but is auto-
matically satisfied when a0 = 0. So in addition to the solution given in (4.6), which
belongs to F2, we can also allow a0 = 0.

When a0 = 0 the next term in the expansion of (3.14) gives

a1

(
f̂2 (k)− π2k2

)
= 0,(5.2)

where a1 = f̂
′ (0). If a1 �= 0, then (5.2) gives f̂ (k) = ±π |k| as the only even solution.

This is also the solution of (4.6) when a0 = 0 and hence also belongs to F2. Now if
we assume that a1 = 0, we can write the third term in the expansion of (3.14) as

2π2kf̂ ′ (k) + a2f̂2 (k)− 2π2f̂ (k) = π2a2k
2,(5.3)

where a2 = f̂
′′ (0) . The derivation of this solution requires k−2(f̂(k)− f̂(0)−kf̂ ′(0)−

k2f̂ ′′(0)/2) = o(1) as k → 0. This will be the case if f̂ ′′(k) is continuous at the origin
and is provided for by the property (3′a) of Definition 1. Again for an even function
with this property, f̂ ′(0) ≡ 0.

The only even solution of this equation is

f̂ (k) = πk tanh

(
ka2
2π

)
,(5.4)

which automatically has f ′′ (0) = a2. This of course is a necessary requirement, and
we need to check that this is a solution of (3.14).
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We rewrite (3.14) as

Ŝn ≡
 n∑
j=1

kj

f̂ (kj) + πkj

n∏
q=j+1

(
f̂ (kq)− πkq
f̂ (kq) + πkq

)
(
f̂

(
n∑
j=1

kj

)
+ π

n∑
j=1

kj

)
n∑
j=1

kj

− 1 = 0.

(5.5)

Substituting f̂ (k) = πk tanh (ak) into Ŝn gives

Ŝn = −
 n∑
j=1

(
e2akj + 1

) n∏
q=j

(−e−2akq
) exp

(
2a

n∑
j=1

kj

)

exp

(
2a

n∑
j=1

kj

)
+ 1

− 1.(5.6)

The first part of this expression can be written as

Ŝ(1)
n =

n∑
j=1

aj+1 − aj ≡ an+1 − a1,(5.7)

where aj =
∏n
q=j

(−e−2akq
)
, so that Ŝ

(1)
n = (−1)n+1

exp
(− 2a∑n

j=1 kq
)
+ 1. Hence

Ŝn =

(
(−1)n+1 − 1

)
exp

(
2a

n∑
j=1

kj

)
+ 1

.(5.8)

This immediately gives Ŝn ≡ 0 whenever n is odd. Hence f̂ (k) = πk tanh (ak), with
a arbitrary, is a solution for all equations Sn = 0 when n is odd. It is also evident
from (5.8) that this solution does not satisfy Sn = 0 for n even.

We also note that substituting f̂ (k) = πk coth (ak) into (5.5) changes (5.6) to

Ŝn =

 n∑
j=1

(
e2akj − 1) n∏

q=j

e−2akq

 exp
n∑
j=1

(2akj)

exp

(
n∑
j=1

2akj

)
− 1
− 1.(5.9)

The change in signs now means that Ŝn ≡ 0 for all n, showing that f̂1 (k) =
πk coth (ak), with a arbitrary, satisfies (3.14) for all n, as claimed earlier.

If we write a = 1
2π/α so that f̂ (k) = πk tanh

(
1
2πk/α

)
, then this is the Fourier

transform of the function f (z) = −α|α|coshαz/sinh2 αz, so α must be negative to
satisfy the pole condition that z2f (z)→ 1 as z → 0. However, since the coefficient of
the double pole is in fact arbitrary, we have f (z) = βcoshαz/sinh2 αz satisfying (1.2)
for all odd values of n. (We will give an alternate way of discovering this solution in
section 7.)

The even periodic solutions, which satisfy the modification of (3.14) when f (z)

has an array of double poles of the form (z − 2pπ)−2
at the points z = pπ, p = 0,
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±1,±2, . . . , can be written as

f̂ (k) =

∞∑
p=−∞

apδ (k − p) , with a−p = ap,(5.10)

as in (3.18). Again, (3.14) is now to be satisfied at all integer values of {kq} with
f̂ (kq) replaced by akq . Hence

(5.11) Ŝn ≡
n∑
j=1

Kj j−1∏
q=1

(
aKq + πKq

) n∏
q=j+1

(
aKq − πKq

)
a n∑

q=1

Kq

+ π

n∑
q=1

Kq

−
 n∑
j=1

Kj

( n∏
q=1

(
aKq + πKq

))
= 0.

To solve (5.11) to obtain the solutions for Ŝ3 = 0, we proceed as in section 4. If a0 is
not equal to zero, we can put K3 = 0 and recover the solutions (4.12). However, if

a0 = 0, then Ŝ3 ≡ 0 for all K1 and K2 if K3 = 0. Writing down all the equations for
Kj ≥ 1 we find that if a1 = π (β + 1) / (1− β), the odd terms are given by

a2K+1 = π (2K + 1)

(
1 + β2K+1

)
1− β2K+1

, K ≥ 0.(5.12)

This is established in the same way that (4.12) is obtained from (4.9). Writing aK =
πKbK for K = 1, 2, . . . , and with K1 = K2 = 1 and K3 = 2K + 1 we obtain

b2K+1 =
(
b2K−1

(
β2 + 1

)
+ 1− β2

)
/
(
b2K−1

(
1− β2

)
+ β2 + 1

)
,(5.13)

which is solved to get (5.12). However, the even terms depend on the choice of a2,
which must take one of the values

a2 = 2π

(
1 + β2

)
1− β2

(5.14a)

or

2π

(
1− β2

)
1 + β2

.(5.14b)

This is obtained by choosing K1 = 1,K2 = 2, and K3 = 2, with a1 and a5 given
from (5.12). This yields a quadratic for a2 with (5.14) as solution. The first choice in
(5.14) gives

a2K = 2πK

(
1 + β2K

)
1− β2K

, K ≥ 0,(5.15)

and the second

a2K = 2πK

(
1− β2K

)
1 + β2K

, K ≥ 0.(5.16)
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Again these results are obtained from the choice of K1 = K2 = 1 and K3 = 2K,
which, using the definition of bK , gives

b2K+2 = (2b1 + b2K + b21b2K)/(2b1b2K + 1 + b21),(5.17)

which is solved to give (5.15) or (5.16), depending on the choice of a2.
The results (5.14a) and (5.15) are equivalent to (4.12), while writing β = −β̃

shows that (5.14b) and (5.16) are equivalent to

aK = π |K|
(
1− β|K|
1 + β|K|

)
for all K.(5.18)

This reproduces the result of (5.4) at integer values of k. The proof that {aK} satisfies
Ŝn for all n is identical to the proof in the continuous case (see (5.5)–(5.8)).

The corresponding inverse f (z), obtained from f̂(k), can be constructed either

by taking the Fourier inverse of f̂ (k) or by the infinite sum defined by (3.21) us-
ing the function β coshαz/ sinh2 αz. This function must be one of cn/sn2, dn/sn2,
or cndn/sn2. There are two reasons why there are three functions representing the
solution set. The first is that if all the parameters defining the elliptic function
are real, then the transformation z → iz permutes these three functions accord-
ing to Jacobi’s imaginary transformation sn(iz, k) → i sn

(
z, 1− k2

)
/cn
(
z, 1− k2

)
,

cn(iz, k) → 1/cn
(
z, 1− k2

)
, and dn(iz, k) →dn(z, 1− k2

)
/cn
(
z, 1− k2

)
. Second,

Jacobi’s real transformation defines the elliptic function for the parameter k < 0 or
k > 1 in terms of elliptic functions with a scaled independent variable and parameter
k in the range 0 < k < 1. Again the effect is to permute the three functions.

The conclusion is that the even solutions of (1.2) with n odd fall into two cat-
egories. One is the set defined by (1.5b) with d = 0, which satisfy (1.8) subject to
z2f (z)→ a constant as z → 0. There is also a further set which may be expressed in
terms of the ℘ function and also in terms of the Jacobian elliptic functions as given
in Theorem 1. We have now proven Theorem 1.

6. Noneven solutions. At this stage we have established the theorem. For
completeness we show how the general solutions of (1.1) may be obtained using the
Fourier transform method. The even solutions have already been obtained, and now
we consider the noneven solutions. We now assume that the function f in (1.4) is not
necessarily even but is bounded on the real axis, but otherwise satisfies the conditions
given in definition 1. Then the method of section 3 can be adapted to give the equation

kf̂ (−l) f̂ (−k − l) + lf̂ (k) f̂ (k + l)− (k + l) f̂ (−k) f̂ (l) = 0.(6.1)

Equation (6.1) is a rather complicated functional equation when f̂ (−k) �= f̂ (k). A
Taylor series method produces a three-parameter family of solutions. Two parameters
are as a consequence of the fact that if ĝ(k) is a solution, so is f̂ (k) = aĝ (bk) for
all constants a and b. This is as a result of the scaling symmetries of the original
equation (6.1). So essentially there is a one parameter family of solutions. However,
it is not easy to recognize the solution from its series. The method which appears to
give the most simple solution is the following. We decompose f̂ into an even and odd
function of the form

f̂ (k) = f1 (k) + tkf2 (k) ,(6.2)
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where f1 and f2 are even functions of k and t can be ±1. Substituting this expression
into (1.4) yields an equation of the form

A (k, l) + tB (k, l) + t2C (k, l) = 0,(6.3)

and since t can be either ±1 this gives two equations

A+ C = 0 and B = 0.(6.4)

Now we assume that l is small and expand (6.4) as a power series in l. Equating
the coefficients of the powers of l to zero gives a series of differential equations involving
f1 (k) and f2 (k). From the first two equations we obtain

2 (f2 (k)− a2) f1 (k) = k a1 f ′2 (k)(6.5)

and

ka1f
′
1 (k) + f

2
1 (k) + k

2f2
2 (k)− f1 (k) a1 + 2k2a2f2 (k) = 0,(6.6)

where

a1 = f1 (0) and a2 = f2 (0) .(6.7)

Eliminating f1 (k) we obtain

a21

(
2 (f2 − a2) f ′′2 − f ′

2

2

)
+ 4f2

(
f3
2 − 3a22f2 − 2a32

)
= 0,(6.8)

and one integration yields

3a21f
′2
2 = 4 (a2 − f2)

(
ca32 + f

3
2 + 3a2f

2
2

)
,(6.9)

where c is an arbitrary constant. This constant is the third parameter referred to
above. Examination of the cubic in (6.9) shows that for all (real) constants c other
than c = 0 or −4 we have an oscillatory solution for f2. These solutions must be
rejected on the grounds that if the original function f (x) is bounded, f̂ (k) must tend
to zero as k → ±∞.When c = −4, f2 ≡ a2, and (6.5) is automatically satisfied, (6.6)
then yields

f1(k) =
√
3a2k cot

(√
3a2k/a1

)
.(6.10)

Again this does not represent the Fourier transform of a bounded function f (x) .
However, it does illustrate the general feature of all periodic solutions of (6.9). When
c �= 0 the solution of (6.9) with f2 (0) = a2 is an elliptic function which is even.
Clearly, when c �= −4, f2(k)− a2 has zeros when k = 0 or an integer multiple of the
period of f2. Since (6.9) implies that f

′
2 = 0 and f ′′2 �= 0 when f2 = a2, at each zero

other than k = 0, f1(k) has a simple pole. Hence f1 has a periodic array of poles,
apart from k = 0, where the singularity is removable. This feature is illustrated by
the function appearing in (6.10).

When c = 0, we can solve (6.9) with f2 (0) = a2 to get

f2(k) =
3a2

2 cosh 2αk + 1
,(6.11)
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where α = a2/a1, so that

f1(k) =
3a2k coshαk

sinhαk (2 coshαk + 1)
.(6.12)

The two possibilities for f̂ (k) are then

f̂ (k) = f1 (k)± kf2 (k) ,(6.13)

giving

f̂1 (k) =
6a2ke

4αk

e6αk − 1 and f̂2 (k) =
6a2ke

2αk

e6αk − 1 .(6.14)

If we normalize by choosing 6a2 = πa1 and a1 = −2, then f̂1 is the Fourier transform of
the function 1/ sinh2 (x− iπ/3) and f̂2 is the Fourier transform of 1/ sinh2 (x+ iπ/3) .
Apart from the addition of a constant these are ℘ functions, with periods (∞, π) , and
a double pole at the origin.

Thus, apart from the double pole at the origin and the shift by one-third and
two-thirds of the imaginary period of the ℘ function, there is a unique solution of
(1.4) which is bounded on (−∞,∞) and tends to zero at ∞. An interesting limit is
a2 → 0, which gives f2 ≡ 0 and f1 = a1. This is also seen to be the only solution of
(6.5) and (6.6) when a2 = 0, subject to the condition that f1(0) = a1, f2 (0) = a2 = 0,

and f2 → 0 as k =∞. The inverse of the Fourier transform f̂ (k) ≡ a1 is no longer a
function but the distribution a1δ (x) which can be viewed as the limit

a1δ (x) = lim
α→0
− a2

α sinh2 (−x/α+ πi/3) ,

where πa1α = 6a2.
The only other regular solutions of (1.4), on the real axis, are ones that are either

not bounded at∞ or are oscillatory. Such functions have either distributional Fourier
transforms or are such that the no conventional Fourier transform exists. For example,
the Fourier transform of eiαx is 2πδ (k − α) and as a distribution f = 2πδ (k − α)
satisfies (6.1), since

(6.15) 4π2kδ (−l − α) δ (−k − l − α) + 4π2lδ (k − α) δ (k + l − α)
− 4π2 (k + l) δ (−k − α) δ (l − α) ≡ 0.

This is because k δ (−l − α) δ (−k − l − α) is zero unless l + α = l + k + α = 0 or
k = 0, l = −α, when the coefficient of the product of δ functions is zero. A more
formal proof can be obtained by defining the inner products 〈u, v〉k,l and 〈u, v〉k by

〈u, v〉k,l ≡
∫∫

R2

u v dkdl and 〈u, v〉k ≡
∫

R

u v dk,(6.16)

with a similar definition for 〈u, v〉l. Then

〈kδ (−l − α) δ (−k − l − α) , F (k, l)〉k,l = 〈δ (−l − α) δ (−k − l − α) , kF (k, l)〉k,l
= 〈δ (−l − α) , − (l + α) F (−l − α, l)〉l(6.17)

= 0.
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Although this only shows that eiαx is a solution of (1.4) by analogy, we can also have
eαx, although this does not have a Fourier transform, except formally by analytic
continuation.

The Fourier transform of x is 2πiδ′(k), and using (6.16) it is straightforward to
prove that kδ′ (−l) δ′ (−k − l) + lδ′ (k) δ′ (k + l) and (k + l) δ′ (−k) δ′ (l) are identical
distributions. For example

〈(k + l) δ′ (−k) δ′ (l) , F (k, l)〉k,l = 〈δ′ (−k) δ′ (l) , (k + l)F (k, l)〉k,l
= 〈δ′ (−k) ,−F (k, 0)− kFl (k, 0)〉k(6.18)

= −Fk (0, 0)− Fl (0, 0) .

A similar calculation shows that

〈kδ′ (−l) δ′ (−k − l) , F (k, l)〉k,l + 〈lδ′ (k) δ′ (k + l) , F (k, l)〉k,l = −Fk (0, 0)− Fl (0, 0) .
(6.19)

In addition, we can also see that if f̂ (k) is not continuous, f̂ (0) can be arbitrary
since (6.1) is satisfied automatically when either k, l, or k + l equals zero. In
particular, we can add an arbitrary multiple of δ(k) to any solution of (6.1). This
corresponds to adding a constant to any solution of (1.4).

The above distributional solutions cover the solutions of (1.5a). To cater to the
noneven periodic solutions of (1.5b) that are also bounded on the real axis, we assume
that the solutions f (x) are 2π-periodic, and following (3.17) we write

f (x) =
1

2π

∞∑
p=−∞

ape
ipx(6.20)

to obtain

Ka−La−K−L + LaKaK+L − (K + L) a−KaL = 0(6.21)

for all integer values of (K,L) . Since f̂1(k) and f̂2 (k) defined by (6.13) satisfy the

continuous version of (6.21), it is clear that the solution aK = f̂1 (K) , K �= 0 with
a0 arbitrary, will satisfy (6.21). This solution for aK can also be obtained directly
from (6.21) by successively solving all equations with 1 ≤ |K| ≤ N, 1 ≤ |L| ≤ N for
N = 1, 2, 3, . . . , the equations where K = 0 or L = 0 being automatically satisfied.
Apart from the fact that a0 is undetermined and is thus arbitrary, this process, as
in the continuous case, produces a three-parameter family of solutions with a−2, a−1,
and a1 arbitrary. If we choose a−1 = βα

2/
(
α6 − 1) and a1 = βα4/

(
α6 − 1), then

the choice a−2 = βα
4/
(
α12 − 1) yields aK = βKα4K/

(
α6K − 1) , which is clearly

equivalent to f̂1 (K) when β = 6a2 and α = exp (a2/a1) . Since all continuous solutions

f̂ (k) give a corresponding solution aK = f̂ (K), via (3.22), we presume that other
choices of a−2 give solutions for aK which are oscillatory and do not tend to zero as
K → ∞. As in the continuous case this gives Fourier series which do not come from
a continuous function of x.

It is also easy to show that there are additional solutions of (6.21). If the set S1 =
{aK} solves (6.21), then so does the set S =

{
γKaK

}
, provided γ3K = 1 for all integer

values of K. This gives two additional solutions
{
e2πKi/3aK

}
and

{
e4πKi/3aK

}
. If

f1 (x) is the 2π-periodic function whose Fourier series is given by the set S1, then
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these two solutions are from the functions f1
(
x+ 2

3π
)
and f1

(
x+ 4

3π
)
, which are the

original function shifted by one-third and two-thirds of its period, respectively.

In this section we have shown that by requiring f to be bounded on any compact
subset of the real axis, we can recover all the solutions of (1.5a,b) that have this
boundedness property by taking the appropriate Fourier transform of (1.4). We have
also shown that there are no other solutions f which have this boundedness property.
However, by taking the appropriate limit we have also shown that the δ function is
also a solution and have recovered this from the transformed equation. We have not
obtained the ℘ function solutions, which have double poles on the real axis. This
is because the transforms of these functions do not satisfy the transformed equation
(6.1). These follow from an analysis similar to that given in section 4.

7. Series solution approaches. We conclude this paper by describing two
methods based on a series approximation for studying (1.2). Although they are in-
complete, and this was the reason for developing the new methods already described,
it is helpful to see how our new solutions arise in this setting. In doing this, we see
that the n = 2 and 3 solutions can be derived assuming just the meromorphic nature,
pole assumptions, and evenness of the solutions contained in the first two items of
Definitions 1 and 2.

Method 1: Obtaining a series solution. One method of attempting to prove
the conjecture is to assume all the xi, i = 1, . . . , n + 1, are small and of the same
order, so that we write xi = tζi. Then we assume that all the even functions, such
as f (tζ), can be expressed as a power series in t with ζ as an order-one parameter in
the form

f (tζ) =

∞∑
j=0

ajc2j−2 (tζ)
2j−2

.(7.1)

The constants cj are given by cj = 1 if j < 0 and cj = 1/j! if j ≥ 0 and are included for
convenience. The series (7.1) allows for a double pole at the origin, which can easily
be shown to be the only allowable singularity. The coefficients aj are determined by
equating to zero the coefficients of the powers of t2j in the subsequent expansion of
(1.2). These coefficients are of course functions of ζi as well as aj . However, each
coefficient factorizes into a product of homogeneous polynomials in ζi, independent of
aj and a factor dependent on the aj only. Equating this coefficient to zero successively
determines aj for all j ≥ 4 in terms of a0, a1, a2, and a3, which are arbitrary. This
process can be completed to any desired order, J , if the expansion (7.1) is truncated
at a suitable finite value. Substitution of this finite polynomial into (1.7) shows, for
the cases where the method works, that for a suitable choice of {A, B, C, D}, (1.7)
can be satisfied to any desired order.

The proof of the above statement is, of course, incomplete: the form of the
general term, aj , is not obtained, and hence we cannot show that the full expansion
(7.1) satisfies (1.7). This method works for n = 2 and n = 4, but for values of n ≥ 5
the amount of algebra involved becomes so large that even a Maple calculation cannot
handle the details. When n = 3, this method does not work completely in that it
leaves a4 arbitrary. Our earlier analysis has shown that this is not the case.

It is interesting to note that the same procedure works for solutions of (1.1),
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although the assumption of evenness is not required. Hence we look for a solution

f (tζ) =

∞∑
j=0

ajcj−2 (tζ)
j−2
.(7.2)

If we take a0 �= 0, the process automatically gives a2j+1 ≡ 0, producing the same even
function as obtained via (7.1) for the solutions of (1.2). However, if we take a0 = 0,
then we find that a1 ≡ 0, and (7.2) is then a Taylor series. We proceed as above to
produce the coefficients aj for all j ≥ 7 in terms of a2 to a6 and show that (1.7) can
be satisfied to any order. However, a5 is not arbitrary and is given by

a3a5 = a
2
4.(7.3)

This condition is automatically satisfied for all functions in the set (1.5a). However

(7.3) is also equivalent to the condition ℘′′
2

(d) = 12℘ (d)℘′
2

(d) , which is satisfied
when d is one-third or two-thirds of any period of ℘ (z) . This gives the required
condition on the constant d appearing in (1.5b) when f belongs to this solution set.

Method 2: Obtaining a series of differential equations. An alternative
method is to assume that one variable, for example x1, is not small and write x1 = x
and xi = tζi, 2 ≤ i ≤ n+ 1, together with (7.1), although x1 can be replaced by any
linear combination of the xi, as long as n variables are scaled by t. The expansion of
f(x − tζ) then naturally produces coefficients of tj , which are functions of f and its
higher derivatives. The coefficients of tj , in the expansion of (1.2) when equated to
zero, now yield differential equations which must be satisfied by f (x) but contain the
“arbitrary” constants aj .

For the case n = 2 the first equation is

a0f
′′′ + 12a1f ′ − 12ff ′ = 0.(7.4)

This proves to be sufficient to determine a differential equation for f in the sense that
the elimination of the constants a0 and a1 by differentiation gives (1.8). The higher
order coefficients of tj produce equations similar to (7.4) but contain the constants
aj with j ≥ 4, which are not arbitrary. In this case eliminating all the constants
by differentiation will yield an equation which is still necessary but not sufficient to
determine f . If we seek a series solution to (7.4) by looking for a series solution of the
form f(x) =

∑∞
j=0 bjc2j−2x

2j−2, then we obtain b0 = a0 and b1 = a1, with b2 and b3
arbitrary. The coefficients bj , j ≥ 4, are then determined by these four constants, the
recurrence relation being the same as in Method 1. The equations which contain a2
and a3 also require b2 = a2 and b3 = a3 and so also reproduce the series (7.1).

This method is more complete than the previous method in that it does yield a
necessary differential equation, namely, (1.8), that all even solutions of (1.2) for n = 2
must satisfy. However, we cannot prove that all the differential equations produced
by the expansion are satisfied. But this is not a problem since it is easy to verify, by
substitution, that all even solutions of (1.5b) satisfy (1.2) for this case.

Again, the method can be adapted to obtain the solution of (1.1), which are not
even, using (7.2) with a0 = a1 = 0. The procedure is the same except that because
f (ζ) is not even, we obtain differential equations containing f (ζ) and f (−ζ) . When
one of these functions is eliminated we can then show that either (1.6) or (1.8) is
satisfied. However, the differentiations required to eliminate the constants aj mean
that the necessary condition (7.3) is not recovered.



756 J. G. B. BYATT-SMITH AND H. W. BRADEN

For the case n = 3 the situation is more complicated since the series of equations
similar to (7.4) only produce necessary equations for f. In order to show that f satisfies
(1.7) we need to take two equations similar to (7.4) and find the set of solutions
common to both differential equations. The algebraic details are quite complicated
and require a Maple calculation. The details are not repeated here, but a summary of
the results is given. A copy of the Maple program which produces these results with
further explanation can be obtained by contacting the first author.

The two equations, whose common solution satisfies (1.2) for n = 3 are given by

120 a2 f
′ f + 5 a0 f ′′′ f ′′ + 60 f ′′ f ′ a1 − a0 f (5) f = 0(7.5)

and

0 = 504 a3 f
′ f2 + 1080 f ′ a2 f ′′ f + 36 f (iv) f ′ a1 f + 15 f ′ a0 f ′′′

2
+ 180 f ′ f ′′2 a1

+ 180 f ′′′ f ′2 a1 − 3 a0 f (v) f ′2 + 360 f ′3 a2 + 15 f ′ a0 f (iv) f ′′ − 60 f ′′ a1 f ′′′ f
− 12 a0 f (iv) f ′′′ f + 240 f ′′′ a2 f2 ++a0 f

(v) f ′′ f.

(7.6)

To determine the equation or equations for these common solutions, we effectively
eliminate the arbitrary constants a0, a1, a2, and a3. These constants are the ones that
appear in the expansion (7.1) used to derive (7.5) and (7.6).

Before we consider the common solution to these equations, we investigate the
form of these solutions by looking for a common solution of the form (7.1) but with
the constants aj replaced by bj . The result again shows that b0 = a0, b1 = a1, b2 = a2,
and b3 = a3. Initially b4 is not determined, but b5 and b6 are determined in terms of
bj , j ≤ 4. However, we get two different values of b7, and equating these values gives
an equation which has two solutions, namely,

b3 =
60
(
2b21 − b0b2

)
7b20

(7.7a)

or

b4 =
60b22
b0
.(7.7b)

If we choose (7.7b), then in turn we find both equations require a common value for
bj for j ≥ 7, and the series generates, as in the previous method, a solution of (1.7)
or (1.8) and so belongs to the solution set (1.5).

However, if we choose (7.7a) to be satisfied, then the two equations have different
solutions for b8, and equating these values determines b4. This value differs from that
given in (7.5b) and hence generates a solution f (z) = f1 (z), with three arbitrary
constants, which is not a solution of (1.7) or (1.8), unless

b2 =
6b21
5b0

.(7.8)

It is easy to verify that when (7.8) is satisfied, any finite truncation of the series is
equal to the same truncation of the solution

f2 (z) = b1℘

(√
b1
b0
z, 12, 8

)
+ b1.(7.9)
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This is a subset of the general solution of (1.8), which may be expressed as

f2 (z) = 3b1/ sin
2

(√
3b1
b0
z

)
or f2 (z) = −3b1/ sinh2

(√
−3b1
b0
z

)
,

depending on whether 3b1
b0

is greater than, or less than, zero, respectively. Since the
choice of (7.7a) requires a specific choice of b3 and hence a3, it may be thought that
this solution fails to be a solution of the full equation (1.2). This supposition proves,
however, to be erroneous.

We can also determine the equation for the common solution of (7.5) and (7.6)
by effectively eliminating the arbitrary constants a0, a1, a2, and a3. The details are
contained in the Maple program referred to earlier and are not given here. Eliminating
these constants results in an equation which factorizes into a number of terms, similar
to the factorization encountered in [2]. One finds that f must satisfy one of the
equations

f ′ = 0 or f = constant,(7.10)

clearly a solution, but not one of interest, and

f ′′′f − f ′f ′′ = 0 or f ′′/f = constant.(7.11)

We find that this equation satisfies (7.5) and (7.6) only if the constant appearing in
(7.11) is zero. Thus the only even solution again is f = constant. A further factor
may be recognized as (1.8) with solution (1.5b), with d = 0 for an even solution.

The final factor is found to be a fifth order nonlinear, ordinary differential equation
which is cubic in f (v) and contains over one hundred terms. It is easily verified that the
series solution f = f1 (z) defined earlier by taking the choice of (7.7a) for b3 satisfies
this equation. While at first sight it would seem unlikely that we could obtain the
most general even solution which has a double pole at z = 0 of such an equation,
we have shown in section 5 that the Fourier transform of the nonperiodic solution is
simple and easily inverted to give

f (z) = a cosh bz/ sinh2 bz(7.12)

for arbitrary constants a and b. This coincides with the series for f1 (z) upon choos-
ing a = 6b1 and b =

√
6b1/b0. (This further requires the choice b2 = −7ab2/60 ≡

−21b21/5b0.) With this knowledge, one may guess that the periodic solutions are of
the form a cn (bz, k) sn2 (bz, k), a dn (bz, k) / sn2 (bz, k), or a cn (bz, k) dn (bz, k) /
sn2 (bz, k), or the alternate forms given in Theorem 1. These are all periodic equiva-
lents of (7.12), where cn, dn, and sn are the Jacobian elliptic functions and k is the
modulus. It is then possible to verify by substitution that the most general solution
of the fifth order equation of the form required may be expressed as

f1 (z) =

√
b20W

2 (z) + 2b0b1W (z)− b21 +
5

3
b0b2,(7.13)

where

W (z) = ℘

(
z,−20

(
b0b2 − 3b21

)
3b20

,
8b1
(
5b0b2 − 3b21

)
3b30

)
.(7.14)
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The quadratic in (7.13) has a double root when 6b21 = 5b0b2, which corresponds to
the condition (7.8), which gives the function f2 (z) , defined by (7.9). Thus f2 (z) is
the two-parameter family of common solutions to (1.8) and the fifth order equation
coming from elimination, which includes the solution b0z

−2 in the limit b1 → 0.
If the equation for the ℘ function is written as

℘′
2

= 4℘3 − g2℘− g3 ≡ 4 (℘− e1) (℘− e2) (℘− e3)(7.15)

in the usual notation, then the quadratic in (7.13) divides the cubic on the right-
hand side of (7.15). When e1 and e3 are the common roots, (7.13) can be simplified
to give the solution f1 (z) = a cn (bz, k) /sn

2 (bz, k) for suitable choices of a, b, and
k in terms of b0, b1, and b2. When e2 and e3 are the common roots, we recover
the solution f1 (z) = a dn (bz, k) /sn2 (bz, k), while the third choice (e1, e2) gives
f1 = a cn (bz, k) dn (bz, k) /sn

2 (bz, k). These are our new solutions.
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Abstract. We consider the eigenvalues of a Zakharov–Shabat system on the real line with a
complex-valued L1 potential and show that π/2 is the threshold L1 norm of the potential for the
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1. Introduction. Zakharov–Shabat (ZS) systems are non-self-adjoint coupled
differential equations of the form [1, 2, 3, 4]

v′1 = −iξv1 + q(t)v2, v′2 = iξv2 − q(t)∗v1,(1.1)

where ξ is a complex-valued eigenvalue (EV) parameter, q(t) is a locally integrable
function of the real-variable t, −∞ < t < ∞, and the asterisk denotes the complex
conjugate. ZS systems have their origin in inverse scattering theory for the nonlinear
Schrödinger equation, which in normalized form is [1]

iuz + (1/2)utt + |u|2u = 0, u = u(z, t).(1.2)

In (1.2) we can think of u(z, t) as the slowly varying field of a light pulse propagating in
an optical fiber under the influence of chromatic dispersion and material nonlinearity
[5]; t is normalized local pulse time and z is normalized length along the fiber. The
connection between (1.1) and (1.2) is that (1.2) can be formally solved by setting
q(t) = u(0, t) and finding u(z, t) by the inverse scattering procedure associated with
(1.1) [6, 1, 2]. A further connection is that the EVs of (1.1) correspond to optical
solitons of (1.2), that is, particular solutions of (1.2) whose amplitudes are either
constant or periodic in z [6, 2]. Both fundamental (constant amplitude) and higher
order (periodic) solitons have a functional form involving hyperbolic secants. The EVs
are defined as those complex numbers ξ, Im(ξ) > 0, for which (1.1) has a solution

v(t) = ( v1(t)
v2(t)

) of integrable square on the real line; that is,∫ ∞
−∞

(|v1(t)|2 + |v2(t)|2) dt <∞.(1.3)

The initial shape u(0, t) = q(t) does not have to be a hyperbolic secant in order
for (1.2) to support solitons, at least in the asymptotic sense. If the initial pulse has
enough energy, as measured by the integral

E =

∫ ∞
−∞
|q(t)| dt,(1.4)
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then solitons will evolve, as components of u(z, t), with increasing z [2]. Specifically,
if E is sufficiently large for (1.1) to have EVs, then those EVs completely determine
the asymptotic behavior of u(z, t) as z →∞ [1, 2].

For conventional real, symmetric, and monomodal pulse shapes q(t) in (1.1), such
as Gaussians, hyperbolic secants, and rectangles, the EVs are purely imaginary. This
is significant because EVs with the same real part can combine to form a higher
order, periodic soliton [2]. The property of having purely imaginary EVs has actually
been claimed for many years as a general property of real symmetric potentials but
is false [3, 4]. The present authors [4] have established that “single lobe” potentials
q(t), functions which increase until t reaches a central concentration point and then
decrease, do have purely imaginary EVs only. Single lobe potentials will also be
important in this paper.

Specifically, in computable cases ([7, 8]; see [3, 4] for additional references) EVs
appear when E in (1.4) exceeds certain threshold levels. For example, if q(t) is a
positive constant on a compact interval and 0 elsewhere (rectangular pulse), then
successive EVs appear as E crosses the levels E = (2n − 1)π/2 (n = 1, 2, 3, . . . ) [7].
Similarly, π/2 is the threshold for potentials which are constant multiples of sech(t)
[8]. In general, the best known bound on q(t) which rules out EVs is E < 1.32 [2]
(E < 0.904 in [1]). There seem to be no general lower bounds on E in the literature
which guarantee the existence of EVs.

Let us state our principal results. Unless stated specifically otherwise, we will
assume throughout that

q is real-valued and q ∈ L1(−∞,∞);(1.5)

that is, E <∞ in (1.4). We are going to improve the 1.32 bound to π/2 and show that
π/2 is best possible in a wider sense than is provided by the computable examples
cited above. In section 3 we prove that if E ≤ π/2, then there are no purely imaginary
EVs of (1.1). Later, in section 4 we strengthen this to claim that there are no EVs at
all for complex potentials satisfying E ≤ π/2. Define

I =

∫ ∞
−∞

q(t) dt.(1.6)

In section 3 we show for real potentials q(t) that there are at least N purely imaginary
EVs, where N is the largest nonnegative integer such that (2N − 1)π/2 < |I|. For
N = 1 this reduces, of course, to |I| > π/2, rendering π/2 as the EV formation
threshold for essentially all physically interesting potentials. For single lobe potentials
we will prove that there are exactly N EVs if N is defined as above. For single sign
potentials (section 4) we show that the largest magnitude of an EV on the imaginary
axis strictly dominates the imaginary part of any other EV in the complex plane. In
particular, if there are no imaginary EVs, then there are no EVs at all. Moreover, if
|q| (for q(t) complex-valued) has no EVs on the imaginary axis, then q has no EVs at
all.

In section 2 we establish most of our results on imaginary EVs in the case where
q has compact support, because this situation is concrete and sufficiently interesting,
physically speaking, to stand on its own. (All real optical pulses have compact sup-
port.) Since potentials of noncompact support, such as hyperbolic secants, are also
important, we consider noncompact support in section 3; this will be independent of
section 2. We treat single sign and complex-valued potentials in section 4. In section 5
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we summarize the paper and discuss some applications giving practical criteria under
which initial pulses induce solitons.

We want to clarify that E in (1.4) is not technically the energy contained in the
initial pulse q(t) = u(0, t); the energy is given instead by the integral of |q|2. However,
(1.4) can be still regarded as an indicator. We note, moreover, that theoretical solitons
require conservation of energy and therefore do not actually exist in real fibers. Soliton
based fiber communication systems use the soliton effect, whereby a launched pulse
that is nearly a perfect soliton gradually degrades due to fiber attenuation which can
be as low as 5% per kilometer [5].

2. Compact support case. In this section we suppose in addition to (1.5) that
q(t) = 0 outside an interval [−d, d], d > 0. In the scattering theory of (1.1) one defines

the Jost solutions ψ(t, ξ) and ϕ(t, ξ) by the asymptotic properties [1]

ψ(t, ξ) ∼=
(

0

1

)
eiξt, t→∞, ϕ(t, ξ) ∼=

(
1

0

)
e−iξt, t→ −∞,

which guarantee exponentially small solutions, unique up to constant multiples, at
±∞ for Im(ξ) > 0. Eigenfunctions of (1.1) are multiples of both Jost solutions.
Outside [−d, d], where q(t) = 0, (1.1) can be solved in closed form and the EV
condition (1.3) gives

v1(−d) = 1, v2(−d) = 0, v1(d) = 0,(2.1)

where the first of these is actually a normalization and the last is a condition for the
existence of an EV. That is, the first two of (2.1) hold for all ξ and the last holds
when ξ is an EV.

Since the objects of our investigation are the purely imaginary EVs of (1.1), we
set

ξ = is, s ≥ 0.

We employ a Prüfer transformation in (1.1),(
v1

v2

)
=

(
ρ cos θ

ρ sin θ

)
,(2.2)

so that ρ = ρ(t; s) and θ = θ(t; s) satisfy

θ′ = −q(t)− s sin(2θ)(2.3)

and

ρ′ = s ρ cos(2θ),(2.4)

along with the initial conditions θ(−d; s) = 0, ρ(−d; s) = 1 (by (2.1)). The primes in
(2.3) and (2.4) denote differentiation with respect to t. The relevant equation for us
will be (2.3) because θ(t; s) contains all the important information about the location
of EVs on the imaginary axis. Note that ξ = is is an EV if and only if

θ(d; s) =
(2k − 1)π

2

for some integer k.
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Lemma 2.1. We have θ(d; s)→ 0 as s→∞.
Proof. We write (2.3) in the form

θ′ + 2sθ = −q(t)− s[sin(2θ)− 2θ]

and convert it to an integral equation

θ(t; s) = −e−2st

∫ t

−d
e2sτq(τ) dτ − se−2st

∫ t

−d
e2sτ [sin(2θ(τ ; s))− 2θ(τ ; s)] dτ,(2.5)

where the initial condition θ(−d; s) = 0 has been taken into account. Let

η(s) = sup
−d≤t≤d

(
e−2st

∫ t

−d
e2sτ |q(τ)| dτ

)
and note that η(s) → 0 as s → ∞. Let ε > 0 and suppose without loss of generality
that ε < 1/2. Choose s0 so large that

η(s) < 2ε/3, s > s0.(2.6)

We will show that this implies sup−d≤t≤d |θ(t; s)| < ε. Fix s > s0 and let

m(t; s) = sup
−d≤τ≤t

|θ(τ ; s)|.

Using the inequality | sin(z)− z| ≤ |z|3/6, for real z, the estimate

s

∫ t

−d
e−2s(t−τ) dτ ≤ 1/2

in (2.5) implies

m(t; s) <
2ε

3
+

2

3
m(t; s)3.(2.7)

The function f(x) = x − (2/3)x3 − (2ε/3) has two positive roots r1 and r2, 0 <
r1 < (1/

√
2) < r2; note that f(x) has a positive maximum at x = 1/

√
2 because

ε < (1/2) < 1/
√

2. Inequality (2.7) says that f(m(t; s)) < 0. Since m(−d; s) = 0
and m(t; s) is continuous in t, it follows that m(t; s) ≤ r1, and so m(t; s) ≤ 1/

√
2.

Substituting m(t; s) ≤ 1/
√

2 into the right side of (2.7) yields

m(t; s) <
2ε

3
+

1

3
m(t; s), −d ≤ t ≤ d,

which is to say m(t; s) < ε. Then |θ(t; s)| < ε and the proof is complete.
Theorem 2.2. Let N be the largest nonnegative integer such that (2N −1)π/2 <

|I|, where I is given by (1.6) (integrated over [−d, d]). Then (1.1) has at least N
purely imaginary EVs. In particular, if |I| > π/2, then there is at least one purely
imaginary EV.

Proof. For s = 0 (2.3) implies that I = −θ(d; 0), and so |θ(d; 0)| > (2N − 1)π/2.
By continuity of θ(d; s) and Lemma 2.1, there must be N values 0 < s1 < s2 < · · · <
sN such that |θ(d; sk)| = (2(N − k) + 1)π/2, meaning that each ξk = isk is an EV.

Define

q+(t) = max[q(t), 0], q−(t) = max[−q(t), 0]
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so that q = q+ − q−.
We will need the following result.
Comparison theorem (see [9, p. 122]). Let the function f(t, y) satisfy a local

Lipschitz condition in y and define the operator P by P (g) = g′ − f(t, g). Let g1

and g2 be absolutely continuous functions on [t1, t2] such that g1(t1) ≤ g2(t1) and
P (g1) ≤ P (g2) almost everywhere on [t1, t2]. Then either g1(t) < g2(t) everywhere
in [t1, t2] or there exists a point c, t1 ≤ c ≤ t2, such that g1(t) = g2(t) in [t1, c] and
g1(t) < g2(t) in (c, t2].

Theorem 2.3. Suppose that∫ d

−d
q+(τ) dτ ≤ π/2 and

∫ d

−d
q−(τ) dτ ≤ π/2.(2.8)

Then there are no imaginary EVs. In particular, this is true if
∫ d

−d |q(τ)| dτ ≤ π/2.
Proof. We will show that |θ(d; s)| < π/2 for s > 0. Note that when s = 0, (2.3)

and (2.8) imply that |θ(t, 0)| ≤ π/2, −d ≤ t ≤ d. Let w±(t; s) be the solutions of

w′± = ±q∓(t)− s sin[2w±], w±(−d; s) = 0.(2.9)

For application of the comparison theorem cited above let f(t, g) = −q(t)−s sin[2g(t)].
Then P (g) = g′ + q(t) + s sin[2g(t)] and so P (θ) = 0. Furthermore,

P (w−) = w′− + q(t) + s sin[2w−]

= w′− + q+(t)− q−(t) + s sin[2w−]

= w′− + q+(t) + s sin[2w−]− q−(t)

= 0− q−(t) ≤ 0,

and we conclude that w−(t; s) ≤ θ(t; s) for −d ≤ t ≤ d, s > 0. Analogously, one shows
θ(t; s) ≤ w+(t; s). Since the initial value problem z′ = −s sin(2z), z(−d) = 0, has the
unique solution z = 0, then we have w−(t; s) ≤ 0 ≤ w+(t; s), also by the comparison
theorem. By (2.9) and the second condition in (2.8),

w+(t; s) ≤
∫ t

−d
q−(τ) dτ, −d ≤ t ≤ d.(2.10)

Unless q−(t) ≡ 0, then strict inequality holds in (2.10); that is,

w+(d; s) <

∫ d

−d
q−(τ) dτ.(2.11)

For otherwise if equality held, then it would follow that

w+(t; s) =

∫ t

−d
q−(τ) dτ, −d ≤ t ≤ d,

by the comparison theorem, and thus w′+(t; s) = q−(t). Therefore sin[2w+(t; s)] ≡ 0,
w+(t; s) ≡ 0, and q−(t) ≡ 0, a contradiction. So (2.11) and (2.8) together imply
θ(d; s) ≤ w+(t; s) < π/2 for s > 0. If q−(t) ≡ 0, then w+(t; s) ≡ 0 and θ(d; s) < π/2
is obviously true. Similarly, using w−(t; s) we deduce that θ(d; s) > −π/2, s > 0, and
so |θ(d; s)| < π/2, s > 0, in all cases. Therefore purely imaginary EVs do not exist.



764 M. KLAUS AND J. K. SHAW

We note that the true number of EVs may be strictly larger than N due to the
fact that θ(d; s) need not be monotone decreasing in general. That is, there can be
multiple crossing events θ(d; s) = (2k − 1)π/2 without monotonicity. As an example,
let q(t) = h for 1 ≤ |t| ≤ 2 and q(t) = 0 otherwise. As h increases, the first EV appears
at ξ = 0 for h = π/4 (so that I = π/2 in (1.6)) and moves up the imaginary axis.
According to Theorem 2.2 there is at least one imaginary EV when π/4 < h < 3π/4.
However, a detailed analysis of this example shows that for h = 2.2 there are three
purely imaginary EVs at approximately ξ = 0.28i, 0.63i, and 1.03i. The reason is that
as h→ hc = 2.178 (approximately) a pair of EVs having opposite nonzero real parts
converge to and collide on the imaginary axis at about ξ = 0.44i. After the collision
the two complex EVs become a pair of purely imaginary EVs so that there are a total
of three imaginary EVs for h slightly larger than hc. The occurrence of EVs colliding
on the imaginary axis means that θ(d; s) need not be monotone in general. In this
example we have with h = 2.2 that θ(2; s1) = θ(2; s2) = −3π/2 at s1 = 0.28 and
s2 = 0.63, approximately.

We now show that for single lobe potentials, as mentioned in the introduction,
Theorem 2.2 can be strengthened to assert that there are exactly N EVs. To be
specific, q(t) is called a single lobe potential if q satisfies (1.5), is bounded, piecewise
smooth, and nondecreasing to the left of t = 0 and nonincreasing to the right of
t = 0. By piecewise smooth we mean that q(t) and q′(t) have left- and right-hand
limits for all t and that in any bounded interval q(t) has at most finitely many jump
discontinuities. Since (1.1) is invariant under shifts in the t variable, there is no loss
of generality in taking t = 0 to be the point of energy concentration. Our results for
single lobe potentials are also true if q(t) < 0 and −q(t) is single lobe.

Theorem 2.4. In addition to the hypotheses of Theorem 2.2 assume that q(t)
is single lobe. Then there are exactly N purely imaginary EVs and no nonimaginary
EVs.

Proof. The statement claiming no nonimaginary EVs is proved in [4]. Putting
ξ = is in (1.1) gives the system

v′1 = sv1 + q(t)v2, v′2 = −sv2 − q(t)v1.(2.12)

We will show that multiple crossing events θ(d; s) = (2k − 1)π/2 are ruled out by
the condition d

dsθ(d; s) > 0, when s is an EV, for single lobe potentials. To this end,
differentiate (2.12) with respect to s, using an overdot to denote the s derivative, to
obtain

v̇′1 = v1 + sv̇1 + q(t)v̇2, v̇′2 = −v2 − sv̇2 − q(t)v̇1.(2.13)

Substitute (2.13) into (v̇1v2 − v1v̇2)′, where the prime denotes differentiation with
respect to t, expand, and simplify to obtain (v̇1v2 − v1v̇2)′ = 2v1v2. The conditions
(2.1) yield v̇1(−d) = v̇2(−d) = 0, and following integration we obtain

(v̇1v2 − v1v̇2)(d) = 2

∫ d

−d
v1(τ)v2(τ) dτ.(2.14)

Noting (2.2) the quotient rule derivative (with respect to s) of (v2/v1) = tan(θ) gives
by (2.14)

θ̇(d; s) =
−2

v2
1(d) + v2

2(d)

∫ d

−d
v1(τ)v2(τ) dτ,(2.15)
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where v1(d) = 0 if s is an EV. In [4] the authors have shown that the integral in
(2.15) is negative for single lobe potentials. For completeness we give the gist of the
argument, which comes from multiplying the first of (2.12) by v1, solving for v1v2,
and integrating over [0, d] to obtain∫ d

0

v1(τ)v2(τ) dτ = −v2
1(0)

2q(0)
+

1

2

∫ d

0

v2
1(τ)q′(τ)

q2(τ)
dτ − s

∫ d

0

v2
1(τ)

q(τ)
dτ.(2.16)

Convergence of the integrals on the right of (2.16) can be justified for a single lobe
q(t). Since q′(t) ≤ 0 for t ≥ 0, the right side of (2.16) is negative. Working with
the other term in (2.12) shows similarly that the corresponding integral over [−d, 0]
is also negative. Therefore θ̇(d; s) > 0 at EV crossings, and the proof of Theorem 2.2
shows that there are exactly N purely imaginary EVs.

3. Noncompact support case. The Prüfer transformation (2.2) can also be
applied if the potential q(t) does not have compact support. The extension of the
Prüfer method to the full line may be of independent interest. In this section we
assume (1.5) only.

Equation (2.3) is still the most significant, but now the solution is required to
satisfy

Lim
t→ −∞

θ(t; s) = 0.(3.1)

The integral equation corresponding to (2.5) now reads

θ(t; s) = −e−2st

∫ t

−∞
e2sτq(τ) dτ − se−2st

∫ t

−∞
e2sτ [sin(2θ(τ ; s))− 2θ(τ ; s)] dτ.(3.2)

Equation (3.2) can be solved by iteration, and it follows by standard arguments that
(3.2) is the unique solution to (2.3) on −∞ < t < ∞ satisfying (3.1). Our goal now
is to describe the behavior of θ(t; s) as t→∞.

Lemma 3.1. For each integer k and for each s ≥ 0 there is a unique solution
ϕk(t; s) of (2.3) such that

Lim
t→∞

ϕk(t; s) =
(2k − 1)π

2
(3.3)

uniformly in s.
Proof. It suffices to prove the lemma for k = 0, in view of the fact that ϕk(t; s) =

ϕ0(t; s)+kπ, which may be verified by substitution in (2.3). To this end define χ0(t; s)
as the unique solution satisfying

χ′0(t; s) = q(−t)− s sin[2χ0(t; s)], χ0(t; s)→ 0 as t→ −∞.

This is the same differential equation as (2.3) but with q(t) replaced by −q(−t). Then

ϕ0(t; s) = χ0(−t; s)− π/2

satisfies the first conclusion of the lemma with k = 0. To prove the uniformity in s
we use the integral equation for χ0(t; s) and mimic the proof of Lemma 2.1. Given
ε > 0 we can find a number Tε such that∣∣∣∣e−2st

∫ t

−∞
e2sτq(−τ) dτ

∣∣∣∣ ≤ ∫ −Tε

−∞
|q(−τ)| dτ ≤ 2ε/3
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for t < −Tε and s ≥ 0. Proceeding as in the proof of Lemma 2.1 we conclude that
|χ0(t; s)| ≤ ε for t < −Tε and s ≥ 0. Hence (3.3) is valid uniformly in s.

Note that ξ = is is an EV if and only if θ(t; s) of (3.1) and (3.2) is a multiple of
one of the functions ϕk(t; s).

Theorem 3.2. Suppose that q(t) satisfies (1.5) and that y(t; s) is any solution of
(2.3) with s > 0. Then the limit

Ly(s) = Lim
t→∞

y(t; s)(3.4)

exists and, moreover, Ly(s) = kπ/2 for some integer k.
Proof. The idea is to exploit the fact that the term s sin[2y(t; s)] dominates the

right side of (2.3) when t is large. Note that if q(t) = 0, then (2.3) has the constant
solutions y(t; s) = kπ/2, with k an integer.

If y(0; s) = ϕk(0; s) for some k, then y(t; s) = ϕk(t; s) by uniqueness of solutions
and the conclusion follows from Lemma 3.1. Thus we can suppose that y(0; s) =
ϕk(0; s) for any k. Suppose first that ϕ0(0; s) < y(0; s) < ϕ1(0; s). We will show that
y(t; s)→ 0, t→∞. By the uniqueness part of Lemma 3.1, y(t; s) cannot converge to
either ±π/2 (by uniqueness of the ϕk). Suppose that y(t; s) does not converge to 0.
Then there is a δ > 0 and a sequence tn →∞ such that for all n either

δ < y(tn; s) < (π/2)− δ or − (π/2) + δ < y(tn; s) < −δ.
Without loss of generality, assume the former. We will derive a contradiction. Pick
N so large that ∫ ∞

tN

|q(τ)| dτ < δ/2(3.5)

and note that on the interval (δ/2) < z < (π − δ)/2 we have

sin(2z) > cδ(3.6)

for some cδ > 0. Using (3.6) in (2.3) we obtain

y′(t; s) ≤ −q(t)− cδs

so long as (δ/2) < y(t; s) < (π − δ)/2. Therefore, if y(t; s) satisfies these bounds for
α ≤ t ≤ β, then

y(t; s) ≤ y(α; s)− cδs(t− α)−
∫ t

α

q(τ) dτ, α ≤ t ≤ β.(3.7)

We first claim that (δ/2) < y(t; s) < (π − δ)/2 for all t ≥ tN . Otherwise, one of the
following situations must occur:

(a) there is an interval [α, β] with α > tN such that y(α; s) = (π/2)−δ < y(t; s) <
(π − δ)/2, for α < t < β, and y(β; s) = (π − δ)/2;

(b) there is an interval [α, β] with α > tN such that y(α; s) = δ/2 < y(t; s) < δ,
for α < t < β, and y(β; s) = δ.
In case (a), (3.7) implies y(t; s) < (π/2)−δ+(δ/2) = (π−δ)/2, for α ≤ t ≤ β, and this
contradicts y(β; s) = (π−δ)/2. In case (b), we conclude that y(t; s) < (δ/2)+(δ/2) =
δ, contradicting y(β; s) = δ. Thus (δ/2) < y(t; s) < (π− δ)/2 for all t ≥ tN . However,
then (3.7) leads to an obvious contradiction since it says that y(t; s) becomes negative
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for large enough t since s > 0. Similarly, one argues that there are no sequences tn
such that −(π/2) + δ < y(tn; s) < −δ. Therefore y(t; s)→ 0.

For solutions y(t; s) satisfying ϕk(0; s) < y(0; s) < ϕk+1(0; s) we use the fact that
ỹ(t; s) = y(t; s) − kπ satisfies ϕ0(0; s) < ỹ(0; s) < ϕ1(0; s) so that ỹ(t; s) → 0 as
t → ∞; i.e., y(t; s) → kπ as t → ∞. This completes the proof of Theorem 3.2. Note
that the ϕk have limits Lϕk

(s) = (2k − 1)π/2 which are odd multiples of π/2, while
all other solutions y(t; s) have limits which are even multiples of π/2.

Theorem 3.3. The conclusions of Theorems 2.2 and 2.3 hold for general q(t)
satisfying (1.5).

Proof. We prove only the extension of Theorem 2.2; the proof of the extension
of Theorem 2.3 is similar. For the extension of Theorem 2.2 it suffices to show that
Lθ(s)→ 0, s→∞, without skipping any odd multiples of π/2. That is, if |Lθ(0)| >
(2N−1)π

2 , we will show that for k = 1, 2, . . . , N there are sk such that |Lθ(sk)| =
(2(N−k)+1)π

2 . Note that θ(t; 0) = − ∫ t

−∞ q(τ) dτ and so Lθ(0) = −I (from (1.6)).
In showing Lθ(s) → 0 we will actually prove that Lθ(s) = 0 for s > s̃, with s̃

sufficiently large. Let

δ = |Lθ(0)| − (2N − 1)π

2
,

where N is defined as in Theorem 2.2. Note that 0 < δ ≤ π by the definition of N .
Pick t̃ so large that |ϕ0(t̃; s)+(π/2)| < (δ/4), |ϕ1(t̃; s)− (π/2)| < (δ/4), for s ≥ 0, and

|θ(t̃; 0)| > (2N−1)π
2 + (δ/4). By a slight extension of Lemma 2.1 to the case d = ∞

we can conclude that there is an s̃ > 0 such that |θ(t̃; s)| < π/4 for s > s̃. Therefore
ϕ0(t̃; s) < θ(t̃; s) < ϕ1(t̃; s) if s > s̃. As in the proof of Theorem 3.2 it follows that
θ(t; s)→ 0, t→∞; that is, Lθ(s) = 0, s > s̃.

Suppose now that Lθ(0) > (2N−1)π
2 ; the case Lθ(0) < − (2N−1)π

2 is handled
similarly. Since θ(t; s) is continuous in s there are at least N crossings sk, where
θ(t̃; sk) = ϕN−k+1(t̃; sk), so that θ(t; sk) = ϕN−k+1(t; sk) for all t. Each sk corre-
sponds to an imaginary EV, which proves the extension of Theorem 2.2.

Theorem 3.4. Suppose q(t) satisfies (1.5) and is an odd function. Then there
are no imaginary EVs.

Proof. Suppose ξ = is is an EV with eigenfunction θ(t; s) such that Lθ(s) =
(2m−1)π

2 for some integer m. By substitution w(t; s) = θ(−t; s) + (2m−1)π
2 is also a

solution of (2.3) since q(t) is odd. Since θ(−t; s)→ 0, t→∞, then Limt→∞w(t; s) =
(2m−1)π

2 = Lθ(s) and therefore w(t; s) ≡ θ(t; s). Since w(0; s) = θ(0; s) + (2m−1)
2 =

θ(0; s), we have a contradiction.
We close the section with an alternate proof of Theorem 3.4. Let ξ = is be an EV

with eigenfunction v(t). By the odd symmetry of q(t) the function η(t) = (−v2(−t)
v1(−t) )

is an eigenfunction. Thus η = Kv for some constant K. Then −v2(0) = Kv1(0) and
v1(0) = Kv2(0), neither of which is possible unless v(t) ≡ 0.

4. More general potentials. In this section we suppose that

q ∈ L1(−∞,∞)(4.1)
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and allow q(t) to be nonreal for some of our results. We begin with the observation
that if ξ (Im(ξ) > 0) is an EV for (1.1), then the eigenfunction v(t) satisfies

v1(t) = −e−iξt
∫ ∞
t

eiξτq(τ)v2(τ) dτ,

(4.2)

v2(t) = −eiξt
∫ t

−∞
e−iξτq(τ)∗v1(τ) dτ.

Equation (4.2) is obtained by converting (1.1) to a system of integral equations using
the fact that v1, v2 ∈ L2(−∞,∞). It is convenient to recast (4.2) as an EV problem for
a compact operator which will play a role analogous to that of the Birman–Schwinger
kernel [10, p. 98] for the Schrödinger equation. To this end we put

q(t) = |q(t)|eiσ(t), −π < σ(t) ≤ π,

and let

U(t) =

(
e−iσ(t) 0

0 eiσ(t)

)
.(4.3)

We also introduce the matrix integral kernel

Aξ(t, τ) =

(
eiξ(τ−t)H(τ − t) 0

0 eiξ(t−τ)H(t− τ)

)
,(4.4)

where H denotes the Heaviside step function, and we put

w = |q|1/2v, J =

(
0 1

1 0

)
.(4.5)

Then (4.2) can be written as

w(t) =

∫ ∞
−∞

Kξ(t, τ)w(τ) dτ,(4.6)

where

Kξ(t, τ) = −|q(t)|1/2Aξ(t, τ)J |q(τ)|1/2U(τ).(4.7)

We denote by Kξ the integral operator induced by the kernel Kξ(t, τ). Note that
every EV ξ of (1.1) with corresponding eigenfunction v gives rise to an eigenfunction
w for the EV 1 of Kξ. Conversely, if w(t) is a square integrable solution of (4.6), then

v(t) =

∫ ∞
−∞

Aξ(t, τ)J |q(τ)|1/2U(τ)w(τ) dτ

is an eigenfunction of (1.1) for the EV ξ. This connection is known as the Birman–
Schwinger principle.

Lemma 4.1. Suppose q satisfies (4.1) and let Im(ξ) ≥ 0. Then Kξ is Hilbert–
Schmidt. If q is real and of one sign, then Kξ is unitarily equivalent to −Kξ, and if
ξ = is (s > 0), then Kis is self-adjoint. Moreover, ‖Kis‖ → 0, s→∞.
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Proof. The Hilbert–Schmidt norm of Kξ is given by

‖Kξ‖2H.S. =

∫∫

2

Tr[K+
ξ (t, τ)Kξ(t, τ)] dt dτ,

where the superscript “+” denotes the matrix adjoint and “Tr” the matrix trace.
From (4.4) and (4.7) we obtain (putting Im(ξ) = s)

‖Kξ‖2H.S. =

∫ ∞
−∞

(∫ t

−∞
|q(τ)|e2sτ dτ

)
|q(t)|e−2st dt ≤

(∫ ∞
−∞
|q(t)| dt

)2

<∞(4.8)

by (4.1), proving the first part of the lemma. If q is real and of one sign, then
σ(t) = 0 (σ(t) = π) if q(t) ≥ 0 (q(t) ≤ 0), and hence by (4.3) U(t) = ±I, where I

is the identity matrix. Let S = (1 0
0 −1). Then SKξS

−1 = −Kξ, proving that Kξ

is unitarily equivalent to −Kξ. Using U(t) = ±I, ξ = is in (4.7) and the fact that
A∗is = JAisJ , we conclude that K∗is = Kis. The last statement follows from (4.8) and
the Lebesgue dominated convergence theorem.

From (4.8) it follows that ‖Kξ‖H.S. < ‖q‖L1 if Im(ξ) = s > 0. Hence there can be
no EVs if ‖q‖L1 ≤ 1. However, ‖q‖L1 ≤ 1 is not as strong as the bound ‖q‖L1 ≤ 1.32
mentioned in the introduction, and the latter is not best possible. The optimal L1

bound on q that guarantees the absence of EVs is obtained in the next theorem.
Theorem 4.2. Suppose that q is complex-valued and satisfies (4.1). If∫ ∞

−∞
|q| ≤ π/2,(4.9)

then (1.1) has no EVs.
Proof. Put ξ = µ + is, s > 0, and

Wµ(t) =

(
e−iµt 0

0 eiµt

)
.

Then we can write Kξ(t, τ) given in (4.7) as

Kξ(t, τ) = Wµ(t)Kis(t, τ)Wµ(τ).

Here we have used Aξ(t, τ) = Wµ(t)Ais(t, τ)W ∗µ(τ) and W ∗µ(τ)J = JWµ(τ). The
unitarity of Wµ and U implies that

‖Kξ‖ = ‖Kis‖ = ‖K̃is‖,(4.10)

where K̃is is the self-adjoint operator with kernel

K̃is(t, τ) = −|q(t)|1/2Ais(t, τ)J |q(τ)|1/2.
We are going to use the Birman–Schwinger principle for the potential |q|. Now (4.9)
together with Theorem 3.3 imply that (1.1) with |q| in place of q has no EV on the
imaginary axis. Hence ‖K̃is‖ < 1, s > 0, for if not, then by Lemma 4.1 there would
exist a point s0 > 0 such that ‖K̃is0‖ = 1. This would imply that K̃is0 has EV 1,
which by the Birman–Schwinger principle implies further that ξ = is0 is an EV of
(1.1) for the potential |q|, a contradiction. Then ‖Kξ‖ < 1 by (4.10) and Kξ does not
have an EV 1 for any ξ. The conclusion of the theorem follows.
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By Theorem 2.2 the bound π/2 is optimal as claimed.
Note that the ZS system (1.1) for |q| satisfies (4.9) if it has no imaginary EVs, by

Theorems 2.3 and 3.3. This proves the following corollary.
Corollary 4.3. Suppose that q is complex-valued and satisfies (4.1) and that

(1.1) with |q| in place of q has no imaginary EVs. Then (1.1) for q has no EVs.
Corollary 4.3 implies that if q is of one sign with a complex EV ξ1 = µ1 + is1

such that µ1 = 0 and s1 > 0, then there must exist a purely imaginary EV ξ0 = is0.
The next theorem says that there is such an EV with s0 > s1. That is, there is a
purely imaginary EV which dominates the magnitudes of the imaginary parts of all
other EVs.

Theorem 4.4. Suppose that q satisfies (4.1) and either q(t) ≥ 0 or q(t) ≤ 0. If
(1.1) has EVs, then there is a purely imaginary EV whose imaginary part is strictly
larger than the imaginary part of any other EV.

Proof. Suppose that ξ1 = µ1 + is1, with µ1 = 0 and s1 > 0, is an EV. Let u = (u1

u2
)

be the normalized eigenfunction for the EV 1 of Kξ1 . Let uabs be the vector whose
components are |u1| and |u2|, respectively. Define

G12(t, τ) = −u∗1|q(t)|1/2eiξ1(τ−t)H(τ − t)|q(τ)|1/2e−iσ(τ)u2(τ),
(4.11)

G21(t, τ) = −u∗2|q(t)|1/2eiξ1(t−τ)H(t− τ)|q(τ)|1/2eiσ(τ)u1(τ)

so that

1 = (u,Kξ1u) =

∫∫

2

G12(t, τ) dt dτ +

∫∫

2

G21(t, τ) dt dτ

and

|(uabs, K̃is1uabs)| =
∫∫


2

|G12(t, τ)| dt dτ +

∫∫

2

|G21(t, τ)| dt dτ.

We obviously have (u,Kξ1u) ≤ (uabs, K̃is1uabs) and equality holds if and only if∫∫

2

Grs(t, τ) dτ dt =

∫∫

2

|Grs(t, τ)| dτ dt(4.12)

for (r, s) = (1, 2) or (2, 1). Now (4.12) holds if and only if Grs(t, τ) = eiβrs |Grs(t, τ)|
for some real number βrs [11, p. 174]. Putting uk(t) = eiϕk(t)|uk(t)| (k = 1, 2) we see
from (4.11) that (4.12) can hold only if

e−i(ϕ1(t)+µ1t)ei(ϕ2(τ)+µ1τ−σ(τ)+π) = eiβ12 , t < τ,

e−i(ϕ2(t)−µ1t)ei(ϕ1(τ)−µ1τ+σ(τ)+π) = eiβ21 , t > τ.

It follows by a separation of variables argument that each of the exponentials on the
left side must be constant. However, this is possible only if µ1 = 0, which contradicts
our assumption. We conclude that in (4.12) equality cannot hold; that is, we have

1 = (u,Kξ1u) < (uabs, K̃is1uabs)

and therefore ‖K̃is1‖ > 1. By Lemma 4.1 there exists s0 > s1 such that ‖K̃is0‖ = 1.
In view of (4.10) ‖Kis0‖ = 1 and thus Kis0 has EV 1. Then ξ0 = is0 is an EV of (1.1)
whose imaginary part is strictly larger than s1. It follows that the purely imaginary
EV of largest modulus has an imaginary part that is strictly larger than that of any
other EV.
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5. Summary and discussion. We have established π/2 as the threshold L1

norm of the potential (complex-valued) for the formation of EVs in a ZS system.
Bounds for the number of imaginary EVs were obtained and shown to be best possible
for the class of single lobe potentials. For real, single signed potentials, an imaginary
EV of largest magnitude dominates the magnitudes of the imaginary parts of all other
EVs, imaginary or not. ZS systems with odd L1 potentials are free of imaginary EVs.

Theorem 3.3 provides a way to extend criteria for soliton formation found in the
current literature. In (1.2) let q(t) = u(0, t) = N sech(t). Since

∫∞
−∞ sech(t) dt = π,

then by Theorem 3.3 the condition for a fundamental soliton is 1
2 < N < 3

2 , which
agrees exactly with [5]. This extends to an order K soliton, K a positive integer,
when K − 1

2 < N < K + 1
2 .

The discussion in [5] takes place in the context of normalized, dimensionless units.
In physical units the nonlinear Schrödinger equation is

iAz =
β2

2
ATT − γ|A|2A, A(0, T ) = f(T ),(5.1)

with f(T ) specified, where A = A(z, T ) is the “slowly varying” field, z is physical
length, T is local pulse physical time, β2 < 0 is the fiber dispersion constant, and γ
is the material nonlinearity constant [5]. Here f(T ) is assumed real-valued. Solitons
occur only in the anomalous dispersion case β2 < 0 [5]. The units of |A|2 are expressed
in terms of power, typically in milliwatts (mW); since the units of A(z, T ) appear
in each term, they always cancel and thus A(z, T ) need not be assigned units. To
express (5.1) in dimensionless form, choose a reference power level P0 and define
U(z, T ) = A(z, T )/

√
P0; here P0 might be P0 = A(0, 0)2 = f(0)2 (the “peak” power)

or some arbitrary base level such as 1 mW. Next select some reference pulse width T0,
which could be the root mean square width of f(T ), the bit period, the full width half-
maximum [5], or something else. The corresponding dispersion and nonlinear lengths
LD and LNL are defined by LD = T 2

0 /|β2| and LNL = 1/(γP0). It is convenient to
define dimensionless length and time by ζ = z/LD and t = T/T0 [5]. Introducing
the constant N =

√
LD/LNL and making the appropriate substitutions in (5.1) we

obtain the dimensionless nonlinear Schrödinger equation

iUζ +
1

2
Utt + N2|U |2U = 0, U(0, 0) = f(0)/

√
P0.(5.2)

The N can be removed from (5.2) by making the substitution u(ζ, t) = NU(ζ, t),
u(0, t) = q(t), bringing (5.2) to the form (1.2). The connection between the physical
and dimensionless versions of (1.6) is

I =

∫ ∞
−∞

q(t) dt =
N

T0

√
P0

∫ ∞
−∞

f(T ) dT,(5.3)

in which the reference parameters P0 and T0 cancel, since N2 = T 2
0 γP0/|β2|, leaving

I =

∫ ∞
−∞

q(t) dt =

√
γ

|β1|
∫ ∞
−∞

f(T ) dT.(5.4)

For single lobe potentials the exact soliton formation criterion is thus
√

γ/|β2|∫∞
−∞ f(T ) dT > π/2 by (5.4). Using Theorem 3.3 this extends to higher order solitons

using the thresholds (2n − 1)π/2. If f(T ) is complex-valued, Corollary 4.3 applies.
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Note that (5.4) depends on the physical constants of the fiber and the pulse shape,
and not on the particular choices of P0 and T0 used in the normalization.

The criterion 1
2 < N < 3

2 [5] mentioned above for the hyperbolic secant pulse
is only approximate for other shapes. If f(T ) is given, f(0) =

√
P0, and T0 is the

intensity half width at 1/e [5], then we can derive specific criteria using (5.3) and
(5.4), and detailed knowledge of

∫∞
−∞ f(T ) dT . As examples, for Gaussian pulses

f(T ) =
√
P0 exp{− t2

2T 2
0
} in (5.2) [5] a fundamental soliton will evolve if N >

√
π/8 ∼=

0.6267, while for a rectangular pulse of height f(0) =
√
P0 and total width 2T0 the

corresponding condition is N > π/4 ∼= 0.7854. Analogous threshold levels can be
obtained for higher order solitons.

We need to mention some related literature. Kivshar [12] established the π/2
threshold result for the special case where all EVs corresponding to the potential
αq(t) appear on the imaginary axis at ξ = 0 as the real parameter α is varied. This
approach reduces to analytically solving (1.1) for ξ = 0. In general, however, EVs can
hop onto the imaginary axis from the upper half plane, without passing through ξ = 0
[3]. Kivshar’s paper was intended to extend results of Burzlaff [13] which established
the bounds in our Theorem 3.3 for the positive “box” and two-sided exponential
potentials. Kaup and Scacca [14] also studied potentials made from combining boxes,
both positive and negative, a special case of which is the odd potential. They found for
odd potentials that EVs are very near the imaginary axis but with definitely nonzero
real parts, in contrast to earlier numerical studies which could not confirm that the
EVs were not actually on the imaginary axis; see the references in [14]. Theorem 3.4
rules out imaginary EVs for general odd q(t).

Desaix et al. [15] have provided a variational method for approximating ZS EVs.
Problems analogous to those discussed in this paper have also been addressed in [16]
in connection with the modified KdV equation.

Acknowledgment. We would like to thank a referee for pointing out a paper
of Beals and Coifman [17] which treats a more general system than (1.1) and obtains
an upper bound on E in (1.4) that rules out EVs. For the particular case of (1.1) the
bound in [17] reduces to E < 1/

√
2.
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THE EXISTENCE AND LARGE TIME BEHAVIOR OF SOLUTIONS
TO A SYSTEM RELATED TO A PHASE TRANSITION PROBLEM∗
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Abstract. We discuss the existence and the asymptotic behavior of weak solutions to a
hyperbolic-elliptic mixed type system related to a phase transition problem. As in the hyperbolic
case, the weak solutions are not unique. To select the admissible solution, we need to impose admis-
sibility criteria. One of the criteria we use is the entropy rate admissibility criterion. The question
is how it can be applied. We examine two alternatives, and the result is used to study the existence
and large time behavior of solutions to the perturbed Riemann problem.

Key words. phase transition, entropy rate admissibility criterion, entropy condition, hyperbolic-
elliptic mixed type, Glimm scheme
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1. Introduction. In this paper, we consider the existence and large time behav-
ior of weak solutions to a hyperbolic-elliptic mixed system related to a phase transition
problem. The system is given by

vt − ux = 0,
ut − f(v)x = 0,

(1.1)

where v, u, and f are strain, velocity, and stress, respectively. We assume that f
is a smooth nonmonotone function of v, as depicted in Figure 1.1. The horizontal
line for which the areas A and B are equal is called the Maxwell stress, and the
strains in the α- and β-phases corresponding to the Maxwell stress are denoted by
vα and vβ , respectively. It is important to note that, if f ′ is nonnegative, the system
is hyperbolic, and f ′ is negative, then the system is elliptic. In our case, there are
two intervals (0,α] and [β,∞), where the system is hyperbolic. They are called the
α-phase and β-phase, respectively. In thermodynamics, the states (0,vα] and [vβ ,∞)
are said to be stable, (vα, α] and [β, vβ) are said to be metastable, and (α, β) is called
the spinodal region and is physically unobservable. This is one of the simplest systems
capable of explaining a phase transition problem.

One goal is to examine the entropy rate admissibility criterion. As in the hy-
perbolic systems of conservation laws, the weak solutions for the above mixed type
problem are not unique. Therefore, to select a physically relevant solution, the ad-
missibility criteria should be imposed. In section 2, we discuss the main admissibility
criteria we use in this paper. They are the entropy condition and the entropy rate ad-
missibility criterion. The entropy rate admissibility criterion, proposed by Dafermos
[8], [9] for the hyperbolic systems of conservation laws, roughly says that the rate of
(mathematical) entropy production is the smallest for the admissible solution. This
criterion is also used in crack dynamics [38], and the effort should be made to extend
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it to the conservation laws of mixed type. We apply it to the Riemann problem in-
volving the phase boundary. In this case, there are at least two different ways to apply
the criterion. Should it be applied to all waves combined or to the phase boundary
only? To see the relation, in section 3, we apply the criterion to all of the waves in the
Riemann problem to obtain the existence of global weak solutions, and, in section 4,
we analyze its consequence to the Riemann problem. We show that, if we apply the
criterion in the above fashion to the Riemann problem and take the hyperbolic limit,
we obtain the solution to the Riemann problem, where the criterion is applied to the
phase boundary only.

Another goal is to discuss the existence and large time behavior of solutions to
(1.1) in the space of bounded variations. The initial data are given by

U(x, 0) = (v, u)(x, 0) = (v, u)oo(x)(1.2)

≡


UL = (vL, uL), x ≤ −M,
Ul(x) = (vl(x), ul(x)), −M < x < 0,
Ur(x) = (vr(x), ur(x)), 0 < x < M,
UR = (vR, uR), M < x,

where (vL, uL) and (vR, uR) are constant states and M is a positive constant. This
problem is called the perturbed Riemann problem, and the corresponding Riemann
problem is given by

(v, u)(x, 0) =

{
UL = (vL, uL), x < 0,
UR = (vR, uR), 0 < x.

(1.3)

In what follows, the vector notation U (or V ) and the component notation (v, u) are
used interchangeably, and the Riemann problem with initial data 1.3 is denoted by
(UL, UR). We assume the following conditions for the initial data:

1. Ul(x) and Ur(x) are close to UL and UR, respectively, in the total variation
norm.
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2. vl(x) and vL are in the α-phase and close to vα, vr(x) and vR are in the
β-phase and close to vβ , and uoo(x) is small in total variation.

Therefore, we assume that

η = TVx<0|Ul(x)− UL|+ TVx>0|Ur(x)− UR|
+|vL − vα|+ |vR − vβ |+ |uL − uc|+ |uR − uc|(1.4)

is small, where uc is a constant. In particular, we assume that η < 1. The above
initial data will ensure that the speed of the phase boundary is subsonic; namely,
its speed is smaller than those of characteristics. We use the Glimm scheme with
the admissibility criteria discussed above. A crucial step in the Glimm scheme is to
estimate the strengths of outgoing waves for the wave interactions involving the phase
boundary. We need to select the outgoing waves so that both the entropy condition
and the entropy rate admissibility criterion are satisfied. Concerning the asymptotic
behavior, we show that, among other things, the solution approaches the solution of
the corresponding Riemann problem modulo shift. The details will be discussed in
sections 3 and 5.

It is now a common practice to use the nonmonotone constitutive relation to
formulate the conservation laws with phase change. In the inviscid approach, the Rie-
mann problem of system (1.1) was discussed in various literature. James [23] initiated
the Riemann problem for this type of problem. Different admissibility criteria were
used to select a physically relevant solution. Abeyaratne and Knowles [1], [2] dis-
cussed it using the kinetic relation and the initiation criterion. Hattori [17], [18] used
the entropy rate admissibility criterion proposed by Dafermos [8], [9] for hyperbolic
systems. Shearer [33] considered the problem, assuming that all of the stationary
phase boundaries are admissible. Keyfitz [24] discussed the Riemann problem from
the point of view of the “hysteresis” approach. Mercier and Piccoli [29] classified the
initial data using the kinetic relation. As far as the Cauchy problem is concerned,
Le Floch [26] has shown the existence of global solutions for a trilinear system in
the space of bounded variations. Asakura [4] considered the nonlinear case. Pego and
Serre [31] considered the instability of the Glimm scheme. Colombo and Corli [6] stud-
ied the continuous dependence of solutions. Corli and Sablé-Tougeron [7] discussed
the sonic phase boundary problem. Another approach is to add the higher spatial
derivatives of v and u to smooth out the shock discontinuities and phase boundaries.
Slemrod [35], [36] discussed the effects of viscosity and capillarity and proposed the
viscosity-capillarity criterion. Shearer [34] considered the issue of nonuniqueness for
the Riemann problem using this criterion. Slemrod [37] also discussed the limiting
viscosity approach. Fan extended this approach and obtained a series of results [11],
[12], [13]. The results of Fan and Slemrod are summarized in [14]. Hattori and Mis-
chaikow [20] considered the soft loading problem with viscosity and capillarity. Hsiao
[22], Hoff and Khodja [21], and Pego [30] considered the role of the viscosity.

This paper consists of five sections. In section 2, we describe the admissibility
criteria that we use in this paper. They are the entropy condition, the entropy rate
admissibility criterion, and the initiation criterion. We then study the Riemann prob-
lem with single phase boundary using these criteria. In section 3, we discuss the wave
interactions in a diamond and construct the interaction potential. Then we show the
existence of weak solutions in the space of bounded variations. In section 4, we re-
visit the Riemann problem and show that asymptotic states occur immediately in the
Riemann problem. We study the large time behavior of weak solutions in section 5.
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2. The Riemann problem. In this section, we first describe the waves appear-
ing in the Riemann problem and the admissibility criteria, and then we study the
Riemann problem for (1.1) with single phase boundary.

2.1. Waves in the Riemann problem.
1. Elementary waves. We call the rarefaction wave and the shock wave the

elementary waves. The 1-rarefaction curve Rr
1(Uo) and the 1-shock curve Sr

1(Uo)
through Uo are the set of U connected to Uo on the right by the respective waves.
They satisfy the following relations:

rarefaction curve: u = uo +
∫ v
vo
λ(w)dw,

{
v ≤ vo if f is convex,
v ≥ vo if f is concave,

shock curve: u = uo − σb(vo, v)(v − vo),
{
v ≥ vo if f is convex,
v ≤ vo if f is concave,

where λ(w) =
√
f ′(w) and σb(vo, v) = −

√
f(v)−f(vo)

v−vo . The combined wave curve is

denoted by T r
1 (Uo). The 2-rarefaction, 2-shock, and combined curves Rr

2(Uo), S
r
2(Uo),

and T r
2 (Uo) are defined in a similar manner:

rarefaction curve: u = uo −
∫ v
vo
λ(w)dw,

{
v ≥ vo if f is convex,
v ≤ vo if f is concave,

shock curve: u = uo − σf (vo, v)(v − vo),
{
v ≤ vo if f is convex,
v ≥ vo if f is concave,

where σf (vo, v) =
√

f(v)−f(vo)
v−vo . We define Rl

1(Uo), S
l
1(Uo), T

l
1(Uo), R

l
2(Uo), S

l
2(Uo),

and T l
2(Uo) as the sets of U connected to Uo on the left by the corresponding waves.

If the above inequalities are reversed, we obtain the corresponding relations. We
measure the wave strength of the elementary waves by ±|λ(v) − λ(vo)|, where the
plus sign is for the rarefaction waves and the minus sign is for the shock waves. A
collection of the 1-waves or 2-waves is called a family of waves.

2. Phase boundary. A phase boundary is the line of discontinuity in the xt-plane
across which the phase changes. It satisfies the Rankine–Hugoniot condition. The
phase boundary curve P r(Uo) (or P l(Uo)) is the set of U connected to Uo on the right
(or left) by the phase boundary and satisfies the relation

u = uo − σp(vo, v)(v − vo),

where σp(vo, v) = ±
√

f(v)−f(vo)
v−vo and vo and v are in the different phases. We measure

the wave strength of the phase boundary by |v−vo|. This gives the variation of phase
boundary and is equivalent to the wave strengths for shocks and rarefaction waves.

2.2. Admissibility criteria. The weak solutions for (1.1) are not unique, and
we use admissibility criteria to choose a physically relevant solution. There are three
criteria that we use in this paper. They are the entropy condition, the entropy rate ad-
missibility criterion, and the initiation criterion. The entropy (physically, the energy)
for (1.1) is given by

H =
1

2
u2 +

∫
f(v)dv.
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The rate of decay of the total energy is given by

D+H =
∑

jump discontinuties

σ(v−, v+)A(v−, v+),(2.1)

where σ(v−, v+) is the speed of the jump discontinuity and

A(v−, v+) =

[
1

2
(f(v−) + f(v+))(v+ − v−)−

∫ v+

v−
f(w)dw

]
.

Here v− and v+ are the values of v on the left and right of a jump discontinuity. We
denote

E(v−, v+) = σ(v−, v+)A(v−, v+).

The entropy condition requires that E(v−, v+) ≤ 0 is satisfied across a shock or a
phase boundary.

The entropy rate admissibility criterion is the criterion that was proposed by
Dafermos [8], [9]. This criterion roughly says that the rate of entropy production is
the smallest for the admissible solution. Specifically, this criterion postulates that the
solution is admissible if it solves (1.1) and minimizes (2.1).

The initiation criterion has been used in [1], [4], and [26]. This criterion imposes
that no new phase occurs from any point except when no solution exists without the
creation of a new phase. This ensures that spontaneous initiation of a new phase
cannot occur from two nearby initial states in the same phase.

As discussed in the introduction, there are at least two ways to apply the entropy
rate admissibility criterion in the Riemann problem. Before the separation (t = 0−)
of the waves, they influence each other. Therefore, it can be applied to all jump
discontinuities in the Riemann problem. In other words, we compute

min
∑
i

E(vi−, vi+),(2.2)

where the index i runs for all of the jump discontinuities in the Riemann problem
and vi− and vi+ are the values of v at the ith discontinuity. If the criterion is applied
this way, we say that the entropy rate admissibility criterion is applied before the
separation. Also, it can be applied to each phase boundary after the separation. In this
case, if we take the adjacent states to a phase boundary as the initial data, the solution
to the Riemann problem produces that phase boundary only. In other words, the
phase boundary is stable in the sense that by itself it is the admissible solution of the
Riemann problem if the adjacent states are the initial data. Note that the shocks are
stable in this sense. Once the waves in the Riemann problem are separated, it may not
be reasonable to apply the criterion to all of the jump discontinuities. If the criterion
is applied this way, we say that the entropy rate admissibility criterion is applied after
the separation. In what follows, we apply the entropy rate admissibility criterion to
all of the jump discontinuities in the Riemann problem where the phase boundary is
involved and obtain the existence and asymptotic behavior of weak solutions. Then
we discuss the relation between the two.

2.3. The Riemann problem. In this subsection, we discuss the Riemann prob-
lem, where the entropy rate admissibility criterion is applied to all discontinuities. The
initial data are given by (Ul, Ur), where vl and vr are given in the different phases.



A PHASE TRANSITION PROBLEM 779

We assume that vl is in the α-phase and vr is in the β-phase. We require that vl and
vr are close to vα and vβ , respectively, and that ul and ur are close. We look for a
self-similar solution in which the constant states Ul, U1, U2, and Ur are separated by
the 1-wave, the phase boundary, and the 2-wave. This is based on the fact that, if
there are three or more phase boundaries in the solution of the Riemann problem, at
least one of them violates the entropy condition [1], [19]. From the entropy condition,
we impose σpA(v1, v2) ≤ 0 across the phase boundary. This condition is necessary
because it has been shown in [19] that, unlike the hyperbolic conservation laws, the
entropy rate admissibility criterion is not consistent with the entropy condition. We
also require that the speed of the phase boundary in absolute value be less than or
equal to that of the 1- and 2-waves. If this condition is violated, we may have a
geometrically inconsistent solution. The above considerations motivate the following
minimization problem:

min {Eb + Ep + Ef}(2.3)

subject to the entropy condition

σpA(v1, v2) ≤ 0,(2.4)

the characteristic condition

σb or − λ1 ≤ σp ≤ σf or λ2,(2.5)

and

ul+

{ −σb(v1 − vl), vl > v1∫ v1

vl
λ1(w)dw, vl ≤ v1

}
− σp(v2 − v1)−

{
σf (vr − v2), vr < v2∫ vr
v2
λ2(w)dw, vr ≥ v2

}
= ur,

(2.6)

where

Ep = σpA(v1, v2),

Eb =

{
σbA(vl, v1), vl > v1,

0, vl ≤ v1,

Ef =

{
σfA(v2, vr), vr < v2,

0, vr ≥ v2.
The condition (2.6) states the way in which Ul, U1, U2, and Ur are connected. We
choose v1 as the independent variable and derive the differential equations governing
v2 and the entropy rate. The admissible solution is the solution to the Riemann
problem (2.3)–(2.6). We say that a solution is feasible if it satisfies (2.4) and (2.5). In
[32], this type of problem was discussed in the case where there are no shock waves.
The region of U1 where (2.4) and (2.5) are satisfied for a given 2-wave curve T l(Ur)
is called the feasible region. The v-coordinate of the intersection between the 1-wave
curve and the feasible region gives the interval of v1 in which the solution satisfies
(2.4) and (2.5). Corresponding to the equality signs in (2.4) and (2.5), we define the
following curves.

Definition 2.1. The stationary phase boundary curve (SC): This is the set of
U1 satisfying σp = 0 and is given by

f(v1) = f(v2), u1 = u2(2.7)

as U2 moves along the 2-wave curve.
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Definition 2.2. The equal area curve (EAC): This is the set of U1 satisfying

A(v1, v2) = 0, u1 = u2 + σp(v2 − v1)(2.8)

as U2 moves along the 2-wave curve.
Definition 2.3. The equal speed curve-I (ESC-I): This is the set of U1 satisfying

σp =

{ −λ1, v1 ≥ vl,
σb, v1 < vl,

(2.9)

u1 = u2 + σp(v2 − v1)(2.10)

as U2 moves along the 2-wave curve. This curve starts from (α, u1), where

u1 = ur +

{
σf (vr − µ), vr < µ,∫ vr
µ
λ2(w)dw, vr ≥ µ.

If v1 < vl, the line segment in the strain-stress plane joining (v2, f(v2)) and (v1, f(v1))
passes through (vl, f(vl)).

Definition 2.4. The equal speed curve-II (ESC-II): This is the set of U1 satis-
fying

σp =

{
λ2, v2 ≤ vr,
σf , v2 > vr,

(2.11)

u1 = u2 + σp(v2 − v1)(2.12)

as U2 moves along the 2-wave curve. This curve starts from (γ, u1), where u1 =
ur +

∫ vr
β
λ2(w)dw. If vr < v2, the line segment in the strain-stress plane joining

(v2, f(v2)) and (v1, f(v1)) passes through (vr, f(vr)).
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The curves satisfying the above definitions for the 2-wave curve T l
2(Ur) are de-

picted in Figure 2.1. The feasible regions are shaded regions. Depending on how the
1-wave curve T r

1 (Ul) intersects with the shaded regions, we obtain three cases.
(a) The 1-wave curve intersects with the region F in Figure 2.1.
(b) The 1-wave curve goes through the point M in Figure 2.1.
(c) The 1-wave curve intersects with the region B in Figure 2.1.

The v-coordinate ofM is vα, and F (or B) stands for the fact that the phase boundary
moves forward (or backward) if the 1-wave curve intersects these regions. For example,
in case (a), the solutions are feasible if U1 is on the intersection of the curve (a) with
the shaded region, and we seek a solution to (2.3) and (2.6) for the values of v1 on
the interval where the 1-wave curve (a) intersects with F .

The following theorem shows the existence of solutions satisfying (2.3) and (2.6).
Theorem 2.5 (Hattori [19]). There exists an absolute minimum for the Riemann

problem (2.3)–(2.6). Furthermore, there exists a neighborhood of vl = vα, vr = vβ ,
ul = uc, and ur = uc such that the problem has a unique admissible solution.

3. Existence of weak solutions. This section consists of three subsections.
First, we briefly describe the Glimm scheme and its two main ingredients. Then, in
subsections 3.2 and 3.3, we discuss the details of the ingredients leading to the proof
of the existence of weak solutions.

3.1. Glimm scheme. We choose a sequence ω = {ωn} of random and equidis-
tributed numbers in (−1, 1) and define

Nm,n = ((m+ ωn)
x, n
t), n ≥ 0,

as the sample points, where m and n are integers satisfying m + n = odd. Here 
x
and 
t are positive numbers satisfying the Lax–Friedrichs condition


x

t = r > max

v∈Vvα∪Vvβ

λ(v),

where Vvα and Vvβ are closed neighborhoods of vα and vβ , respectively, relevant to
our discussion. The upper xt-plane is divided by diamond-shaped domains
m,n with
vertices Nm,n+1, Nm−1,n, Nm,n−1, Nm+1,n. An I-curve is a space-like piecewise-linear
curve composed of line segments joining vertices. We define J0 to be the I-curve
consisting of the line segments joining Nm−1,0, Nm,1, Nm+1,0 with m even. It is
possible to have a partial ordering of the I-curves. If J2 lies in the future of J1, it is
denoted by J1 ≤ J2. We say that J1 and J2 are consecutive if J1 ≤ J2 and there is
only one diamond between them.

The approximate solution U�x,ω is defined as follows. We choose

U�x,ω(Nm,o) = Uoo((m+ ωo)
x).
Assuming that U�x,ω is defined at Nm−1,n−1 and Nm+1,n−1, we solve the Riemann
problem of (1.1) with the initial data

U(x, (n− 1)
t) =

{
U�x,ω(Nm−1,n−1), (m− 1)
x ≤ x < m
x,
U�x,ω(Nm+1,n−1), m
x < x ≤ (m+ 1)
x,

and the solution is denoted as U(x, t). We then define the solution on the next time
level by

U�x,ω(Nm,n+1) = U(Nm,n+1),
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U�x,ω(x, t) = U(x, t), (m− 1)
x ≤ x ≤ (m+ 1)
x, n
t < t < (n+ 1)
t.
The wave strengths of the solution to the Riemann problem are denoted as

a = (a1, a2) if there is no phase boundary, and

a = (a1, P, a2) if there is a phase boundary,

where the subscripts 1 and 2 denote the 1- and 2-waves, respectively. The outgoing
waves c are the waves in the solution of the Riemann problem in 
m,n. The incom-
ing waves a and b to 
m,n are the outgoing waves from 
m−1,n−1 and 
m+1,n−1,
respectively, and entering 
m,n. If a = (a1, a2) and b = (b1, b2) cross J and a is lying
to the left of b, we say that ai and bj are approaching provided that either (i) i > j
or (ii) i = j and at least one of them is a shock.

Let P (J) be the strength of phase boundary crossing J , and let W (J) be the
collection of the elementary waves crossing J . We define

L(J) =
∑

a∈W (J)

|a| .

Then L(J) + P (J) measures the total variation of U�x,ω(x, t) on J . The Glimm
scheme consists of two steps. The first step is to estimate the strengths of outgoing
waves in terms of incoming waves in a diamond. The second step is to show that the
total variation of the solutions is bounded. Since the total variation is not necessarily
monotonically decreasing, we define the interaction potential Q(J) decreasing in J .
With this Q we show that the inequality

L(J2) + P (J2) +Q(J2) ≤ L(J1) + P (J1) +Q(J1)

holds for J1 < J2. The details of these steps are discussed in the next two subsections.

3.2. Local wave interaction. We consider the wave interaction in a diamond

m,n and estimate the strengths of outgoing waves in terms of those of incoming
waves. There are two cases depending on whether the phase boundary enters the
diamond. First, consider the case where the phase boundary does not enter the
diamond. This case is treated in the same way as in the previous literature. Let
(a1, a2) and (b1, b2) be the strengths of incoming waves from
m−1,n−1 and
m+1,n−1,
respectively, and let (c1, c2) be the strengths of outgoing waves.

Lemma 3.1 (Glimm [15] and Liu [27]). Suppose that the phase boundary P does
not enter the diamond. Then we have

ci = ai + bi +Q(
m,n), i = 1, 2,(3.1)

where Q(
m,n) is defined as

Q(
m,n) = Qs(
m,n) +Qd(
m,n),(3.2)

where

Qs(
m,n) =


0, ai ≥ 0, bi ≥ 0,
|ai|3, |ai| ≤ |bi|, ai < 0, bi ≥ 0,
|ai||bi|2, |ai| ≤ |bi|, bi < 0,
|ai|2|bi|, |ai| ≥ |bi|, ai < 0,
|bi|3, |ai| ≥ |bi|, ai ≥ 0, bi < 0,

(3.3)
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or

=

{
0, ai ≥ 0, bi ≥ 0,
|ai||bi|(|ai|+ |bi|), otherwise,

(3.4)

Qd(
m,n) = |a2b1|.
Next, we consider the case where the phase boundary enters the diamond 
m,n.

Without loss of generality, we assume that the phase boundary enters 
m,n from

m+1,n−1. The wave strengths of the incoming waves from 
m−1,n−1 and 
m+1,n−1

are denoted by (a1, a2) and (b1, Pi, b2), respectively, and (c1, Po, c2) for the outgoing
waves. There are two subcases to consider. One subcase is that the 2-wave from

m+1,n−1 enters the diamond, or it is a rarefaction wave. Another subcase is that the
2-wave from 
m+1,n−1 does not enter the diamond, and it is a shock. The estimates
are given in Lemmas 3.2 and 3.4, respectively. Note that, in the first subcase, the
incoming waves from 
m+1,n−1 are the admissible solution to the Riemann problem
(2.3)–(2.6), but, in the second subcase they are not. This makes the estimate more
complicated.

Lemma 3.2. Suppose that all of the outgoing waves from the diamond 
m+1,n−1

enter 
m,n, or the 2-wave from 
m+1,n−1 which (or a portion of which) does not
enter 
m,n is a rarefaction wave. Then the outgoing waves from 
m,n satisfy the
following estimates:

c1 = b1 +O(1)|a2|,
c2 = b2 +O(1)|a2|,(3.5)

Po = Pi +O(1)|a2|.
Proof. Note that the wave entering 
m,n from 
m−1,n−1 is a2 only. Denote

the constant states of the incoming waves by Uo, Ul, U1, U2, and Ur. The wave
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a2 is between Uo and Ul. As we change Ul along the 2-wave curve through Uo, the
minimum point U1 moves along the composite curve consisting of the SC, the EAC,
or the curve lying between the SC and the EAC; see Figures 2.1 and 3.1. In what
follows, we prove the case in which all of the elementary waves are rarefaction waves.
The other cases are proved similarly. If U1 is on the SC, we have

uo −
∫ vl

vo

λ(w)dw +

∫ v1

vl

λ(w)dw = u1 = u2 = ur +

∫ vr

v2

λ(w)dw,

f1 = f2.

If U1 is on the EAC, we have

uo −
∫ vl

vo

λ(w)dw +

∫ v1

vl

λ(w)dw = u1 = σp(v2 − v1) + ur +

∫ vr

v2

λ(w)dw,

1

2
(f(v1) + f(v2))(v2 − v2)−

∫ v2

v1

f(w)dw = 0.

Also, if U1 is between the SC and the EAC, we see that

uo −
∫ vl

vo

λ(w)dw +

∫ v1

vl

λ(w)dw = u1 = σp(v2 − v1) + ur +

∫ vr

v2

λ(w)dw,

dE

dv1
=

1

4σp

{
dv2
dv1

(λ2
2 − σ2

p)A21 − (λ2
1 − σ2

p)A12

}
= 0.

In each case, the mapping from Ul to U1 is differentiable. Since it can be shown that
du1

dvl
≤ 0 in each case, U1 moves monotonically along a Lipschitz curve as we move Ul

along the 2-wave curve through Uo. Therefore, we have (3.5).
To prepare for the second subcase, we need the following lemma.
Lemma 3.3. Suppose that a = 0 and b = (b1, Pi, b̄2), where b̄2 from 
m+1,n−1 is a

shock wave, and it does not enter 
m,n. If we solve the Riemann problem (2.3)–(2.6)
with the initial data Ul and U2, the wave strengths of the outgoing waves from 
m,n

satisfy

|c1 − b1| = O(1)|b̄2|2, |Po − Pi| = O(1)|b̄2|2, |c2| = O(1)|b̄2|2.(3.6)

Suppose that a = (ā1, Pi, a2) and b = 0, where ā1 from 
m−1,n−1 is a shock wave,
and it does not enter 
m,n. If we solve the Riemann problem (2.3) and (2.6) with the
initial data U1 and Ur, the wave strengths of the outgoing waves from 
m,n satisfy

|c1| = O(1)|ā1|2, |Po − Pi| = O(1)|ā1|2, |c2 − a2| = O(1)|ā1|2.(3.7)

Proof. We prove (3.7) so that we can use v1 as the independent variable. The
case (3.6) is proved similarly. Assume that the Riemann problem with the initial data
U1 and Ur has U ′1 and U ′2 as the intermediate constant states.

Depending on the location of U1 relative to the feasible region, we have three
cases, as in the previous lemma. We prove the case in which U1 is on the EAC. The
cases in which U1 is on the SC and between the EAC and the SC can be shown in a
similar manner. Since Ul is connected to U1 by a 1-shock wave, vl > v1 and ul > u1

must hold. We treat the case in which the 2-wave is a rarefaction wave and the 1-wave



A PHASE TRANSITION PROBLEM 785

✲

✻

(vl, ul)
�

(vα, uα)�

α βζ µ
v

u

B

F
SC

EAC

Fig. 3.2.

curve from Ul goes through Uα or above; see Figure 3.2. In this case, we observe the
forward phase boundary. The other case is treated in a similar manner. In this case,

dEb

dv1
+
dEp

dv1
+
dEf

dv1

∣∣∣∣
v1=v1

< 0 and
dEb

dv1

∣∣∣∣
v1=v1

> 0.

This implies that

A1 =
dEp

dv1
+
dEf

dv1

∣∣∣∣
v1=v1

< 0.

Compare this with

A′1 =
dEp

dv′1
+
dEf

dv′1

∣∣∣∣
v′
1=v1

.

From

A1 =
∂Ep

∂v1
+
∂Ep

∂v2

dv2
dv1

+
∂Ef

∂v2

dv2
dv1

∣∣∣∣
v1=v1

,

A′1 =
∂Ep

∂v′1
+
∂Ep

∂v′2

dv′2
dv′1

+
∂Ef

∂v′2

dv′2
dv′1

∣∣∣∣
v′
1=v1

,

dv2
dv1

∣∣∣∣
v1=v1

=
(λ2

1 + σbσp)(σb − σp)
σb(λ2 − σp)2 ,

dv′2
dv′1

∣∣∣∣
v′
1=v1

=
(λ1 − σp)2
(λ2 − σp)2 ,
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we see that

A′1 −A1 =

{
∂Ep

∂v2
+
∂Ef

∂v2

}
σp(λ1 + σb)

2

σb(λ2 − σp)2 = O(1)|σp||v1 − vl|2.

This shows that, if A′1 < 0, the configuration does not change, and if A′1 > 0,

0 < A′1 = A1 +O(1)|σp||v1 − vl|2 ≤ O(1)|σp||v1 − vl|2.

Since
d2Ep

dv′2
1

= O(1) near the Maxwell construction, we see that

|v′1 − v1| = O(1)|v1 − vl|2.
From this we obtain (3.7).

Lemma 3.4. Suppose the 2-wave from 
m+1,n−1 is a shock and it does not enter

m,n. Denote its wave strength by b̄2. Then the outgoing waves from 
m,n satisfy
the following estimates:

c1 = b1 +O(1)|a2|+O(1)|b̄2|2,
c2 = O(1)|a2|+O(1)|b̄2|2,
Po = Pi +O(1)|a2|+O(1)|b̄2|2.

Proof. From Lemma 3.3, we see that the wave strengths of the Riemann problem
with initial data (vl, ul) and (v3, u3) corresponding to the waves of the right fam-
ily b = {b1, Pe, 0} are given by {b1 + O(1)|b̄2|2, Pe + O(1)|b̄2|2, O(1)|b̄2|2}. Now we
use Lemma 3.2 to obtain the strengths of the outgoing waves. Since the admissible
solution is unique, this completes the proof.

3.3. Existence of global solutions. LetW (J) be the collection of the elemen-
tary waves crossing J , and let Wa(J) be the subset of W (J) approaching the phase
boundary P . Also, let W−(J) be the collection of shocks crossing J . We define

A(J) =
∑

a∈Wa(J)

|a| .(3.8)

Also, if the phase boundary P crosses J , we define 
J to be the diamond from which
P leaves.

Now we define the interaction potential Q as

Q(J) = Qs(J) +N1{Qa(J) +Qd(J)}+N2
1Qaa(J) +N2Qsp(
J),(3.9)

where the quantities on the right-hand side are given by

Qs(J) =
∑{|a|3 : a ∈W−(J)}
+4

∑{|bd||b+ d| : b, d ∈W−(J), b �= d, and of the same family}
+8

∑{|bde| : b, d, e ∈W−(J), distinct, and of the same family}
(3.10)

or

Qs(J) =
∑{|bd||b+ d| : b, d are any j-waves in W (J)

and not both are j-rarefaction waves},(3.11)
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Qa(J) =
∑{|ab| : a ∈Wa(J), b ∈W (J), and a �= b},

Qd(J) =
∑{|ab| : a, b ∈W (J) and a is any i-wave

lying toward the left of a j-wave b with i > j},
Qaa(J) = 1

2

∑{|a|2 : a ∈Wa(J)}+
∑{|ab| : a, b ∈Wa(J) and a �= b},

Qsp(
J) =
∑{|a|2 : a is an outgoing wave from 
J}.

Note that Qs(J) measures the interaction potential of the waves of the same family,
Qd(J) measures the interaction potential of the waves of the different families, Qa(J)
and Qaa(J) are related to the approaching waves, and Qsp(
J) is related to the
elementary waves leaving from 
J . The constants N1 and N2 will be determined so
that

Q(
m,n) ≤ 2(Q(J)−Q(J ′))(3.12)

is satisfied, where J and J ′ are consecutive I-curves with J ≤ J ′, 
m,n is the diamond
between them, and Q(
m,n) is the measure of the wave interactions in 
m,n. The
specific forms of Q(
m,n) are given in Lemmas 3.5, 3.6, and 3.7, where the proofs of
(3.12) are carried out. Also, let K be a bound on the O(1) coefficients (or a finite
multiple of them) appearing in Lemmas 3.1, 3.2, and 3.4.

Lemma 3.5. If the phase boundary does not enter 
m,n, we have

Q(J ′)−Q(J) ≤ {−1 + (K +KN1 +KN2
1 )L(J)}Q(
m,n),(3.13)

where Q(
m,n) is defined in (3.2).
Since 
J = 
J′ in this case, the proof is reduced to Asakura [3] and Chern [5].

Hence it is omitted. The next two lemmas are similar in proof. Therefore, we prove
only Lemma 3.7.

Lemma 3.6. If the phase boundary enters 
m,n and the 2-wave from 
J (=

m+1,n−1) enters 
m,n or it is a rarefaction wave, then we have

Q(J ′)−Q(J) ≤ −Q(
m,n),(3.14)

where Q(
m,n) = |a2| |b1|+ |a2| |b2|.
Lemma 3.7. If the phase boundary enters 
m,n and the 2-wave with strength b̄2

from 
J (= 
m+1,n−1) is a shock and it does not enter 
m,n, then we have

Q(J ′)−Q(J) ≤ −Q(
m,n),(3.15)

where Q(
m,n) = |a2| |b1|+
∣∣b̄2∣∣2.

Proof. Let the strengths of the incoming waves from 
J be b = {b1, Pi, 0}. Let
A(
m,n) = |a2| be the strength of the approaching wave entering 
m,n. We prove
the case in which both ci are shocks.

Qs(J
′) =

∣∣b1 +O(1)|a2|+O(1)|b̄2|2
∣∣3

+4
∑
d1 �=c1

∣∣d(b1 +O(1)|a2|+O(1)|b̄2|2)
∣∣ ∣∣d+ b1 +O(1)|a2|+O(1)|b̄2|2

∣∣
+8

∑
d1,e1 �=c1

∣∣de(b1 +O(1)|a2|+O(1)|b̄2|2)
∣∣

+
∣∣O(1)|a2|+O(1)|b̄2|2

∣∣3
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+4
∑
d2 �=c2

∣∣d(O(1)|a2|+O(1)|b̄2|2)
∣∣ ∣∣d+O(1)|a2|+O(1)|b̄2|2

∣∣
+8

∑
d2,e2 �=c2

∣∣de(O(1)|a2|+O(1)|b̄2|2)
∣∣+O.T.

≤ Qs(J) +K
∑

e∈W (J)

|e|A(
m,n) +K
∑

e∈W (J)

|e||b̄2|2 +O.T.,

where O.T. represents the potentials not involving the waves in 
m,n and canceling
out when we estimate Qs(J

′)−Qs(J). Since Qs is the third order term, we can get the
above type estimates easily in the other cases. In what follows, we omit the O.T.’s.
The estimates of Qa are given by

Qa(J
′) ≤

∑
e∈Wa(Jl∪Jr)

|eb1|+
∑

e∈Wa(Jl∪Jr)

|eb2|

+K
∑

e∈Wa(Jl∪Jr)

|e|A(
m,n) +K
∑

e∈Wa(Jl∪Jr)

|e||b̄2|2

≤ Qa(J)− |a2b1| − |a2b2| −
∑

e∈W (Jl∪Jr)

|ea2|

+K
∑

e∈Wa(Jl∪Jr)

|e|A(
m,n) +K
∑

e∈Wa(Jl∪Jr)

|e||b̄2|2.

For Qd we obtain

Qd(J
′) =

∑
e2∈Wa(Jl)

|e2c1|+
∑

e1∈Wa(Jr)

|e1c2|

=
∑

e2∈Wa(Jl)

∣∣e2(b1 +O(1)|a2|+O(1)|b̄2|2)
∣∣

+
∑

e1∈Wa(Jr)

∣∣e1(O(1)|a2|+O(1)|b̄2|2)
∣∣

≤ Qd(J)− |a2b1| −
∑

e1∈Wa(Jr)

|e1a2|+K
∑

e∈Wa(Jl∪Jr)

|e|(|a2|+ |b̄2|2).

The estimates of Qaa are given by

Qaa(J
′) = 0, Qaa(J) =

1

2
|a2|2 +

∑
e∈Wa(Jl∪Jr)

|ea2|.

For Qsp we have

Qsp(
J′) = N2{c21 + c22}
≤ Qsp(
J) +N2Ka

2
2.

Combining the above estimates, we have

Q(J ′)−Q(J) ≤ −(N2
1 −K −KN2)|a2|2

−(N1 −K −KN2)
∑

e∈W (J),e �=a2

|e|A(
m,n)

−(N2
1 −KN1)

∑
e∈Wa(Jl∪Jr)

|e|A(
m,n)

−{N2(1− L(J))− 3KL(J)}|b̄2|2.
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From the above inequality, we can easily find N1 and N2 satisfying the inequal-
ity (3.15).

From Lemmas 3.5, 3.6, and 3.7, we obtain the following lemma.
Lemma 3.8. Suppose J and J ′ are two consecutive I-curves with J ≤ J ′ and 


is the diamond between them. Then we have

Q(
) ≤ 2(Q(J)−Q(J ′)),(3.16)

provided N2
1 −K −KN2 > 0, N1 −K −KN2 >

1
2 , N

2
1 −KN1 > 0, N2(1− L(J))−

3KL(J) > 1
2 , and L(J) < 1

2(K+KN1+KN2
1 )
.

Let ΛJ1,J2
be the diamonds between J1 and J2, and let A(J1, J2) be the change

in the amount of the approaching waves between J1 and J2. The following theorem
shows that the total variation of the solution is bounded.

Theorem 3.9. Let J1 and J2 be the I-curves satisfying J1 ≤ J2. Then we have

Q(ΛJ1,J2) ≤ 2(Q(J1)−Q(J2)),(3.17)

A(J1, J2) ≤ A(J1)−A(J2) +KQ(ΛJ1,J2
),(3.18)

L(J2)− L(J1) ≤ K{A(J1)−A(J2) +Q(J1)−Q(J2)},(3.19)

P (J2)− P (J1) ≤ K{A(J1)−A(J2) +Q(J1)−Q(J2)},(3.20)

L(J) + P (J) ≤ N0{L(J0) + P (J0)},(3.21)

where N0 is a positive constant. In particular, (3.21) implies that the global weak
solutions exist.

Proof. The inequality (3.17) is an easy consequence of Lemma 3.8. For (3.18),
assume that J and J ′ are consecutive, J ≤ J ′, and 
 is the diamond between them.
If the phase boundary enters 
, we have

A(
) = |a2| = A(J)−A(J ′),

and if the phase boundary does not enter 
, then, assuming as before that P is to
the right of 
, we have

A(
) ≤ |a2|+ |b2| − |c2|+KQ(
)

≤ A(J)−A(J ′) +KQ(
).

If the phase boundary enters the diamond between J and J ′, from Lemma 3.1 we see
that, in the case of Lemma 3.6,

L(J ′)− L(J) = |c1|+ |c2| − |a2| − |b1| − |b2|
≤ O(1)|a2|,

and, in the case of Lemma 3.7,

L(J ′)− L(J) ≤ O(1)|a2|+O(1)|b̄2|2.

Therefore, we have

L(J ′)− L(J) < K{A(J)−A(J ′) +Q(J)−Q(J ′)}.
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If the phase boundary does not enter the diamond, from Lemma 3.1 we have that

L(J ′)− L(J) ≤ K{Q(J)−Q(J ′)}.
Repeating this from J1 to J2, we obtain (3.19). We can prove (3.20) in a similar
manner. Adding (3.19) and (3.20) from J0 to J , we have

L(J) + P (J) ≤ L(J0) + P (J0) + 2K{A(J0) +Q(J0)}
≤ L(J0) + P (J0) + 2KA(J0) + 2K(L(J0))

2.

From this we obtain (3.21).
We now define the cancelation. For a diamond into which the phase boundary

does not enter,

Ci(
) =
1

2
(|ai|+ |bi| − |ai + bi|).

From this we have the following lemma.
Lemma 3.10. The following conservation laws hold provided that Λ does not

contain the phase boundary.

L±i (Λ) = E±i (Λ)∓ Ci(Λ) +O(1)Q(Λ), i = 1, 2.(3.22)

For a diamond into which the phase boundary enters, assuming that the phase
boundary is in the right family of waves entering the diamond, we define

Ci(
) = κi|a2|,
where κi is a nonnegative number, so that the following relation holds:

Li(
) = Ei(
)± Ci(
), i = 1, 2,

where the signs are chosen so that the above equality holds.
The generalized i-characteristics χ�x

i (t) were introduced in Glimm and Lax [16].
These are the curves consisting of either an i-characteristic or an i-shock issuing from
the center of each diamond. They are straight-line segments in each strip (n−1)
t <
t < n
t (n = 0, 1, 2, . . .) and are continued from the center of the diamonds they

enter. They showed that χ�x
i (t) converges uniformly to a Lipschitz function χi(t) as


x approaches zero on any bounded time interval and that the derivatives χ̇�x
i (t) of

the i-generalized characteristics converge pointwise to χ̇i(t) except a set of measure
zero. Similar results can be obtained for the phase boundary; i.e., the phase boundary
χ(t) is Lipschitz continuous and subsonic, as shown in [4], [26].

4. Initial value problem with the Riemann initial data. We revisit the
Riemann problem with the initial data (1.3) and show that the asymptotic states
occur immediately for the solution to the Riemann problem.

First, we study the basic estimates concerning the waves in the limit solution.
We define the regions Ωi (i = 0, 1, 2, 3) and Ωp in the xt-plane as

Ω0 = {(x, t) : x < µ0t},
Ω1 = {(x, t) : µ0t < x < µ1t},
Ωp = {(x, t) : µ1t < x < µ2t},
Ω2 = {(x, t) : µ2t < x < µ3t},
Ω3 = {(x, t) : µ3t < x},
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where µi (i = 0, 1, 2, 3) satisfy

µ0 < −λ1(v)− δ,
−λ1(v) + δ < µ1 < −|σp| − δ,
|σp|+ δ < µ2 < λ2(v)− δ,

λ2(v) + δ < µ3

for some positive δ and for all of the values of v in the neighborhoods Nvα and Nvβ .
Let χ1

1(t) and χ2
1(t) be the generalized 1-characteristic curves starting from (µ0t, t)

and (µ1t, t), respectively. Similarly, define χ1
2(t) and χ2

2(t) to be the generalized 2-
characteristic curves starting from (µ2t, t) and (µ3t, t), respectively. Note that χji (t)
(i, j = 1, 2) will be redefined in the next section. We define the following:

Λi(t) = the region between χ1
i (t) and χ2

i (t),
Q(t, s) = amount of interaction between t < t′ < s,
Q(t) = amount of interaction at t,
X±i (s; t) = amount of i-waves in the interior of Λi(t) at time s,

X̃i(s; t) = amount of i-waves outside of Λi(t) at time s,
Str.χki (s; t) = strength of χki (t) at time s,
Di(s; t) = distance between χ1

i (t) and χ2
i (t) at time s.

(4.1)

Then we obtain the following lemma.
Lemma 4.1. The solution to the Cauchy problems (1.1) and (1.3) converges to

the solution to the Riemann problem where the phase boundary does not generate any
wave.

Proof. Suppose that we use an equidistributed sequence {ωn}. In the case of
the Riemann initial data, for t = 0, we solve a nontrivial Riemann problem in 
0,0

only, and all of the other Riemann problems are trivial. We solve the same Riemann
problem in 
0,0 for any mesh size. Then, in the next time level, we solve nontrivial
Riemann problems in 
−1,1 and 
1,1 only, and they do not depend on the mesh size.
This implies the following. Suppose that the mesh size is (
x,
t), and we solve
a Riemann problem at the mesh point (m
x, n
t). Then, if we change the mesh
size to (�x

p ,
�t
p ), we solve the above Riemann problem at the mesh point (m�x

p , n�t
p )

provided that we use the same sequence {ωn}. From the result of the previous section,
the Cauchy problem converges. Since Q(ΛJ1,J∞) is finite, all interactions Q(
m,n)
approach zero as n→∞. This also implies that the phase boundary is stable in the
sense that there are no waves generated from the phase boundary. As 
x and 
t
approach zero maintaining �x

�t = r, all of the interactions will take place at the origin,

and what remains after taking the limit is the solution where Q(t) is zero for t > 0
and all of the waves start from the origin since the phase boundary and all waves of
the approximate solutions start from the origin and they are Lipschitz continuous.
Since Q(t) = 0, the middle states are constant states. Since the waves of the same
family interact except when they are both rarefaction waves, either rarefaction waves
or shock waves remain in the limiting solutions. Consider the forward wave. We have

dDi(s; to)

ds
= σi(U

+2
i , U−2

i )− σi(U+1
i , U−1

i ),(4.2)

where i = 2 and U±ki are the limits of U from the right and left of χki (t), (k = 1, 2).
Since each characteristic field is genuinely nonlinear, there exists θ = θ(s) (0 < θ < 1)
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such that

dDi(s; to)

ds
= θ(λ−2

i (s)− λ+1
i (s)) + (1− θ)(λ+2

i (s)− λ−1
i (s))

= (λ−2
i (s)− λ+1

i (s)) + (1− θ)(λ+2
i (s)− λ−2

i (s) + λ+1
i (s)− λ−1

i (s))(4.3)

= X+
i (s; to) +X−i (s; to) + (1− θ)(Str. χ1

i (s; to) + Str. χ2
i (s; to)).

Denote the constant states to the left and right of the phase boundary by Ua
1

and Ua
2 , respectively. Then, if λ2(vR) − λ2(v

a
2 ) < 0, the forward wave is dominated

by shock waves, and, if there are rarefaction waves, they must have interacted with
shock waves and canceled out. Therefore, in this case,

X+
i (s; to) = 0.

So, using the above relations and integrating (4.3), we see that

Di(s; to) = Di(to; to) +

∫ s

to

{X−i (τ ; to) + (1− θ)(Str. χ1
i (τ ; to) + Str. χ2

i (τ ; to))}dτ.

Taking the limit as to → 0 and noting that Di(to; to)→ 0, we obtain

Di(s; 0) =

∫ s

0

{X−i (τ ; 0) + (1− θ)(Str. χ1
i (τ ; 0) + Str. χ2

i (τ ; 0))}dτ.

Note that the integrand is negative, and it is a constant because there is no interaction
and cancelation in (3.22). This implies that, if λ2(vR) − λ2(v

a
2 ) < 0 holds, there is

a single discontinuity. This discontinuity is a shock because we solve the Riemann
problems for the approximate solutions. Since each side of a shock is a constant state,
it is a straight line starting from the origin.

If λ2(vR)−λ2(v
a
2 ) > 0, the forward wave is dominated by rarefaction waves, and if

there are shock waves, they must have interacted with rarefaction waves and canceled
out. Therefore, in this case, for all τ > to,

X−i (τ ; to) = 0, Str. χ1
i (τ ; to) = 0, Str. χ2

i (τ ; to) = 0.

Using the conservation laws (3.22) of the rarefaction waves and noting that there is
no cancelation, after taking the limit as to → 0, we see that

Di(s; 0) = sX+
i (0; 0).

Since both Str. χ1
i (τ ; to) and Str. χ2

i (τ ; to) are zero, they are the characteristics, and
the outsides are constant states. Using the result of Lax [25], we see that the forward
wave is a centered rarefaction wave.

If λ2(vR)− λ2(v
a
2 ) = 0, neither is dominant. If both the shocks and rarefactions

are present, there should be interactions. If the shocks or rarefaction waves become
dominant, we have a contradiction with λ2(vR)− λ2(v

a
2 ) = 0. Therefore, in this case,

there is no shock or rarefaction wave for the forward wave.
The above result implies that the solution to the Riemann problem consists of

the constant states UL, Ua
1 , Ua

2 , and UR separated by the backward wave, the phase
boundary, and the forward wave, where the middle constant states Ua

1 and Ua
2 satisfy

the following conditions:
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(1) σb or − λ1 ≤ σp(va1 , va2 ) ≤ σf or λ2,(4.4)

uL +

{
−σb(va1 − vL), vL > v

a
1∫ va

1

vL
λ1(w)dw, vL ≤ va1

}

−σp(va2 − va1 )−
{
σf (vR − va2 ), vR < va2∫ vR
va
2
λ2(w)dw, vR ≥ va2

}
= uR;

(4.5)

(2) the admissible solution to the Riemann problem with the initial data Ua
1 and Ua

2

consists of the phase boundary only.
The following lemma shows that the solution to the Riemann problem satisfying

the above conditions exists.
Lemma 4.2. If vL and vR are close to the Maxwell strains and uL ≈ uR, then

Ua
1 and Ua

2 satisfying (1) and (2) exist and are unique.
Proof. Consider case (a) in Figure 2.1. Let the intermediate constant states be

Ū1 = (v̄1, ū1) and Ū2 = (v̄2, ū2). First, examine condition (2). This condition reduces
to the Riemann problem

min {Eb(v
a
1 , v̄1) + Ep(v̄1, v̄2) + Ef (v̄2, v

a
2 )}(4.6)

subject to

σpA(v̄1, v̄2) ≤ 0,(4.7)

σb or − λ1 ≤ σp(v̄1, v̄2) ≤ σf or λ2,(4.8)

and

ua1+

{
−σb(v̄1 − va1 ), va1 > v̄1∫ v̄1

va
1
λ1(w)dw, va1 ≤ v̄1

}

− σp(v̄2 − v̄1)−
{

σf (v
a
2 − v̄2), va2 < v̄2∫ va

2

v̄2
λ2(w)dw, va2 ≥ v̄2

}
= ua2 ,

(4.9)

where the intermediate states satisfy Ū1 = Ua
1 and Ū2 = Ua

2 . Note that Eb(v
a
1 , v̄1) =

O(|va1 − v̄1|3) and Ef (v̄2, v
a
2 ) = O(|v̄2 − va2 |3). First, evaluate dE

dv̄1
at v̄1 = va1 . Then

dE

dv̄1

∣∣∣∣
v̄1=va

1

=
dEp

dv̄1

∣∣∣∣
v̄1=va

1

=
1

4σp

{
dv̄2
dv̄1
{λ2

2 − (σp)
2}A21 − {λ2

1 − (σp)
2}A12

}∣∣∣∣
v̄1=va

1

,(4.10)

where A21 and A12 are the same as in Theorem 2.5 with the appropriate change of
arguments. From (4.9), we see that

dv̄2
dv̄1

∣∣∣∣
v̄1=va

1

=
(λa1 + σap)

2

(λa2 − σap)2
.

Substituting this into (4.10), we have

dE

dv̄1

∣∣∣∣
v̄1=va

1

=
λa1 + σap
λa2 − σap

{
(λa1 + λa2)A(va1 , v

a
2 )/(v

a
2 − va1 ) + (va2 − va1 )(λa1λa2 + (σap)

2)σap
}
,
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where λa1 = λ(va1 ), λ
a
2 = λ(va2 ). If Ua

1 is on SC,

dE

dv̄1

∣∣∣∣
v̄1=va

1

< 0,

and, if Ua
1 is on EAC,

dE

dv̄1

∣∣∣∣
v̄1=va

1

> 0.

Therefore, from the intermediate value theorem and Theorem 2.5, we see that the
minimum of E in (4.6) takes place when va1 and va2 satisfy

F1 = (λa1 + λa2)A(va1 , v
a
2 )/(v

a
2 − va1 ) + (va2 − va1 )(λa1λa2 + (σap)

2)σap = 0.(4.11)

Also, from (4.9) and the Rankine–Hugoniot condition, we have

F2 = σap(v
a
2 − va1 ) + ua2 − ua1 = 0,(4.12)

F3 = σap(u
a
2 − ua1) + f(va2 )− f(va1 ) = 0,(4.13)

where Ua
1 and Ua

2 satisfy

F4 = ua1 − uL −
{
−σb(va1 − vL), va1 ≤ vL∫ va

1

vL
λ1(w)dw, va1 > vL

}
= 0,(4.14)

F5 = ua2 − uR −
{
σf (vR − va2 ), vR > va2∫ vR
va
2
λ2(w)dw, vR ≤ va2

}
= 0.(4.15)

Hence the problem (4.4)–(4.9) is reduced to (4.11)–(4.15) provided that vL ≈ vα,
vR ≈ vβ , and uL ≈ uR. It can be shown that Ua

1 = (vα, uL) and Ua
2 = (vβ , uR)

are the solution if vL = vα, vR = vβ , and uL = uR, and that the determinant of
the Jacobian of F = (F1, F2, F3, F4, F5) with respect to (va1 , u

a
1 , v

a
2 , u

a
2 , σ

a
p) is not zero

at (va1 , u
a
1 , v

a
2 , u

a
2 , σ

a
p) = (vL, uL, vR, uL, 0). Therefore, the implicit function theorem

applies. Case (b) can be shown in a similar manner.
From the above lemmas, we have the following theorem.
Theorem 4.3. The solution to the Riemann problem (2.3)–(2.6) with Ul = UL

and Ur = UR converges to (4.11)–(4.15).
Remark 4.1. Since in the Riemann problem the asymptotic states occur immedi-

ately after t = 0, it is natural to ask if the entropy rate admissibility criterion could
have been applied after the separation from the beginning. However, this should be
proved, and a proof is provided here. Also, this result does not mean that the cri-
terion can be applied after the separation to all of the Riemann problems. If the
strains are specified in the same phase, the hyperbolic solutions and the double phase
boundary solutions are two possible solution configurations. In this case, it may be
more reasonable to apply the criterion first before the separation to choose the so-
lution configuration and then apply it after the separation to find the stable phase
boundaries.

The above result shows that we can solve (4.11)–(4.15) instead of (2.3)–(2.6). In
what follows, we apply the entropy rate admissibility criterion after the separation.
Then it is not difficult to see that we can go through section 3 to show the existence
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of weak solutions. Since the phase boundary is now admissible in each time interval,
proceeding in the same manner as [16], we have the following theorem.

Theorem 4.4. If η is small, then the weak global solution exists. Furthermore,
at the phase boundary, the limit

lim
y→±0

U(χ(t) + y, t) = U±(t)(4.16)

exists except for countable t. At the points where the above limit exists, the Riemann
problem (4.11)–(4.15) is solved with the above limits as the initial data. Therefore, the
Rankine–Hugoniot conditions are satisfied across the phase boundary, and the entropy
condition and the entropy rate admissibility criterion are satisfied at these points.

5. Large time behavior of solutions. In this section, we study the asymptotic
behavior of the solution to (1.1) and (1.2) and compare it with the solution of (1.1)
and (1.3). For this purpose, we define ζi to be the strength of the i-wave in the
solution of the Riemann problem (4.11)–(4.15) with initial data UL and UR. We also
define S and R to be the sets of i’s for which the i-wave is a shock and a rarefaction
wave, respectively.

Let {χL(t), t} and {χR(t), t} be the generalized 1- and 2-characteristic curves
issuing from (−M, 0) and (M, 0), respectively, such that U(x, t) = UL for x < χL(t)
and U(x, t) = UR for x > χR(t). Let X+

i (t) and X−i (t) denote the amount of i-
rarefaction and i-shock at time t, respectively. We redefine χ1

i (t) and χ2
i (t) to be

the generalized i-characteristic curves through {χL(t), t} and {χR(t), t}, respectively.
Since the phase boundary χ is subsonic, there exists t∗ > t such that both χ1

2(t) and
χ2

1(t) finish intersecting with the phase boundary by the time t∗ and t∗ = O(1)t. We
set t∗ = t∗(t). We also set T∗ = t∗(0). For each t ≥ t∗, s > t∗, and i = 1, 2, the above
characteristic curves and the phase boundary divide the xt-plane into the following
regions:

Λi(t) = the region between χ1
i (t) and χ2

i (t),

Γ1(t) = the region between χ1
2(t) and χ2

1(t) satisfying x < χ(t),

Γ2(t) = the region between χ1
2(t) and χ2

1(t) satisfying x > χ(t).

Note that there exists a constant C (C > 1) depending only on the system and Po
such that t∗ satisfies

t∗ = Ct.(5.1)

We set

Xi(t) = X+
i (t) +

∣∣X−i (t)
∣∣ , i = 1, 2,

X(t) =
∑
i=1,2

Xi(t).

In addition to the quantities defined in (4.1), we define

A(t, s) = amount of approaching waves between t < t′ < s,
H(t, s) = amount of j-waves (j �= i) crossing χ1

i (t) and χ2
i (t)

between t < t′ < s.

Then we obtain the following lemma.
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Lemma 5.1. There exist bounds O(1) such that, for every s ≥ t∗,
A(s, s′) = O(1)Q(t) for s′ > s,(5.2)

H(t, s) = O(1)Q(t),(5.3)

X̃i(s; t) = O(1)Q(t),(5.4)

P (s′)− P (s) = O(1)Q(t).(5.5)

Proof. Applying the approximate conservation laws to the region outside of Λi(t),
we obtain (5.2), (5.3), and (5.4). From (3.20) we see that

|P (s′)− P (s)| ≤ O(1)A(s, s′).

This implies (5.5).
Lemma 5.2 (Liu [28]). For j ∈ S, there exists Tj such that χ1

i (t; t0) and χ2
i (t; t0)

impinge to form a shock wave with strength ζj(t). Furthermore, for t > O(1)|ζj |t > Tj,
we have

|Xj(t)− ζj(t)| ≤ Q(O(1)|ζj |t), j ∈ S.(5.6)

In what follows, using (3.3) and (3.4), we define

QRs =
∑
i∈R

O(1)|X−i (t)|3,

QSs =
∑
j∈S

O(1)ζ2j |Xj(t)− |ζj(t)||,

respectively, and then we define

Q(t) = QRs +QSs +O(1)
∑
k=1,2

ηX̃k(t).

Lemma 5.3. There exist O(1) bounds such that, for every s ≥ t∗ and for every
(x1, t1) ∈ Γ1(t) and (x2, t2) ∈ Γ2(t),

|U(x1, t1)− Ua
1 | = O(1)Q(O(1)|ζj |t),(5.7)

|U(x2, t2)− Ua
2 | = O(1)Q(O(1)|ζj |t).(5.8)

Proof. We claim from [10] that there exist constant states Ũa
1 , Ũa

2 , and ŨR

satisfying

Ũa
1 ∈ T r

1 (UL), Ũa
2 ∈ P r(Ũa

1 ), ŨR ∈ T r
2 (Ũa

2 ),

and

|U(x1, t1)− Ũa
1 |(5.9)

= O(1)Q(t) +
∑
i∈R

O(1)|X−i (t)|3 +
∑
j∈S

O(1)|Xj(t)− |ζj(t)||,

|U(x2, t2)− Ũa
2 |(5.10)

= O(1)Q(t) +
∑
i∈R

O(1)|X−i (t)|3 +
∑
j∈S

O(1)|Xj(t)− |ζj(t)||,

|UR − ŨR| = O(1)Q(t) +
∑
i∈R

O(1)|X−i (t)|3 +
∑
j∈S

O(1)|Xj(t)− |ζj(t)||,(5.11)
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where Ũa
1 and Ũa

2 verify (4.11)–(4.13). From

Ũa
1 ∈ T r

1 (UL)

and

U(x1, t1) ∈ T r
1 (UL)+

∑
i=1,2

O(1)X̃i(s; t)+
∑
i∈R

O(1)|X−i (t)|3 +
∑
j∈S

O(1)|Xj(t)− |ζj(t)||,

we obtain the claim (5.9). The other claims are similarly obtained. Since the solution

to the Riemann problem (4.4)–(4.9) is differentiable and unique, after moving ŨR to
UR, we obtain the results.

The following lemma gives the important decay rates of the solutions. Since the
proof is lengthy and slightly different from [28], it is postponed until the appendix.

Lemma 5.4. Suppose that η is small. Then the Cauchy problem (1.1), (1.2) has
a global solution satisfying

Q(t) = O(1)t−
3
2 as t→∞,(5.12)

max
i
|X−i (t)| = O(1)t−

1
2 , i ∈ R.(5.13)

Now we obtain the following result for the asymptotic behavior of solutions.
Theorem 5.5. If η is small, then the initial value problem (1.1), (1.2) has a global

solution satisfying the following estimates as t→∞. First, in the region outside Λi,∑
k=1,2

X̃k(t) = O(1)t−3/2.(5.14)

If ζj is a shock, we have

|Xj(t)− ζj(t)| = O(1)t−3/2,(5.15)

Dist {U(x, t), Tj(U
a
j )} = O(1)t−3/2,(5.16)

where ζj(t) is the strength of the j-shock at t. Furthermore, for (xj , t), (x̄j , t) ∈ Ωj,
where (xj , t) and (x̄j , t) are on the left and right of the j-shock,

|U(xj , t)− Ua
jl
|+ |U(x̄j , t)− Ua

jr | = O(1)t−3/2.(5.17)

If ζi is a rarefaction wave, for (x, t) ∈ Ωi, we obtain

|U(x, t)− Ua(x, t)| = O(1)t−1/2.(5.18)

For (xp, t), (x̄p, t) ∈ Ωp, where (xp, t) and (x̄p, t) are on the left and right of the phase
boundary, it holds that

|U(xp, t)− Ua
1 |+ |U(x̄p, t)− Ua

2 | = O(1)t−3/2,(5.19)

|P (t)− P a| = O(1)t−3/2,(5.20)

where P (t) and P a are the wave strengths of the phase boundary at t and the phase
boundary for the Riemann problem (4.11)–(4.15), respectively.
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Proof. The proof is similar to Liu [28]. Hence we describe the basic idea of the
proof here. The lemmas and theorems referred to from [28] are listed in the appendix.
From Theorem 5.4, we see that

Q(t) = O(1)t−3/2.

Therefore, (5.4) implies that

X̃i(t) = O(1)Q(t).

If ζj < 0, it is possible to show that there exists t0 such that Dj(t; t0) = 0 and
χ1
j (t0) and χ2

j (t0) will collide to form shocks with strengths ζj(t). Since outside χ1
j (t0)

and χ2
j (t0) the wave strengths of the j-family are X̃j(t), (5.15) can be shown from

|Xj(t)− |ζj(t)|| = O(1)Q(t) = O(1)t−3/2.

From Lemma 5.3 and X̃j(t) = O(1)Q(t), we see that (5.17) holds.
For the phase boundary, after t > T∗, the strengths of all of the elementary waves

entering and leaving are at most O(1)Q(t). From this and Lemma 5.3, we obtain
(5.19) and (5.20).

If ζi > 0, for (xi, t) and (x̄i, t) in Ωi, (xj , t) left of χ1
i (t), and (x̄i, t) right of χ2

i (t),

|u(xi, t)− uai |+ |u(x̄i, t)− ūai | = O(1)Q(t1/2) = O(1)t−3/4.

Also, from (5.13) we see that the speed of characteristic χi in Ωj for τ > t is λi +
O(1)τ−1/2. Therefore, the distance Fi(t) between χ1

i (t) and the left (or the right) end
of the i-rarefaction wave expand at the rate

Fi(t) = O(1)t1/2.

On the other hand, the centered rarefaction wave is a function of x/t. Therefore, the
shift of order t1/2 causes the difference of order t−1/2.

Appendix. Here we provide the proof of Lemma 5.4 and list the lemmas used
to prove it.

Proof of Lemma 5.4. Since there are several places where the proof is different
from [3] and [28], it is presented here. The proof is done by induction. We show that,
for some T̄ > 0, there exist the sequences {Km}, {Lm}, and {γm}, m = 0, 1, 2, . . . ,
such that

max
i∈R
|X−i (t)| ≤ Kmt

− 1
2 for t ≤ CmT̄ ,(A.1)

Q(t) ≤ Lmt
− 3

2 for t ≤ CmT̄ ,(A.2)

Km+1(A.3)

= Km[{1 +O(1)γm +O(1)Kρ−1
m (CmT̄ )ξ−

1
2 +O(1)K2ρ−1

m (CmT̄ )2ξ−3/2}
×{1 +O(1)Kρ

m(CmT̄ )ξ−1
}
CO(1)γm +O(1)K

2− 3ρ
2

m (CmT̄ )−
3ξ
2 + 1

2 ],

γm ≤ C−δγm−1 < 1,(A.4)

Lm = O(1)(Km)3,(A.5)
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where ρ, ξ, and δ are positive numbers chosen later. We show that K = limm→∞Km

and L = limm→∞Lm exist and are finite.
First, we prove (A.1) along with (A.3) and (A.4). For this purpose, we set

T̄ = (N0η)
−11/5T̃ , K0 = (N0η)

−1/10T̃ 1/2, L0 = K3
0 ,

where T̃ is the time t at which∑
j∈S
{Xj(t)− |ζj(t)|}+

∑
i=1,2

X̃i(t) ≤ 1

2
min
j∈S

ζj .

Note that T̃ may depend on η. Since K0T̄
− 1

2 = (N0η), (A.1), (A.2), and (A.5) hold
for m = 0. Now suppose that (A.1)–(A.5) hold for m = h. We set

Th = Kρ
h(C

hT̄ )ξ, γh = KhT
−1/2
h .(A.6)

Note that

γ0 = K
(1− ρ

2 )
0 (T̄ )−ξ/2 = (N0η)

− (1− ρ
2
)

10 + 11ξ
10 T̃

(1− ρ
2
)

2 − ξ
2 .

As we will see, we choose ρ = 6
5 , ξ = 2

5 , and δ = 3
20 as one choice, and, in this case,

we have

γ0 = (N0η)
19
50(A.7)

so that γ0 is independent of T̃ . The induction hypothesis implies that

max
i∈R
|X−i (t)| ≤ γh,(A.8)

Q(t) ≤ LhT
−3/2
h = LhK

−3
h γ3

h = O(1)γ3
h.

For i ∈ R, we have

X+
i (t;Th) +X−i (t;Th) + Str. χ1

i (t;Th) + Str. χ2
i (t;Th) = ζi +O(1)γ3

h.(A.9)

From this we have

|Str. χ1
i (t;Th)|+ |Str. χ2

i (t;Th)| ≤ X+
i (t;Th)− ζi +O(1)γ3

h.(A.10)

Using

σi(U
+k
i , U−ki ) =

1

2
(λ+k

i + λ−ki ) +O(1)|U+k
i − U−ki |2, k = 1, 2,

in (4.2), we have

dDi(t;Th)

dt
=

1

2
(λ+2

i + λ−2
i ) +O(1)|U+2

i − U−2
i |2(A.11)

−1

2
(λ+1

i + λ−1
i ) +O(1)|U+1

i − U−1
i |2

= λ+2
i − λ−1

i −
1

2
(λ+2

i − λ−2
i + λ+1

i − λ−1
i )

+O(1)|U+2
i − U−2

i |2 +O(1)|U+1
i − U−1

i |2

= λ+2
i − λ−1

i +

{
1

2
+O(1)|Str. χ1

i (t;Th) + Str. χ2
i (t;Th)|

}
×{|Str. χ1

i (t;Th) + Str. χ2
i (t;Th)|

}
.



800 HARUMI HATTORI

Since λ+2
i − λ−1

i = λ+2
i (Ua

i )− λ−1
i (Ua

i−1) +O(1)γ3
h = (UL, UR)ri +O(1)γ3

h, from this
and the induction hypotheses (A.1) and (A.8) we have

dDi(t;T0)

dt
=

(
1

2
+O(1)γh

)
Kht

− 1
2 + ζi +O(1)γ3

h.

Integrating this from CTh to ChT , we have

Di(C
hT ;Th) ≤ 2

(
1

2
+O(1)γh

)
Kh{(ChT )1/2 − (CTh)

1/2}(A.12)

+O(1)γ3
h(C

hT − CTh) +Di(CTh;Th).

Also, from (A.10) and (A.11), we obtain

dDi(t;Th)

dt
≤
(

1

2
+O(1)γh

)
{X+

i (t;Th)− ζi +O(1)γ3
h}+O(1)γ3

h

≤
(

1

2
+O(1)γh

){
Di(t;Th)

t− CTh − ζi
}

+ ζi +O(1)γ3
h.

Integrating this inequality from ChT̄ to t, where ChT̄ ≤ t ≤ Ch+1T̄ , and substituting
the result into (A.20), we have

X+
i (t)

≤ 1

(t− CTh) 1
2

[
(1 +O(1)γh)Kh

{(ChT̄ )1/2 − (CTh)
1/2}

(ChT̄ − CTh) 1
2

+
Dri(CTh;Th)

(ChT̄ − CTh) 1
2

]

×
{

t− CTh
ChT̄ − CTh

}O(1)γh

+ ζi +O(1)γ3
h

≤ t−1/2

[
(1 +O(1)γh)Kh +

Dri(CTh;Th)

(ChT̄ − CTh) 1
2

]

×
(

t

ChT̄

)O(1)γh
{

1− CTh

t

1− CTh

ChT̄

}O(1)γh (
1− CTh

t

)− 1
2

+ ζi +O(1)γ3
h,

where ChT̄ ≤ t ≤ Ch+1T̄ . We estimate the terms in the above inequality. For this
purpose, we express every term in terms of γh, C and show that there exist positive
ρ, ξ, and δ satisfying (A.3) and (A.4). From (A.6) we have

Kh = γ

1

1− ρ
2

h (ChT̄ )
ξ

2(1− ρ
2
) .

The estimates of the terms in the above inequality are given by

CTh
ChT̄

=
CKρ

h(C
hT̄ )ξ

ChT̄
= CKρ

h(C
hT̄ )ξ−1 = Cγ

ρ

1− ρ
2

h (ChT̄ )
ρξ

2(1− ρ
2
) (ChT̄ )ξ−1,
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1

(1− CTh

ChT̄
)

1
2

= 1 +O(1)Kρ
h(C

hT̄ )ξ−1,

{(ChT̄ )1/2 − (CTh)
1/2}

(ChT̄ − CTh) 1
2

≤ 1,

Di(CTh;Th)

(ChT̄ − CTh) 1
2

=
O(1)Th

(ChT̄ − CTh) 1
2

=
O(1)Kρ

h(C
hT̄ )ξ−

1
2

(1− CTh

ChT̄
)

1
2

≤ O(1)Kρ
h(C

hT̄ )ξ−
1
2 {1 +O(1)Kρ

h(C
hT̄ )ξ−1}.

From (A.7), O(1)γ0 < 1
2 is possible if we choose η to be small. Assuming that

O(1)γh <
1
2 is possible as a part of the induction hypothesis, we see that

{
1− CTh

t

1− CTh

ChT̄

}O(1)γh (
1− CTh

t

)− 1
2

≤
(
1− CTh

ChT̄

)−( 1
2+O(1)γh)

= {1−O(1)(γh)
ρ

1− ρ
2 (ChT̄ )

ρξ

2(1− ρ
2
) (ChT̄ )ξ−1}−( 1

2+O(1)γh)

≤ 1 +O(1)(γh)
ρ

1− ρ
2 (ChT̄ )

ρξ

2(1− ρ
2
) (ChT̄ )ξ−1.

Hence

X+
i (t)

≤ Kht
−1/2[{1 +O(1)γh +O(1)Kρ−1

h (ChT̄ )ξ−
1
2 (1 +O(1)Kρ

h(C
hT̄ )ξ−1)}

×{1 +O(1)Kρ
h(C

hT̄ )ξ−1
}
CO(1)γh +O(1)K

2− 3ρ
2

h (ChT̄ )−
3ξ
2 + 1

2 ] + ζi.

We define

Kh+1(A.13)

= Kh[{1 +O(1)γh +O(1)Kρ−1
h (ChT̄ )ξ−

1
2 (1 +O(1)Kρ

h(C
hT̄ )ξ−1)}

×{1 +O(1)Kρ
h(C

hT̄ )ξ−1
}
CO(1)γh +O(1)K

2− 3ρ
2

h (ChT̄ )−
3ξ
2 + 1

2 ]

and examine the inequality (A.4).

γh+1

γh
=

(
Kh+1

Kh

)(1− ρ
2 )

C−ξ/2(A.14)

= [{1 +O(1)γh +O(1)γ

ρ−1

1− ρ
2

h (ChT̄ )
ξ(ρ−1)

2(1− ρ
2
) (ChT̄ )ξ−

1
2

×(1 +O(1)Cγ

ρ

1− ρ
2

h (ChT̄ )
ρξ

2(1− ρ
2
) (ChT̄ )ξ−1)}

×{1 +O(1)Cγ

ρ

1− ρ
2

h (ChT̄ )
ρξ

2(1− ρ
2
) (ChT̄ )ξ−1}CO(1)γh

+γ

2− 3ρ
2

1− ρ
2

h (ChT̄ )

ξ(2− 3ρ
2

)

2(1− ρ
2
) (ChT̄ )−

3ξ
2 + 1

2 ](1−
ρ
2 )C−ξ/2.
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Assuming that the induction hypothesis γh < C
−δhγ0 holds, we obtain the condition

under which γh+1

γh
< C−δ is satisfied. After substituting γh < C−δhγ0 in (A.14), we

see that, if the following inequality is satisfied, γh+1

γh
< C−δ is satisfied.

[{1 +O(1)C−δhγ0(A.15)

+O(1)C
{ ρ−1

1− ρ
2

( ξ
2−δ)+ξ− 1

2}h
(γ0)

ρ−1

1− ρ
2 (T̄ )

ξ(ρ−1)

2(1− ρ
2
) (T̄ )ξ−

1
2

×(1 +O(1)C
{ ρ

1− ρ
2

( ξ
2−δ)+ξ−1}h

(γ0)
ρ

1− ρ
2 (T̄ )

ρξ

2(1− ρ
2
) (T̄ )ξ−1)}

×{1 +O(1)C
{ ρ

1− ρ
2

( ξ
2−δ)+ξ−1}h

(γ0)
ρ

1− ρ
2 (T̄ )

ρξ

2(1− ρ
2
) (T̄ )ξ−1}CO(1)C−δhγ0

+O(1)C
{ 2− 3ρ

2
1− ρ

2

( ξ
2−δ)− 3ξ

2 + 1
2}h

(γ0)

2− 3ρ
2

1− ρ
2 (T̄ )

ξ(2− 3ρ
2

)

2(1− ρ
2
) (T̄ )−

3ξ
2 + 1

2 ](1−
ρ
2 )

< C−δ+
ξ
2 .

Examining the terms in (A.15), we see that a sufficient condition for (A.15) is that
the power of Ch is negative, the power of (N0η) is positive, and the power of T̃ is
nonpositive. To make the power of Ch negative, we take 1

3 < ξ <
1
2 ,

1
3 < ρ <

4
3 , and

ξ
2 − δ > 0. Observe that the powers of T̃ in the above expressions are proportional to
(ρ + 2ξ − 2). We choose ρ and ξ so that ρ + 2ξ − 2 = 0. One example satisfying the
above restrictions is ρ = 6

5 , ξ = 2
5 , and δ = 3

20 . Then we have

X+
i (t) ≤ Kh+1t

− 1
2 + ζi, i ∈ R,(A.16)

and we obtain from (A.13) the following estimate for the sequence {Km}:
Kh < (1 +O(1)C−νh)hCO(1)

∑
h
γhK0,

where ν is a positive constant. This shows that K = limm→∞Km exists and is finite.
Therefore, we see that the estimates (A.1), (A.3), and (A.4) hold for m = h+ 1.

Next, we prove (A.2) and (A.5). From (A.21), (A.1), and (A.4), we have for
m ≤ h

Q(t) = Qs(t) +

h∑
k=1

(O(1)η)kQs(C
−kt) + (O(1)η)hQd(C

−pt)

= Qs(t) +O(1)

h∑
k=1

(O(1)η)kK3
h(C

−kt)−3/2, ChT̄ ≤ t ≤ Ch+1T̄ .(A.17)

The estimate of Qs(t) is made in the following way. For i ∈ R, from (A.1) and (A.16),
we have for m ≤ h+ 1

QRs (t) =
∑
i∈R
|X−i (t)|3 = O(1)K3

h+1t
−3/2.(A.18)

For j ∈ S, there exists t′ < t such that x1
j (t
′) and x2

j (t
′) meet before time t. Since

t ≤ O(1)t′/|ζj | and Kh < Kh+1,

QSs (t) =
∑
j∈S

O(1)ζ2j |Xj(t)− ζj(t)|(A.19)

=
∑
j∈S

O(1)ζ2jQ(t′)

=
∑
j∈S

O(1)|ζ|1/2j K3
h+1t

−3/2.
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Therefore, (A.17), (A.18), and (A.19) imply (A.2) and (A.5).
Lemma A.1 (Glimm and Lax [16]). For a genuinely nonlinear i-characteristic

family and τ ≥ t > t∗, we have

X+
i (τ ; t) ≤ Di(τ ; t)

τ − t∗ +O(1)Q(t).(A.20)

Lemma A.2 (Liu [28]). For the constant C defined in (5.1),

Q(Cmt) =

m∑
k=0

(O(1)η)kQs(C
m−kt) + (O(1)η)mQd(t),(A.21)

where η is defined as in (1.4).
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1. Introduction.

1.1. General. Let x and y denote rectangular coordinates in the Euclidean plane
R

2, and let n be a real-valued function of x and y. Let n be sufficiently smooth and
strictly positive; should the range of x and y be unbounded, let n decay fast enough at
infinity. The present paper, its predecessor [26], and forthcoming others are devoted
to a tentative theory of the partial differential equation(

∂w

∂x

)2

+

(
∂w

∂y

)2

+ n2(x, y) = 0,(1.1)

all of whose solutions are complex-valued.
Versions of (1.1) arise in acoustics and optics. Suppose that a two-dimensional

isotropic nondissipative medium is under consideration and that n represents the
relevant refractive index. Since (1.1) turns into

w2
x + w2

y = n2(x, y)

on replacing w by ±iw, the solutions to (1.1) whose real part is zero call for processes
of classical geometrical optics. (We denote

√−1 by i throughout and denote differ-
entiations either by ∂/∂x and ∂/∂y or by subscripts.) On the other hand, solutions
to (1.1) whose real part is different from zero are alleged to account for an optical
process that is inherently excluded from geometrical optics—the development of ev-
anescent waves. Evanescent waves occur beyond a caustic, on the dark side where
the geometric optical rays do not penetrate, or else on the optically thinner side of
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an interface that disconnects two different media and totally reflects a wave incident
from the optically denser side. A theory, put forward by Felsen and coworkers some
twenty years ago and sometimes called evanescent wave tracking (EWT), claims that
features of evanescent waves can be portrayed by retaining the asymptotic expansion

electromagnetic field ∼ exp[−iν · (time)] · (amplitude) · exp[iν · (eikonal)],

which lies at the very root of geometrical optics, but allowing the eikonal and the
components of the amplitude to take complex values; here the amplitude and the
eikonal are functions of space coordinates only, and ν, the wave number, tends to
infinity. A key to EWT amounts precisely to (1.1) and its three-dimensional analogue.
By the way, these same objects appear also in a more exhaustive asymptotic analysis
of the electromagnetic field, which leads to uniform expansions near caustics, and in
modeling deeper diffraction processes. More information can be found in [4], [5], [10],
[11], [14], [15], [18], [20], [21], [24], [25], [23], and in the recent surveys [3] and [6].

1.2. Preparatory results. We warm up by recollecting some material from
[26]. Let u and v be real-valued functions of x and y, and let

w = u + iv

be the complex-valued function of x and y whose real and imaginary parts are u and v,
respectively. w is a solution to (1.1) if and only if u and v obey the following system:

u2
x + u2

y − v2
x − v2

y + n2 = 0,
uxvx + uyvy = 0.

(1.2)

u and v obey (1.2) if and only if either

ux = uy = 0 and v2
x + v2

y = n2

or the condition

u2
x + u2

y > 0

and the following equations[
vx
vy

]
= ±

√
1 +

n2

u2
x + u2

y

[ −uy
ux

]
,(1.3)

∂

∂x

{√
1 +

n2

u2
x + u2

y

ux

}
+

∂

∂y

{√
1 +

n2

u2
x + u2

y

uy

}
= 0(1.4)

prevail.
Equations (1.3), which result from algebraic manipulations of (1.2), define a

Bäcklund transformation. (An account of Bäcklund transformations which fits well
into the present context is in [30].) Equation (1.4), which amounts to the integra-
bility of (1.3), is a second-order partial differential equation in divergence form. If
sufficiently smooth solutions are considered whose gradient is different from 0, (1.4)
can be recast in the form

[(u2
x + u2

y)2 + n2u2
y]uxx − 2n2uxuyuxy + [(u2

x + u2
y)2 + n2u2

x]uyy

+ n
(
u2
x + u2

y

)
(nxux + nyuy) = 0,(1.5)
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a semilinear second-order partial differential equation with polynomial nonlinearities.
Equations (1.4) and (1.5) are elliptic-parabolic or degenerate elliptic. A real-valued
solution u to either (1.4) or (1.5) is elliptic if u2

x + u2
y > 0; a degeneracy occurs at any

point where ux = uy = 0.
It should be stressed that (1.4) and (1.5) are not equivalent. First, perfectly

smooth solutions to (1.5) exist, whose gradients vanish exclusively in a set of measure
0, and that do not satisfy (1.4) in the sense of distributions; they make the left-hand
side (l.h.s.) of (1.4) a well-defined distribution which is supported by the set of the
critical points but is not zero. The identity

l.h.s. of (1.5) = (n2 + u2
x + u2

y)
1
2 (u2

x + u2
y)

3
2 × { l.h.s. of (1.4)}

gives evidence to such a statement. In the case in which n ≡ 1, one of the last
mentioned solutions is constructed by selecting a constant C such that 0 < C < 1
(e.g., C = 10−10) and letting

domain of u = {(x, y) : x2/(1− C2)− y2/C2 < 1},√
2 · u(x, y) = (((1− x2 − y2)2 + 4y2)1/2 + 1− x2 − y2)1/2;(1.6)

see [26, Proposition 2.2.1]. Second, we shall demonstrate in the present paper that a
conventional boundary condition need not determine a solution to (1.4) in the whole
of a domain prescribed in advance, whereas the same boundary condition does suit
appropriate solutions to (1.5).

The two theorems below, which bring critical points into relation with rays, ex-
press distinctive properties of the equations in hand. Recall the following. A point
where the gradient vanishes is qualified as critical. A critical point where the Hessian
determinant vanishes is qualified as degenerate. (The implicit function theorem states
that the gradient of a sufficiently smooth real-valued function acts as a diffeomorphism
from a neighborhood of a nondegenerate critical point into a neighborhood of the ori-
gin. Therefore, any nondegenerate critical point is isolated, and, conversely, all non-
isolated critical points are degenerate.) The geodesics belonging to the Riemannian
metric

n(x, y)
√

(dx)2 + (dy)2,(1.7)

i.e., the paths making ∫
n(x, y)

√
(dx/ds)2 + (dy/ds)2 ds

either stationary or a minimum, are nicknamed rays and are characterized by the
differential equation

(gradient of logn) · (principal normal) = 1.(1.8)

Theorem 1.1. Assume n is strictly positive and w is a smooth solution to (1.1).
If the gradient of Re(w) vanishes at some point, then the same gradient vanishes
everywhere on a ray passing through that point.

Theorem 1.2. Suppose n is smooth and strictly positive. Suppose u is smooth
and real-valued and satisfies either (1.4) or (1.5) in every open subset of its domain
where u2

x + u2
y > 0. We make the following assertions:

(i) Any critical point of u is degenerate.
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(ii) If ux = uy = 0 and u2
xx + 2u2

xy + u2
yy > 0 at some point, then ux = uy = 0

everywhere on a smooth curve passing through that point.
(iii) If ux = uy = 0 and u2

xx + 2u2
xy + u2

yy > 0 at every point of a smooth curve,
then this curve is a ray.

Theorem 1.1 makes arguments from [14] rigorous. It also offers a proof of the
following statement, which plays a role in the so-called theory of complex rays and
was alleged in [11, section 3.2]. Let w be a solution to (1.1); if a point obeys the
principle of locality, i.e., is a critical point of Re(w), then the phase path crossing that
point, i.e., the level line of Re(w) containing the point in question, is a ray.

Theorem 1.2 basically shows that (1.5), unlike more conventional second-order
partial differential equations, prevents its solutions from having isolated critical points.
The degeneracy at critical points is a feature of (1.5) that causes critical points to
cluster.

Another relevant feature is the architecture of (1.5), which exhibits geometric
ingredients. If critical points are ignored and h is defined by either

h = − (u2
x + u2

y

)−3/2 (
u2
yuxx − 2uxuyuxy + u2

xuyy
)

or

h = −div

( ∇u

|∇u|
)
,

then (1.5) reads both

|∇u| ∆u− n2

{
h−∇ log n · ∇u

|∇u|
}

= 0

and (
ux
|∇u|

∂

∂x
+

uy
|∇u|

∂

∂y

)
log
√

n2 + |∇u|2 = h.

(We denote the divergence operator by div and the gradient operator by∇. We denote
the length of a vector by vertical bars and the scalar product of two vectors by either
a dot or parentheses. For instance, we let

|∇u| =
√

u2
x + u2

y and ∇u · ∇v = (∇u,∇v) = uxvx + uyvy

in case that u and v are real-valued. As usual,

∆ = ∂2/∂x2 + ∂2/∂2y,

the Laplace operator.) Observe the following. First, the principal normal to the level
lines of u is

(1/h)
∇u

|∇u| ;

in other words, the value of h at any point (x, y) is a signed curvature at (x, y) of the
level line of u crossing (x, y). Second, the value of

∇ log n · ∇u

|∇u|
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at (x, y) equals a signed curvature at (x, y) of the ray which is tangent at (x, y) to a
level line of u. Third,

ux
|∇u|

∂

∂x
+

uy
|∇u|

∂

∂y

is a directional derivative along the lines of steepest descent of u. (The first statement
follows from Frenet’s formulas; the second statement is a consequence of the differ-
ential equation (1.8), which characterizes rays; the third one amounts to saying that
the lines of steepest descent are the trajectories of the gradient.)

1.3. Background. The present paper rests upon a background that we fix now.
We borrow terminology from [1], [28], [29], [31], [33], [34], and the theory of distribu-
tions and offer apropos details in the next paragraphs.

Equation (1.4) is reminiscent of the Euler–Lagrange equation of a variational
integral. Let

Ω = some open nonempty subset of R
2,(1.9)

let a real function f be defined by

f(ρ) =
1

2
[ρ
√

ρ2 + 1 + log(ρ +
√

ρ2 + 1)](1.10)

for every nonnegative ρ, and let a functional J be defined by

J(u) =

∫
Ω

f

( |∇u|
n

)
n2dxdy(1.11)

for every u from some set of nice real-valued functions of x and y.
Observe that, if the Riemannian metric (1.7) is in force, the expressions

|∇u|
n

and n2dxdy,

which appear in (1.11), equal the Riemannian length of the covariant derivative of u
and the Riemannian area element, respectively. As will be clear presently, the right-
hand side (r.h.s.) of (1.11) would become the Riemannian area of the graph of u if f
were replaced by its derivative f ′.

Equation (1.10) gives f(0) = 0,

f ′(ρ) =
√

ρ2 + 1,

and

f ′′(ρ) = ρ/f ′(ρ)

for every nonnegative ρ; moreover, f ′′′ = (f ′)−3. We infer that f is nonnegative, van-
ishes only at 0, and is strictly increasing and strictly convex—a good Young function.
Therefore, functional J is strictly convex, provided a convex domain is supplied to it.

Roughly, a domain that fits J well consists of real-valued functions defined in Ω
whose first-order derivatives are square-integrable in Ω. In fact, the formula

2f(ρ) = inf{λ + ρ2 · cothλ : λ > 0},
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which holds for every nonnegative ρ and follows from (1.10), implies either

2J(u) ≤ λ ·
∫

n2dxdy + cothλ ·
∫
|∇u|2dxdy

for every u and every positive λ or

J(u) ≤
∫

n2dxdy × f

(√∫ |∇u|2dxdy∫
n2dxdy

)
for every u. Moreover, an appropriate analysis shows that

sup

{
f(ρ1)− f(ρ2)

ρ1 − ρ2
: 0 ≤ ρ1 < ρ2, ρ

2
1 + ρ2

2 = 2M2

}
= f ′(M),

provided M is positive; hence

|J(u1)− J(u2)|2 ≤
∫
|∇u1 −∇u2|2dxdy

×
{∫

n2dxdy +
1

2

∫
|∇u1|2dxdy +

1

2

∫
|∇u2|2dxdy

}
for every u1 and u2.

As a working hypothesis, we propose any member of the domain of J to addi-
tionally obey a boundary condition, e.g., to take prescribed values on the boundary,
∂Ω, of Ω. (On occasion, ∂ denotes either differentiation or the operation which results
in the boundary of a point set.) Formal definitions follow.

(i) W 1,2(Ω) = completion of C∞(Ω) under the norm defined by

‖u‖2W 1,2(Ω) = 4

∫
Ω

u2(x2 + y2 + 4)−2 dxdy +

∫
Ω

|∇u|2dxdy.

W 1,2
0 (Ω) = closure of C∞0 (Ω) in W 1,2(Ω), i.e., the subset of W 1,2(Ω) consisting of

those functions that vanish on ∂Ω in a generalized sense. (As usual, C∞(Ω) is the set
of infinitely differentiable real-valued functions defined in Ω, and C∞0 (Ω) is the subset
of C∞(Ω) consisting of those functions that vanish out of a compact subset of Ω.)

(ii) Let j be any given member of W 1,2(Ω); define

domain of J = j + W 1,2
0 (Ω),(1.12)

i.e., the set of functions u from W 1,2(Ω) such that u− j belongs to W 1,2
0 (Ω).

The following assumptions will be made throughout. First, the measure of Ω in
Riemannian metric (1.7) is finite; i.e.,∫

Ω

n2dxdy <∞.(1.13)

Second, Ω is essentially different from R
2; i.e.,

measure of (R2 \ Ω) > 0.(1.14)

Note that Ω is allowed to be either bounded or unbounded. (Relevantly to the
present context, Ω may be an exterior domain, i.e., an open connected set whose com-
plement is compact.) In the former case, the measure (x2 + y2 + 4)−2dxdy, appearing
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in (i) above, may be virtually replaced by the standard Lebesgue measure dxdy; hence
W 1,2(Ω) coincides with the collection of functions that are square-integrable in Ω and
whose first-order weak derivatives are square-integrable in Ω—a standard Sobolev
space. In any case, the measure in question can be thought of as the area element
on the two-dimensional unit sphere S

2 parametrized via a stereographic projection;
hence W 1,2(Ω) can be identified with a space of standard Sobolev functions defined
in an open subset of S

2.
Theorem 2.1 below claims that J does possess a minimum and that the relevant

minimizer is unique within the domain specified above.
Since J was born convex, a necessary and sufficient condition for a member of

the domain of J to render J a minimum is the Euler–Lagrange equation. J fails
to be smoothly differentiable, however. Therefore, the Euler–Lagrange equation of
J involves a set-valued subdifferential and must be cast in the form of an inclusion.
Details follow.

Let u belong to the domain of J. If ϕ is any test function, i.e., any member of
W 1,2

0 (Ω), we have

J(u + ϕ)− J(u) =

∫
{(x,y):∇u(x,y) �=0}

[
f

( |∇u +∇ϕ|
n

)
− f

( |∇u|
n

)]
n2dxdy

+

∫
{(x,y):∇u(x,y)=0}

f

( |∇ϕ|
n

)
n2dxdy;

moreover,

t−1

∫
{(x,y):∇u(x,y) �=0}

[
f

( |∇u + t∇ϕ|
n

)
− f

( |∇u|
n

)]
n2dxdy

→
∫
{(x,y):∇u(x,y) �=0}

n

|∇u|f
′
( |∇u|

n

)
(∇u,∇ϕ) dxdy

as t approaches 0, and

t−1

∫
{(x,y):∇u(x,y)=0}

f

(
t|∇ϕ|
n

)
n2dxdy

→ f ′(0) ·
∫
{(x,y):∇u(x,y)=0}

|∇ϕ| n dxdy

as t approaches 0 through positive values. Therefore,

lim
t↓0

[J(u + tϕ)− J(u)] /t,

the one-sided directional derivative of J at u with respect to ϕ, equals∫
{(x,y):∇u(x,y) �=0}

√
1 + n2|∇u|−2 (∇u,∇ϕ) dxdy +

∫
{(x,y):∇u(x,y)=0}

|∇ϕ| n dxdy.

Recall that the subdifferential of J, ∂J, may be characterized thusly: (i) ∂J(u) is
a convex set of distributions; (ii) a distribution T belongs to ∂J(u) if and only if the
directional derivative of J at u with respect to ϕ is greater than or equals T (ϕ) for
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every test function ϕ. Consequently, ∂J(u) is the collection of those distributions T
satisfying ∫

{(x,y):∇u(x,y) �=0}

√
1 + n2|∇u|−2 (∇u,∇ϕ) dxdy

+

∫
{(x,y):∇u(x,y)=0}

|∇ϕ| n dxdy ≥ T (ϕ)

for every test function, ϕ. Such a formula implies that ∂J(u) �= ∅, i.e., that J is
everywhere subdifferentiable, and, moreover, that any member T of ∂J(u) obeys

T = −div{
√

1 + n2|∇u|−2∇u}
in any open set O contained in Ω and essentially contained in

{(x, y) ∈ Ω;∇u(x, y) �= 0},
i.e., satisfying

measure of O ∩ {(x, y) ∈ Ω : ∇u(x, y) = 0} = 0.

We see, in particular, that J is differentiable at u if the set of the critical points of u
has measure zero; J fails to be differentiable at u if the set of the critical points of u
has a positive measure.

The analysis provided may be summarized in this way. The appropriate Euler–
Lagrange equation of J reads

∂J(u) � 0,

an inclusion that implies the following: (1.4) holds in the sense of distributions in any
open subset of Ω which is essentially contained in {(x, y) ∈ Ω : ∇u(x, y) �= 0}.

In other words, a solution u to the Euler–Lagrange equation of J solves a free
boundary problem for (1.4), the relevant free boundary being

Ω ∩ ∂{(x, y) ∈ Ω : ∇u(x, y) �= 0}.
(Let a manifold M, a class of nice functions defined in M, and a differential equation
be given. Suppose a member u of the given function class and a subset N of M are
sought such that (i) u solves the given equation in any open subset of N or in any
open set which is essentially contained in N; (ii) u obeys special conditions either
on ∂N ∩M or out of N. It is usual to say that a free boundary problem is in hand.
∂N ∩M, the boundary of N relative to M, is called the free boundary. [16] and [19]
are exhaustive references on this matter.)

What is the geometry and the physical meaning of these free boundaries? The
results recorded in the present paper, though not equal to a full proof, give evidence to
the following statements. The free boundaries in question (i) either are empty or are
genuine curves—rather than collections of isolated points; and (ii) separate regions
where evanescent waves develop from regions where geometrical optics prevails—hence
coincide with caustics. (Recall that the envelopes of rays are nicknamed caustics, and
thus caustics are precisely the contours near and beyond which geometrical optics
break down.)

Samples of free boundaries, which affect solutions to (1.4), appear in [26, section
2.4] or can be detected in Figure 1.1.
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1.4. Summary of results. We have sketched an existence result that is a key to
our investigations; i.e., the minimizer u of an apposite functional both takes prescribed
boundary values and solves a free boundary value problem for (1.4). The main issues
of the present paper, which are detailed in section 2, can be summarized as follows.

Suppose n is differentiable and its first-order derivatives belong to L2
loc(Ω). (As

usual, L2(Ω) is the space of the real-valued functions that are square-integrable in Ω,
and L2

loc(Ω) is the space of functions ϕ such that ϕ · ψ belongs to L2(Ω) for every ψ
from C∞0 (Ω). Occasionally, we will need to replace 2 by some exponent p larger than
or equal to 1.)

(i) u is locally twice differentiable in a suitable generalized sense and obeys (1.5)
in the whole of domain Ω.

(ii) u is a viscosity solution to (1.5).
We loosely imitate ideas from [7], [8], [12], and [13, Chapter 10] and mean the

following: uε approaches u in an appropriate topology as ε approaches zero. Here ε
is a strictly positive constant parameter, and uε is the twice differentiable real-valued
function that obeys a restored version of (1.5) and takes the relevant boundary values.
Such a version results from adding the extra term

ε · n2
(
n2 + |∇u|2) ·∆u

to the l.h.s. of (1.5), i.e., reads

ε · n2
(
n2 + |∇u|2) ·∆u

+
{|∇u|4 + n2u2

y

} · uxx − 2n2uxuy · uxy +
{|∇u|4 + n2u2

x

} · uyy
+ n|∇u|2(∇n · ∇u) = 0.(1.15)

Observe that (1.15) is uniformly elliptic and that its leading part balances the first-
order terms properly; in other words, the injection of viscosity cures degeneracy. In
fact, if a11, a12, and a22 denote the coefficients of uxx, uxy, and uyy in (1.15) and ρ
and ω are defined by

|∇u| = nρ, ux : cosω = uy : sinω,

then [
a11 a12

a12 a22

]

= n4

[
cosω − sinω
sinω cosω

] [
ρ4+ε(1 + ρ2) 0

0 (1+ρ2)(ε+ρ2)

] [
cosω sinω
− sinω cosω

]
.(1.16)

Therefore, the eigenvalues of [aij ] obey

smaller eigenvalue

larger eigenvalue
≥ √ε · (2 +

√
ε)(1 +

√
ε)−2,

and we have

|first-order term|
larger eigenvalue

≤ (1 +
√
ε)−2 × |∇n|

n
× the first power of |∇u|.

Viscosity solutions are focused on in section 5, where we show that (i) a viscosity
solution to (1.5) is uniquely determined by its boundary values; (ii) a smooth solution
to the same equation need not do the same—therefore, a smooth solution to (1.5)
need not be a viscosity solution.
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Fig. 1.1. Typical plots of u and |∇u|. Here u is a viscosity solution to (1.5).

1.5. Future developments. Viscosity solutions to (1.5) can be computed effi-
ciently either by finite difference methods or by finite element methods. Details and
relevant codes will appear elsewhere.

By way of an example, let u be the viscosity solution that obeys (1.5) in the
domain

]0, 1[×]0, 1[

and satisfies the following boundary conditions:

u(x, 0) = u(x, 1) = 0 if 0 ≤ x ≤ 1,

u(0, y) = u(1, y) = [sin(πy)]2 if 0 ≤ y ≤ 1.

Figure 1.1 shows plots of u and |∇u|, respectively. There, u is approximated by the
solution to (1.15) that takes the boundary values in hand, ε = 10−8, finite differences
are used, and a 200 × 200 uniform grid is involved. Note a peculiarity—the solution
in question develops caustics, i.e., an inner plateau.

In part three of our work, which will be assembled in a future paper, we will
show how the present results, Bäcklund trasformations, and suitable extra ingredients
supply solutions to either (1.1) or (1.2) and guarantee their uniqueness.

The referees pointed out that Theorem 9.3 from [9] should be referenced here.
Such a theorem claims that if Ω is any open subset of R

2, ϕ is any Lipschitz continuous
map from Ω into R

2, and n is real-valued and continuous, then system (1.2) admits
solutions that are Lipschitz continuous in Ω and equal to ϕ on ∂Ω.

This theorem departs from our point of view for a couple of reasons. First, we
are interested in tractable solutions, i.e., smooth enough, unique, and actually com-
putable. Second, we do not address system (1.2) in the present paper. Treating (1.2)
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by the present methods cannot be done in few words and deserves further investiga-
tion.

2. Main results. Let J be defined by (1.9), (1.10), (1.11), and (1.12). Assume
conditions (1.13) and (1.14).

Let ε be a parameter satisfying

0 < ε ≤ 1/2.

Let a real function fε be defined by

fε(ρ) =

∫ ρ

0

t

(
1 + t2

ε + t2

) 1
2(1−ε)

dt(2.1)

for every nonnegative ρ; let a functional Jε be defined by

domain of Jε = domain of J,

Jε(u) =

∫
Ω

fε

( |∇u|
n

)
n2dxdy.(2.2)

Theorem 2.1. Functional J achieves a minimum and has a unique minimizer.
Theorem 2.2. (i) Functional Jε achieves a minimum and has a unique mini-

mizer.
(ii) Let u and uε denote the minimizer of J and the minimizer of Jε, respectively;

then uε converges to u both in L2
loc(Ω) and weakly in W 1,2(Ω) as ε approaches 0.

Theorem 2.3. Suppose n is differentiable and the first-order derivatives of n
belong to L2

loc(Ω); let u and be uε be as above. We make the following assertions:
(i) uε is twice differentiable in the usual generalized sense, the second-order deriva-

tives of uε belong to L2
loc(Ω), and uε obeys (1.15).

(ii) uε converges to u uniformly on every compact subset of Ω as ε approaches 0;
∇uε converges to ∇u in Lploc(Ω)× Lploc(Ω) for every p larger than or equal to 1.

(iii) u is twice differentiable in a generalized sense and obeys the inequality{∫
{(x,y):dist((x,y),R2\K)≥r}

|∇u|2
n2 + |∇u|2

(
u2
xx + 2u2

xy + u2
yy

)
dxdy

} 1
2

≤ 6

{∫
K

|∇n|2 dxdy

} 1
2

+ 2r−1

{∫
K

(
n2 + |∇n|2) dxdy

} 1
2

(2.3)

provided that K is a nice compact subset of Ω and r is a positive number. Moreover,
u makes

(n2 + |∇u|2)−
3
2 × {l.h.s. of (1.5)}

both locally integrable in Ω and equal to 0; in other words, u obeys (1.5) in the whole
of Ω.

3. Proofs of Theorems 2.1 and 2.2.

3.1. An inequality. A proof of Theorem 2.1 relies upon the following lemma.
Lemma 3.1. Let Ω obey (1.9) and (1.14), and let C be any constant such that

C ≥
{

4

π

∫
R2\Ω

dxdy

(x2 + y2 + 4)2

}−1

.
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Then

4

∫
R2

ϕ2(x2 + y2 + 4)−2 dxdy ≤ (C − 1)

∫
R2

(
ϕ2
x + ϕ2

y

)
dxdy

provided that ϕ is smooth enough and real-valued, and

support of ϕ ⊆ Ω.

Proof. The metric induced by

(dx)2 + (dy)2

[1 + (x2 + y2)/4]
2

makes R
2 a Riemannian manifold M that is locally conformal to a unit sphere and

enjoys the following properties. First, the Riemannian area element equals[
1 + (x2 + y2)/4

]−2
dxdy.

Second, the length of the Riemannian gradient of any smooth scalar field equals[
1 + (x2 + y2)/4

]× length of the Euclidean gradient.

Thus the Riemannian area of R
2 equals 4π, and

Riemannian area of Ω ≤ 4π(1− 1/C);

moreover, ∫
R2

ϕ2
[
1 + (x2 + y2)/4

]−2
dxdy =

∫
M

ϕ2,

and ∫
R2

(
ϕ2
x + ϕ2

y

)
dxdy =

∫
M

|Riemannian gradient of ϕ|2.

We must show that∫
M

ϕ2 ≤ 4(C − 1)

∫
M

|Riemannian gradient of ϕ|2.(3.1)

Let µ and ϕ∗ be the distribution function and the decreasing rearrangement of
ϕ, respectively. µ is the map from [0,∞[ into [0, 4π] such that

µ(t) = Riemannian area of {(x, y) : |ϕ(x, y)| > t}
for every nonnegative t. ϕ∗ can be defined as the map from [0, 4π] into [0,∞[ which
is right-continuous, decreasing, and equidistributed with ϕ, i.e., such that

length of {s ∈ [0, 4π] : ϕ∗(s) > t} = µ(t)

for every nonnegative t.
We have ∫

M

ϕ2 =

∫ 4π

0

[ϕ∗(s)]
2
ds(3.2)
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since the very definitions of µ and ϕ∗ ensure that both sides equal
∫∞
0

t2[−dµ(t)]. On
the other hand, a version of an important inequality (see, e.g., [2, section 4]) tells us
that ϕ∗ is locally absolutely continuous in ]0, 4π[ and satisfies∫

M

|Riemannian gradient of ϕ|2 ≥
∫ 4π

0

s(4π − s)

[
−dϕ∗

ds
(s)

]2
ds.(3.3)

The support of ϕ∗ is an interval whose endpoints are 0 and the Riemannian area
of the support of ϕ. Therefore, our hypotheses yield

support of ϕ∗ ⊆ [0, 4π(1− 1/C)].

Such an inclusion informs us that ϕ∗ vanishes in a neighborhood of 4π. Thus an
integration by parts and a Schwarz inequality give successively∫ 4π

0

[ϕ∗(s)]
2

ds = 2

∫ 4π

0

ϕ∗(s)s

[
−dϕ∗

ds
(s)

]
ds

and ∫ 4π

0

[ϕ∗(s)]
2

ds ≤ 4

∫ 4π

0

s2

[
−dϕ∗

ds
(s)

]2
ds.

The same inclusion also implies that∫ 4π

0

s2

[
−dϕ∗

ds
(s)

]2
ds ≤ (C − 1)

∫ 4π

0

s(4π − s)

[
−dϕ∗

ds
(s)

]2
ds.

We infer ∫ 4π

0

[ϕ∗(s)]
2

ds ≤ 4(C − 1)

∫ 4π

0

s(4π − s)

[
−dϕ∗

ds
(s)

]2
ds.(3.4)

Equation (3.2) and inequalities (3.3) and (3.4) result in (3.1).

3.2. Proof of Theorem 2.1. Uniqueness of the minimizer results from the strict
convexity of functional J, while existence follows from the items below via standard
arguments of the calculus of variations.

(i) Boundedness of sublevel sets of J . The formula

f(ρ) = sup

{
ρ · λ

sinhλ
+ ρ2 · sinh(2λ)− 2λ

4(sinhλ)2
: λ > 0

}
,

which holds for every nonnegative ρ and follows from (1.10), gives successively

J(u) ≥ λ

sinhλ
·
∫
|∇u| n dxdy +

sinh(2λ)− 2λ

4(sinhλ)2
·
∫
|∇u|2dxdy

for every u and every positive λ and either

J(u) ≥
(∫ |∇u|ndxdy)2∫ |∇u|2dxdy × f

( ∫ |∇u|2dxdy∫ |∇u|ndxdy
)
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or

J(u) ≥
∫
|∇u|ndxdy,

or else

J(u) ≥ 1

2

∫
|∇u|2dxdy(3.5)

for every u.
Lemma 3.1 implies that every u from j + W 1,2

0 (Ω) obeys

‖u‖W 1,2(Ω) ≤ (1 +
√
C) · ‖j‖W 1,2(Ω) +

√
C ·
{∫
|∇u|2dxdy

}1/2

.(3.6)

Inequality (3.5) tells us that J is coercive. Inequalities (3.5) and (3.6) imply that
the sublevel sets of J, i.e., the function classes

{u ∈ domain of J : J(u) ≤ Constant},

are all bounded in the metric of W 1,2(Ω).
(ii) Compactness. The classical Riesz compactness theorem or an oversimplified

version of the Rellich–Kondrachov theorem (see, e.g., [1, Chapter V] or [34, section
2.5]) ensures that any sequence which is bounded in W 1,2(Ω) contains some subse-
quence which converges in L2

loc(Ω). The structure of the appropriate dual space (see,
e.g., [1, Chapter III] or [34, section 4.3]) ensures that any sequence which is bounded
in W 1,2(Ω) and converges in L2

loc(Ω) does converge in the weak topology of W 1,2(Ω).
(iii) Lower semicontinuity of J . The real function g defined by

g(ρ) = 0 if 0 ≤ ρ ≤ 1,

= 1
2 [ρ
√

ρ2 − 1− log(ρ +
√

ρ2 − 1)] if ρ > 1

is the Young conjugate of f, i.e., obeys

f(ρ) = sup{ρ · λ− g(λ) : λ ≥ 0}

for every nonnegative ρ. Therefore, either an inspection or a theorem from [29] gives

J(u) = sup

{∫
(∇u, ϕ) dxdy −

∫
g

( |ϕ|
n

)
n2dxdy : ϕ ∈ L2(Ω)× L2(Ω)

}
(3.7)

for every u.
Since C∞0 (Ω) is dense in L2(Ω), the former can replace the latter in the preceding

formula. Hence an integration by parts gives

J(u) = sup

{
−
∫

u · div ϕ dxdy −
∫

g

( |ϕ|
n

)
n2dxdy :ϕ ∈ C∞0 (Ω)× C∞0 (Ω)

}
(3.8)

for every u.
The supremum of a family of continuous functionals is lower semicontinuous.

Thus (3.7) and (3.8) imply that J is lower semicontinuous with respect to both the
weak topology of W 1,2(Ω) and the topology of L2

loc(Ω).
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3.3. Proof of Theorem 2.2. Proposition (i) is a replica of Theorem 2.1 and
can be demonstrated similarly. Ad hoc ingredients, such as the convexity and the
coerciveness of functional Jε, are provided by (2.1) and (2.2) and by propositions (i),
(ii), and (iii) of Lemma A.1.

Proposition (ii) is straightforward. Since (1.11) and (2.2) give

|J(ϕ)− Jε(ϕ)| ≤
∫

Ω

n2 dxdy × sup {|f(ρ)− fε(ρ)| : 0 ≤ ρ <∞}

for every ϕ, proposition (iv) of Lemma A.1 implies that

sup
{|J(ϕ)− Jε(ϕ)| : ϕ ∈W 1,2(Ω)

}
= O(

√
ε);(3.9)

that is, Jε converges uniformly to J as ε approaches 0.
On the other hand,

0 ≤ J(uε)−minJ ≤ 2 · sup
{|J(ϕ)− Jε(ϕ)| : ϕ ∈W 1,2(Ω)

}
.(3.10)

Formulas (3.9) and (3.10) imply that

lim
ε→0

J(uε) = minJ ;

therefore,

{uεk}k=1,2,3,...

is a minimizing sequence relative to functional J whenever {εk}k=1,2,3,... obeys 0 <
εk ≤ 1/2 for every k and

lim
k→∞

εk = 0.

Suppose, by contradiction, that uε fails to approach u either in L2
loc(Ω) or in the

weak topology of W 1,2(Ω) as ε approaches 0. Then a neighborhood of u and a sequence
{εk}k=1,2,3,... exist such that uεk is out of this neighborhood and 0 < εk ≤ 1/(2k) for
every k.

The analysis made in section 3.2, while proving Theorem 2.1, shows that every
minimizing sequence relative to J contains a subsequence which converges to a min-
imizer of J both in L2

loc(Ω) and in the weak topology of W 1,2(Ω).
Therefore, a minimizer of J exists which is out of some neighborhood of u and

thus is different from u.
This is impossible because J is strictly convex, and a strictly convex functional

cannot have two different minimizers.

4. Proof of Theorem 2.3.

4.1. Proof of proposition (i) of Theorem 2.3. The proof is patterned on
conventional arguments of the calculus of variations and consists of the three items
below.

(i) Euler–Lagrange equation of Jε—weak form. Proposition (v) of Lemma A.1
tells us that

R
2 � (p, q) �→ n2 · fε(n−1 ·

√
p2 + q2)
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is twice continuously differentiable. If ρ and ω are defined by

p = nρ · cosω and q = nρ · sinω,

then the gradient of the above function equals

f ′ε(ρ) ·
[

cosω
sinω

]
,

and its Hessian matrix, H, is given by

H =

[
cosω − sinω
sinω cosω

] [
f ′′ε (ρ) 0

0 f ′ε(ρ)/ρ

] [
cosω sinω
− sinω cosω

]
.(4.1)

Proposition (vi) of Lemma A.1 tells us that the eigenvalues involved obey

0 < eigenvalues ≤ ε−
1

2(1−ε) .

Therefore, Taylor’s formula gives

Jε(u + ϕ)− Jε(u) =

∫
Ω

n

|∇u| · f
′
ε

( |∇u|
n

)
· (∇u,∇ϕ) dxdy + a remainder,

0 ≤ 2 · (remainder) ≤ ε−
1

2(1−ε)

∫
Ω

|∇ϕ|2 dxdy

provided that u and ϕ are endowed with square-integrable first-order derivatives. We
infer that Jε is differentiable at every u from its domain, and

J ′ε(u)(ϕ) =

∫
Ω

n

|∇u| · f
′
ε

( |∇u|
n

)
· (∇u,∇ϕ) dxdy

for every ϕ from W 1,2
0 (Ω); in other words,

J ′ε(u) = −div

{
n · f ′ε

( |∇u|
n

)
· ∇u

|∇u|
}

in the sense of distributions.
The analysis provided shows that the minimizer of Jε obeys the equation

div

{
n · f ′ε

( |∇u|
n

)
· ∇u

|∇u|
}

= 0(4.2)

in the sense of distributions. Thus the Euler–Lagrange equation of functional Jε
amounts precisely to (4.2).

(ii) Extra regularity of extremals. Now we resort to the hypothesis made on n and
claim that, if u is a distributional solution to (4.2) and

∇u ∈ L2
loc(Ω)× L2

loc(Ω),

then u is twice differentiable and its second-order derivatives are in L2
loc(Ω).

A proof of such a claim can be outlined in this way.
Let ρ and ω be defined by

p = nρ · cosω and q = nρ · sinω,
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let H be defined as in (4.1), and let either

F = [f ′ε(ρ)− ρf ′′ε (ρ)] · ∂n
∂x
·
[

cosω
sinω

]
or

F = [f ′ε(ρ)− ρf ′′ε (ρ)] · ∂n
∂y
·
[

cosω
sinω

]
;

consider the partial differential equation

div (H · ∇v) = div F.(4.3)

Proposition (ii) of Lemma 4.1 tells us that certain constants, depending only upon
ε, exist such that

0 < Constant ≤ eigenvalues of H ≤ Constant,

and

|F | ≤ Constant · |∇n|.
As a consequence, it can be shown that another constant, depending upon ε, exists
such that ∫

{(x,y):dist((x,y),R2\K)≥r}
|∇v|2 dxdy

≤ Constant ·
[∫

K

|∇n|2 dxdy + r−2

∫
K

v2 dxdy

]
(4.4)

provided that v is any distributional solution to (4.3), K is a nice compact subset of
Ω, and r is a positive number.

Inequality (4.4), which is sometimes referred to as Caccioppoli’s inequality, plus
an appropriate use of finite differences allow one to conclude that, if either

v = ∂u/∂x

or

v = ∂u/∂y,

then v actually obeys (4.3) in the sense of distributions and

∇v ∈ L2
loc(Ω)× L2

loc(Ω).

Details can be found, e.g., in [17, section 2.1], [22, sections 4.3 and 4.5], [27,
seciton 1.10 and 1.11]. The claim is demonstrated.

(iii) Euler–Lagrange equation of Jε—strong form. An appropriate smoothness
and appropriate symbols of relevant ingredients having been established, (4.3) can be
recast in the following form:[

f ′′ε (ρ)(cosω)2 +
f ′ε(ρ)

ρ
(sinω)2

]
uxx + 2

[
f ′′ε (ρ)− f ′ε(ρ)

ρ

]
cosω sinω uxy

+

[
f ′′ε (ρ)(sinω)2 +

f ′ε(ρ)

ρ
(cosω)2

]
uyy +

[
f ′ε(ρ)

ρ
− f ′′ε (ρ)

]
∇u · ∇ log n = 0.(4.5)
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As observed in the appendix, (2.1) implies (A.1) and (A.2); these equations give

f ′ε(ρ)

ρ
:
[
(1 + ρ2)(ε + ρ2)

]
=

[
f ′ε(ρ)

ρ
− f ′′ε (ρ)

]
: ρ2 = (1 + ρ2)−

1−2ε
2(1−ε) (ε + ρ2)−

3−2ε
2(1−ε)

for every nonnegative ρ.
Consequently, (4.5) coincides with (1.15). In other words, (1.15) is another form

of the Euler–Lagrange equation for Jε.

4.2. Two lemmas. A proof of proposition (ii) of Theorem 2.3 relies upon the
following lemmas.

Lemma 4.1. Suppose A and B are 2 × 2 real symmetric matrices. Let A be
positive definite, and let

κ =
smaller eigenvalue

larger eigenvalue
,

a condition number of A. Then

(trAB)2

detA
− 2 · detB ≥ κ · tr(B2).(4.6)

(Here tr and det stand for trace and determinant, respectively.)
Proof. Denote the entries of A and B by aij and bij , respectively; let

M =
1

a11a22 − a2
12

 a2
11

√
2a11a12 a2

12√
2a11a12 a11a22 + a2

12

√
2a12a22

a2
12

√
2a12a22 a2

22


and

m =

 b11√
2b12

b22

 .

We have

(trAB)2

detA
− 2 · detB = (Mm,m), tr(B2) = (m,m).

An inspection shows that the eigenvalues of M are 1/κ, 1, κ. Inequality (4.6)
follows.

Lemma 4.2. Let a real-valued function t be defined by

t(ρ) = tan

(
1

2
arctan ρ

)
(4.7)

for every nonnegative ρ, and let a mapping T be defined by

Tϕ = t

( |∇ϕ|
n

)
∇ϕ(4.8)

for every ϕ from a space of sufficiently smooth real-valued functions of x and y. As-
sume ∇(Tϕ) stands for the Jacobian matrix of Tϕ and

|∇(Tϕ)| =
√

tr [(∇(Tϕ))(∇(Tϕ))T ],
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a norm for such a matrix.
(i) If ρ and ω are defined by |∇ϕ| = n ρ, ϕx : cosω = ϕy : sinω, the following

equations hold:

∇(Tϕ) = −2

(
sin

(
1

2
arctan ρ

))2 [
nx cosω ny cosω
nx sinω ny sinω

]

+

[
cosω − sinω
sinω cosω

] [
1 0
0 1

2 + 1
2 (t(ρ))2

] [
cosω sinω
− sinω cosω

]

× |∇ϕ|√
n2 + |∇ϕ|2

[
ϕxx ϕxy
ϕxy ϕyy

]
,(4.9)

t

( |∇ϕ|
n

)[
ϕxx ϕxy
ϕxy ϕyy

]
= (t(ρ))2

[
nx cosω ny cosω
nx sinω ny sinω

]

+

[
cosω − sinω
sinω cosω

] [
1
2 + 1

2 (t(ρ))2 0
0 1

] [
cosω sinω
− sinω cosω

]
∇(Tϕ).(4.10)

(ii) The following inequalities hold:

|∇(Tϕ)| ≤ |∇n|+ |∇ϕ|√
n2 + |∇ϕ|2

√
ϕ2
xx + 2ϕ2

xy + ϕ2
yy,(4.11)

|∇ϕ|
2
√

n2 + |∇ϕ|2
√

ϕ2
xx + 2ϕ2

xy + ϕ2
yy ≤ |∇n|+ |∇(Tϕ)|.(4.12)

(iii) If ϕ1 and ϕ2 are real-valued and sufficiently smooth, then

|Tϕ1 − Tϕ2| ≤ |∇ϕ1 −∇ϕ2|(4.13)

and

|∇ϕ1 −∇ϕ2| ≤ |Tϕ1 − Tϕ2| 12 · (4n + |Tϕ1 − Tϕ2|)
1
2 .(4.14)

Proof. Equation (4.7) provides us with the properties

t(ρ) =
ρ

1 +
√

1 + ρ2
,

t(ρ) =
ρ

2
√

1 + ρ2

[
1 + (t(ρ))2

]
, t(ρ) =

ρ

2

[
1− (t(ρ))2

]
,

0 ≤ t(ρ) < 1,
ρ

2
√

1 + ρ2
≤ t(ρ) <

ρ√
1 + ρ2

,

ρ2t′(ρ) = 2

(
sin

(
1

2
arctan ρ

))2

, (ρt(ρ))′ =
ρ√

1 + ρ2
,(4.15)

which hold for every nonnegative ρ and play a role below.
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Differentiating both sides of (4.8) gives

∇(Tϕ) = −ρ2t′(ρ)

[
nx cosω ny cosω
nx sinω ny sinω

]

+

[
cosω − sinω
sinω cosω

] [
(ρt(ρ))′ 0

0 t(ρ)

] [
cosω sinω
− sinω cosω

] [
ϕxx ϕxy
ϕxy ϕyy

]
.

Equation (4.9) follows because of equations that appear in (4.15).
Inequalities (4.11) and (4.12) are easily derived from (4.9) and (4.10), respectively,

via some matrix algebra and inequalities that appear in (4.15).
Suppose ∇ϕ1 �= ∇ϕ2. Define ρ1 and ρ2 by

|∇ϕ1| = n ρ1 and |∇ϕ2| = n ρ2,

respectively; let θ be the angle between ∇ϕ1 and ∇ϕ2, i.e., be such that

0 ≤ θ ≤ π, |∇ϕ1||∇ϕ2| cos θ = (∇ϕ1,∇ϕ2).

Equation (4.8) gives successively

|Tϕ1 − Tϕ2|2
|∇ϕ1 −∇ϕ2|2 =

(ρ1t(ρ1))2 + (ρ2t(ρ2))2 − 2ρ1ρ2t(ρ1)t(ρ2) cos θ

ρ2
1 + ρ2

2 − 2ρ1ρ2 cos θ

and

∂

∂θ

|Tϕ1 − Tϕ2|2
|∇ϕ1 −∇ϕ2|2 = −2ρ1ρ2

(t(ρ1)− t(ρ2))(ρ2
1t(ρ1)− ρ2

2t(ρ2))

(ρ2
1 + ρ2

2 − 2ρ1ρ2 cos θ)2
sin θ.

We have either t(ρ1) ≤ t(ρ2) and ρ2
1t(ρ1) ≤ ρ2

2t(ρ2) or t(ρ1) > t(ρ2) and ρ2
1t(ρ1) >

ρ2
2t(ρ2) since both (4.7) and equations in (4.15) show that t is increasing. We infer

successively that

∂

∂θ

|Tϕ1 − Tϕ2|2
|∇ϕ1 −∇ϕ2|2 ≤ 0

and

ρ1t(ρ1) + ρ2t(ρ2)

ρ1 + ρ2
≤ |Tϕ1 − Tϕ2|
|∇ϕ1 −∇ϕ2| ≤

ρ1t(ρ1)− ρ2t(ρ2)

ρ1 − ρ2
.

On the other hand, we have

t

(
ρ1 + ρ2

2

)
≤ ρ1t(ρ1) + ρ2t(ρ2)

ρ1 + ρ2
and

ρ1t(ρ1)− ρ2t(ρ2)

ρ1 − ρ2
≤ 1

since equations in (4.15) show that 0 ≤ ρ → ρt(ρ) is convex and contractive. There-
fore,

t

( |∇ϕ1|+ |∇ϕ2|
2n

)
≤ |Tϕ1 − Tϕ2|
|∇ϕ1 −∇ϕ2| ≤ 1.

We conclude with (4.13) and the inequality

t

( |∇ϕ1 −∇ϕ2|
2n

)
|∇ϕ1 −∇ϕ2| ≤ |Tϕ1 − Tϕ2|,

which leads to (4.14) via algebraic manipulations.
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4.3. Proof of proposition (ii) of Theorem 2.3. Suppose K is a compact
subset of Ω whose interior is not empty and whose boundary is sufficiently smooth;
let r > 0, and define

K(r) = {(x, y) : dist((x, y),R2 \K) ≥ r}.

Let T be as in Lemma 4.2.
The following bounds hold.
Bound 1.∫

K(r)

|∇uε|2
n2 + |∇uε|2

[(
∂2uε
∂x2

)2

+ 2

(
∂2uε
∂x∂y

)2

+

(
∂2uε
∂y2

)2
]

dxdy

≤
∫
K

|∇n|2 dxdy + r−2

∫
K

(
n2 + |∇uε|2

)
dxdy.(4.16)

Bound 2. {∫
K(r)

|∇(Tuε)|2dxdy
} 1

2

≤ 2

{∫
K

|∇n|2 dxdy

} 1
2

+ r−1

{∫
K

(
n2 + |∇uε|2

)
dxdy

} 1
2

,(4.17)

∫
K

|Tuε|2 dxdy ≤
∫
K

|∇uε|2 dxdy.(4.18)

Bound 3. If p ≥ 1, then{∫
K

|∇uε′ −∇uε′′ |p dxdy

}2

≤
∫
K

|Tuε′ − Tuε′′ |p dxdy ×
∫
K

(4n + |Tuε′ − Tuε′′ |)p dxdy.(4.19)

Bound 4. ∫
Ω

|∇uε|2 dxdy ≤ Constant independent of ε.(4.20)

Proof of Bound 1. For notational convenience, we temporarily drop the subscript
ε and denote uε by u in short.

We have shown in proposition (i) of Theorem 2.3 that such a u obeys (1.15).
Equation (1.15) implies

|a11uxx + 2a12uxy + a22uyy| ≤ n · |∇u|3 · |∇n|,

where a11, a12, and a22 are given by (1.16). Equation (1.16) tells us that, in addition
to the inequalities appearing in section 1.4, [aij ] satisfies

smaller eigenvalue

larger eigenvalue
≥ |∇u|2

n2 + |∇u|2
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and

a11a22 − a2
12 ≥ n2 · |∇u|6.

Therefore, Lemma 4.1 gives

|∇u|2
n2 + |∇u|2

(
u2
xx + 2u2

xy + u2
yy

) ≤ 2
(
u2
xy − uxxuyy

)
+ |∇n|2,(4.21)

an instance of what is often called Bernstein’s inequality—see, e.g., [32].
An inspection shows that uxxuyy − u2

xy, the Hessian determinant of u, obeys

2
(
u2
xy − uxxuyy

)
= div

[
uyy −uxy
−uxy uxx

]
· ∇u;(4.22)

equivalently,

2
(
u2
xy − uxxuyy

)
dx ∧ dy = d

∣∣∣∣ ux uy
dux duy

∣∣∣∣ .(4.23)

Inequality (4.21) and either (4.22) or (4.23) give∫
K(r)

|∇u|2
n2 + |∇u|2

(
u2
xx + 2u2

xy + u2
yy

)
dxdy

≤
{∫

∂K(r)

(
n2 + |∇u|2)√(dx)2 + (dy)2

} 1
2

×
{∫

∂K(r)

|∇u|2
n2 + |∇u|2

(
u2
xx + 2u2

xy + u2
yy

) √
(dx)2 + (dy)2

} 1
2

+

∫
K(r)

|∇n|2 dxdy(4.24)

via the Gauss–Green formulas and the Cauchy–Schwarz inequality.
If we define two real-valued functions ϕ and ψ by

ϕ(r) =

∫
K(r)

|∇u|2
n2 + |∇u|2

(
u2
xx + 2u2

xy + u2
yy

)
dxdy −

∫
K

|∇n|2 dxdy

and

ψ(r) =

∫
K(r)

(
n2 + |∇u|2) dxdy,

then a version of the coarea formula (see, e.g., [34, section 2.7] and the equation

|∇dist((x, y),R2 \K)| = 1 for almost every (x, y) ∈ K

yield

−ϕ′(r) =

∫
∂K(r)

|∇u|2
n2 + |∇u|2

(
u2
xx + 2u2

xy + u2
yy

) √
(dx)2 + (dy)2
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and

−ψ′(r) =

∫
∂K(r)

(
n2 + |∇u|2) √(dx)2 + (dy)2

for almost every positive r. Thus (4.24) yields

ϕ(r) ≤
√

[−ϕ′(r)] [−ψ′(r)](4.25)

for almost every positive r.
As is easy to see, (4.25) implies

positive part of ϕ(r) ≤
{∫ r

0

dt

[−ψ′(t)]
}−1

for every positive r. Since

r2 ≤ ψ(0)

∫ r

0

dt

[−ψ′(t)] ,

we conclude that

positive part of ϕ(r) ≤ r−2ψ(0)(4.26)

for every positive r.
The inequality∫

K(r)

|∇u|2
n2 + |∇u|2

[(
∂2u

∂x2

)2

+ 2

(
∂2u

∂x∂y

)2

+

(
∂2u

∂y2

)2
]

dxdy

≤
∫
K

|∇n|2 dxdy + r−2

∫
K

(
n2 + |∇u|2) dxdy

follows from (4.26). Bound 1 is demonstrated.
Proof of Bound 2. Inequality (4.17) follows from Bound 1 and proposition (ii) of

Lemma 4.2. Inequality (4.18) follows from proposition (iii) of Lemma 4.2.
Proof of Bound 3. Such a bound follows from proposition (iii) of Lemma 4.2 and

the Cauchy–Schwarz inequality.
Proof of Bound 4. The inequalities

ρ2

2
+

1

4
log(1 + 2ρ2) ≤ fε(ρ) ≤ f(ρ),

which hold for every nonnegative ρ and appear in Lemma A.1, tell us that

Jε ≤ J

and

1

2

∫
Ω

|∇uε|2dxdy ≤ Jε(uε).

Since

Jε(uε) = minJε,
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we obtain the inequality

1

2

∫
Ω

|∇uε|2dxdy ≤ minJ,

which proves (4.20).
Bound 2, Bound 4, and the Rellich–Kondrachov compactness theorem (see, e.g.,

[1, Chapter VI] or [34, section 2.5]) ensure that a sequence {εk}k=1,2,3,... exists such
that 0 < εk ≤ 1/2 for every k, εk → 0 as k →∞, and

{Tuεk}k=1,2,3,... converges in Lploc(Ω)× Lploc(Ω)

for every p larger than or equal to 1. Consequently, Bound 3 ensures that

{∇uεk}k=1,2,3,... converges in Lploc(Ω)× Lploc(Ω)

for every p larger than or equal to 1. We now profit by a Sobolev inequality (see, e.g.,
[1, Chapter V] or [34, section 2.4] and infer that if K is any compact subset of Ω and

mk = (measure of K)−1 ·
∫
K

uεkdxdy,

then

{uεk −mk}k=1,2,3,...

converges uniformly in K.
Applying proposition (ii) of Theorem 2.2 leads to the conclusion.

4.4. Proof of proposition (iii) of Theorem 2.3. Proposition (ii) of Theorem
2.3, proposition (iii) of Lemma 4.2, and Bounds 2 and 4 (appearing in the preceding
subsection) show that

{∇(Tuε)}k=1,2,3,... converges weakly in
(
L2

loc(Ω)
)4

(4.27)

as ε approaches 0.
Having (4.27) in hand, we are in a position to resume a former notation, u, and

to establish the ultimate properties of u.
(i) Second-order derivatives. Previous ingredients, which include proposition (ii)

of Theorem 2.3, Bound 2, and (4.27), guarantee that Tu is differentiable and obeys{∫
{(x,y):dist((x,y),R2\K)≥r}

|∇Tu|2dxdy
} 1

2

≤ 2

{∫
K

|∇n|2dxdy
} 1

2

+ r−1

{∫
K

(
n2 + |∇u|2) dxdy} 1

2

(4.28)

if K is a nice compact subset of Ω and r > 0. Propositions (i) and (ii) of Lemma 4.2
and inequality (4.28) show that u is twice differentiable and obeys (2.3).

(ii) Differential equation. The underlying idea is recasting both (1.5) and (1.15)
in a form in which second-order derivatives of u are replaced by the entries of ∇(Tu)
and then letting ε approach zero. Details follow.
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Combining proposition (i) of Lemma 4.2 and the identity

|∇ϕ|2 · ∇
{
n · f ′ε

( |∇ϕ|
n

)
· ∇ϕ

|∇ϕ|
}

= nρ2[f ′ε(ρ)/ρ− f ′′ε (ρ)]

[
nxϕx nyϕx
nxϕy nyϕy

]

+

[
ϕx −ϕy
ϕy ϕx

] [
f ′′ε (ρ) 0

0 f ′ε(ρ)/ρ

] [
ϕx ϕy
−ϕy ϕx

] [
ϕxx ϕxy
ϕxy ϕyy

]
results in

|∇ϕ|3√
n2 + |∇ϕ|2 · ∇

{
n · f ′ε

( |∇ϕ|
n

)
· ∇ϕ

|∇ϕ|
}

= nρ2t(ρ)

{
2f ′ε(ρ)/ρ

1 + (t(ρ))2
− f ′′ε (ρ)

}[
nxϕx nyϕx
nxϕy nyϕy

]

+

[
ϕx −ϕy
ϕy ϕx

][
f ′′ε (ρ) 0

0
2f ′

ε(ρ)/ρ
1+(t(ρ))2

] [
ϕx ϕy
−ϕy ϕx

]
∇(Tϕ);(4.29)

here ϕ stands for any sufficiently smooth real-valued function, ρ = |∇ϕ| : n, and t is
given by (4.7).

As observed in the proof of Lemma A.1, (2.1) implies

ρf ′′ε (ρ)

f ′ε(ρ)
= 1− ρ2

(1 + ρ2)(ε + ρ2)

for every nonnegative ρ. Therefore,

0 < ρ ·
[
ρf ′′ε (ρ)

f ′ε(ρ)
− ρ2

1 + ρ2

]
≤
√
ε

2
(4.30)

for every nonnegative ρ. In other words, ρ2f ′′ε (ρ)/f ′ε(ρ) converges to ρ3/(1 + ρ2)
uniformly with respect to ρ as ε approaches 0.

Mimicking the proof of proposition (iii) of Lemma 4.2 shows that∣∣∣∣∣ n√
n2 + |∇uε|2

∇uε − n√
n2 + |∇u|2 ∇u

∣∣∣∣∣ ≤ |∇uε −∇u|.(4.31)

Proposition (ii) of Theorem 2.3, (4.27), (4.29), and inequalities (4.30) and (4.31)
enable us to conclude that

n−4|∇uε|4
[1 + n−2|∇uε|2]3/2

· |∇uε|
f ′ε (n−1|∇uε|) · div

{
n · f ′ε

( |∇uε|
n

)
· ∇uε
|∇uε|

}
(4.32)

approaches

|∇u|
n2 + |∇u|2 · tr

{
nρ2t(ρ)

[
2

1 + (t(ρ))2
− ρ2

1 + ρ2

] [
nxux nyux
nxuy nyuy

]

+

[
ux −uy
uy ux

][ ρ2

1+ρ2 0

0 2
1+(t(ρ))2

] [
ux uy
−uy ux

]
∇(Tu)

}
(4.33)

in L1
loc(Ω) as ε approaches 0.
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If expression (4.33) is named A and

U = l.h.s. of (1.5),

then (4.7) and (4.8) cause the following equation to hold:

A = |∇u|2 × (n2 + |∇u|2)−
5
2 × U.

Proposition (i) of Theorem 2.3 implies (4.2); hence expression (4.32) is zero. We
infer

A = 0.

Now we let

B = (n2 + |∇u|2)−
3
2 × U

and claim that

B = 0.

In fact, if

C =
√

2 · |∇u| ·
√

u2
xx + 2u2

xy + u2
yy + n · |∇n|,

then inequality (2.3) informs us that C is locally integrable. We have

|B| ≤ |∇u|√
n2 + |∇u|2 × C

because of the Cauchy–Schwarz inequality; moreover,

A =
|∇u|2

n2 + |∇u|2 ×B.

Thus A is locally integrable, irrespective of whether it is zero or not; B is locally
integrable too, and the following inequality holds:

|B| ≤ |A|1/3 · |C|2/3,
which proves the claim.

Equation (1.5) follows. The proof of Theorem 2.3 is complete.

5. Remarks on viscosity solutions.
Theorem 5.1. A viscosity solution to (1.5) is uniquely determined by its bound-

ary values. A smooth solution to (1.5) need not be uniquely determined by its boundary
values.

Proof. Theorems 2.2 and 2.3 demonstrate the following property: any viscosity
solution to (1.5) which takes the relevant boundary values minimizes the functional J.
The former assertion results. The latter results via the analysis of an ad hoc example,
as shown below.

Suppose n ≡ 1 and u is given by (1.6). (For the sake of brevity, we denote the
domain of u by Ω.) Arguments from [26, section 2.2] tell us the following. First, u is
a smooth solution to (1.5). Second,

−div

(√
1 + |∇u|2 ∇u

|∇u|
)
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Fig. 5.1. A plot of the difference between function u given by (1.6) and a viscosity solution to
(1.5) that takes the same boundary values as u.

equals

C∞0 (Ω) � ϕ �→ 2

∫ ∞
−∞

ϕ(0, y)dy

in the sense of distributions. The latter statement informs us that, provided that the
domain of J is adjusted as u + W 1,2

0 (Ω), the subdifferential of J at u consists of a
nonzero measure supported by the y-axis. Therefore, u does not minimize J. It follows
that u is not a viscosity solution to (1.5). In other words, u obeys (1.5) but differs
from the viscosity solution to (1.5) which is defined in Ω and equals u on ∂Ω.

Figure 5.1 helps one to visualize the proof above. It displays the difference between
the function u given by (1.6) and the viscosity solution to (1.5) that is defined in
]− 1

2 ,
1
2 [×]− 2, 2[ and takes the same values of u on the boundary of such a rectangle.

As a matter of fact, such a viscosity solution has been approximated by the solution uε
to (1.15) with ε = 10−8. Observe the scale in Figure 5.1; we stress that the difference
between the uε’s with ε = 10−8 and ε = 10−4 has order of magnitude 10−9.

Appendix. The following lemma, which analyzes (2.1) closely, is instrumental
in proving Theorem 2.2 and proposition (i) of Theorem 2.3.
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Lemma A.1. (i) fε is nonnegative, vanishes only at 0, and is strictly increasing
and strictly convex.

(ii) ρ
1 + ρ2

1/2 + ρ2
≤ f ′ε(ρ) ≤ f ′(ρ),

and

ρ2

2
+

1

4
log(1 + 2ρ2) ≤ fε(ρ) ≤ f(ρ)

for every nonnegative ρ.
(iii) If Cε is defined by

2Cε = ε
1−2ε

2(1−ε) + log(1 +
√
ε)− ε− 1

2

∫ 1

ε

t−
1

2(1−ε) −√t

1− t
dt,

then

fε(ρ) = f(ρ)− Cε + O(ρ−2)

as ρ→∞.
(iv) fε converges uniformly to f on [0,∞[ as ε approaches zero. In effect,

sup {|f(ρ)− fε(ρ)| : 0 ≤ ρ <∞} = O(
√
ε).

(v) f ′ε has a zero of multiplicity one at 0. In effect,

f ′ε(ρ) = ε−
1

2(1−ε) · ρ ·
[
1− 1

2ε
ρ2 +

3 + 2ε

8ε2
ρ4 − 15 + 14ε + 8ε2

48ε3
ρ6 + · · ·

]
if 0 ≤ ρ <

√
ε.

(vi)
f ′ε(ρ)

ρ
< ε−

1
2(1−ε)

and

f ′′ε (ρ) <
f ′ε(ρ)

ρ

if ρ > 0;

f ′′ε (ρ) ≥ 4ε
1−2ε

4(1−ε) [4 +
√

ε(12 + ε) + ε]

[2 +
√

ε(12 + ε) + ε]
1−2ε

2(1−ε) [
√

12 + ε + 3
√
ε]

3−2ε
2(1−ε)

and

f ′ε(ρ)− ρf ′′ε (ρ) ≤
√

2 ε−
ε

4(1−ε)
[√

12 + ε +
√
ε
] 3

2

[2 +
√

ε(12 + ε) + ε]
1−2ε

2(1−ε) [
√

12 + ε + 3
√
ε]

3−2ε
2(1−ε)

if ρ ≥ 0.
Proof. Equation (2.1) gives successively fε(0) = 0, and

f ′ε(ρ) = ρ

(
1 + ρ2

ε + ρ2

) 1
2(1−ε)

,(A.1)
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f ′′ε (ρ) = (1 + ρ2)−
1−2ε

2(1−ε) (ε + ρ2)−
3−2ε

2(1−ε) (ρ4 + ερ2 + ε)(A.2)

for every nonnegative ρ. Thus f ′ε(ρ) equals zero if ρ equals zero and is positive if ρ is
positive; f ′′ε (ρ) is positive if ρ is nonnegative. Proposition (i) follows.

Equation (A.1) yields

∂

∂ε
log f ′ε(ρ) =

1

2(1− ε)2

[
log

(
1 +

1− ε

ε + ρ2

)
− 1− ε

ε + ρ2

]
;

hence

∂

∂ε
f ′ε(ρ) < 0

for every positive ρ. In other words, ε �→ f ′ε(ρ) decreases if ρ > 0. Since the range of ε
is ]0, 1/2], proposition (ii) follows. (Incidentally, one might also show that ε �→ f ′ε(ρ)
is log-convex for every positive ρ. Observe also that the difference between the r.h.s.
and the l.h.s. of the second inequality in (ii) increases as ρ increases from 0 to ∞,
approaches (1 + log 2)/4 as ρ approaches ∞, and thus is smaller than 0.423286 . . . .)

Equation (2.1) reads

2fε(ρ) = (1− ε)

∫ (ε+ρ2)/(1+ρ2)

ε

t
1

2(1−ε)

(1− t)2
dt.

Integrations by parts and manipulations give

2fε(ρ) = (1 + ρ2)
1

2(1−ε) (ε + ρ2)
1−2ε

2(1−ε) − ε
1−2ε

2(1−ε)

+ log

√
1 + ρ2 +

√
ε + ρ2

1 +
√
ε

+
1

2

∫ (ε+ρ2)/(1+ρ2)

ε

t−
1

2(1−ε) − t−
1
2

1− t
dt

for every nonnegative ρ. Proposition (iii) follows.
Proposition (ii) ensures that f − fε is nonnegative and increasing, and proposi-

tion (iii) ensures that f(ρ)− fε(ρ) approaches Cε as ρ→∞. Hence

sup {|f(ρ)− fε(ρ)| : 0 ≤ ρ <∞} = Cε.

Proposition (iv) follows.
Proposition (v) follows from manipulations of (A.1).
Equation (A.1) tells us that f ′ε(ρ)/ρ decreases strictly from ε−1/(2(1−ε)) to 1 as ρ

increases from 0 to ∞. Equations (A.1) and (A.2) imply that

ρf ′′ε (ρ)

f ′ε(ρ)
= 1− ρ2

(1 + ρ2)(ε + ρ2)

if ρ > 0 and

f ′′′ε (ρ) = (1 + ρ2)−
3−4ε

2(1−ε) (ε + ρ2)−
5−4ε

2(1−ε) ρ(ρ4 − ερ2 − 3ε)

if ρ ≥ 0. Therefore, f ′′ε (ρ) is less than f ′ε(ρ)/ρ if ρ is positive; if ρ = 0, then f ′′′ε (ρ) and
f ′ε(ρ)− ρf ′′′ε (ρ) are an absolute maximum and an absolute minimum, respectively; if

ρ =

√
ε/2 +

√
3ε + ε2/4,

then f ′′′ε (ρ) and f ′ε(ρ)− ρf ′′′ε (ρ) are an absolute minimum and an absolute maximum,
respectively. Proposition (vi) follows.
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Abstract. An on-center off-surround network of three identical neurons with delayed feedback is
considered, and the effect of synaptic delay of signal transmission on the pattern formation and global
continuation of nonlinear waves is described. The spontaneous bifurcation of multiple branches of
periodic solutions is discussed, and their spatio-temporal patterns and mode interactions are studied
by using the symmetric bifurcation theory of delay differential equations coupled with representation
theory of standard dihedral groups, Liapunov’s direct method, LaSalle’s invariance principle, a priori
estimates, and differential inequalities.
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1. Introduction. We consider the system of delay differential equations

εẋj = −xj(t) + h(xj(t− 1))− [g(xj−1(t− 1)) + g(xj+1(t− 1))− 2g(xj(t− 1))],
(1.1)

where j = 1, 2, 3(mod 3), ε = τ−1 > 0, ẋj(t) =
d
dtxj(t), h, g ∈ C2(R;R) with h(0) =

g(0) = 0, or, equivalently, we consider

ẋj(t) = −xj(t) + f(xj(t− τ))− [g(xj−1(t− τ)) + g(xj+1(t− τ))](1.2)

with f = h+ 2g and τ = ε−1 > 0.
Such a system models the evolution of a network of three identical neurons with

delayed feedback. There are several reasons why we are particularly interested in
such a system. First, if h and g are monotonically increasing, then the network
modeled by (1.2) has the property that the self-feedback is excitatory (positive) and
the feedback from other neurons is inhibitory (negative). This property is called
the on-center off-surround characteristic of a network, and such networks have been
found in a variety of neural structures such as neocortex [1], cerebellum [2], and
hippocampus [3]. The network described by system (1.2) is of the minimal size among
all possible networks with such an on-center off-surround characteristic, and examples
of a network of three neurons include the basic rhythm generating circuits of central
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pattern generators [4, 5] and the canonical cortical circuit proposed in [1, 6]. See also
[7] for the motivation of the study of small neural populations. Second, much progress
has been made for the theory of dynamics (and, in particular, for the local bifurcation
and global continuation of periodic solutions) of scalar delay differential equations (see,
for example, [8, 9, 10]), and it is natural to see how the results and methods for scalar
delay differential equations can be extended to systems of delay differential equations.
Some progress has been made in this direction for a network of two neurons without
self-feedback and with delayed interaction (see, for example, [11, 12, 13, 14]). An
important factor to the progress in [11, 12, 13] is the fact that such a system can be
changed to the so-called unidirectional cyclic system of delay differential equations to
which the recently developed powerful theory of Mallet-Paret and Sell [15, 16] and
the geometric method developed in [17] can be applied. System (1.2), however, is
bidirectional in the sense that the growth rate for the ith cell (component) depends
on the feedback from the (i− 1)th and (i+1)th cells, and both with a delay. We hope
this detailed case study can provide motivation for a more general geometric theory
for the global dynamics of bidirectional cyclic systems of delay differential equations.
Third, we would like to use this detailed case study to demonstrate how systems
with time delay can be used for coupled oscillators. In particular, we note that, in
the classical work (see [18] for references), for a ring of cells coupled by diffusion
along the sides of a polygon, it was observed that if the coupling is instantaneous,
then Hopf bifurcations occur only when the state of each cell is described by at least
two variables, and our case study here provides an example in which a ring of cells
coupled by delayed nonlinear diffusion exhibits multiple symmetric Hopf bifurcations
even when the state of each cell is described by a single variable.

According to the Cohen–Grossberg–Hopfield convergence theorem [19, 20], under
standard assumptions on the sigmoid signal functions h and g and if τ = 0, then every
solution of system (1.2) is convergent to the set of equilibria. Such a convergence has
important applications to a number of areas such as content addressable memory and
pattern identification. On the other hand, it was observed in [21] and later confirmed
in a number of papers (see [14, 22, 23] and references therein) that large delay may
cause nonlinear oscillations in the network. Most of these nonlinear oscillations appear
in the form of periodic solutions with certain spatio-temporal structures and, if stable
under small perturbation, may represent memory of the network to be stored and
retrieved. Therefore, it is important to discuss the spatio-temporal patterns of these
periodic solutions and to describe the mode interaction along multiple branches of
such periodic solutions.

Needless to say, this is a very difficult task due to the infinite-dimensional nature
of the problem caused by the synaptic delay and the possible spatial structure of the
system (equivariant with respect to a D3-action). Some general theorems are avail-
able about the existence and global continuation of periodic solutions in symmetric
delay differential equations; see [23] for local bifurcation and [24] for global contin-
uation. However, applications of these general results to concrete systems such as
(1.1) involve several highly nontrivial tasks: (i) distribution of zeros in characteristic
equations which are usually transcendental and depend on parameters; (ii) symmetry
analysis on certain generalized eigenspaces of the generator of a linearized system and
identification of these spaces with a direct sum of two identical absolute irreducible
representations of D3; (iii) calculation of the so-called crossing numbers which are
related to the usual transversality condition in a standard Hopf bifurcation theory
(see section 2 for details); (iv) a priori estimation of the period and of the norm of a
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periodic solution.
In this paper, we show the following:
(a) The model equation (1.1) is equivariant with respect to a D3-action.
(b) There exists a sequence of critical values {τk} at which the linearization of

(1.1) at the zero solution has a pair of purely imaginary eigenvalues.
(c) The generalized eigenspace of the above eigenvalues is four-dimensional and

is the direct sum of two identical absolutely irreducible representations of D3.
(d) Near each τk, there exist eight branches of periodic solutions, two of which

are phase-locked, three are standing waves, and three are mirror-reflecting
waves.

(e) These bifurcations of periodic solutions exist for all τ > τk (global continua-
tion); the branches of mirror-reflecting waves and the branches of phase-locked
oscillations do not coincide, but coincidence of some branches of mirror-
reflecting waves and some branches of standing waves may occur through
periodic doubling.

The local bifurcation and the asymptotic forms of the aforementioned waves will
be described in section 2, and their global continuation will be studied in section 3.

2. The local existence and asymptotic forms of waves. We start by stating
a general result due to [23]. Let C denote the Banach space of continuous mappings
from [−1, 0] into R

n equipped with the supremum norm ||φ|| = sup−1≤θ≤0 |φ(θ)| for
φ ∈ C. In what follows, if σ ∈ R, A ≥ 0, and x : [σ − 1, σ +A]→ R

n is a continuous
mapping, then xt ∈ C, t ∈ [σ, σ +A], is defined by xt(θ) = x(t+ θ) for −1 ≤ θ ≤ 0.

Suppose that F : C → R
n is C2-smooth with F (0) = 0. Consider the delay

differential equation

ẋ(t) = τF (xt),

where τ > 0. Let Lφ = DF (0)φ with φ ∈ C. It is well known that the linear system

ẋ(t) = τLxt

generates a strongly continuous semigroup of linear operators with an infinitesimal
generator A(τ). Moreover, the spectrum σ(A(τ)) of A(τ) consists of eigenvalues which
are solutions of the characteristic equation

det∆(τ, λ) = 0, λ ∈ C,

where C is the set of all complex numbers, and the characteristic matrix ∆(τ, λ) is
given by

∆(τ, λ) = λIn − τL(eλ·In),

where In is the identity matrix on C
n, eλ·z is the mapping from [−1, 0] into C

n given
by eλ·z(θ) = eλθz for z ∈ C

n and θ ∈ [−1, 0], and L(eλ·In) = (L(eλ·e1), . . . , L(eλ·en))
with (e1, . . . , en) being the standard basis of R

n and L(eλ·ej) the image of eλ·ej under
the complexification of the linear mapping L for each j = 1, . . . , n.

We assume the following.
(G1) The characteristic matrix is continuously differentiable in τ ∈ (0,∞), and

there exist τ0 ∈ (0,∞) and β0 > 0 such that (i) A(τ0) has eigenvalues ±iβ0; (ii)
the generalized eigenspace, denoted by U(iβ0,−iβ)(A(τ0)), of these eigenvalues ±iβ0
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consists of only eigenvectors of A(τ0) associated with ±iβ0; (iii) all other eigenvalues
of A(τ0) are not integer multiples of ±iβ0.

To state the next assumption that describes the possible (spatial) symmetry of
the system considered, we need to introduce some group-theoretic preliminaries. We
refer to [18, 25] for more details.

In what follows, by a (compact) Lie group Γ, we mean a closed subgroup of
GL(Rn), the group of all invertible linear transformations of the vector space R

n into

itself. Note that the space of n×nmatrices may be identified with R
n2

, which contains
GL(Rn) as an open subset. We say that Γ is a closed subgroup of GL(Rn) if it is a
closed subset of GL(Rn) as well as a subgroup of GL(Rn). A specific example of a
Lie group is the special orthogonal group SO(n) that consists of all n× n matrices A
such that AAT = In and detA = 1, where AT is the transpose of A. In particular,
SO(2) consists precisely of the planar rotations

Rθ =

(
cosθ −sinθ
sinθ cosθ

)
.

In this way, SO(2) may be identified with the circle group S1, the identification being
Rθ → eiθ. Two other Lie groups will be used in this paper. The first is Zn, the
cyclic group of order n. (The order of a finite group is the number of elements that it
contains.) The second is the dihedral group Dn of order 2n that is generated by Zn
together with an element (called the flip) of order 2 that does not communicate with
Zn.

Let V be a topological vector space over the field of complex numbers C or the
field of real numbers R, and let GL(V ) be the group of isomorphisms of V onto
itself. We say that a compact Lie group Γ acts on V if there is a continuous mapping
Γ × V � (γ, v) → γ · v ∈ V such that (a) for each γ ∈ Γ, the mapping ργ : V → V
given by ργ(v) = γ · v is linear; (b) if γ1, γ2 ∈ Γ, then γ1 · (γ2 · v) = (γ1γ2) · v. The
mapping that sends γ ∈ Γ to ργ ∈ GL(V ) is called a representation of Γ on V . In
what follows, we shall write γv for γ · v for all γ ∈ Γ and v ∈ V .

If Γ acts on both V and W and if there is a linear isomorphism A : V →W such
that A(γv) = γ(Av) for all v ∈ V and γ ∈ Γ, then we say the Γ actions on V and W
are isomorphic, and such a linear isomorphism is called a Γ-isomorphism.

Let Γ act on V , and let W be a subspace of V . We say that W is Γ-invariant if
γw ∈ W for every γ ∈ Γ and w ∈ W . We thus obtain a Γ-action on W called the
restricted action of Γ on W .

Finally, if Γ acts on V , we say a linear mapping F : V → V is Γ-equivariant if
F (γv) = γF (v) for all γ ∈ Γ and v ∈ V . A representation of Γ on V is absolutely
irreducible if the only linear mappings on V that are Γ-equivariant are scalar multiples
of the identity. A Γ-invariant subspace W of V is Γ-irreducible if the only invariant
subspaces of W are {0} and W . It is known that up to a Γ-isomorphism there are
only a finite number of distinct Γ-irreducible subspaces, denoted by U1, . . . , Us. If we
define Wk as the sum of all Γ-irreducible subspaces of V that are Γ-isomorphic to Uk,
then V = W1 ⊕ · · ·Ws, and this is called an isotypical decomposition of V . In the
case in which Γ = ZN and V = C

n for two fixed positive integers n and N , every
irreducible subspace must be one-dimensional, and the restricted action of Γ to any
such irreducible subspace is Γ-isomorphic to the Γ-action on C defined by ρ · z = ρjz
for some nonnegative integer j and for all z ∈ C, where ρ is the generator of ZN ≤ S1.

With this short introduction to group-theoretic preliminaries, we can now state
the next set of assumptions.
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(G2) There exists a compact Lie group Γ acting on R
n such that F is Γ-equivariant;

i.e., F (γφ) = γF (φ) for (γ, φ) ∈ Γ×C, where γφ ∈ C is given by (γφ)(θ) = γφ(θ), θ ∈
[−1, 0].

Note that the real Γ-action on R
n can be naturally extended to a Γ-action on C

n

by

γ(u+ iv) = γu+ iγv, γ ∈ Γ, u, v ∈ R
n.

This action is called the complexification of the Γ-action on R
n. In what follows,

we will simply call the complexification of Γ on C
n the Γ-action on C

n. Due to the
Γ-equivariance of F , we can easily show that Ker∆(τ0, iβ0) is an invariant subspace of
C
n with respect to the complexification of the Γ-action on R

n. We need the following
assumption.

(G3) There exists a real m-dimensional absolutely irreducible representation of Γ
on V such that the restricted action of Γ on Ker∆(τ0, iβ0) is isomorphic to the action
of Γ on V ⊕ V defined by γ(v1, v2) = (γv1, γv2) for γ ∈ Γ, v1, v2 ∈ V .

Let {bj1 + ibj2}mj=1 be a basis for Ker∆(τ0, iβ0), and for any β > 0 define
sinβ , cosβ ∈ C([−1, 0];R) by

sinβ(θ) = sin(βθ), cosβ(θ) = cos(βθ), θ ∈ [−1, 0].
Then the columns of Φτ0 = (ε1, . . . , ε2m) form a basis for U(iβ0,−iβ0)(A(τ0)), where

εj = sinβ0bj1 + cosβ0bj2,

εm+j = cosβ0
bj1 − sinβ0

bj2, 1 ≤ j ≤ m.

It can be shown (see Lemma 2.1 of [23]) that there exist δ0 > 0 and a continuously
differentiable function λ : (τ0 − δ0, τ0 + δ0) → C such that λ(τ0) = iβ0, λ(τ) is an
eigenvalue of A(τ), U(λ(τ),λ(τ))(A(τ)) consists of eigenvectors of A(τ) associated with

these eigenvalues, and dimU(λ(τ),λ(τ))(A(τ)) = dimU(iβ0,−iβ0)(A(τ0)).
We will require the following transversality condition.
(G4) d

dτReλ(τ) |τ=τ0 �= 0.
Let ω = 2π

β0
. Denote by Pω the Banach space of all continuous ω-periodic map-

pings x : R→ R
n. Then Γ× S1 acts on Pω by

(γ, eiθ)x(t) = γx

(
t+

θ

2π
ω

)
, (γ, eiθ) ∈ Γ× S1, x ∈ Pω.

Denote by SPω the subspace of Pω consisting of all ω-periodic solutions of ẋ(t) =
τ0Lxt. Then, for each subgroup Σ ≤ Γ× S1, the fixed point set

Fix(Σ, SPω) = {x ∈ SPω; (γ, θ)x = x for all (γ, θ) ∈ Σ}
is a subspace.

Under assumption (G1), the columns of U(t) = Φτ0(0)e
B(τ0)t, t ∈ R, form a basis

for SPω, where

B(τ0) =

(
0 −β0Im

β0Im 0

)
.

Also, SPω is a Γ× S1-invariant subspace of Pω (see Lemma 2.3 of [23]). We can now
state the general symmetric local Hopf bifurcation theorem (Theorem 2.1 of [23]).
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Lemma 2.1. Assume that (G1)–(G4) are satisfied and dimFix(Σ, SPω) = 2 for
some Σ ≤ Γ × S1. Then, for a chosen basis {δ1, δ2} of Fix(Σ, SPω), there exist
constants a0 > 0, τ∗0 > 0, σ0 > 0, C1-smooth functions τ∗ : R

2
a0
→ R, ω∗ :

R
2
a0
→ (0,∞), and a C1-smooth mapping x∗ : R

2
a0
→ C(R;Rn), where R

2
a0

= {a ∈
R

2; |a| < a0} and C(R;Rn) is the Banach space of all continuous mappings from R

into R
n equipped with the supremum norm such that, for each a ∈ R

2
a0
, x∗(a) is an

ω∗(a)-periodic solution of ẋ(t) = τF (xt) with τ = τ∗(a), and

γx∗(a)(t) = x∗(a)
(
t− ω∗(a)

ω
θ

)
, (γ, θ) ∈ Σ,

x∗(0) = 0, ω∗(0) = ω, τ∗(0) = τ∗0 ,
x∗(a) = (δ1, δ2)a+ o(|a|) as |a| → 0.

Furthermore, for |τ − τ0| < τ∗0 , |ω̃ − 2π
β0
| < σ0, every ω̃-periodic solution of ẋ(t) =

τF (xt) with ‖xt‖ < σ0, γx(t) = x(t − ω̃
ω θ) for (γ, θ) ∈ Σ, and t ∈ R must be of the

above type.
We now consider the system (1.1). It arises from

ẏj(t) = −yj(t) + h(yj(t− τ))− [g(yj−1(t− τ)) + g(yj+1(t− τ))− 2g(yj(t− τ))]
with ε = τ−1 and by the change of variable xj(t) = yj(τt). We will apply Lemma 2.1
to (1.1) with F : C → R

3 by

(F (φ))j = −φj(0) + h(φj(−1))− [g(φj−1(−1)) + g(φj+1(−1))− 2g(φj(−1))]
for φ ∈ C := C([−τ, 0];R3) and j(mod 3).

Proposition 2.2. Let Γ = D3 be the dihedral group of order 2× 3. Denote by ρ
the generator of the cyclic subgroup Z3 ≤ D3 and by κ the flip. Define the action of
Γ on R

3 by {
(ρx)j = xj+1, j(mod 3),
(κx)2 = x3, (κx)3 = x2, (κx)1 = x1, x ∈ R

3.
(2.1)

Then F is Γ-equivariant.
Proof. For φ ∈ C and j(mod 3), we have

(F (ρφ))j

= −(ρφ)j(0) + h((ρφ)j(−1))− [g((ρφ)j−1(−1)) + g((ρφ)j+1(−1))− 2g((ρφ)j(−1))]
= −φj+1(0) + h(φj+1(−1))− [g(φj(−1)) + g(φj+2(−1))− 2g(φj+1(−1))]
= ((ρF )(φ))j

and

(F (κφ))1

= −(κφ)1(0) + h((κφ)1(−1))− [g((κφ)3(−1)) + g((κφ)2(−1))− 2g((κφ)1(−1))]
= −φ1(0) + h(φ1(−1))− [g(φ2(−1)) + g(φ3(−1))− 2g(φ1(−1))]
= ((κF )(φ))1.

Moreover,

(F (κφ))2

= −(κφ)2(0) + h((κφ)2(−1))− [g((κφ)1(−1)) + g((κφ)3(−1))− 2g((κφ)2(−1))]
= −φ3(0) + h(φ3(−1))− [g(φ1(−1)) + g(φ2(−1))− 2g(φ3(−1))]
= ((κF )(φ))2.
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Similarly, (F (κφ))3 = ((κF )(φ))3. This completes the proof.
Let

γ = h′(0), β = g′(0).(2.2)

Then the linearization of (1.1) at x = 0 ∈ R
3 is

1

τ
Ẋj(t) = −Xj(t) + γXj(t− 1)− β[Xj−1(t− 1) +Xj+1(t− 1)− 2Xj(t− 1)],(2.3)

where j = 1, 2, 3(mod 3). The characteristic equation takes the form

det∆(τ, λ) = 0,

where

∆(τ, λ) = (λ+ τ)I3 − τMe−λ, λ ∈ C,(2.4)

and

M =

γ + 2β −β −β
−β γ + 2β −β
−β −β γ + 2β

 .(2.5)

Proposition 2.3. det∆(τ, λ) = (λ+ τ − γτe−λ)[λ+ τ − (γ + 3β)τe−λ]2.
Proof. Let χ = ei

2π
3 and

vk = (1, χk, χ2k)T , k = 0, 1, 2.(2.6)

Clearly, v0 = (1, 1, 1)T and v2 = v1. Let

Ck = {vkz; z ∈ C}, k = 0, 1, 2.

Then

C
3 = C0 ⊕ C1 ⊕ C2

and

(∆(τ, λ)vk)j

= (λ+ τ − (γ + 2β)τe−λ)(vk)j + τβe−λ(ei
2π
3 k + e−i

2π
3 k )(vk)j

=

[
λ+ τ − τ(γ + 2β)e−λ + 2βτcos

(
2π

3
k

)
e−λ

]
(vk)j

=
[
λ+ τ −

(
γ + 4βsin2

(π
3
k
))
τe−λ

]
(vk)j .

That is,

∆(τ, λ)|Ck

= λ+ τ −
(
γ + 4βsin2

(π
3
k
))
τe−λ

=

{
λ+ τ − γτe−λ if k = 0,
λ+ τ − (γ + 3β)τe−λ if k = 1, 2.
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This completes the proof.
We now make the following assumption.
(H1) |γ| < 1, γ + 3β > 1.
The critical values of τ where the characteristic equation has purely imaginary

zeros are described in the following.
Proposition 2.4. Let A(τ) denote the infinitesimal generator of the semigroup

generated by system (2.3). Assume that (H1) is satisfied. Defineβk = 2kπ − arccos
1

γ + 3β
,

τk = −βkcot βk, k ≥ 1.

Then the following hold.
(i) For every fixed τ ≥ 0, all zeros of λ+ τ − γτe−λ have negative real parts.
(ii) At (and only at) τ = τk, A(τ) has purely imaginary eigenvalues. These

eigenvalues are given by ±iβk with βk ∈ (2kπ − π
2 , 2kπ).

(iii) All other eigenvalues of A(τk) are not integer multiples of ±iβk.
(iv) The generalized eigenspace U(iβk,−iβk)(A(τk)) consists of eigenvectors of A(τk)

associated with ±iβk only and

U(iβk,−iβk)(A(τk)) =

{
4∑
i=1

xiεi; xi ∈ R, i = 1, . . . , 4

}
,

where, for θ ∈ [−1, 0],
ε1(θ) = Re(eiβkθv1) = cos(βkθ)Rev1 − sin(βkθ)Imv1,

ε2(θ) = Im(eiβkθv1) = sin(βkθ)Rev1 + cos(βkθ)Imv1,

ε3(θ) = Re(eiβkθv2) = cos(βkθ)Rev1 + sin(βkθ)Imv1,

ε4(θ) = Re(eiβkθv2) = sin(βkθ)Rev1 − cos(βkθ)Imv1.

Proof. (i) Let λ = u+ iv be a zero of λ+τ−γτe−λ. Then we get v = −γτe−usinv
and u+ τ = γτe−ucosv, from which it follows that

γ2τ2e−2u = v2 + (u+ τ)2.

Consequently, u < 0, for otherwise the left-hand side of the above equality is strictly
less than τ2, while the right-hand side is larger than or equal to τ2.

To verify (ii)–(iv), let λ = iv with v > 0 be a solution of λ+τ−(γ+3β)τe−λ = 0.
Then {

τ = (γ + 3β)τcosv ,

v = −(γ + 3β)τsinv .

So

tan v = −v
τ
,

from which it follows that tan v < 0, and hence v /∈ [0, π2 ] + Zπ; here Z is the set of
all integers. Therefore, we must have

v = 2kπ − arccos
1

γ + 3β
= βk, k ≥ 1,
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and

τ = −βk cotβk = τk.

Therefore, λ+ τ − (γ+3β)τe−λ = 0 has purely imaginary roots (given by iβk) if and
only if τ = τk for some k ≥ 1.

It is well known that φ ∈ C([−1, 0];C3) is an eigenvector of A(τk) associated
with the eigenvalue iβk if and only if φ(θ) = eiβkθz,−1 ≤ θ ≤ 0, for some vector
z ∈ C

3 such that ∆(τk, iβk)z = 0 (see, for example, pp. 198 in [9]). From the proof of
Proposition 2.3, we then have v ∈ 〈v1, v2〉, the complex space spanned by v1 and v2.
Similar arguments apply to −iβk. Therefore, the eigenspace of A(τk) associated with
±iβk is spanned by eiβkθv1, e

iβkθv2, e
−iβkθv1, and e

−iβkθv2. Therefore, this space has
the real basis {ε1, ε2, ε3, ε4}. On the other hand, the eigenspace of A(τk) associated
with iβk is of dimension 2 and the algebraic multiplicity of λ = iβk as a zero of
det∆(τk, λ) = 0 is also 2. So the well-known folk theorem in functional differential
equations (see [26] or Theorem 4.2 in [9]) implies that U(iβk,−iβk)(A(τk)) must coincide
with the eigenspace of A(τk) associated with ±iβk. This completes the proof.

Proposition 2.5. Let Γ = D3 act on R
2 by

ρ

(
x1

x2

)
=

(
− 1

2 −
√

3
2√

3
2 − 1

2

)(
x1

x2

)
,

κ

(
x1

x2

)
=

(
x1

−x2

)
,

(
x1

x2

)
∈ R

2.

Then R
2 is an absolutely irreducible representation of Γ, and the restricted action of

Γ on Ker∆(τk, iβk) is isomorphic to the action of Γ on R
2 ⊕ R

2.

Proof. The proof for the absolute irreducibility of the representation of Γ on R
2

is straightforward and can be found in, for example, [18]. Clearly,

Ker∆(τk, iβk) = {(x1 + ix2)v1 + (x3 + ix4)v2; xi ∈ R, i = 1, . . . , 4}.

Define

J((x1 + ix2)v1 + (x3 + ix4)v2) = (x1 + x3, x2 − x4, x2 + x4, x3 − x1)
T .

Clearly, J : Ker∆(τk, iβk) ∼= R
4 is a linear isomorphism. Note that

ρ[(x1 + ix2)v1 + (x3 + ix4)v2]

= (x1 + ix2)e
i 2π3 v1 + (x3 + ix4)e

−i 2π3 v2

=

[(
−1

2
x1 −

√
3

2
x2

)
+ i

(
−1

2
x2 +

√
3

2
x1

)]
v1

+

[(
−1

2
x3 +

√
3

2
x4

)
+ i

(
−1

2
x4 −

√
3

2
x3

)]
v2

and

κ[(x1 + ix2)v1 + (x3 + ix4)v2] = (x1 + ix2)v2 + (x3 + ix4)v1.
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Therefore,

J(ρ[(x1 + ix2)v1 + (x3 + ix4)v2])

=

(
−1

2
(x1 + x3)−

√
3

2
(x2 − x4),−1

2
(x2 − x4) +

√
3

2
(x1 + x3),

− 1

2
(x2 + x4)−

√
3

2
(x3 − x1),−1

2
(x3 − x1) +

√
3

2
(x2 + x4)

)T
= ρJ((x1 + ix2)v1 + (x3 + ix4)v2)

and

J(κ[(x1 + ix2)v1 + (x3 + ix4)v2])

= (x3 + x1, x4 − x2, x4 + x2, x1 − x3)
T

= κJ [(x1 + ix2)v1 + (x3 + ix4)v2].

This completes the proof.
Proposition 2.6. For each fixed k ≥ 1, there exist δk > 0 and a C1-mapping

λk : (τk−δk, τk+δk)→ C such that λk(τk) = iβk and λk(τ)+τ−(γ+3β)τe−λk(τ) = 0
for all τ ∈ (τk − δk, τk + δk). Moreover, d

dτReλk(τ)|τ=τk > 0.
Proof. The existence of δk and the mapping λk follow from the implicit function

theorem. We now substitute λ = λk(τ) into λ+ τ − (γ+3β)τe−λ = 0, differentiating
the equality with respect to τ , to get

d

dτ
Reλk(τ)|τ=τk

= Re
−1 + (γ + 3β)e−λ

1 + τ(γ + 3β)e−λ

∣∣∣∣
λ=iβk,τ=τk

= Re
λ/τ

1 + (λ+ τ)

∣∣∣∣
λ=iβk,τ=τk

=
β2
k

τk[(1 + τk)2 + β2
k]
.

This completes the proof.
Fix k ≥ 1. Let ω = 2π

βk
, and let Pω be the Banach space of continuous ω-periodic

mappings x : R→ R
3. Γ× S1 acts on Pω by

(γ, eiθ)x(t) = γx(t+ θ), eiθ ∈ S1, x ∈ Pω, γ ∈ Γ.

We will write γx for (γ, 1)x when γ ∈ Γ and x ∈ Pω. Let SPω denote the subspace of
Pω consisting of all ω-periodic solutions of (2.3) with τ = τk. Then

SPω = {x1ε
∗
1 + x2ε

∗
2 + x3ε

∗
3 + x4ε

∗
4; xi ∈ R, i = 1, . . . , 4},

where 
ε∗1(t) = cos(βk t)w1 − sin(βk t)w2,

ε∗2(t) = sin(βk t)w1 + cos(βk t)w2,

ε∗3(t) = cos(βk t)w1 + sin(βk t)w2,

ε∗4(t) = sin(βk t)w1 − cos(βk t)w2,
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and

w1 =

(
1,−1

2
,−1

2

)T
, w2 =

(
0,

√
3

2
,−
√
3

2

)T
.

Proposition 2.7. With ε∗i given above, we have
(i) κε∗1 = ε∗3, κε

∗
2 = ε∗4, κε

∗
3 = ε∗1, κε

∗
4 = ε∗2;

(ii) ρε∗1 = − 1
2ε
∗
1−
√

3
2 ε
∗
2, ρε

∗
2 = − 1

2ε
∗
2+
√

3
2 ε
∗
1, ρε

∗
3 = − 1

2ε
∗
3+
√

3
2 ε
∗
4, ρε

∗
4 = − 1

2ε
∗
4−
√

3
2 ε
∗
3.

Proof. (i) is obvious from the definition of the action of κ in Proposition 2.2. To
prove (ii), we note that

ρ

 1

− 1
2

− 1
2

 =

 −
1
2

− 1
2

1

 = −1

2

 1

− 1
2

− 1
2

− √3
2

 0
√

3
2

−
√

3
2

 ,

ρ

 0
√

3
2

−
√

3
2

 =


√

3
2

−
√

3
2

0

 =

√
3

2

 1

− 1
2

− 1
2

− 1

2

 0
√

3
2

−
√

3
2

 .
So

ρε∗1 = cos(βk t)

[
−1

2
w1 −

√
3

2
w2

]
− sin(βk t)

[√
3

2
w1 − 1

2
w2

]
= −1

2
ε∗1 −

√
3

2
ε∗2,

ρε∗2 = sin(βk t)

[
−1

2
w1 −

√
3

2
w2

]
+ cos(βk t)

[√
3

2
w1 − 1

2
w2

]
=

√
3

2
ε∗1 −

1

2
ε∗2,

ρε∗3 = cos(βk t)

[
−1

2
w1 −

√
3

2
w2

]
+ sin(βk t)

[√
3

2
w1 − 1

2
w2

]
= −1

2
ε∗3 +

√
3

2
ε∗4,

ρε∗4 = sin(βk t)

[
−1

2
w1 −

√
3

2
w2

]
− cos(βk t)

[√
3

2
w1 − 1

2
w2

]
= −
√
3

2
ε∗3 −

1

2
ε∗4.

This completes the proof.
Note that, if x is a periodic solution of (1.1), then so is (γ, eiθ)x for every (γ, eiθ) ∈

Γ×S1. If the symmetry of x is Σx for a subgroup of Γ×S1, that is, Σx = {(γ, eiθ) ∈
Γ×S1; (γ, eiθ)x = x}, then the symmetry of (γ, eiθ)x is given by (γ, eiθ)Σx(γ, e

iθ)−1,
which is conjugate to Σx. It is known that the subgroups of D3×S1, up to conjugacy,
that describe the symmetry of periodic solutions of (1.1) which exhibit certain spatial-
temporal patterns are given below (see, for example, p. 368 in [18]):

Σ±(2,3) = 〈(κ,±1)〉,
Σ±ρ = 〈(ρ, e±i 2π3 )〉.

More specifically, for example, Σ−(2,3) is a group generated by (κ,−1) ∈ D3 × S1.
Proposition 2.8.

Fix(Σ+
(2,3), SPω) = {ycos(βk t)w1 + z sin(βk t)w1; y , z ∈ R},

F ix(Σ−(2,3), SPω) = {ycos(βk t)w2 + z sin(βk t)w2; y , z ∈ R},
F ix(Σ−ρ , SPω) = {yε∗1 + zε∗2; y, z ∈ R},
F ix(Σ=

ρ , SPω) = {yε∗3 + zε∗4; y, z ∈ R}.
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Proof. First, x ∈ Fix(Σ+
(2,3), SPω) if and only if κx = x. However, for x =∑4

i=1 xiε
∗
i , we have

κx = x1ε
∗
3 + x2ε

∗
4 + x3ε

∗
1 + x4ε

∗
2.

Therefore, x ∈ Fix(Σ+
(2,3), SPω) if and only if x1 = x3 and x2 = x4. This shows that

Fix(Σ+
(2,3), SPω) is spanned by ε∗1 + ε∗3 and ε∗2 + ε∗4.

Second, x ∈ Fix(Σ−(2,3), SPω) if and only if κx(t) = x(t + ω
2 ) for t ∈ R. Let

x =
∑4

i=1 xiε
∗
i . Then, as cos(βk t+βk

ω
2 ) = −cos(βk t) and sin(βk t+βk

ω
2 ) = −sin(βk t),

we get ε∗i (t +
ω
2 ) = −ε∗i (t), and thus x(t + ω

2 ) = −∑4
i=1 xiε

∗
i . This implies that

κx(t) = x(t+ ω
2 ) if and only if x1 = −x3 and x2 = −x4. Therefore, Fix(Σ

−
(2,3), SPω)

is spanned by ε∗1 − ε∗3 and ε∗2 − ε∗4.
Third, for x =

∑4
i=1 xiε

∗
i , we have

ρx =

(
−1

2
x1 +

√
3

2
x2

)
ε∗1 +

(
−
√
3

2
x1 − 1

2
x2

)
ε∗2

+

(
−1

2
x3 −

√
3

2
x4

)
ε∗3 +

(√
3

2
x3 − 1

2
x4

)
ε∗4.

On the other hand, we have

cos
(
βk

(
t ± ω

3

))
= cos

(
βk t ± 2π

3

)
= −1

2
cos(βk t)∓

√
3

2
sin(βk t),

sin
(
βk

(
t ± ω

3

))
= sin

(
βk t ± 2π

3

)
= ±
√
3

2
cos(βk t)− 1

2
sin(βk t).

This, together with the expression of each ε∗i and x =
∑4

i=1 xiε
∗
i , leads to

x
(
t± ω

3

)
=

(
−1

2
x1 ±

√
3

2
x2

)
ε∗1 +

(
∓
√
3

2
x1 − 1

2
x2

)
ε∗2

+

(
−1

2
x3 ±

√
3

2
x4

)
ε∗3 +

(
∓
√
3

2
x3 − 1

2
x4

)
ε∗4.

Thus x ∈ Fix(Σ±ρ , SPω), i.e., ρx(t± ω
3 ) = x(t), if and only if

− 1

2
x1 +

√
3

2
x2 = −1

2
x1 ∓

√
3

2
x2,

−
√
3

2
x1 − 1

2
x2 = ±

√
3

2
x1 − 1

2
x2,

− 1

2
x3 −

√
3

2
x4 = −1

2
x3 ∓

√
3

2
x4,

√
3

2
x3 − 1

2
x4 = ±

√
3

2
x3 − 1

2
x4.
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That is, ρx(t) = x(t+ ω
3 ) if and only if x3 = x4 = 0, and ρx(t) = x(t− ω

3 ) if and only
if x1 = x2 = 0. Therefore, Fix(Σ−ρ , SPω) is spanned by ε∗1 and ε∗2, and Fix(Σ

+
ρ , SPω)

is spanned by ε∗3 and ε∗4. This completes the proof.
We can now apply Lemma 2.1 to obtain the following main result of this section.
Theorem 2.9. Assume that (H1) is satisfied. Then, near τ = τk for each k ≥ 1,

system (1.1) has eight distinct branches of periodic solutions bifurcated from the trivial
solution x = 0. More precisely, we have the following.

(i) There exist εm0 > 0 and δm0 > 0 such that, for each θ ∈ [0, 2π], α ∈ (0, εm0 ),
system (1.1) with τ = τk + τm(α, θ) has a periodic solution xm = xm(t;α, θ)
with period ωm(α, θ) such that

xm2 (t;α, θ) = xm3 (t;α, θ),

xm(t;α, θ) = αcos(βk t + θ)

(
1,−1

2
,−1

2

)T

+ o(|α|) as α→ 0.

The mapping (xm, τm, ωm) : (0, εm)×[0, 2π]→ C(R;R3)×R×R is C1-smooth,
and

ωm(0, θ) =
2π

βk
, τm(0, θ) = 0.

Furthermore, if |τ − τk| < δm0 and |ω − 2π
βk
| < δm0 , then every ω-periodic

solution of (1.1) satisfying x2(t) = x3(t) and supt∈R
|x(t)| < δm0 must be

given by xm(t;α, θ) for some α ∈ (0, εm0 ) and θ ∈ [0, 2π). Similar results hold
when we replace (2, 3) by (1, 2) or (1, 3).

(ii) There exist εs0 > 0 and δs0 > 0 such that, for each θ ∈ [0, 2π], α ∈ (0, εs0),
system (1.1) with τ = τk + τ s(α, θ) has a periodic solution xs = xs(t;α, θ)
with period ωs = ωs(α, θ) such that

xs1(t) = xs1

(
t− ωs

2

)
, xs2(t) = xs3

(
t− ωs

2

)
, xs3(t) = xs3(t+ ωs),

xs(t;α, θ) = αcos(βk t + θ)

(
0,−
√
3

2
,−
√
3

2

)T

+ o(|α|) as α→ 0.

The mapping (xs, τs, ωs) : (0, εs0)× [0, 2π]→ C(R;R3)×R×R is C1-smooth,
and

ωs(0, θ) =
2π

βk
, τs(0, θ) = 0.

Furthermore, if |τ−τk| < δs0 and |ω− 2π
βk
| < δs0, then every ω-periodic solution

of (1.1) satisfying x1(t) = x1(t− ω
2 ), x2(t) = x3(t− ω

2 ), and supt∈R
|x(t)| < δs0

must be given by xs(t;α, θ) for some α ∈ (0, εs0) and θ ∈ [0, 2π). Similar
results hold when we replace (1, 2, 3) by (2, 1, 3) or (3, 2, 1).

(iii) There exist εd0 > 0 and δd0 > 0 such that, for each θ ∈ [0, 2π], α ∈ (0, εd0),
system (1.1) with τ = τk + τd(α, θ) has a periodic solution xd = xd(t;α, θ)
with period ωd = ωd(α, θ) such that

xd1(t) = xd2

(
t± ωd

3

)
, xd2(t) = xd3

(
t± ωd

3

)
,

xd(t;α, θ) = α

(
cos(βkt + θ), cos

(
βkt + θ ∓ 2π

3

)
, cos

(
βkt + θ ∓ 4π

3

))T
+ o(|α|)
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as α→ 0. The mapping (xd, τd, ωd) : (0, εd0)× [0, 2π]→ C(R;R3)× R× R is
C1-smooth, and

ωd(0, θ) =
2π

βk
, τd(0, θ) = 0.

Furthermore, if |τ−τk| < δd0 and |ω− 2π
βk
| < δd0 , then every ω-periodic solution

of (1.1) satisfying x1(t) = x2(t± ω
3 ), x2(t) = x3(t± ω

3 ), and supt∈R
|x(t)| < δd0

must be given by xd(t;α, θ) for some α ∈ (0, εd0) and θ ∈ [0, 2π). Similar
results hold when we replace (1, 2, 3) by (2, 1, 3) or (3, 2, 1).

We call periodic solutions in (i)–(iii) mirror-reflecting waves, standing waves, and
discrete waves, respectively. Note that Theorem 2.9 does not rule out the case in
which τ l(α, θ) ≤ 0 (l = m, s, d). In next section, we will use the global bifurcation
theory to rule out this case. In fact, we will show that all eight branches of waves are
supercritical and global; i.e., all eight branches of waves exist for τ > τk.

3. Global continuation of waves. We will need a general global symmetric
Hopf bifurcation theorem developed in [24]. Namely, we consider the one-parameter
family of retarded functional differential equations

ẋ(t) = τF (xt),(3.1)

where x ∈ R
n, τ ∈ (0,∞), and F : C([−τ, 0];Rn)→ R

n is continuously differentiable
and completely continuous. Furthermore, we assume the following.

(A1) Γ := ZN for some integer N acts on R
n and F : C → R

n is Γ-equivariant.
(A2) For every x0 ∈ MΓ := {x ∈ R

n; γx = x for γ ∈ Γ, F (x̄) = 0}, where x̄ ∈ C
is the constant mapping with the constant value x ∈ R

n, detDF̂ (x0) �= 0, where F̂
is the C1 mapping from R

n into R
n, induced by F according to F̂ (x) = F (x̄) for

x ∈ R
n.

(A3) For every τ0 > 0 and x0 ∈ MΓ such that the generator A(τ0, x0) of the
linearized system of (3.1) with τ = τ0 at x = x0 has a pair of purely imaginary
eigenvalues ±iβ0, there exist positive constants b, c, and δ such that (i) the only
possible eigenvalue u + iv of A(τ0, x0) with (u, v) ∈ ∂Ω is iβ0, where Ω := (0, b) ×
(β0 − c, β0 + c); (ii) for (τ, β) ∈ [τ0 − δ, τ0 + δ]× [β0 − c, β0 + c], iβ is an eigenvalue of
A(τ, x0) if and only if τ = τ0, β = β0.

(A4) M∗ := {(τ, x, β) ∈ (0,∞)×MΓ × (0,∞);±iβ are eigenvalues of A(τ, x)} is
a discrete set.

Note that the action of Γ on R
n induces an action on C

n = R
n+iRn, with respect

to which we have the isotypical decomposition

C
n = C

n
0 ⊕ C

n
1 ⊕ · · · ⊕ C

n
j ⊕ · · · ,

where C
n
j , j ≥ 0, is the direct sum of all one-dimensional Γ-irreducible subspaces V of

C
n such that the restricted action Γ on V is isomorphic to the Γ-action on C defined

by ρ · z = ρjz for the generator ρ ∈ ZN ≤ S1 and for z ∈ C. Let

∆x0(τ, λ) := λIn − τDφF (x̄0)(e
λ·In)(3.2)

for τ > 0, x0 ∈ MΓ, and λ ∈ C. By assumption (A1), we have ∆x0(τ, λ)C
n
j ⊂ C

n
j for

j ≥ 0 and for λ ∈ C. Put

∆x0,j(τ, λ) = ∆x0
(τ, λ)|Cn

j
, j ≥ 0.(3.3)
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Clearly, ∆x0
(τ, λ) is analytic in λ ∈ C and continuous in τ > 0. So, under assumption

(A3), we may assume that det∆x0(τ0 ± δ, u + iv) �= 0 for (u, v) ∈ ∂Ω. Therefore,
det∆x0,j(τ0± δ, u+ iv) �= 0 for (u, v) ∈ ∂Ω and for j ≥ 0. Consequently, the following
integers are well defined:

cj(x0, τ0, β0) = degB(det∆x0,j(τ0 − δ, ·),Ω)− degB(det∆x0,j(τ0 + δ, ·),Ω),(3.4)

where degB is the Brouwer degree. Let

ε(x0) = (−1)nsigndetDF̂ (x0).(3.5)

We have the following global symmetric Hopf bifurcation theorem due to [24].
Lemma 3.1. Assume that (A1)–(A4) are satisfied and cj(x0, τ0, β0) �= 0 for some

integer j ≥ 0 and some (τ0, x0, β0) ∈ (0,∞)×MΓ× (0,∞). Let Sj denote the closure
in [0,∞)× C(R;Rn)× [0,∞) of the set of all (τ, z, β) ∈ [0,∞)× C(R;Rn)× R \M∗
such that x(t) := z( β2π t) is a 2π

β -periodic solution of (3.1) with ρx(t) = x(t − 2π
β

j
N )

for t ∈ R. Then Sj �= ∅, and, for every bounded connected component Ej of Sj,
(Γ× S1)Ej ∩M∗ is finite and ∑

(τ,x,β)∈(Γ×S1)Ej∩M∗
ε(x)cj(x, τ, β) = 0;(3.6)

here a set E ⊂ (0,∞)× C(R;Rn)× (0,∞) is bounded if

sup

{
1

τ
+ τ +

1

β
+ β + sup

t∈R

|x(t)|; (τ, x, β) ∈ E
}
<∞.

We now begin to apply the above result to discuss the global continuation of wave
solutions of system (1.1). We need the following assumptions.

(H2) supy∈R
|h′(y)| < 1.

(H3) g′(x) > 0 for all x ∈ R.
Proposition 3.2. Assume that (H1)–(H3) are satisfied. Then system (1.1) has

no nonconstant 1-periodic solution.
Proof. By way of contradiction, let x be a nonconstant periodic solution of system

(1.1) with xi(t) = xi(t − 1) for all t ∈ R and i = 1, 2, 3. Then we obtain a system of
ordinary differential equations

1
τ ẋ1(t) = −x1(t) + h(x1(t)) + 2g(x1(t))− g(x2(t))− g(x3(t)),
1
τ ẋ2(t) = −x2(t) + h(x2(t)) + 2g(x2(t))− g(x1(t))− g(x3(t)),
1
τ ẋ3(t) = −x3(t) + h(x3(t)) + 2g(x3(t))− g(x2(t))− g(x1(t)).

(3.7)

Note that the above equation is exactly the model equation for the Hopfield net [20]
of three identical neurons with self-feedback, and thus

V (x1, x2, x3)

= −1

2

∑
1≤i<j≤3

[g(xi)− g(xj)]2 +
3∑

k=1

∫ xk

0

[s− h(s)]g′(s)ds

= g(x1)g(x2) + g(x2)g(x3) + g(x3)g(x1)

− g2(x1)− g2(x2)− g2(x3)

+

∫ x1

0

[s− h(s)]g′(s)ds+
∫ x2

0

[s− h(s)]g′(s)ds+
∫ x3

0

[s− h(s)]g′(s)ds
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is the so-called energy function. For such an energy function, we have

V̇(15)(x1, x2, x3)

= g′(x1)ẋ1[g(x2) + g(x3)− 2g(x1) + x1 − h(x1)]

+ g′(x2)ẋ2[g(x1) + g(x3)− 2g(x2) + x2 − h(x2)]

+ g′(x3)ẋ3[g(x1) + g(x2)− 2g(x3) + x3 − h(x3)]

= −τ
3∑
i=1

g′(xi)(ẋi)2 ≤ 0

and

V̇(15)(x1, x2, x3) = 0 if and only if ẋ1 = ẋ2 = ẋ3 = 0.

The LaSalle invariance principle [27] then implies that every solution of (3.6) converges
to an equilibrium as t→∞. In particular, every 1-periodic solution of (1.1) must be
constant. This completes the proof.

Proposition 3.3. Under assumptions (H1)–(H3), system (1.1) has no noncon-
stant 2-periodic solution.

Proof. Assume that x(t) is a 2-periodic solution. Let x4(t) = x1(t − 1), x5(t) =
x2(t− 1), and x6(t) = x3(t− 1). Then we obtain

εẋ1 = −x1 + h(x4)− g(x5)− g(x6) + 2g(x4),

εẋ2 = −x2 + h(x5)− g(x4)− g(x6) + 2g(x5),

εẋ3 = −x3 + h(x6)− g(x4)− g(x5) + 2g(x6),

εẋ4 = −x4 + h(x1)− g(x2)− g(x3) + 2g(x1),

εẋ5 = −x5 + h(x2)− g(x1)− g(x3) + 2g(x2),

εẋ6 = −x6 + h(x3)− g(x1)− g(x2) + 2g(x3).

Then 

1

τ
[x1 − x4]′ = −[x1 − x4] + [h(x4)− h(x1)]

+ [g(x2)− g(x5) + g(x3)− g(x6)− 2(g(x1)− g(x4))],

1

τ
[x2 − x5]′ = −[x2 − x5] + [h(x5)− h(x2)]

+ [g(x1)− g(x4) + g(x3)− g(x6)− 2(g(x2)− g(x5))],

1

τ
[x3 − x6]′ = −[x3 − x6] + [h(x6)− h(x3)]

+ [g(x1)− g(x4) + g(x2)− g(x5)− 2(g(x3)− g(x6))].

Let D+ denote the upper right Dini derivative; then

1

τ
D+|x1 − x4| ≤ −|x1 − x4| − 2|g(x1)− g(x4)|+ |h(x1)− h(x4)|

+ |g(x2)− g(x5)|+ |g(x3)− g(x6)|,
1

τ
D+|x2 − x5| ≤ −|x2 − x5| − 2|g(x2)− g(x5)|+ |h(x2)− h(x5)|

+ |g(x1)− g(x4)|+ |g(x3)− g(x6)|,
1

τ
D+|x3 − x6| ≤ −|x3 − x6| − 2|g(x3)− g(x6)|+ |h(x3)− h(x6)|

+ |g(x1)− g(x4)|+ |g(x2)− g(x5)|.
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Therefore,

1

τ
D+[|x1 − x4|+ |x2 − x5|+ |x3 − x6|]
≤ −[|x1 − x4|+ |x2 − x5|+ |x3 − x6|]

+ |h(x1)− h(x4)|+ |h(x2)− h(x5)|+ |h(x3)− h(x6)|

≤ −
[
1− sup

θ∈R

|h′(θ)|
]
[|x1 − x4|+ |x2 − x5|+ |x3 − x6|].

This implies that

|x1(t)− x4(t)|+ |x2(t)− x5(t)|+ |x3(t)− x6(t)| → 0 as t→∞.
Therefore, for a 2-periodic solution x of (1), we must have x1(t) = x1(t− 1), x2(t) =
x2(t− 1), and x3(t) = x3(t− 1). So Proposition 3.2 can be applied to conclude that
x must be constant. This completes the proof.

It remains to obtain a priori bounds for the norm of periodic solutions of (1.1).
We need the following assumption.

(H4) supy∈R
[|h(y)|+ |g(y)|] <∞.

Proposition 3.4. Assume (H1)–(H4) are satisfied. Then there exists M =
M(h, g) > 0 such that |x1(t)| + |x2(t)| + |x3(t)| ≤ M for all t ∈ R and for every
periodic solution x of (1.1).

Proof. Let t∗ ∈ R and j ∈ {1, 2, 3} be given so that |xj(t∗)| = maxt∈R max1≤i≤3 |xi(t)|.
Then ẋj(t

∗) = 0. That is,

xj(t
∗) = h(xj(t

∗ − 1))− [g(xj−1(t
∗ − 1)) + g(xj+1(t

∗ − 1))− 2g(xj(t
∗ − 1))],

from which it follows that

|xj(t∗)| ≤ sup
y∈R

|h(y)|+ 4 sup
y∈R

|g(y)| := M

3
<∞.

This completes the proof.
We now apply Lemma 3.1 to investigate the global continuation of standing,

mirror-reflecting, and discrete waves.
First, note that near τ = τk system (1.1) has two bifurcations of discrete waves

satisfying xi−1(t) = xi(t± ω
3 ), where ω is a period. To look at the global continuation

of such local bifurcations, we regard system (1.1) as a functional differential equation
equivariant with respect to the action of Γ = Z3, where the action is the cyclic
permutation. We have

MΓ = {x ∈ R
3; γx = x for γ ∈ Γ, F (x̄) = 0}

= {x ∈ R
3;x1 = x2 = x3 and x1 = h(x1)} = {0}

under assumption (H2). Clearly, (A1) and (A2) are satisfied.
Under assumption (H1), the discussions in the last section show that

M∗ = {(τk, 0, βk); k ≥ 1}.
Therefore, M∗ is discrete in R

3.
Using Proposition 2.4 (ii), for a fixed integer k, we can choose positive constants

b, c, and δ so that the only possible eigenvalue u+ iv of A(τk) with (u, v) ∈ ∂Ω is iβk,
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where Ω = (0, b)× (βk− c, βk+ c), and if (τ, β) ∈ [τk− δ, τk+ δ]× [βk− c, βk+ c], then
iβ is an eigenvalue of A(τ) if and only if τ = τk and β = βk. Then, using Proposition
2.4 (i), we can conclude that the analytic function pτ (λ) := λ+ τ −γτe−λ has no zero
in Ω̄ for τ = τk ± δ. Also, by Propositions 2.4 and 2.6, the above b, c, and δ can be
chosen so that, for the analytic function

qτ (λ) = λ+ τ − (γ + 3β)τe−λ,

we have that qτk−δ has no zero in Ω̄, while qτk+δ has exactly one zero in Ω̄, and this
zero is simple and is in the interior of Ω̄. Therefore,

degB(qτk−δ,Ω) = 0,

and

degB(qτk+δ,Ω) = 1.

With respect to the complexification of the above (Γ = Z3)-action in R
3, we have

the isotypical decomposition

C
3 = C

3
0 ⊕ C

3
1 ⊕ C

3
2,

where

C
3
j = {(1, ei

2π
3 j , ei

4π
3 j)x; x ∈ C}.

We have shown that

∆0,j := ∆0(τ, λ)|C3
j
= ∆(τ, λ)|C3

j

=

{
λ+ τ − γτe−λ if j = 0,
λ+ τ − (γ + 3β)τe−λ if j = 1, 2.

Therefore, from the above discussions, we get

c0(0, τk, βk) = degB(pτk−δ,Ω)− degB(pτk+δ,Ω) = 0,

and, for j = 1, 2,

cj(0, τk, βk) = degB(qτk−δ,Ω)− degB(qτk+δ,Ω) = −1.

Let Sj , j = 1, 2, denote the closure in [0,∞)× C(R;R3)× [0,∞) of the set of all

triples (τ, z, β) /∈ M∗ such that x(t) := z( β2π t) is a
2π
β -periodic solution of (1.1) with

xk+1(t) = xk(t− 2π
β
j
3 ) for t ∈ R and k = 1, 2, 3(mod 3). Then Lemma 3.1 implies that

Sj must have a nonempty connected component Ej passing through (τk, 0, βk), and
this component must be unbounded in the sense that

sup
(τ,x,β)∈Ej

{
τ +

1

τ
+ β +

1

β
+ sup

t∈R

|z(t)|
}

=∞,

for otherwise, the summation (3.6) must hold, and this is clearly impossible as cj(0, τk, βk)
has the same sign for all positive integers k.
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The projection of Ej onto the space C(R;R3) is bounded due to Proposition 3.4.
Near τk, (ii) of Proposition 2.4 shows that, for (τ, z, β) ∈ Ej , we have

2π

β
∈
(

2π

2kπ
,

2π

2kπ − π
2

)
⊂
(
1

k
,

1

k − 1
4

)
⊂
(
1

k
,
4

3

)
⊂
(
1

k
, 2

)
.

On the other hand, Propositions 3.2 and 3.3 imply that the projection of Ej onto the
β-plane can never reach the lines 2π

β = 1
k (note that (1.1) has no 1

k -periodic solution

as it does not have a 1-periodic solution) and 2π
β = 2. Therefore, the projection of Ej

onto the β-plane always satisfies π < β < 2kπ.
On the other hand, the result of [28] shows that there exists α∗ > 0 such that

any period p of a periodic solution of (1.2) must satisfy p ≥ α∗. Consequently, for

(τ, z, β) ∈ Ej , we must have τ 2π
β ≥ α∗. That is, τ ≥ βα∗

2π > α∗
2 for every τ ∈ I, the

projection of Ej onto the τ -axis which must be an interval. Therefore, I must be
unbounded from above. Clearly, I contains τk. This proves the following.

Theorem 3.5. For each τ > τk, system (1.1) always has two discrete waves
satisfying xj+1(t) = xj(t ± ω

3 ) for t ∈ R and j(mod 3), where ω is a period of x(t)
and 1

k < ω < 2.
Let us now consider the global continuation of mirror-reflecting waves and stand-

ing waves. For this purpose, we consider (1.1) as a functional differential equation
equivariant with respect to the action of Γ = Z2 on R

3 defined by

ρ

x1

x2

x3

 =

x1

x3

x2

 , xi ∈ R, i = 1, 2, 3, Z2 = 〈ρ〉.

In this case,

MΓ = {x ∈ R
3; x2 = x3, xi = h(xi)− g(xi−1)− g(xi+1) + 2g(xi), i(mod 3)}.

The structure of MΓ is explicitly described in the following proposition under the
following assumption.

(H5) yh′′(y) < 0 and yg′′(y) < 0 for y �= 0.
Proposition 3.6. Under (H1)–(H5), the system of equations

xi = h(xi)− g(xi−1)− g(xi+1) + 2g(xi), i(mod 3),(3.8)

and

x2 = x3(3.9)

for x = (x1, x2, x3)
T has exactly three solutions. They are

(0, 0, 0)T , (z−, y+, y+)T , (z+, y−, y−)T ,

where y+ > 0, y− < 0, z+ > 0, z− < 0 are the unique solutions of{
y± − h(y±) = u±,
z∓ − h(z∓) = −2u±(3.10)

and u+ > 0 and u− < 0 are the unique positive and negative solutions of

u+ g[G−1(−2u)]− g[G−1(u)] = 0(3.11)
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with G : R→ R being given by the equation

G(θ) = θ − h(θ), θ ∈ R.(3.12)

In other words,

MΓ = {(0, 0, 0)T , (z−, y+, y+)T , (z+, y−, y−)T }.

Proof. Under assumption (H2), G : R → R defined by (3.12) is an increasing
function. Define

u = G(y), v = G(z).(3.13)

Then x = (x1, x2, x3)
T with x1 = z and x2 = x3 = y satisfies (3.8) if and only if

u = g[G−1(u)]− g[G−1(v)](3.14)

and

v = −2u.(3.15)

In other words, (u, v) is given by v = −2u and u = g[G−1(u)]− g[G−1(−2u)]. Let

H(u) = u+ g[G−1(−2u)]− g[G−1(u)], u ∈ R.

Then

H(0) = 0, H(±∞) = ±∞.

Note that

H ′(u) = 1 + g′[G−1(−2u)](G−1)′(−2u)(−2)− g′[G−1(u)](G−1)′(u)

= 1− 2g′[G−1(−2u)](G−1)′(−2u)− g′[G−1(u)](G−1)′(u).

Implicitly differentiating F (θ) = θ − h(θ), we get

(G−1)′(θ) =
1

1− h′[G−1(θ)]
.

Therefore,

H ′(u) = 1− 2g′[G−1(−2u)]
1− h′[G−1(−2u)] −

g′[G−1(u)]

1− h′[G−1(u)]
.

In particular, with h′(0) = γ and g′(0) = β and under assumption (H1), we have

H ′(0) = 1− 2β

1− γ −
β

1− γ =
1− (γ + 3β)

1− γ < 0.

Therefore, there must be u+ > 0 and u− < 0 such that H(u±) = 0.
It remains to show that there exists no other nonzero zero of H. By way of

contradiction, if there exists u∗ > 0 (the case in which u∗ < 0 can be dealt with
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similarly) such that H(u∗) = 0 and u∗ �= u+, then there must be θ > 0 so that
H ′′(θ) = 0. However, we have

H ′′(u) = −2g′′[G−1(−2u)][(G−1)′(−2u)]2(−2)
−2g′[G−1(−2u)](G−1)′′(−2u)(−2)
−g′′[G−1(u)][(G−1)′(u)]2 − g′[G−1(u)](G−1)′′(u)

= 4g′′[G−1(−2u)][(G−1)′(−2u)]2 + 4g′[G−1(−2u)](G−1)′′(−2u)
−g′′[G−1(u)][(G−1)′(u)]2 − g′[G−1(u)](G−1)′′(u).

Under assumption (H5), for u > 0 we have

g′′[G−1(−2u)] > 0, g′′[G−1(u)] < 0.

Therefore, H ′′(u) > 0 if we can show that

(G−1)′′(−2u) > 0 and (G−1)′′(u) < 0 for u > 0.(3.16)

The above holds by using (H5) since

(G−1)′′(u) =
h′′(G−1(u))(G−1)′(u)
[1− h′(G−1(u))]2

has the opposite sign from u. (Recall that G−1(u) has the same sign as u.)
This completes the proof.
To verify (A2) and (A4) in the case in which Γ = Z2, we need the following

condition.
(H6) h′(α) > 0, h′(α) + 3g′(α) < 1, where α = y±, z±.
The linearization of (1.1) at (z∗, y∗, y∗) with z∗ = z∓, y∗ = y± takes the form

1

τ
Ẋ1(t) =−X1(t) + h′1(z

∗)X1(t− 1)

− [g′(y∗)X2(t− 1) + g′(y∗)X3(t− 1)− 2g′(z∗)X1(t− 1)],

1

τ
Ẋ2(t) =−X2(t) + h′1(y

∗)X2(t− 1)

− [g′(y∗)X3(t− 1) + g′(z∗)X1(t− 1)− 2g′(y∗)X2(t− 1)],

1

τ
Ẋ3(t) =−X3(t) + h′1(y

∗)X3(t− 1)

− [g′(z∗)X1(t− 1) + g′(y∗)X2(t− 1)− 2g′(y∗)X3(t− 1)],

and the characteristic matrix becomes

∆(z∗,y∗,y∗)(τ, λ)

=

 A τg′(y∗)e−λ τg′(y∗)e−λ

τg′(z∗)e−λ B τg′(y∗)e−λ

τg′(z∗)e−λ τg′(y∗)e−λ B

 ,
where

A = λ+ τ − τ [h′(z∗) + 2g′(z∗)]e−λ,
B = λ+ τ − τ [h′(y∗) + 2g′(y∗)]e−λ.
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The isotypical decomposition of C
3 with respect to the above Γ = Z2 action is

C
3 = C

3
0 ⊕ C

3
1,

where

C
3
0 = {(x, y, y)T ;x, y ∈ C},

C
3
1 = {(0, z,−z)T ; z ∈ C}.

Therefore,

∆(z∗,y∗,y∗)(τ, λ)|C3
0
=

(
λ+ τ − τ [h′(z∗) + 2g′(z∗)]e−λ τg′(z∗)e−λ

2τg′(y∗)e−λ λ+ τ − τ [h′(y∗) + g′(y∗)]e−λ

)
and

∆(z∗,y∗,y∗)(τ, λ)|C3
1
= λ+ τ − τ [h′(y∗) + 3g′(y∗)]e−λτ .

It is already shown in the proof of Proposition 2.4 (i) that, under assumption (H6),
every zero of ∆(z∗,y∗,y∗)(τ, λ)|C3

1
has negative real part. Note that ∆(z∗,y∗,y∗)(τ, λ)|C3

0
is

the characteristic matrix for the following linear system of delay differential equations:{
1
τ u̇1(t) = −u1(t) + [h′(z∗) + 2g′(z∗)]u1(t− 1)− g′(z∗)u2(t− 1),
1
τ u̇2(t) = −u2(t) + [h′(y∗) + g′(y∗)]u2(t− 1)− 2g′(y∗)u1(t− 1).

(3.17)

Let V (u1, u2) = max{|u1|, |u2|}. For a given solution of (3.17), if at some t ≥ 0 we
have V (u1(t− 1), u2(t− 1)) ≤ V (u1(t), u2(t)) = |u1(t)|, then

1

τ
D+V (u1(t), u2(t))

≤ −|u1(t)|+ [h′(z∗) + 2g′(z∗)]|u1(t− 1)|+ g′(z∗)|u2(t− 1)|
≤ −|u1(t)|+ [h′(z∗) + 3g′(z∗)]|u1(t)|
= −[1− h′(z∗)− 3g′(z∗)]V (u1(t), u2(t)).

Similarly, for a given solution of (3.17), if at some t ≥ 0 we have V (u1(t−1), u2(t−1)) ≤
V (u1(t), u2(t)) = |u2(t)|, then

1

τ
D+V (u1(t), u2(t)) ≤ −[1− h′(y∗)− 3g′(y∗)]V (u1(t), u2(t)).

Therefore, using assumption (H6) and the Razumikhin-type LaSalle invariance princi-
ple in [27, 29], we can conclude that all solutions of (3.17) converge to zero as t→∞.
This shows that all zeros of det∆(z∗,y∗,y∗)(τ, λ)|C3

0
have negative real parts. In partic-

ular, det∆(z∗,y∗,y∗)(τ, 0)|C3
0
�= 0, and this determinant is exactly the determinant of

the derivative of the corresponding F at (z∗, y∗, y∗). This shows that (A2) is satisfied
and that (A3) is trivial.

Therefore, even in the case in which Γ = Z2, we have

M∗ = {(τk, 0, βk); k ≥ 1}.

Thus M∗ is discrete and (A4) holds. Using similar arguments as for Theorem 3.5, we
can get the following theorems.
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Theorem 3.7. For each τ > τk, k ≥ 1, system (1.1) has one standing wave
satisfying x1(t) = x1(t − ω

2 ) and x2(t) = x3(t − ω
2 ) for t ∈ R, where ω is a period of

x and 1
k < ω < 2.

Theorem 3.8. For each τ > τk, k ≥ 1, system (1.1) has one mirror-reflecting
wave satisfying x2(t) = x3(t) and xi(t) = xi(t + ω) for t ∈ R, i = 1, 2, 3, where
1
k < ω < 2.

Remark 1. Due to theD3-symmetry, Theorems 3.5–3.8 in fact imply the existence
of three standing waves, three mirror-reflecting waves, and two discrete waves for each
τ > τk. Note also that

τ1 < τ2 < τ3 < · · · .

The above results establish the existence of 3k standing waves, 3k mirror-reflecting
waves, and 2k discrete waves. It should be mentioned that, in the above theorems,
ω is not necessarily the minimal period, and several branches of waves may coincide
at some values of τ . In terms of the following five remarks, we can claim that for
τ > τ1, system (1.1) has three orbits of waves—one orbit of discrete waves, one
orbit of standing waves, and one orbit of mirror-reflecting waves—and only the last
two orbits may coincide through the mechanism of periodic doubling. Discounting
the above possible coincidence, system (1.1) has at least five wave solutions for each
τ > τ1.

Remark 2. A branch of nontrivial discrete waves and a branch of mirror-reflecting
waves cannot coincide at any value of τ , for otherwise there exists a nontrivial ω-
periodic solution x of (1.1) such that xi(t) = xi−1(t± ω

3 ) for i(mod 3) and xj(t) = xk(t)
for some j �= k. For simplicity, let x2(t) = x3(t). Then x2(t) = x3(t ± ω

3 ) implies
that ω

3 is also a period of x2 = x3, and thus x1(t) = x2(t ± ω
3 ) = x2(t)(= x3(t)). So

x must be spatially homogeneous. As supx∈R
|h′(x)| < 1 implies that y = 0 is the

global attractor of the scalar equation y′(t) = −y(t) + h(y(t− τ)) for any τ ≥ 0 (see,
for example, [16]), we have x = 0, which is a contradiction.

Remark 3. A branch of nontrivial discrete waves and a branch of standing waves
cannot coincide at any value of τ , for otherwise there exists a nontrivial ω-periodic
solution x of (1.1) such that xi(t) = xi−1(t± ω

3 ) for i(mod 3) and, say, x1(t) = x1(t+
ω
2 ), x2(t) = x3(t+

ω
2 ). Then x2(t) = x3(t+

ω
3 ) = x3(t+

ω
2 ). (The other case in which

x2(t) = x3(t− ω
3 ) can be dealt similarly.) Therefore, ω6 is also a period of x3 (and thus

x2). Consequently, x2(t) = x3(t+
ω
3 ) = x3(t) and x1(t) = x2(t+

ω
3 ) = x2(t) = x3(t).

Again, x must be spatially homogeneous, and thus x = 0, which is a contradiction.
Remark 4. A branch of nontrivial discrete waves of the form xi(t) = xi−1(t− ω

3 )
and a branch of discrete waves of the form xi(t) = xi−1(t+

ω
3 ) for i(mod 3) and t ∈ R

cannot coincide at any value of τ . Again, this can be verified by way of contradiction.
Namely, if there is a discrete wave satisfying simultaneously xi(t) = xi−1(t +

ω
3 ) =

xi−1(t− ω
3 ) for i(mod 3), then 2ω

3 and ω are periods of x, and so is ω
3 . This, together

with xi(t) = xi−1(t − ω
3 ), implies that x is spatially homogeneous, and thus x = 0,

which is a contradiction.
Remark 5. As no nontrivial spatially homogeneous periodic solution exists, it is

clear that a branch of nontrivial mirror-reflecting waves satisfying xi(t) = xj(t) for
some i �= j and a branch of mirror-reflecting waves satisfying xl(t) = xm(t) for some
l �= m cannot coincide at any value of τ if (i, j) �= (l,m). Similarly, a branch of
nontrivial standing waves with xi(t) = xi(t+

ω
2 ), xj(t) = xk(t+

ω
2 ) for i �= j �= k and

a branch of nontrivial standing waves with xi∗(t) = xj∗(t +
ω
2 ), xj∗(t) = xk∗(t +

ω
2 )

for i∗ �= j∗ �= k∗ cannot coincide at any value of τ if (i, j, k) �= (i∗, j∗, k∗).
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Remark 6. Unfortunately, the above arguments cannot be extended to rule out
the possibility of the coincidence of a branch of nontrivial ω-periodic mirror-reflecting
waves with xi(t) = xj(t) for some i �= j and a branch of ω-periodic standing waves
with xi(t) = xj(t+

ω
2 ) for some i �= j. In fact, such a coincidence may occur at some

value of τ where periodic doubling happens: xi(t) = xi(t+
ω
2 ), i(mod 3), t ∈ R.
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Abstract. A nonstandard dynamic boundary condition for a Hamilton–Jacobi equation in one
space dimension is studied in the context of viscosity solutions. A comparison principle, and hence
uniqueness, is proved by consideration of an equivalent notion of viscosity solution for an alternative
formulation of the boundary condition. The relationship with a Neumann condition is established.
Global existence is obtained by consideration of a related parabolic approximation with a dynamic
boundary condition. The problem is motivated by applications in superconductivity and interface
evolution.
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1. Introduction. We consider the first order equation

ut − F
(
u2
x + γ

2
)1/2

= 0 in Ω× (0,∞)(1.1)

supplemented with the dynamic boundary condition

ut − Fα = 0 on ∂Ω× (0,∞),(1.2)

where Ω is a bounded open interval. The functions F and α are given continuous
functions on Ω× [0,∞), ∂Ω× [0,∞), respectively, and γ ≥ 0 is a constant.

There are at least two sources of this problem. Consider the mean field vortex
density model in a cylinder D×R (D ⊂ R

2) when the magnetic field �H is orthogonal
to the axis of the cylinder; see Chapman [3]. The vorticity field �ω = (∇⊥ψ, 0),
∇⊥ = (−∂x2 , ∂x1) is required to satisfy the conservation of vorticity

�ωt + curl (�ω × �v) = 0.
If the velocity field �v is of the form

�v = curl �H × �ω/|�ω|

and �H is given, then the conservation of vorticity yields

ψt = |∇ψ|F,
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where F is a given function. Our equation (1.1) is derived by assuming that ∂x2
ψ = γ

is a constant on D = Ω × R if we set u(x1, t) = ψ(x1, x2, t) − γx2. The quantity
−ψt on the boundary corresponds to the flux �n× (�ω × �v) on ∂D × R. The condition
ψt = Fα is considered as a special case of assigning the value of flux, and we obtain
(1.1), (1.2). A full system with a different boundary condition �ω · �n = 0 is studied by
Elliott, Schätzle, and Stoth [6].

Another source of the problem is a surface evolution problem with dynamic bound-
ary condition. Consider (1.1) with γ = 1. Then (1.1) is equivalent to requiring that
the upward normal velocity V of the graph Γt = {y = u(x, t)} equal F , i.e., V = F .
The boundary condition (1.2) is equivalent to saying that the upward velocity v of
Γt on ∂Ω × R is equal to Fα, i.e., v = Fα. In [1] Angenent and Gurtin derive a
dynamic boundary condition for the mean curvature flow equation. It is of the form
v = A cos θ + B, where v is the normal velocity of ∂Γt in ∂Ω and θ is the contact
angle of Γt and ∂Ω; A and B are constants. Our boundary condition corresponds to
the case A = 0.

Our goal is to study the unique global-in-time solvability of (1.1), (1.2) for a given
initial data. Since the problem is of first order, it is convenient to handle this problem
in the realm of viscosity solutions; see, e.g., Barles [2]. We establish the comparison
principle (section 3) for (1.1) and (1.2) by deriving an equivalent definition (section 2)
of solutions. Although the dynamic boundary value problem is studied in [2, p. 102,
(4.23)], it is essentially of Neumann type and does not include (1.2). We further prove
(section 5) that the solution of (1.1) and (1.2) solves the Neumann problem for (1.1)
with

∂u/∂ν = (SignF ) {(α− γ)+(α+ γ)}1/2(1.3)

in the viscosity sense, where β+ denotes the positive part of β and SignF denotes the
sign of F , i.e., SignF = ±1 if F ≷ 0 and SignF = 0 if F = 0. It might be possible to
prove the comparison principle for (1.1) with the inhomogeneous data ∂u/∂ν = p(t)
when p is continuous; see Claisse [4]. However, our comparison principle for (1.1)
and (1.2) still holds when F changes sign, in which case the Neumann data in (1.3)
is discontinuous and hence is not included in the literature. Moreover, our proof is
more direct and does not use (1.3). Our comparison principle yields the uniqueness
of viscosity solutions for (1.1) and (1.2).

We also prove the global existence (section 4) of a solution for (1.1), (1.2) when
the initial data a is a Lipschitz function in Ω by using the approximate equation

ut − εuxx − F
(
u2
x + γ

2
)1/2

= 0 in Ω× (0,∞)(1.4)

with the dynamic boundary condition

ut − Fα+ ε∂u/∂ν = 0 on ∂Ω× (0,∞),(1.5)

where ε is a positive parameter. The dynamic boundary condition for uniformly
parabolic equations is well studied, for example, by Hinterman [10] and Escher [7, 8].
Their results may be applied to (1.4) and (1.5) in order to yield at least a local
solution. However, since the global existence of solutions is easy to show, we give a
proof for global solvability of (1.4), (1.5) in the appendix. By the maximum principle
we derive a priori bounds (section 4) for the sup norms of uεt , u

ε
x, u

ε in Ω× [0, T ] for
the solutions of (1.4), (1.5) independent of ε ∈ (0, 1). This yields the solution of (1.1),
(1.2) as a limit as ε→ 0. The presence of the term ε∂u/∂ν in (1.5) is crucial in order
to obtain the a priori bound.
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Finally, we warn the reader that the boundary condition (1.2) cannot be replaced
by a formally equivalent Dirichlet boundary condition

u(x, t) =

∫ t

0

F (x, τ)α(x, τ)dτ + a(x)(1.6)

even in the viscosity sense. We give in section 5 an explicit solution of (1.1) which
solves (1.2) (resp., (1.6)) but does not solve (1.6) (resp., (1.2)) when α ≡ 1, F ≡ 1,
and α > γ.

2. Definitions and equivalent notions of solutions. Let Ω be a bounded
interval (0, L) ⊂ R and let T > 0 be a constant. For brevity we set Q = Ω × (0, T ),
Q̂ = Ω× (0, T ) and their closure Q = Ω× [0, T ]. Given a mapping k := k(x, t, τ, p) :
Q̂×R×R→ R we recall the following definitions of viscosity sub- and supersolutions
u ∈ C(Q̂) for k.

Definition 2.1. A function u is said to be a viscosity subsolution of k (in Q̂)
provided for any (x̂, t̂, φ) ∈ Q̂× C1(Q̂) such that

(u− φ)(x̂, t̂) = sup
Q̂

(u− φ);

then the inequality

k(x̂, t̂, τ, p) ≤ 0
holds where τ = φt(x̂, t̂) and p = φx(x̂, t̂).

Definition 2.2. A function u is said to be a viscosity supersolution of k (in Q̂)
provided for any (x̂, t̂, φ) ∈ Q̂× C1(Q̂) such that

(u− φ)(x̂, t̂) = inf
Q̂
(u− φ);

then the inequality

k(x̂, t̂, τ, p) ≥ 0
holds where τ = φt(x̂, t̂) and p = φx(x̂, t̂).

Let F and α be given functions in C(Q), C(∂Ω × [0, T ]), respectively, and let
γ ≥ 0 be a given constant. We use the notation, since ∂Ω = {0, L}, that ∂

∂ν = ν ∂
∂x

on ∂Ω with ν = −1 for x = 0 and ν = +1 for x = L. The initial boundary value
problem is ut − F

(
u2
x + γ

2
)1/2

= 0 in Q,
ut − Fα = 0 on ∂Ω× (0, T ),
u|t=0 = a on Ω.

(2.1)

In order to formulate the definition of a viscosity solution to (2.1) we define, for
(x, t, τ, p) ∈ Q̂× R× R,

E(x, t, τ, p) := τ − F (x, t) (p2 + γ2
)1/2

,

Fmin(x, t, τ, p) :=

{
E(x, t, τ, p) if x ∈ Ω,
min {τ − F (x, t)α(x, t), E(x, t, τ, p)} if x ∈ ∂Ω,

Fmax(x, t, τ, p) :=

{
E(x, t, τ, p) if x ∈ Ω,
max {τ − F (x, t)α(x, t), E(x, t, τ, p)} if x ∈ ∂Ω.
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Definition 2.3. We say that u ∈ C(Q) is a viscosity solution of (2.1) provided
u(x, 0) = a(x), x ∈ Ω, and u is a viscosity subsolution for Fmin and a viscosity
supersolution for Fmax.

This is the usual notion of viscosity solution for boundary value problems (cf. [5]).
We give an equivalent notion of solution by introducing, for (x, t, τ, p) ∈ Q̂× R× R,

G(x, t, τ, p) :=

{
E(x, t, τ, p) if x ∈ Ω,
τ − F (x, t)max

{
α(x, t),

(
([pνSignF ]−)2 + γ2

)1/2}
if x ∈ ∂Ω,

where f− is the negative part of f . Set

GB(x, t, τ, p) = τ − F (x, t)max
{
α(x, t),

(
([pνSignF ]−)2 + γ2

)1/2}
.

An alternative expression for GB is

GB(x, t, τ, p) = τ − F (x, t) ([(SignF )pν − δ][(SignF )pν + δ]− + γ2 + δ2
)1/2

,

where δ = (max(α, γ)2 − γ2)1/2. This identity follows from

max
{
α, ((η−)2 + γ2)1/2

}
=
(
(η − δ)(η + δ)− + γ2 + δ2

)1/2
for η ∈ R, which is easy to prove. The main purpose of this section is to prove the
following proposition.

Proposition 2.4. A function u is a viscosity solution of (2.1) if and only if
u ∈ C(Q), u(x, 0) = a(x), x ∈ Ω, and u is both a viscosity subsolution and a viscosity
supersolution for G.

It is sufficient to prove the following lemmas.
Lemma 2.5. A function u is a viscosity supersolution for G if and only if u is a

viscosity supersolution for Fmax.
Proof. We use the notation for (x̂, t̂, φ, τ, p) introduced in Definition 2.2, and

F̂ = F (x̂, t̂) and α̂ = α(x̂, t̂). Clearly there is nothing to prove if x̂ ∈ Ω since G and
Fmax agree in Ω. Furthermore, without loss of generality we may assume x̂ = L ∈ ∂Ω
so that ν = 1. We suppress the word viscosity in the proof.

If u is a supersolution for G, then τ ≥ F̂ α̂ so that, trivially, u is a supersolution
for Fmax. Thus the proof parts are concluding the situation that u is a supersolution
for Fmax and proving that this implies u is a supersolution for G. We have that

max
{
τ − F̂ α̂, τ − F̂ (p2 + γ2)1/2

}
≥ 0.

We may assume that (L, t̂), by modifying φ if necessary, is a unique minimizer of
u− φ. It is convenient to make the following observation.

Observation 1. The following device shifts the minimizer into the interior. Let
h ∈ C1(0,∞) be a nonincreasing function such that h(σ) = 0 for all σ � 1, and that

h(σ) → +∞ as σ → 0. Set d(x) := L − x and φε(x, t) := φ(x, t) − εh(d(x)ε ). Let

(xε, tε) be a minimum point of u− φε on Q̂. Since
lim inf∗
ε→0

(u− φε) = u− φ

on Q̂, we see that (xε, tε) → (L, t̂) as ε → 0. Here lim inf∗ is the relaxed limit as in
[2], i.e.,

lim inf∗
ε→0

fε(x, t) = lim inf
ε→0

{fδ(y, s); |y − x| < ε, |s− t| < ε, 0 < δ < ε, (y, s) ∈ Q̂}.
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Furthermore, since h(σ)→∞ as σ → 0 we have that, for ε sufficiently small, xε < L
and xε ∈ Ω. Because u is a supersolution for Fmax, this implies that

φεt (xε, tε) ≥ F (xε, tε)
(
φεx(xε, tε)

2 + γ2
)1/2

,

which yields

φt(xε, tε) ≥ F (xε, tε)
((

φx(xε, tε) + h
′
(
d(xε)

ε

))2

+ γ2

)1/2

.

Observation 2. Set for A > 0, ψ(x, t) := φ(x, t)−Ad(x). Clearly

(u− ψ)(x, t) = (u− φ)(x, t) +Ad(x) ≥ (u− ψ)(L, t̂)

for all (x, t) ∈ Q̂. Since u is a supersolution for Fmax, we have

max
{
τ − F̂ α̂, τ − F̂ ((p+A)2 + γ2

)1/2} ≥ 0.
We consider separately the cases F̂ > 0 and F̂ < 0 since the case F̂ = 0 leads to

G = Fmax.
Case I. F̂ > 0. Again we discuss three cases.
(i) γ ≥ α̂ and p ≥ 0. This is immediately treated by Observation 1. Sending ε to

zero we have

τ ≥ F̂ γ = F̂ max
{
α̂,
(
([pν]−)2 + γ2

)1/2}
.

(ii) pν + δ < 0. Using Observation 1 we set that for small ε, we have

φεx(xε, tε) = φx(xε, tε) + h
′
(
d(xε)

ε

)
≤ φx(xε, tε) < 0

so that

φt(xε, tε) ≥ F (xε, tε)(φx(xε, tε)2 + γ2)1/2,

and sending ε to zero,

τ ≥ F̂ (p2 + γ2)1/2 = F̂ ((pν − δ)(pν + δ)− + γ2 + δ2)1/2.

(iii) pν + δ ≥ 0, γ < α̂. This is the remaining case. From Observation 2, by
choosing A large we find

τ ≥ F̂ α̂ = F̂ ((pν − δ)(pν + δ)− + γ2 + δ2)1/2.

Case II. F̂ < 0.
(i) γ ≥ α̂, p ≥ 0. This case leads to Fmax = τ − F̂ (p2 + γ2)1/2 = GB .
(ii) γ ≥ α̂, p < 0. Use Observation 2 and set A = −p > 0, which yields Fmax =

τ − F̂ γ = GB .
(iii) γ < α̂, p ≤ δ. If |p| ≤ δ, then Fmax = τ − F̂ α̂ = GB . If p < −δ, then

GB = τ − F̂ α̂, and using Observation 2 and A = −p we have Fmax = τ − F̂ α̂.
(iv) γ < α̂, p > δ. This case leads to Fmax = τ − F̂ (p2 + γ2)1/2 = GB .
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Lemma 2.6. A function u is a viscosity subsolution for G if and only if u is a
viscosity subsolution for Fmin.

Proof. We use the notation for (x̂, t̂, φ, τ, p) introduced in Definition 2.1. Clearly
there is nothing to prove if x̂ ∈ Ω since G and Fmin agree in Ω. Furthermore, without
loss of generality we may assume x̂ = L ∈ ∂Ω so that ν = 1.

If u is a subsolution for G, then

τ ≤ F̂ max
{
α̂,
(
([pνSignF̂ ]−)2 + γ2

)1/2
}

so that either τ ≤ F̂ α̂ or τ ≤ F̂ (([pνSignF̂ ]−)2 + γ2)1/2. If F̂ > 0, then this implies
min{τ − F̂ α̂, τ − F̂ (p2 + γ2)1/2} ≤ 0 and u is a subsolution for Fmin.

On the other hand if F̂ < 0, then τ ≤ F̂ ((pν+δ)(pν−δ)++γ2+δ2)1/2. If γ ≥ α̂,
then either τ ≤ F̂ (p2 + γ2)1/2 or τ ≤ F̂ γ ≤ F̂ α̂, which implies u is a subsolution for
Fmin. Whenever α̂ > γ, then either τ ≤ F̂ (γ2 + δ2)1/2 = F̂ α̂ or τ ≤ F̂ (p2 + γ2)1/2

and again u is a subsolution for Fmin.
We may suppose that u is a subsolution for Fmin so that

min
{
τ − F̂ α̂, τ − F̂ (p2 + γ2)1/2

}
≤ 0.

It is convenient to make the following observation.
Observation 1. The following device shifts the maximizer into the interior. Let

h ∈ C1(0,∞) be a nonincreasing function such that h(σ) = 0 for all σ ≥ 1 and that
h(σ) → +∞ as σ → 0. Set d(x) := L − x and φε(x, t) := φ(x, t) + εh(d(x)ε ). Let

(xε, tε) be a maximum point of u− φε on Q̂. Since

lim sup∗
ε→0

(u− φε) = u− φ

on Q̂ we see that (xε, tε)→ (L, t̂) as ε → 0. Furthermore, since h(σ)→∞ as σ → 0
we have that, for ε sufficiently small, xε < L and xε ∈ Ω. Because u is a subsolution
for Fmin this implies that

φεt (xε, tε) ≤ F (xε, tε)
(
φεx(xε, tε)

2 + γ2
)1/2

,

which yields

φt(xε, tε) ≤ F (xε, tε)
((

φx(xε, tε)− h′
(
d(xε)

ε

))2

+ γ2

)1/2

.

Observation 2. Set for A > 0, ψ(x, t) := φ(x, t) +Ad(x). Clearly

(u− ψ)(x, t) = (u− φ)(x, t)−Ad(x) ≤ (u− φ)(L, t̂) = (u− ψ)(L, t̂)

for all (x, t) ∈ Q̂. Since u is a subsolution for Fmin, we have

min
{
τ − F̂ α̂, τ − F̂ ((p−A)2 + γ2

)1/2} ≤ 0.
We treat the cases F̂ > 0 and F̂ < 0 separately.
Case I. F̂ > 0.
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(i) γ ≥ α̂. If p ≤ 0, then τ ≤ F̂ (p2+γ2)1/2 = F̂ max{α̂, (([pν]−)2+γ2)1/2}. If p >
0, then we use Observation 2, which yields, withA = p, τ ≤ F̂ γ = F̂ max{α̂, (([pν]−)2+
γ2)1/2}.

(ii) γ < α̂. If p ≤ −δ, then τ ≤ F̂ (p2 + γ2)1/2 = F̂ ((p− δ)(p+ δ)− + γ2 + δ2)1/2.
If |p| < δ, then τ ≤ F̂ α̂ = F̂ max{α̂, (([pν]−)2 + γ2)1/2}. If p > δ, then we use
Observation 2, which yields, with A = p, τ ≤ F̂ γ ≤ F̂ max{α̂, (([pν]−)2 + γ2)1/2}.

Case II. F̂ < 0.
(i) γ ≥ α̂ and p ≤ 0. This is immediately treated by Observation 1. Sending ε to

zero in

φt(xε, tε) ≤ F (xε, tε)(φεx(xε, tε)2 + γ2)1/2 ≤ F (xε, tε)γ

yields τ ≤ F̂ γ = F̂ max{α̂, (([−pν]−)2 + γ2)1/2}.
(ii) pν − δ > 0. Using Observation 1 we get that for small ε

φεx(xε, tε) = φx(xε, tε)− h′
(
d(xε)

ε

)
≥ φx(xε, tε) > 0

so that

φt(xε, tε) ≤ F (xε, tε)
(
φεx(xε, tε)

2 + γ2
)1/2 ≤ F (xε, tε) (φx(xε, tε)2 + γ2

)1/2
,

and sending ε→ 0,

τ ≤ F̂ (p2 + γ2)1/2 = F̂ ((pν + δ)(pν − δ)+ + γ2 + δ2)1/2.

(iii) pν − δ ≤ 0, γ < α̂. This is the remaining case. From Observation 2, by
choosing A large we find

τ ≤ F̂ α̂ = F̂ ((pν + δ)(pν − δ)+ + γ2 + δ2)1/2.

Remark 1. As usual the definition of subsolutions (Definition 2.1) extends to
an upper semicontinuous function u on Q̂ provided that u is locally bounded on Q.
Similarly, a supersolution is defined for lower semicontinuous functions and not only
for continuous functions. Results on equivalence (Lemmas 2.5, 2.6) are still valid for
semicontinuous functions.

3. Comparison principle. Let Ω and T be as introduced in section 2 and set
Q̂ = Ω× (0, T ) and Q = Ω× [0, T ]. In section 2 we defined a function G by

G(x, t, τ, p)

=

{
τ − F (x, t) (p2 + γ2

)1/2
if x ∈ Ω,

τ − F (x, t)max
{
α(x, t),

(
([pν(x)SignF (x, t)]−)2 + γ2

)1/2}
if x ∈ ∂Ω,

where γ ≥ 0 is a constant and ν(x) denotes the outer unit normal of ∂Ω (i.e., ν(0) =
−1, ν(L) = 1).

Theorem 3.1. Assume that F ∈ C(Q), α ∈ C(∂Ω× [0, T ]), and

|F (x, t)− F (y, t)| ≤ C|x− y| for all (x, t), (y, t) ∈ Q(3.1)

holds for some constant C > 0 independent of t. Let u and −v be bounded upper
semicontinuous functions on Ω× [0, T ). Let u be a viscosity subsolution for G = 0 in
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Q̂ and let v be a viscosity supersolution for G = 0 in Q̂. If u(·, 0) ≤ v(·, 0) in Ω, then
u ≤ v in Q̂.

Proof. Suppose that the conclusion is false. Then there would exist a point
(x1, t1) ∈ Ω× [0, T ) such that µ := u(x1, t1)− v(x1, t1) > 0. For positive parameters
λ, β, δ, we set

φ(x, t, y, s) = λ(x− y)2 + β(t− s)2 + δ

T − t +
δ

T − s ,
Φ(x, t, y, s) = u(x, t)− v(y, s)− φ(x, t, y, s)

and, as preparation, study the behavior of a maximum point (x̂, t̂, ŷ, ŝ) of Φ on Q×Q.
We choose a small δ (fixed here) such that 0 < δ < (T − t1)µ/4. So we have

max
Q×Q

Φ ≥ µ/2 > 0,(3.2)

and then 0 ≤ t̂, ŝ < T holds uniformly for λ and β. Let M > 0 be an upper bound of
both u and −v. By using (3.2) we see that

2M ≥ u(x̂, t̂)− v(ŷ, ŝ) > λ|x̂− ŷ|2 + β|t̂− ŝ|2,
which leads to

λ|x̂− ŷ|2, β|t̂− ŝ|2 are bounded,(3.3)

and then |x̂−ŷ| → 0 (as λ→∞), |t̂−ŝ| → 0 (as β →∞), i.e., by taking a subsequence,
there exists (x0, t0) ∈ Q̂ such that

x̂, ŷ → x0 (as λ→∞), t̂, ŝ→ t0 (as β →∞).(3.4)

(Because of our assumption u ≤ v at t = 0, the time t0 > 0 so that t̂, ŝ > 0 for
sufficiently large λ and β.) From now on, we use the same notation after taking a
subsequence. By taking a subsequence, (3.3) implies that there are λ0 and β0 such
that

λ|x̂− ŷ|2 → λ0 (as λ→∞), β|t̂− ŝ|2 → β0 (as β →∞).
It follows that

lim sup
λ→∞,β→∞

max
Q×Q

Φ ≤ u(x0, t0)− v(x0, t0)− λ0 − β0 − 2δ

T − t0 .

Since the left-hand side is equal to or greater than u(x0, t0)− v(x0, t0)− 2δ/(T − t0),
we have λ0 = β0 = 0, i.e.,

λ|x̂− ŷ|2 → 0 (as λ→∞), β|t̂− ŝ|2 → 0 (as β →∞).(3.5)

Now, let us start the main part of the proof. Note that our classifications given
below are not disjoint but cover whole cases.

Case 1. x0 ∈ Ω. First, we discuss the case when x̂, ŷ converge to an interior
point x0 as λ→∞. We may assume that x̂, ŷ ∈ Ω. We use an abbreviated notation
φ̂t = φt(x̂, t̂, ŷ, ŝ), etc. It follows from the definition of viscosity solutions that

φ̂t − F (x̂, t̂)(φ̂2
x + γ

2)1/2 ≤ 0 and (−φ̂s)− F (ŷ, ŝ)((−φ̂y)2 + γ2)1/2 ≥ 0.
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Subtracting the second inequality from the first one we get

0≥ φ̂t − F (x̂, t̂)(φ̂2
x + γ

2)1/2 −
(
(−φ̂s)− F (ŷ, ŝ)((−φ̂y)2 + γ2)1/2

)
≥ 2δ

T 2
+ (−F (x̂, t̂) + F (ŷ, ŝ))(4λ2|x̂− ŷ|2 + γ2)1/2.

We send β to infinity and, after that, we send λ to infinity. Then, by using (3.5) and
the Lipschitz continuity of F (·, t) as in (3.1), we see that the second term goes to zero.
Since δ > 0, we get a contradiction.

Case 2. x0 ∈ ∂Ω. Next, we discuss the case when x̂, ŷ go to a boundary point x0

as λ → ∞. If both x̂ and ŷ are in Ω for any large λ, we get a contradiction similar
to that of Case 1. We classify the rest of Case 2 into three cases, Cases 2a, 2b, 2c,
depending on the limit of the convergent subsequences. We further classify Cases 2b
and 2c into more subcases as follows:

Case 2a x̂ = ŷ = x0 ∈ ∂Ω
Case 2b x̂ ∈ Ω→ x0, Case 2b(i) F (x0, t0) > 0

ŷ = x0 ∈ ∂Ω Case 2b(ii) F (x0, t0) = 0
Case 2b(iii) F (x0, t0) < 0

Case 2c x̂ = x0 ∈ ∂Ω, Case 2c(i) F (x0, t0) < 0
ŷ ∈ Ω→ x0 Case 2c(ii) F (x0, t0) = 0

Case 2c(iii) F (x0, t0) > 0

Since the proof for Case 2c and its subcases is symmetric to that of Case 2b, we do
not present the proof for Case 2c.

Case 2a. When there exists a subsequence λ→∞ such that x̂ = ŷ = x0 ∈ ∂Ω, it
follows that

0≥ φ̂t − F (x̂, t̂)max
{
α(x̂, t̂),

(
([φ̂xν(x̂)SignF (x̂, t̂)]−)2 + γ2

)1/2
}

−
(
(−φ̂s)− F (ŷ, ŝ)max

{
α(ŷ, ŝ),

(
([(−φ̂y)ν(ŷ)SignF (ŷ, ŝ)]−)2 + γ2

)1/2
})

≥ 2δ

T 2
− F (x0, t̂)max{α(x0, t̂), γ}+ F (x0, ŝ)max{α(x0, ŝ), γ},

since φ̂x = −φ̂y = 0. Since the second and third terms are continuous and since the
sum of them goes to zero as β →∞ by (3.4), we get a contradiction.

Case 2b. When there exists a subsequence λ→∞ such that x̂ ∈ Ω and ŷ = x0 ∈
∂Ω, it follows that

φ̂t − F (x̂, t̂)(φ̂2
x + γ

2)1/2 ≤ 0,
(−φ̂s)− F (x0, ŝ)max

{
α(x0, ŝ),

(
([(−φ̂y)ν(x0)SignF (x0, ŝ)]−)2 + γ2

)1/2
}
≥ 0.

(3.6)

We see that (−φ̂y)ν(x0) = 2λ(x̂− x0)ν(x0) < 0. We shall classify this case into three
subcases depending on the sign of F .

Case 2b(i). F (x0, t0) > 0. When F (x0, t0) > 0, we may assume that F (x0, ŝ) > 0
holds for sufficiently large β. The second inequality of (3.6) implies that

0≤ (−φ̂s)− F (x0, ŝ)max
{
α(x0, ŝ), (φ̂

2
y + γ

2)1/2
}

≤ (−φ̂s)− F (x0, ŝ)(φ̂
2
y + γ

2)1/2.
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We get a contradiction similar to that of Case 1.
Case 2b(ii). F (x0, t0) = 0. When F (x0, t0) = 0, we see that both F (x̂, t̂) and

F (x0, ŝ) go to zero as λ, β →∞. Then it is easy to get a contradiction from (3.6).
Case 2b(iii). F (x0, t0) < 0. When F (x0, t0) < 0, we may assume that F (x0, ŝ) < 0

holds for any large β. The second inequality of (3.6) implies that

(−φ̂s)− F (x0, ŝ)max{α(x0, ŝ), γ} ≥ 0.
If α(x0, t0) ≤ γ, sending β to infinity, we have

0 ≥ 2δ

T 2
+ (−F (x̂, t0) + F (x0, t0))(4λ

2|x̂− x0|2 + γ2)1/2.

By using (3.5) and (3.1) the second term goes to zero as λ → ∞. This yields a
contradiction since δ > 0.

Case R. We must discuss the remaining case when α0 = α(x0, t0) > γ from Case
2b(iii) (similarly from Case 2c(iii)). Let us change φ to a new test function ψ as
follows:

ψ(x, t, y, s)= λ

(
x− y + SignF (x0, t0)

(α2
0 − γ2)1/2ν(x0)

2λ

)2

+ β(t− s)2

+
δ

T − t +
δ

T − s
= λ

(
x− y − (α

2
0 − γ2)1/2ν(x0)

2λ

)2

+ β(t− s)2 + δ

T − t +
δ

T − s .

We then consider the maximum point (x̃, t̃, ỹ, s̃) of

Ψ(x, t, y, s) = u(x, t)− v(y, s)− ψ(x, t, y, s)
on Q×Q. It is easy to see that 0 < t̃, s̃ < T holds uniformly for λ and β, |x̃− ỹ| → 0
(as λ→∞), and |t̃− s̃| → 0 (as β →∞). We claim that

x̃, ỹ → x0 (as λ→∞), t̃, s̃→ t0 (as β →∞).(3.7)

If (3.7) does not hold, we see that, for some closed neighborhood K of (x0, t0), there
exists µ′ > 0 such that

Ψ(x̃, t̃, ỹ, s̃)− max
K×K

Ψ ≥ µ′.

Since ψ is almost equal to φ as λ→∞ and |x− y| → 0, we see that

Φ(x̃, t̃, ỹ, s̃)− max
K×K

Φ = Φ(x̃, t̃, ỹ, s̃)− Φ(x̂, t̂, ŷ, ŝ) ≥ µ′/2

for large λ, which is inconsistent with the property that (x̂, t̂, ŷ, ŝ) is a global maximum
point of Φ. Thus (3.7) holds.

We can discuss, similarly to Case 1 and Case 2a, respectively, the case when
x̃, ỹ ∈ Ω or x̃, ỹ ∈ ∂Ω for large λ and obtain a contradiction. We thus study the
remaining two cases, Cases Rb and Rc.

Case Rb. When there exists a subsequence λ→∞ such that x̃ ∈ Ω and ỹ = x0 ∈
∂Ω, it follows that

ψ̃t − F (x̃, t̃)(ψ̃2
x + γ

2)1/2 ≤ 0,
(−ψ̃s)− F (x0, s̃)max

{
α(x0, s̃),

(
([(−ψ̃y)ν(x0)SignF (x0, s̃)]−)2 + γ2

)1/2
}
≥ 0.

(3.8)
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By the definition of ψ we see that (−ψ̃y)ν(x0) = 2λ(x̃−x0)ν(x0)−(α2
0−γ2)1/2 < 0. In

the remaining case from Case 2b(iii) we see that F (x0, t0) < 0, and then F (x0, s̃) < 0
for large β. Thus the second inequality of (3.8) implies that

(−ψ̃s)− F (x0, s̃)max{α(x0, s̃), γ} ≥ 0.(3.9)

By the definition of ψ we also see that (γ <) α0 ≤ (ψ̃2
x + γ2)1/2. Subtracting (3.9)

from the first inequality of (3.8) and sending β →∞, we have

0 ≥ 2δ

T 2
+ (−F (x̃, t0) + F (x0, t0))α0

since F (x̃, t0) < 0 for large λ. By (3.7) and (3.1) the second term goes to zero as
λ→∞. This yields a contradiction since δ > 0.

Case Rc. When there exists a subsequence λ → ∞ such that x̃ = x0 ∈ ∂Ω and
ỹ ∈ Ω, it follows that

ψ̃t − F (x0, t̃)max

{
α(x0, t̃),

(
([ψ̃xν(x0)SignF (x0, t̃)]−)2 + γ2

)1/2
}
≤ 0,

(−ψ̃s)− F (ỹ, s̃)((−ψ̃y)2 + γ2)1/2 ≥ 0.

If ψ̃xν(x0) ≥ 0, the first inequality implies
ψ̃t − F (x0, t̃)(ψ̃

2
x + γ

2)1/2 ≤ 0
since F (x0, t̃) < 0 for large β. We thus obtain a contradiction similar to that of Case
1. If ψ̃xν(x0) < 0, we have

0 ≤ 2λ(x0 − ỹ)ν(x0) < (α0 − γ2)1/2,

and then ((−ψ̃y)2 + γ2)1/2 < α0. Since F (ỹ, s̃) < 0 for large λ, β, we see that

0 ≥ 2δ

T 2
− F (x0, t̃)α(x0, t̃) + F (ỹ, s̃)α(x0, t0).

We get a contradiction by the continuity of the second and third terms. The proof of
Theorem 3.1 is now complete.

4. Existence theorem. Let Ω and T be introduced in section 2. Our goal is to
show the existence of viscosity solutions of the dynamic boundary problemut − F

(
u2
x + γ

2
)1/2

= 0 in Q = Ω× (0, T ),
ut − Fα = 0 on ∂Ω× (0, T ),
u|t=0 = a on Ω.

(4.1)

Theorem 4.1. Assume that F ∈ C1(Q) and α ∈ C(∂Ω × [0, T ]). Assume that
a is a Lipschitz function over Ω. Then there exists a function u ∈ C(Q) which is a
unique viscosity solution of (4.1). Moreover, |ux| is bounded in Q.

Let ε > 0. First, we shall prove a priori estimates for a classical solution uε for
the approximate problem

uεt − εuεxx = F ε
(
(uεx)

2 + γ2
)1/2

in Q,

uεt + ενu
ε
x = F εmax

{
αε,
(
([νuεxSignF

ε]−)2 + γ2
)1/2}

on ∂Ω× (0, T ),
uε|t=0 = aε on Ω,

(4.2)
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where ν denotes the outer unit normal of ∂Ω. The existence of a solution of (4.2)
shall be proved in the appendix (Theorem A.1).

Proposition 4.2. Assume that F ε ∈ C1(Q)∩C∞(Q) and αε ∈ C1(∂Ω× [0, T ]).
Assume that aε is a C3 function over Ω and εaεxx is bounded on Ω uniformly for ε.
Let uε be a classical solution of (4.2). Then the estimate

max
Q
(|uε|+ |uεx|+ |uεt |) ≤ C(4.3)

holds with some constant C > 0 depending only on T , γ, |aε|C1(Ω), |εaεxx|C(Ω),

|F ε|C1(Q), and |αε|C(∂Ω×[0,T ]).

Proof. We shall prove (4.3) by using maximum principles. In the proof we suppress
superscripts of F ε and αε to simplify the notation.

(i) The estimate for uε. We set w(x, t) = e−tuε(x, t). It follows from (4.2) that
wt + w − εwxx = e−tF

(
(etwx)

2 + γ2
)1/2

in Q,
wt + w + ενwx

= e−tF max
{
α,
(
([etνwxSignF ]−)2 + γ2

)1/2}
on ∂Ω× (0, T ),

w(x, 0) = aε(x) for x ∈ Ω.

(4.4)

Assume that w has a positive maximum in Q. Let (x̂, t̂) be the maximum point of w
and let λ be its maximum value, i.e., maxQ w = w(x̂, t̂) and λ = w(x̂, t̂). We assume
that

λ > max
Ω
|aε| and λ > max

Q
|F |max

{
max

∂Ω×[0,T ]
|α|, γ

}
(4.5)

and shall show that it is inconsistent with (4.4) for w. First, we observe that t̂ > 0 by
the first inequality of (4.5) and obtain wt(x̂, t̂) ≥ 0. When x̂ ∈ ∂Ω, we also observe
that ν(x̂)wx(x̂, t̂) ≥ 0. If F (x̂, t̂) > 0, then it follows from the second identity of (4.4)
that

λ ≤ e−t̂F (x̂, t̂)max{α(x̂, t̂), γ},

which is a contradiction of the second inequality of (4.5). On the other hand, F (x̂, t̂) ≤
0 implies that λ ≤ 0, but it is also a contradiction. When x̂ ∈ Ω, we see that
wx(x̂, t̂) = 0, wxx(x̂, t̂) ≤ 0 to get λ ≤ e−t̂F (x̂, t̂)γ by the first identity of (4.4), which
is a contradiction of the second inequality of (4.5). Thus we have an a priori estimate,

max
Q

uε ≤ eT max
{
max

Ω
|aε|,max

Q
|F |max

{
max

∂Ω×[0,T ]
|α|, γ

}}
.

We argue in the same way for a negative minimum to get

max
Q
|uε| ≤ eT max

{
max

Ω
|aε|,max

Q
|F |max

{
max

∂Ω×[0,T ]
|α|, γ

}}
.(4.6)

(ii) The estimate for uεx. We set w(x, t) = e−Ktuεx and K = 2maxQ |Fx|. It
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follows from (4.2) that



wt +Kw − εwxx
= e−KtFx

(
(eKtw)2 + γ2

)1/2
+

FeKtwwx
((eKtw)2 + γ2)1/2

in Q,

εwx + e
−KtF

(
(eKtw)2 + γ2

)1/2
+ ενw

= e−KtF max
{
α,
(
([eKtνwSignF ]−)2 + γ2

)1/2}
on ∂Ω× (0, T ),

w(x, 0) = aεx(x) for x ∈ Ω.

(4.7)

As before we take (x̂, t̂), λ satisfying maxQ w = w(x̂, t̂) and λ = w(x̂, t̂). We assume
that

λ > max
Ω
|aεx|, λ > max

∂Ω×[0,T ]
|α|, and λ > γ(4.8)

and shall show that it is inconsistent with (4.7) for w. First, we see that t̂ > 0 by
the first inequality of (4.8) and observe wt(x̂, t̂) ≥ 0. When x̂ ∈ ∂Ω, we also see that
ν(x̂)wx(x̂, t̂) ≥ 0. If ν(x̂)F (x̂, t̂) > 0, then it follows from the second identity of (4.7)
after multiplying ν(x̂) on both sides that

ν(x̂)e−Kt̂F (x̂, t̂)
(
(eKt̂λ)2 + γ2

)1/2

+ ελ ≤ ν(x̂)e−Kt̂F (x̂, t̂)max{α(x̂, t̂), γ}.

Dividing both sides by ν(x̂)e−Kt̂F (x̂, t̂) > 0, we obtain(
(eKt̂λ)2 + γ2

)1/2

+
ελ

ν(x̂)e−Kt̂F (x̂, t̂)
≤ max{α(x̂, t̂), γ}.

The left-hand side is strictly greater than λ, which is a contradiction of the second
and third inequalities of (4.8). If ν(x̂)F (x̂, t̂) < 0, then a similar calculation shows
that

ν(x̂)e−Kt̂F (x̂, t̂)
(
(eKt̂λ)2 + γ2

)1/2

+ ελ

≤ ν(x̂)e−Kt̂F (x̂, t̂)max
{
α(x̂, t̂), ((eKt̂λ)2 + γ2)1/2

}
and, since ν(x̂)e−Kt̂F (x̂, t̂) < 0,(

(eKt̂λ)2 + γ2
)1/2

+
ελ

ν(x̂)e−Kt̂F (x̂, t̂)
≥ max

{
α(x̂, t̂), ((eKt̂λ)2 + γ2)1/2

}
.

Since the second term of the left-hand side is negative, we get a contradiction. The
term ενux plays a crucial role in getting a contradiction for the case ν(x̂)F (x̂, t̂) �=
0. If F (x̂, t̂) = 0, then the second identity of (4.7) implies λ ≤ 0, which is also a
contradiction. When x̂ ∈ Ω, we see that wx(x̂, t̂) = 0, wxx(x̂, t̂) ≤ 0 and then

Kλ ≤ e−Kt̂Fx(x̂, t̂)
(
(eKt̂λ)2 + γ2

)1/2

from the first identity of (4.7). The right-hand side is less than or equal to K(λ2 +
γ2)1/2/2, which is a contradiction of the third inequality of (4.8). Hence, we have the
estimate

max
Q
|uεx| ≤ eKT max

{
max

Ω
|aεx|, max

∂Ω×[0,T ]
|α|, γ

}
, K = 2max

Q
|Fx|.(4.9)
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(iii) The estimate for uεt . We set w(x, t) = e−µtuεt (x, t) (µ = 1). It follows from
(4.2) that

wt + µw − εwxx
= e−µtFt

(
(uεx)

2 + γ2
)1/2

+
Fuεxwx

((uεx)
2 + γ2)1/2

in Q,

w + εe−µtνuεx
= e−µtF max

{
α,
(
([νuεxSignF ]−)

2 + γ2
)1/2}

on ∂Ω× (0, T ),
w(x, 0) = εaεxx(x) + F (x, 0)

(
aεx(x)

2 + γ2
)1/2

for x ∈ Ω.

(4.10)

Let (x̂, t̂) and λ satisfy maxQ w = w(x̂, t̂) and λ = w(x̂, t̂). We assume that

λ > Γ0, λ > Γ1, and λ > Γ2,(4.11)

with

Γ0 = εmax
Ω
|aεxx|+max

Q
|F |
(
max

Ω
|aεx|+ γ

)
,

Γ1 = max
Q
|F |max

{
max

∂Ω×[0,T ]
|α|,max

Q
|uεx|+ γ

}
,

Γ2 = max
Q
|Ft|

(
max
Q
|uεx|+ γ

)
.

We shall show that it is inconsistent with (4.10) for w. First, we see that t̂ > 0 by
the first inequality of (4.11) and obtain wt(x̂, t̂) ≥ 0. When x̂ ∈ ∂Ω, by the second
identity of (4.10) we see that

λ+ εe−µt̂ν(x̂)uεx(x̂, t̂) ≤ e−µt̂F (x̂, t̂)max
{
α(x̂, t̂), (uεx(x̂, t̂)

2 + γ2)1/2
}
.

Since uεx is bounded uniformly for ε, by choosing ε sufficiently small at the second
term of the left-hand side, we get a contradiction to the second inequality of (4.11).
When x̂ ∈ Ω, we see that wx(x̂, t̂) = 0, wxx(x̂, t̂) ≤ 0 and then

µλ ≤ e−µt̂Ft(x̂, t̂)((uεx)2 + γ2)1/2

from the first identity of (4.10), which is a contradiction of the third inequality of
(4.11). Hence, we have the estimate

max
Q
|uεt | ≤ eT max {Γ0,Γ1,Γ2} .(4.12)

By (4.6), (4.9), (4.12) we get the estimate (4.3) and now complete the proof of
Proposition 4.2.

Remark 2. (1) When F εx ≡ 0, one can choose any K > 0 in the proof (ii). So, we
have

max
Q
|uεx| ≤ max

{
max

Ω
|aεx|, max

∂Ω×[0,T ]
|α|, γ

}
.(4.9′)

(2) When F εt ≡ 0, we can choose any µ > 0 in the proof (iii). So, we have
max
Q
|uεt | ≤ max {Γ0,Γ1,Γ2} .(4.12′)
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(3) To carry out the above proof we implicitly invoke the regularity uε, uεx, u
ε
xx,

uεt ∈ C(Q) together with uεxt, uεxxx, uεtt, uεxxt ∈ C(Q). In Proposition 4.2 and Corollary
4.3 as a classical solution we require at least this regularity.

In a way similar to the proof of Proposition 4.2 one is able to prove an a priori
estimate, which is useful in proving the global existence of solutions of (4.2) (cf.
Theorem A.1).

Corollary 4.3. Assume that F ε and αε are in Proposition 4.2 and that a is a
C3 function over Ω. Let σ ∈ [0, 1] and ε > 0. Let v be a classical solution of

vt − εvxx = σF ε
(
(vx)

2 + γ2
)1/2

in Q,

vt = σF εmax
{
αε,
(
([νvxSignF

ε]−)2 + γ2
)1/2}− σενvx on ∂Ω× (0, T ),

v|t=0 = σa on Ω.

Then the estimate

max
Q
(|v|+ |vx|) ≤ C(4.13)

holds with some constant C > 0 independent of ε ∈ (0, 1) and σ ∈ [0, 1].
Proof of Theorem 4.1. For a given Lipschitz function a there is a sequence aε ∈

C∞(Ω) such that aε → a uniformly and that |aεx|C(Ω) and |εaεxx|C(Ω) are bounded.

For a given F ∈ C1(Q) and α ∈ C(∂Ω × [0, T ]) there is a sequence {F ε, αε} with
F ε ∈ C1(Q) ∩ C∞(Q), αε ∈ C1(∂Ω × [0, T ]) such that F ε → F uniformly in Q and
αε → α uniformly in ∂Ω× [0, T ] and that |F ε|C1(Q) and |αε|C(∂Ω×[0,T ]) are bounded

as ε→ 0. By Theorem A.1 there exists a unique classical solution uε of (4.2).
By the uniform estimate (4.3) the Arzelà–Ascoli theorem implies that there exists

a function u such that

uε → u uniformly on Q.

We shall show that u is the viscosity solution of the original dynamic boundary prob-
lem (4.1). Since the proof for viscosity supersolutions is symmetric, we only prove
that u is a viscosity subsolution for G = 0. To do this, let φ ∈ C2(Q) be a test
function and let (x̂, t̂) ∈ Q̂ = Ω × (0, T ) be the maximum point of u − φ. We may
assume that (x̂, t̂) is a strict maximum of u− φ. Then there exists (xε, tε) such that
(xε, tε)→ (x̂, t̂) and supQ̂(u

ε − φ) = (uε − φ)(xε, tε).
Case 1. When there exists a subsequence {(xε, tε) ∈ Q}, we see that uεt (xε, tε) =

φt(xε, tε), u
ε
x(xε, tε) = φx(xε, tε), and u

ε
xx(xε, tε) ≤ φxx(xε, tε). Since uε satisfies the

first identity of (4.2) at (xε, tε) as a classical solution, we get

φt(xε, tε)− εφxx(xε, tε)− F ε(xε, tε)(φx(xε, tε)2 + γ2)1/2 ≤ 0.

By ε→ 0 we see that u is a viscosity subsolution at (x̂, t̂).
Case 2. When x̂ ∈ ∂Ω and there is a subsequence {(xε, tε) ∈ ∂Ω× (0, T )}, we see

that uεt (xε, tε) = φt(xε, tε) and νu
ε
x(xε, tε) ≥ νφx(xε, tε). Since uε satisfies the second

identity of (4.2) at (xε, tε) as a classical solution, we get

φt(xε, tε) + ενφx(xε, tε)

≤ F ε(xε, tε)max
{
αε(xε, tε),

(
([νuεx(xε, tε)SignF

ε(xε, tε)]−)2 + γ2
)1/2}

.

(4.14)
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If F (x̂, t̂) > 0, we may assume that F ε(xε, tε) > 0. We also see that ([νu
ε
x(xε, tε)]−)

2 ≤
φx(xε, tε)

2 and then

φt(xε, tε) + ενφx(xε, tε) ≤ F ε(xε, tε)max
{
αε(xε, tε),

(
φx(xε, tε)

2 + γ2
)1/2}

.

By ε → 0 it holds that u satisfies either the first or second identity of (4.1) as a
viscosity subsolution at (x̂, t̂). If F (x̂, t̂) < 0, we may assume that F ε(xε, tε) < 0. It
is easy to see that

φt(xε, tε) + ενφx(xε, tε) ≤ F ε(xε, tε)αε(xε, tε).

By ε → 0 we get the second identity of (4.1) as a viscosity subsolution at (x̂, t̂). If
F (x̂, t̂) = 0, the right-hand side of (4.14) vanishes as ε → 0. We get ut ≤ 0 in the
viscosity sense at (x̂, t̂). Thus u is a viscosity solution of (4.1), and it is unique by the
comparison principle (Theorem 3.1).

The Lipschitz continuity of u in x follows from (4.9).

5. Relation to other boundary conditions. We shall relate an inhomoge-
neous Neumann boundary value problem for

ut − F (u2
x + γ

2)1/2 = 0(5.1)

supplemented with the dynamic boundary

ut − Fα = 0.(5.2)

Formally, (5.1) and (5.2) yields

F (u2
x + γ

2)1/2 = Fα.

If F is not zero, this implies u2
x + γ

2 = α2. Thus we obtain

∂u/∂ν = uxν = ±(α2 − γ2)1/2(5.3)

on the boundary. The Neumann data in (5.3) needs more explanation since both its
sign and its value for α2 < γ2 are unclear. We shall clarify these points and prove that
a solution of (5.1), (5.2) solves an inhomogeneous Neumann problem in the viscosity
sense (Theorem 5.1).

When we are asked to solve (5.1) and (5.2), we are tempted to integrate (5.2) in
order to obtain the Dirichlet condition:

u(x, t) =

∫ t

0

F (x, τ)α(x, τ)dτ + a(x), x ∈ ∂Ω.(5.4)

However, (5.1) with the Dirichlet condition (5.4) is not, unfortunately, equivalent to
(5.1), (5.2). We shall give a counterexample in the last part of this section.

Theorem 5.1. Assume that F and α are continuous on Q and ∂Ω × [0, T ],
respectively. Assume that u is a viscosity subsolution (resp., supersolution) for G in
Q̂. Then u is a viscosity subsolution (resp., supersolution) of the Neumann problem
of (5.1) in Q̂ with

∂u/∂ν = SignF {(α− γ)+(α+ γ)}1/2 .(5.5)
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Here β+ is the plus part of β defined by β+ = max(β, 0).
Proof. We suppress the word viscosity in the proof. Since the proof for supersolu-

tions is symmetric, we shall present the proof for subsolutions only. We may assume
that u is upper semicontinuous in Q̂. Assume that u is a subsolution for G in Q̂.
Assume that u − φ takes its maximum over Q̂ at (x̂, t̂) with x̂ ∈ Ω, t̂ ∈ (0, T ) for
φ ∈ C1(Q̂). We may assume that x̂ ∈ ∂Ω since the equation is the same in Ω× (0, T ).
To simplify notation we set

τ = φt(x̂, t̂), p = φx(x̂, t̂), F̂ = F (x̂, t̂), α̂ = α(x̂, t̂).

We have to prove that

min
{
τ − F̂ (p2 + γ2)1/2, pν − SignF̂ {(α̂− γ)+(α̂+ γ)}1/2

}
≤ 0.(5.6)

To prove (5.6) we may assume that

τ − F̂ (p2 + γ2)1/2 > 0.(5.7)

Case 1 (F̂ < 0). Since u is a subsolution of G = 0, we have

τ − F̂ max
{
α̂,
(
([pν]+)

2 + γ2
)1/2} ≤ 0.(5.8)

From (5.7) and (5.8) it follows that

F̂
(
p2 + γ2

)1/2
< F̂ max

{
α̂,
(
([pν]+)

2 + γ2
)1/2}

or (
p2 + γ2

)1/2
> max

{
α̂,
(
([pν]+)

2 + γ2
)1/2}

(5.9)

≥ (([pν]+)2 + γ2
)1/2

.

This implies p2 > ([pν]+)
2, so we obtain

pν < 0.(5.10)

Assume that α̂ > γ. From (5.9) it follows that (p2 + γ2)1/2 > α̂. This together with
(5.10) implies that

pν < −(α̂2 − γ2)1/2 for α̂ > γ.(5.11)

By (5.10) and (5.11) we obtain

pν < −{(α̂− γ)+(α̂+ γ)}1/2 .
We now obtain (5.6) when F̂ < 0.

Case 2 (F̂ > 0). We note that G = 0 is equivalent to the dynamic boundary value
problem (5.1), (5.2). Since (5.7) holds, we have

τ − F̂ α̂ ≤ 0.(5.12)

From (5.7) and (5.12) it follows that

F̂ (p2 + γ2)1/2 < F̂ α̂.
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Since F̂ > 0, this yields (p2 + γ2)1/2 < α̂ and implies

p2 < α̂2 − γ2 or |p|2 ≤ α̂2 − γ2 = (α̂− γ)+(α̂+ γ).
We have thus proved (5.6) when F̂ > 0.

Case 3 (F̂ = 0). Since G = 0 is equivalent to the dynamic boundary value problem
(5.1), (5.2), τ ≤ 0 is always fulfilled if F̂ = 0. Thus we have proved (5.6).

We shall give a counterexample to show that the problem (5.1), (5.2) is different
from the Dirichlet problem (5.1), (5.4) in the viscosity sense. We suppress the word
viscosity.

We shall give two different functions u and v which initially agree with each other,
but u solves (5.1), (5.2) while v solves (5.1), (5.4) when α ≡ 1, F ≡ 1, α > γ, and
Ω = (0,∞). Although it is not difficult to give such functions for Ω = (0, L) with
more general α and F , we keep such assumptions to clarify the argument. Let β be
a constant strictly greater than σ = (1− γ2)1/2 so that η = (β2 + γ2)1/2 > 1. We set

w(x, t) = min{β + γt, βx+ ηt,−σx+ σ + β + t}, x ∈ Ω.(5.13)

This function is nondecreasing in t and

w(x, 0) = min{βx,−σx+ σ + β}
so that w(x, 0) is linear except at x = 1. At time t0 = β(η − γ)−1

w(x, t0) = min{β + γt0,−σx+ σ + β + t0}.
Since β ≥ σ, it is easy to see that

φt −
(
φ2
x + γ

2
)1/2 ≤ 0 at (x̂, t̂)

if w − φ attains its maximum at (x̂, t̂) over Ω × (0, t0] even if x̂ ∈ ∂Ω. So w is a
subsolution of Ω × (0, t0] of (5.1), (5.2) and (5.1), (5.4). It is easy to see that w is a
supersolution of (5.1), (5.2) and (5.1), (5.4) in Ω× (0, t0] since wt ≥ 1, w ≥ t0 on the
boundary. We now set

u(x, t) = v(x, t) = w(x, t) for t ≤ t0, x ∈ Ω(5.14)

and

v(x, t) = min{β + γt,−σx+ σ + β + t} for t ≥ t0, x ∈ Ω,(5.15)

u(x, t) = max{β + (γ − 1)t0 + t− σx, v(x, t)} for t ≥ t0, x ∈ Ω.(5.16)

As for w it is easy to see that v is a subsolution of both the dynamic (5.1), (5.2) and the
Dirichlet problem (5.1), (5.4) in Ω× (0,∞). Since η > 1 so that t1 = β(1−γ)−1 > t0,
and since v(0, t) > t for t < t1, v is a supersolution of the Dirichlet problem in
Ω× (0, t1). However, v is not a supersolution in Ω× (0, t1) of (5.1), (5.2) since at the
boundary vt < 1 with vx = 0.

Since ut = 1 on the boundary and since it is easy to see that u is a solution of
(5.1) in Ω× (0,∞), we conclude that u is a solution of (5.1), (5.2) in Ω× (0,∞). This
is not a subsolution of (5.1), (5.4) in Ω× (0,∞) since u(0, t) > t by η > 1 and

φt −
(
φ2
x + γ

2
)1/2

> 0 at (0, t̂)
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if u− φ attains its maximum on Ω× (0,∞) and t̂ > t0. (The function u is a superso-
lution of (5.1), (5.4) since u(0, t) > t.) We summarize our results.

Proposition 5.2. Assume that α ≡ F ≡ 1 and γ < 1. Let β > σ = (1− γ2)1/2.
For Ω = (0,∞), let u and v be functions defined by (5.13)–(5.16). Then u is a solution
of the dynamic boundary problem (5.1), (5.2) in Ω × (0,∞) while v is a solution of
the Dirichlet problem (5.1), (5.4) in Ω × (0, t1) with t1 = β(1 − γ)−1. However, u is
not a subsolution of (5.1), (5.4) in Ω × (0, T ), T > t0, while u is a supersolution of
(5.1), (5.4) in Ω× (0,∞). The function v is not a supersolution of (5.1), (5.2) while
it is a subsolution of (5.1), (5.2).

Appendix. Existence of solutions of approximate solutions. Our goal is
to prove the following theorem.

Theorem A.1. For T > 0 assume that F ∈ C1(Q) ∩ C∞(Q) and α ∈ C1(∂Ω×
[0, T ]) with Q = Ω × (0, T ), where Ω is a bounded open interval. Assume that a ∈
C3(Ω) and γ ∈ R. Then for each ε > 0 there exists a solution u ∈ C2,1(Q) ∩ C∞(Q)
of 

ut − εuxx = F (u2
x + γ

2)1/2 in Q,

ut + ενux = F max
{
α,
(
([νuxSignF ]−)2 + γ2

)1/2}
on ∂Ω× (0, T ),

u|t=0 = a on Ω.

The space C2,1(Q) denotes the space of all u ∈ C(Q) satisfying ux, uxx, ut ∈
C(Q). The space X = C1,0(Q) denotes the space of all u ∈ C(Q) satisfying ux ∈
C(Q). The space X is a Banach space equipped with the norm ‖u‖X =
max(|u|C(Ω), |ux|C(Ω)).

We shall find a solution inX by a method of continuity which is a version of a fixed
point argument [9, Theorem 11.6]. For σ ∈ [0, 1] we define a mapping Fσ : X → Y by

Fσ(φ) =
(
σF (φ2

x + γ
2)1/2, σF max

{
α,
(
([νφxSignF ]−)2 + γ2

)1/2} ∣∣∣
∂Ω
− σενφx

∣∣∣
∂Ω

)
,

where Y = C(Q)×C(∂Ω× [0, T ]). Let Hσ denote the solution operator of the problem
ut − εuxx = f in Q,
ut = g on ∂Ω× (0, T ),
u|t=0 = σa on Ω.

In other words, it is formally defined by Hσ(f, g) = u for (f, g) ∈ Y . Let us give
a rigorous definition. We replace the boundary condition by the standard Dirichlet
condition

u(x, t) =

∫ t

0

g(x, τ)dτ + σa(x) =: h(x, t).

We extend h linearly in x, i.e.,

h̃(x, t) =
L− x
L

h(0, t) +
x

L
h(L, t), x ∈ Ω,

when Ω = (0, L). Then v = u− h̃ solves
vt − εvxx = f − h̃t in Q,
v = 0 on ∂Ω× (0, T ),
v|t=0 = σa− h̃|t=0 on Ω.
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Since h̃t ∈ C(Q), by the standard Lp theory [11] there is a unique solution v of the
above problem, and it belongs to the Sobolev space W 2,1

p (Q) for every p > 1 if a is

sufficiently regular, say a ∈ C2(Ω). The value Hσ(f, g) is defined by v + h̃. By the
construction the mapping Hσ is bounded linearly from Y to W 2,1

p (Q) for every p > 1.
Thus the mapping H : Y × [0, 1] → X defined by H((f, g), σ) = Hσ(f, g) is well-

defined and compact by the standard embedding theory [11]. We define F : X×[0, 1]→
X by

F(φ, σ) = H(Fσ(φ), σ).

Evidently, F(φ, 0) = 0 for all φ ∈ X. Moreover F is compact since H is compact and
F is continuous. To apply the Leray–Schauder fixed point theorem [9, Theorem 11.6],
it remains to prove the a priori estimate

‖φ‖X < M for φ = F(φ, σ)(A.1)

with M independent of φ and σ. We first observe that φ ∈ C2,1(Q) ∩ C∞(Q). Since
φ ∈W 2,1

p (Q) for p > n+2, a standard embedding result [11, Chapter II, Lemma 3.3]

implies that φx ∈ Cµ,µ/2(Q) with some µ ∈ (0, 1); i.e., φx is Hölder continuous in
Q. This implies that Fσ(φ) ∈ Cµ,µ/2(Q) × Cµ/2(∂Ω × [0, T ]). Since F(φ, σ) = φ and
a ∈ C2+µ(Ω), by the Schauder estimates [11] we conclude that φ ∈ C2+µ,1+µ/2(Q).
Since F ∈ C∞(Q), then a standard bootstrap argument [11] yields φ ∈ C∞(Q). Thus
the estimate (A.1) is obtained in Corollary 4.3. Note that the term ενux plays a
crucial role here. We have thus proved that there exists u ∈ X such that F(u, 1) = u,
which is the desired solution. So, Theorem A.1 has been proved.

Remark 3. Of course there is another way to prove Theorem A.1. A local-in-time
classical solution u can be constructed as in [7]. Once there is a bound for ux, then
the solution can be extended globally in time as in [8]. However, Theorem A.1 is
not explicitly included in these references, so we have given a complete proof for the
reader’s convenience. The solution in Theorem A.1 is actually unique, although we
do not use this property.
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Abstract. We rigorously derive the leading order term in the asymptotic expansion of the scat-
tering amplitude of a collection of a finite number of dielectric inhomogeneities of small diameter.
We then apply this asymptotic formula for the purpose of identifying the location and certain prop-
erties of the shapes of the small inhomogeneities from scattering amplitude measurements at a fixed
frequency. Our main idea is to reduce this reconstruction problem to the calculation of an inverse
Fourier transform.
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1. Introduction. In this paper, we consider three-dimensional electromagnetic
scattering from a collection of small dielectric inhomogeneities. We suppose that there
is a finite number of dielectric imperfections in R3, each of the form zj + αBj , where
Bj ⊂ R3 is a bounded, smooth (C∞) domain containing the origin. This regularity
assumption could be considerably weakened. The total collection of imperfections
thus takes the form

Iα = ∪mj=1(zj + αBj).

The points zj ∈ R3, j = 1, . . . ,m, that determine the location of the imperfections
are assumed to satisfy

0 < d0 ≤ |zj − zl| ∀ j 	= l.(1)

We also assume that α > 0, the common order of magnitude of the diameters of the
imperfections, is small enough such that the imperfections are disjoint.

Our first goal is to provide a rigorous derivation of the asymptotic expansion of
the scattering amplitude for such a collection of small dielectric imperfections. Our
second goal is to use this expansion for efficiently determining the locations and/or
shapes of the small inhomogeneities from scattering amplitude measurements at a
fixed frequency by reducing the reconstruction problem of the small inhomogeneities
to the calculation of an inverse Fourier transform. We expect that our asymptotic
formulas will form the basis for very effective computational identification algorithms,
aimed at determining information about the small inhomogeneities from scattering
amplitude measurements.
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To the best of our knowledge, the present paper is the first attempt to design an
effective and accurate method to determine the location and the size of small dielectric
inhomogeneities with both different electric permittivities and magnetic permeabilities
from scattering amplitude measurements. Our method is quite similar to the ideas
used by Calderon [5] in his proof of uniqueness of the linearized conductivity problem
and later by Sylvester and Uhlmann in their important work [20] on uniqueness of
the three-dimensional inverse conductivity problem. Our technique for studying the
scattering problem is to reduce the problem to a bounded domain with the aid of
integral equation methods. On the bounded domain, the derivation of the asymptotic
expansion of the solution relies heavily on the results of [24]. The current work is
also a natural extension of the identification procedure that we have presented in [2],
where we demonstrated numerically its accuracy and stability. For discussions on
other closely related inverse scattering problems, the reader is referred, for example,
to [7], [15], [10], [11], [12], [22], [23], [14], [17], [18], [19], and [8].

Let µ0 > 0 and ε0 > 0 denote the permeability and the permittivity of the free
space; we shall assume that these are positive constants. Let µj > 0 and εj > 0 denote
the permeability and the permittivity of the jth inhomogeneity, zj + αBj ; these are
also assumed to be positive constants. Using this notation, we introduce the piecewise
constant magnetic permeability

µα(x) =

{
µ0, x ∈ R3 \ Īα,
µj , x ∈ zj + αBj , j = 1, . . . ,m.(2)

If we allow the degenerate case α = 0, then the function µ0(x) equals the constant µ
0.

The piecewise constant electric permittivity εα(x) is defined analogously. We need to
introduce some additional notation. Let γj , 1 ≤ j ≤ m, be a set of positive constants.
In effect, {γj} will be either the set {εj} or the set {µj}. For any fixed 1 ≤ j0 ≤ m,
let γ denote the coefficient given by

γ(x) =

{
γ0, x ∈ R3 \ B̄j0 ,
γj0 , x ∈ Bj0 .(3)

By φl, 1 ≤ l ≤ 3, we denote the solution to

∇y · γ(y)∇yφl = 0 in R3,

φl − yl → 0 as |y| → ∞.

This problem may alternatively be written as

∆φl = 0 in Bj0 , and in R
3 \Bj0 ,

φl is continuous across ∂Bj0 ,

γ0

γj0
(∂νφl)

+ − (∂νφl)− = 0 on ∂Bj0 ,

φl(y)− yl → 0 as |y| → ∞.

Here ν denotes the outward unit normal to ∂(zj+αBj); superscripts + and − indicate
the limiting values as we approach ∂(zj+αBj) from outside zj+αBj and from inside
zj+αBj . It is obvious that the function φl depends only on the coefficients γ

0 and γj0

through the ratio c = γ0

γj0
. The existence and uniqueness of this φl can be established

using single layer potentials with suitably chosen densities. It is essential here that
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the constant c, by assumption, cannot be 0 or a negative real number. We now define
the polarization tensor M j0(c) of the inhomogeneity Bj0 (with aspect ratio c), by

M j0
kl (c) = c

−1

∫
Bj0

∂ykφl dy.(4)

It is quite easy to see that the tensor M j0
kl (c) is symmetric; since c is a positive real

number, it is furthermore positive definite (see [6], [13]).

2. Asymptotic formula for the solution. Consider in this section a homo-
geneous background medium in all of R3 with electric permittivity ε0 and magnetic
permeability µ0, and let εα and µα be the corresponding dielectric functions in the
presence of the small inhomogeneities described above. Let uα be the solution to the
Helmholtz equation (

∇ · 1
µα
∇+ ω2εα

)
uα = 0 in R3,(5)

with the radiation condition as r →∞,

|∂r(uα − eikη·x)− ik(uα − eikη·x)| = O
(
1

r2

)
,(6)

where ω is the frequency, k2 = ω2ε0µ0, η is a vector on the unit sphere S2 in R3,
η · η = 1, and u0 = eikη·x is an incident plane wave. Note that u0 satisfies the
homogeneous Helmholtz equation(

∇ · 1
µ0
∇+ ω2ε0

)
u0 = 0 in R3.(7)

In this section, we find and prove a formula, asymptotic with respect to the inho-
mogeneity size α, for uα in terms of u0. We begin by defining the outgoing Green
function G(x, y) to satisfy(

∆y + k
2
)
G(x, y) = −δx(y) in R3,(8)

|∂rG− ikG| = O
(
1

r2

)
as r →∞.

In fact, we know G explicitly:

G(x, y) =
eik|x−y|

4π|x− y| .

Let Ω denote some fixed domain in R3 that contains the inhomogeneities. Without
loss of generality, we can assume that k2 is not an eigenvalue of −∆ in Ω corresponding
to Dirichlet boundary conditions on ∂Ω. We know that Proposition 1 in [24], which
is based on properties of collectively compact operators, guarantees that, for α suffi-
ciently small, the trivial solution is the unique solution to (∇ · 1

µα
∇ + ω2εα)vα = 0

in Ω, with the boundary condition vα = 0 on ∂Ω.
If we consider the equation for uα in the exterior of Ω, multiply G, and integrate

by parts, we get that, for x ∈ R3 \ Ω,

uα(x) = u0(x) +

∫
∂Ω

∂νyGuα(y) dσy −
∫
∂Ω

G∂νuα(y) dσy,
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where ν is the unit outward normal to ∂Ω. Of course, this equation does not hold up
to the boundary of Ω, but if we take the limit as x → ∂Ω, we get (see, for example,
[7] and [16])

1

2
uα|∂Ω = u0|∂Ω +

∫
∂Ω

∂νyGuα(y) dσy −
∫
∂Ω

G∂νuα(y) dσy(9)

for x ∈ ∂Ω. Now define the Dirichlet to Neumann map

Nα : H
1/2(∂Ω)→ H−1/2(∂Ω),

Nα(f) = ∂νvα,

where vα is the solution to(
∇ · 1

µα
∇+ ω2εα

)
vα = 0 in Ω,(10)

vα = f on ∂Ω.

Hence

Nα(uα|∂Ω) = ∂νuα|∂Ω.

Similarly, let

N0 : H
1/2(∂Ω)→ H−1/2(∂Ω)

be the Neumann to Dirichlet map for the limiting problem so that

N0(u0|∂Ω) = ∂νu0|∂Ω.

We also define the single and double layer potential operators

S : H−1/2(∂Ω)→ H1/2(∂Ω)

and

D : H1/2(∂Ω)→ H1/2(∂Ω),

where

S : g →
∫
∂Ω

G(x, y)g(y) dσy

and

D : f →
∫
∂Ω

∂νyG(x, y)f(y) dσy.

Using this operator notation, we see that from (9) we have(
I

2
−D + SNα

)
(uα|∂Ω) = u0|∂Ω.
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Similarly, u0 satisfies (
I

2
−D + SN0

)
(u0|∂Ω) = u0|∂Ω.

Define

Tα : H
1/2(∂Ω)→ H1/2(∂Ω)

by

Tα =
I

2
−D + SNα,(11)

and let

T0 =
I

2
−D + SN0.(12)

By subtracting the two above equations, we have that

Tα(uα|∂Ω)− T0(u0|∂Ω) = 0,

and hence

Tα((uα − u0)|∂Ω) = S(N0 −Nα)(u0|∂Ω).

We will need the following proposition. The reader is referred to the appendix for its
proof. In the following proposition and in the remainder of this paper, all asymptotic
terms and constants may depend on the separation d0 of the inhomogeneities.

Proposition 1. Let Tα be defined by (11) and T0 by (12). Then we have the
following:

(a) Tα converges to T0 pointwise.
(b) Tα − T0 is collectively compact.
(c) There exists a constant C that is independent of α and the set of points
{zj}mj=1 such that, for any f ∈ H1/2(∂Ω), T−1

α exists and

‖T−1
α f‖H1/2(∂Ω) ≤ C‖f‖H1/2(∂Ω).

(d) The following asymptotic formula holds:

(T0 − Tα)(u0|∂Ω)(x) = S(N0 −Nα)(u0|∂Ω)(x)

= α3

[
m∑
j=1

(
1− µ

j

µ0

)
∇u0(zj) ·M j

(
µj

µ0

)
∇yG(x, zj)

+ k2

(
1− ε

j

ε0

)
u0(zj)G(x, zj)

]
+ o(α3),(13)

where the asymptotic term o(α3) is independent of x ∈ ∂Ω and the set of
points {zj}mj=1.

Define the correction

u(1)(x) =

m∑
j=1

(
1− µ

j

µ0

)
∇u0(zj) ·M j

(
µj

µ0

)
∇yG(x, zj)+ k2

(
1− ε

j

ε0

)
u0(zj)G(x, zj)

(14)
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for x 	= zj , j = 1, . . . ,m. We have therefore shown that

Tα((uα − u0)|∂Ω) = α
3u(1)|∂Ω + o(α

3)(15)

uniformly for x ∈ ∂Ω. Note that, from the definition of G, u(1) satisfies

(∆+k2)u(1) =

m∑
j=1

(
1− µ

j

µ0

)
∇u0(zj)·M j

(
µj

µ0

)
∇δzj+k2

(
1− ε

j

ε0

)
u0(zj)δzj ,(16)

in the sense of distributions, where δzj is the Dirac delta function at the point zj .

Lemma 1. Let the correction term u(1) be defined by (14). Then we have

T0(u
(1)|∂Ω) = u

(1)|∂Ω.

Proof. Multiplying (16) by G, integrating by parts over Ω, and taking the limit
as x→ ∂Ω, we get

1

2
u(1)|∂Ω −

∫
∂Ω

∂νyGu
(1)(y) dσy +

∫
∂Ω

G∂νu
(1)(y) dσy = 0

for x ∈ ∂Ω. Define v(1) as the unique solution to{
∆v(1) + k2v(1) = 0 in Ω,
v(1) = u(1) on ∂Ω;

that is,

∂νv
(1) = N0(u

(1)|∂Ω).

Green’s formula yields, for any x ∈ Ω away from the centers of the inhomogeneities,∫
∂Ω

G(x, y)∂ν(u
(1) − v(1))(y) dσy =

m∑
j=1

(
1− µ

j

µ0

)
∇u0(zj) ·M j

(
µj

µ0

)
∇yG(x, zj)

+ k2

(
1− ε

j

ε0

)
u0(zj)G(x, zj)− u(1)(x) + v(1)(x)

= v(1)(x).

Hence, for x ∈ ∂Ω, ∫
∂Ω

G(x, y)∂ν(u
(1) − v(1))(y) dσy = u(1)(x).

Using this, we can rewrite∫
∂Ω

G∂νu
(1)(y) dσy =

∫
∂Ω

GN0(u
(1))(y) dσy +

∫
∂Ω

G(∂νu
(1)(y)−N0(u

(1))(y)) dσy

=

∫
∂Ω

GN0(u
(1))(y) dσy + u

(1)(x),

from which it follows that

1

2
u(1)|∂Ω −

∫
∂Ω

∂νyGu
(1)(y) dσy +

∫
∂Ω

GN0(u
(1))(y) dσy = u

(1)(x)
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for x ∈ ∂Ω. This just says exactly that T0(u
(1)|∂Ω) = u

(1)|∂Ω.
Lemma 2. The following estimate holds:

‖uα − u0 − α3u(1)‖H1/2(∂Ω) = o(α
3),(17)

where the term o(α3) goes to zero faster than α3 independent of the set of points
{zj}mj=1.

Proof. From (15) it follows that

Tα((uα − u0 − α3u(1))|∂Ω) = α
3u(1)|∂Ω − α3Tα(u

(1)|∂Ω) + o(α
3).

Lemma 1 yields

Tα((uα − u0 − α3u(1))|∂Ω) = α
3(T0 − Tα)(u(1)|∂Ω) + o(α

3).

Therefore, due to the pointwise convergence of Tα to T0, we obtain

Tα((uα − u0 − α3u(1))|∂Ω) = o(α
3),

which leads, by using point (c) in Proposition 1, to the desired estimate (17).
From this lemma, we obtain the following theorem.

Theorem 1. Let uα be the solution to (5), and let M j(µ
j

µ0 ) be the polarization

tensors for the shapes Bj defined by (4). Then, for x ∈ R3\Ω bounded away from ∂Ω,
we have the pointwise expansion

uα(x) = e
ikη·x(18)

+ α3
m∑
j=1

eikη·zj
[
ik

(
1− µ

j

µ0

)
∇yG(x, zj) ·M j

(
µj

µ0

)
η

+ k2

(
1− ε

j

ε0

)
|Bj |G(x, zj)

]
+ o(α3).

Here the remainder term o(α3) is independent of x and the set of points {zj}mj=1.

Proof. From Lemma 2, it follows that uα − u0 satisfies in R
3 \ Ω

∆(uα − u0) + k
2(uα − u0) = 0 in R3 \ Ω,

(uα − u0) = α
3u(1) + o(α3) on ∂Ω,

|∂r(uα − u0)− ik(uα − u0)| = O( 1
r2 ).

Let G denote the outgoing Dirichlet Green function that is defined by
∆G + k2G = −δ in R3 \ Ω,
G = 0 on ∂Ω,

|∂rG − ikG| = O( 1
r2 ).

It is easy to see that uα − u0 has the following integral representation in R
3 \ Ω:

(uα − u0)(x) =

∫
∂Ω

∂G
∂νy

(x, y)(uα − u0)(y) dσ(y) ∀ x ∈ R3 \ Ω.
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Moreover, for any x ∈ R3 \ Ω which is bounded away from ∂Ω, we obtain from the
asymptotic expansion of the boundary condition in Lemma 2 that

(uα − u0)(x) = α
3

∫
∂Ω

∂G
∂νy

(x, y)u(1)(y) dσ(y) + o(α3),

where o(α3) is independent of x and the set of points {zj}mj=1. Since, for any x ∈ R3\Ω
and z ∈ Ω, we have by standard integration by parts the identities∫

∂Ω

∂G
∂ν
(x, y)G(y, z) dσ(y) = G(x, z)

and ∫
∂Ω

∂G
∂ν
(x, y)∇zG(y, z) dσ(y) = ∇zG(x, z),

the expression of the correction term u(1) immediately leads to the promised asymp-
totic expansion.

We also can obtain the next proposition on the norm convergence of the solutions.
Proposition 2. There exists a constant C that is independent of α and the set

of points {zj}mj=1 such that the following energy estimate holds:

‖uα − u0‖L2(Ω) + ‖∇uα −∇u0‖L2(Ω) ≤ Cα2.(19)

Proof. Let ũα be defined as the unique solution to{
∆ũα + k

2ũα = 0 in Ω,
ũα = uα on ∂Ω.

We have {
∆(ũα − u0) + k

2(ũα − u0) = 0 in Ω,
(ũα − u0) = uα − u0 on ∂Ω,

which leads to

‖ũα − u0‖H1(Ω) ≤ C‖uα − u0‖H1/2(Ω),

where the constant C is independent of α. Using Lemma 2, we get that ‖ũα−u0‖H1(Ω)

is of order α3. Now note that the function (uα−ũα) is inH1
0 (Ω), and for any v ∈ H1

0 (Ω)∫
Ω

1

µα
∇(uα − ũα) · ∇v − ω2

∫
Ω

εα(uα − ũα)v =

∫
Ω

1

µα
∇uα · ∇v − ω2

∫
Ω

εαuαv

−
∫

Ω

1

µ0
∇ũα · ∇v + ω2

∫
Ω

ε0ũαv

+

m∑
j=1

(
1

µ0
− 1

µj

)∫
zj+αBj

∇ũα · ∇v

+ k2

(
εj

ε0
− 1
)∫

zj+αBj

ũαv.

Next we can bound∣∣∣∣∫
zj+αBj

∇ũα · ∇v
∣∣∣∣ ≤ ‖∇ũα‖L2(zj+αBj)‖∇v‖L2(Ω)
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and ∣∣∣∣∫
zj+αBj

ũαv

∣∣∣∣ ≤ ‖ũα‖L2(zj+αBj)‖v‖L2(Ω).

However, using the triangle inequality,

‖∇ũα‖L2(zj+αBj) ≤ ‖∇(ũα − u0)‖L2(Ω) + ‖∇u0‖L2(zj+αBj),

and

‖ũα‖L2(zj+αBj) ≤ ‖(ũα − u0)‖L2(Ω) + ‖u0‖L2(zj+αBj).

Therefore, since

‖u0‖H1(zj+αBj) = O(α
2)

and

‖(ũα − u0)‖H1(Ω) = O(α
3),

we obtain ∣∣∣∣∫
Ω

1

µα
∇(uα − ũα) · ∇v − ω2

∫
Ω

εα(uα − ũα)v
∣∣∣∣ ≤ Cα2‖v‖H1(Ω)

for any v ∈ H1
0 (Ω). From Proposition 1 in [24], it then follows that

‖(uα − ũα)‖H1(Ω) = O(α
2);

hence

‖(uα − u0)‖H1(Ω) ≤ ‖(uα − ũα)‖H1(Ω) + ‖(u0 − ũα)‖H1(Ω) ≤ Cα2,

exactly as desired.

3. Asymptotic formula for the scattering amplitude. We now use the re-
sults derived in the previous section to prove an asymptotic formula for the scattering
amplitude. The scattering amplitude, Aα(

x
|x| , η, k), is defined to be a function which

satisfies

uα(x) = e
ikη·x +Aα

(
x

|x| , η, k
)
eik|x|

|x| + o
(
1

|x|
)

(20)

as |x| → ∞. Recall that

G(x, zj) =
eik|x−zj |

4π|x− zj | .

One can show from a simple calculation that, as |x| → ∞,

G(x, zj) =
eik|x|

|x|
e−ik

x
|x| ·zj

4π
+ o

(
1

|x|
)

(21)
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and

∇yG(x, zj) = e
ik|x|

|x|
ikx

4π|x|e
−ik x

|x| ·zj + o
(
1

|x|
)
.(22)

The following asymptotic formula for the scattering amplitude holds.
Theorem 2. The scattering amplitude

Aα

(
x

|x| , η, k
)
=
α3k2

4π

m∑
j=1

eik(η−
x
|x| )·zj

[(
µj

µ0
− 1
)
x

|x| ·M
jη −

(
εj

ε0
− 1
)
|Bj |

]
(23)

+ o(α3)

for any x
|x| and η ∈ S2, where o(α3) is independent of the set of points {zj}mj=1.

Proof. This follows from (21), (22), and the expansion in Theorem 1.

4. Method for reconstruction of inhomogeneities at a fixed frequency.
In this section, we present a linear method to determine the locations and the polar-
ization tensors of the small inhomogeneities from scattering amplitude measurements
for a fixed frequency. Based on the asymptotic expansion (23), we reduce the recon-
struction of the small dielectric inhomogeneities from the scattering amplitude to the
calculation of an inverse Fourier transform. For convenience, we are going to assume
that Bj , for j = 1, . . . ,m, are balls. In this case, the polarization tensors M

j have
the following explicit forms (see, for example, [25]):

M j

(
µj

µ0

)
= mjI3,

where I3 is the 3× 3 identity matrix and the scalars mj are given by

mj = 8π|Bj | µj

µj + µ0
.

We assume that we are in possession of the scattering amplitude Aα(
xl

|xl| , ηl′ , k)
for a collection of pairs ( xl

|xl| , ηl′), where l = 1, . . . , L and l
′ = 1, . . . , L′. Introduce

g

(
x

|x| , η
)
=

m∑
j=1

eik(η−
x
|x| )·zj

[(
µj

µ0
− 1
)
mj x

|x| · η −
(
εj

ε0
− 1
)
|Bj |

]
,

x

|x| , η ∈ S
2.

(24)
We first observe that

g

(
x

|x| , η
)
= g

(
−η,− x|x|

)
∀ x|x| , η ∈ S

2.(25)

Define, for l = 1, . . . , L and l′ = 1, . . . , L′, the coefficients al,l′ by

al,l′ =
4π

k2α3
Aα

(
xl
|xl| , ηl

′ , k

)
.

Our reconstruction procedure is divided into three steps.
Step 1. Given that

g

(
xl
|xl| , ηl

′

)
≈ al,l′ ,
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we can compute using the fast Fourier transform (FFT) an accurate approximation
of g( x|x| , η) on S

2 × S2.

Step 2. Let M denote the following complex variety:

M = {ξ ∈ C3, ξ · ξ = 1}.
It is easy to see that g( x|x| , η) has an analytic continuation to M × M . Let

(Yp,q)−p≤q≤p, p=0,1,..., denote the normalized (in L
2(S2)) spherical harmonics. De-

note by gp,q the Fourier coefficients of g:

g

(
x

|x| , η
)
=
∑
p,q

gp,q

(
x

|x|
)
Yp,q(η) ∀ x|x| , η ∈ S

2.(26)

Recall that, from Step 1, we are in fact in possession of an accurate approximation
of gp,q(

x
|x| ) on S

2 for −p ≤ q ≤ p and p ≤ P . In view of (26), the analytic continuation
of the truncated Fourier series ∑

p,q; p≤P
gp,q

(
x

|x|
)
Yp,q(η)

of g( x|x| , η) on M ×M can be obtained by using the standard analytic continuation

of the spherical harmonics (Yp,q(η))p,q on the complex variety M followed by another
analytic continuation of the Fourier expansion in x

|x| . We know that the analytic

continuation of g from S2 × S2 to M ×M is unique.
Step 3. Recall that, given al,l′ for l = 1, . . . , L and l′ = 1, . . . , L′, we have

constructed by Steps 1 and 2 an accurate approximation of the function g( x|x| , η) that
is analytic on M ×M and is such that

g

(
xl
|xl| , ηl

′

)
≈ al,l′ ∀ l = 1, . . . , L and l′ = 1, . . . , L′.

However, for any ξ ∈ R3, we know that there exist ξ1 and ξ2 in M such that ξ =
k(ξ1 − ξ2); see, for example, [5] and [20]. Let us now view (al,l′) as a function of
ξ ∈ R3. We have

g(ξ1, ξ2) =

m∑
j=1

e−iξ·zj
[(
µj

µ0
− 1
)
mjξ1 · ξ2 −

(
εj

ε0
− 1
)
|Bj |

]
,

and, since

ξ1 · ξ2 = 1− 1
2
k2|ξ|2,

we can rewrite g as follows:

g(ξ1, ξ2) =

m∑
j=1

e−iξ·zj
[(
µj

µ0
− 1
)
mj

(
1− 1

2
k2|ξ|2

)
−
(
εj

ε0
− 1
)
|Bj |

]
.(27)

Define

g̃(ξ) = g(ξ1, ξ2),
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and note that we are now in possession of an approximation to g̃(ξ) for any ξ ∈ R3.
Here we rely on the fact that the analytic continuation is unique.

Recall that e−iξ·zj (up to a multiplicative constant) is exactly the Fourier trans-
form of the Dirac function δzj (a point mass located at zj). Multiplication by powers
of ξ in Fourier space corresponds to differentiation of the Dirac function. Therefore,
using the inverse Fourier transform, we obtain

F−1(g̃(ξ)) =

m∑
j=1

Lj(δzj ),

where Lj are, in view of (27), second order constant coefficient differential operators.
Hence g̃(ξ) is the inverse Fourier transform of a distribution with its support at the

locations of the centers of inhomogeneities zj . Therefore, we think that a numerical
Fourier inversion of a sample of (g̃(ξ)) will efficiently pin down the zj ’s. The method
of location of the points zj is then similar to that proposed for the conductivity prob-
lem [2] from boundary measurements. The number of data (sampling) points needed
for an accurate discrete Fourier inversion of g̃(ξ) follows from the Shannon theorem [9].
We need (conservatively), of order (h/δ)3, sampled values of ξ to reconstruct, with
resolution δ, a collection of inhomogeneities that lie inside a square of side h. Note,
however, that real measurements are taken only in Step 1. It remains to be seen how
many such measurements are needed. Once the locations {zj}mj=1 are known, we may
calculate |Bj | by solving the appropriate linear system arising from (27). If Bj are
general domains, our calculations become more complex, and eventually we have to
deal with pseudodifferential operators (independent of the space variable x) applied
to the same Dirac functions. Numerical experiments examining the feasibility of this
approach will be presented in a forthcoming publication.

Appendix. Proof of Proposition 1. Recall that Ω is some fixed domain in R3

containing the inhomogeneities. Define Ĝ(x, z) to be the Dirichlet Green function
for Ω,

∆zĜ(x, z) + k
2Ĝ(x, z) = −δx in Ω,(28)

Ĝ(x, z) = 0 on ∂Ω.

Recall that

Nαf −N0f =
∂vα
∂ν
− ∂v0
∂ν
,

where

∇ · 1
µα
∇vα + ω2εαvα = 0 in Ω,(29)

vα = f on ∂Ω,

and

∇ · 1
µ0
∇v0 + ω2ε0v0 = 0 in Ω,(30)

v0 = f on ∂Ω.
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Integration by parts gives

vα(x) = −
∫

Ω

vα(z)(∆zĜ+ k
2Ĝ) dz

=

∫
∂Ω

f
∂Ĝ

∂νz
dσz +

∫
Ω

∇vα · ∇zĜ dz −
∫

Ω

k2vαĜ dz

= v0(x) +

m∑
j=1

∫
zj+αBj

[(
1− µ

0

µj

)
∇vα∇Ĝdz + k2

(
1− ε

j

ε0

)
vαĜ

]
,(31)

since by (29) and (30)∫
Ω

1

µα
∇vα · ∇zĜ dz − ω2

∫
Ω

εαvαĜ dz = 0

and

v0(x) =

∫
∂Ω

f
∂Ĝ

∂νz
dσz.

We first derive a uniform asymptotic expansion for ∂vα
∂ν on ∂Ω. We note that this is

similar to Theorem 1 in [24], where the authors derived an expansion when n = 2
using the free space Green function. We use the Dirichlet Green function because it
is more convenient for our purposes.

Lemma 3. Let vα and v0 be defined as above. Then we have the pointwise
expansion

(Nα −N0) (f)

=
∂vα
∂ν
(x)− ∂v0

∂ν
(x)

= α3
m∑
j=1

[(
1

µj
− 1

µ0

)
∇v0(zj) ·M j

(
µj

µ0

)
∇y ∂
∂νx

Ĝ(x, zj)

+ k2

(
1− ε

j

ε0

)
v0(zj)

∂

∂νx
Ĝ(x, zj)

]
+ o(α3),(32)

where the term o(α3) is uniform for x ∈ ∂Ω.
For reasons of brevity, we restrict a significant part of the derivation of the asymp-

totic expansion (32) to the case of one inhomogeneity (m = 1). We suppose that this
inhomogeneity is centered at the origin, so it is of the form αB. The general case may
be verified by a fairly direct iteration of the argument we will present here, adding
one inhomogeneity at a time. We will as usual make the change of variables

y = x/α,

where

Ω̃ =
1

α
Ω

and

B =
1

α
Bα.
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Define the correction wα(y) to be the unique solution to

∆ywα + α
2ω2ε1µ1wα = 0 in B,(33)

∆ywα + α
2ω2ε0µ0wα = 0 in Ω̃ \B,

1

µ0

∂wα
∂νy

+

− 1

µ1

∂wα
∂νy

−
= −

(
1

µ0
− 1

µ1

)
∇xv0(0) · ν on ∂B,

wα = 0 on ∂Ω̃,

with

wα continuous across ∂B.

Also, define w(y), which is independent of α and a sort of limit of wα, as the unique
solution to

∆yw = 0 in B,(34)

∆yw = 0 in Rn \B,
1

µ0

∂w

∂νy

+

− 1

µ1

∂w

∂νy

−
= −

(
1

µ0
− 1

µ1

)
∇xv0(0) · ν on ∂B,

lim
|y|→∞

|w(y)| = 0,

with

w continuous across ∂B.

Recall that |w(y)| = O( 1
|y| ) as |y| → +∞. We now need to prove two lemmas before

we can proceed with the derivation of the asymptotic formula (13).
Lemma 4. Let vα, v0, and wα be given by (29), (30), and (33), respectively. Let

zα(y) = vα(αy)− v(αy)− αwα(y).
Then there exists a constant C independent of α such that

‖zα‖L2(Ω̃) ≤ C
and

‖∇yzα‖L2(Ω̃) ≤ Cα.

Proof. Note that zα(x/ε) ∈ H1
0 (Ω). For any φ ∈ H1

0 (Ω), integration by parts
gives us that∫

Ω̃

1

µα
∇yzα · ∇yφ(αy) dy − α2ω2

∫
Ω̃

εα(αy)zαφ(αy) dy

=

(
1

µ0
− 1

µ1

)∫
∂B

∇x(v0(αy)− v0(0)) · νφ(αy) dσy − α2ω2(ε0 − ε1)
∫
B

v0(αy)φ(αy) dy

=

(
1

µ0
− 1

µ1

)∫
B

α∆x(v0(αy)− v0(0))φ(αy) dσy − α2ω2(ε0 − ε1)
∫
B

v0(αy)φ(αy) dy

+

(
1

µ0
− 1

µ1

)∫
B

∇x(v0(αy)− v0(0) · ∇yφ(αy) dσy.
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Next we change variables back to the small domain on the left-hand side and multiply
by α to obtain∫

Ω

1

µα
∇xzα · ∇xφdx− ω2

∫
Ω

εαzαφdx

= α2

(
1

µ0
− 1

µ1

)∫
B

∆x(v0(αy)− v0(0))φ(αy) dy − α3ω2(ε0 − ε1)
∫
B

v0(αy)φ(αy) dy

+ α

(
1

µ0
− 1

µ1

)∫
B

∇x(v0(αy)− v0(0)) · ∇yφ(αy) dy.

Using a Taylor expansion of v0, we find that there exists C, depending on v0 but
independent of α, such that∣∣∣∣∫

Ω

1

µα
∇xzα · ∇xφdx− ω2

∫
Ω

εαzαφdx

∣∣∣∣ ≤ Cα3‖φ(αy)‖L2(B) + Cα
2‖∇yφ(αy)‖L2(B).

By rescaling, we see that

‖φ(αy)‖L2(B) = α
−3/2‖φ‖L2(αB)

and

‖∇yφ(αy)‖L2(B) = α
−1/2‖∇xφ‖L2(αB)

so that ∣∣∣∣∫
Ω

1

µα
∇xzα · ∇xφdx− ω2

∫
Ω

εαzαφdx

∣∣∣∣ ≤ Cα3/2‖φ‖H1(Ω).

By Proposition 1 of [24], it follows that

‖zα‖H1(Ω) ≤ Cα3/2.

The result then follows from another scaling.
Lemma 5. Let wα and w be defined by (33) and (34), respectively. Then there

exists C independent of α such that

‖∇y(wα − w)‖L2(Ω̃) ≤
C

α1/2
.

Proof. Consider wα(x/α) − w(x/α). Since wα and w share the same jump con-
dition on the boundary of the ball, their difference satisfies an equation across this
boundary. It is not hard to see that in fact we have

∇x · 1
µα
∇x(wα − w) + ω2εα(wα − w) = −ω2εαw in Ω,

wα − w = −w on ∂Ω.

By Proposition 1 and Corollary 1 in [24], there exists a constant C independent of α
such that

‖wα − w‖H1(Ω) ≤ C
(‖w‖L2(Ω) + ‖w‖H1/2(∂Ω)

)
.
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Since Ω is a bounded domain and w(y) is bounded, we clearly have ‖w‖L2(Ω) bounded.
Also, since w(x/α) decays as α→ 0, we also have ‖w‖H1/2(∂Ω) bounded independently
of α. Hence

‖wα − w‖H1(Ω) ≤ C,
which by rescaling proves the lemma.

Now define

rα(y) = vα(αy)− v0(αy)− αw − cα,
where the constant cα is defined so that rα satisfies∫

∂B

rα dσy = 0.

The previous two lemmas together imply that

‖∇yrα‖L2(Ω̃) ≤ Cα1/2.

Then, from (31),

vα(x)− v0(x) =
∫
αB

[(
1− µ

0

µ1

)
∇zvα(z)∇zĜ(x, z) + k2

(
1− ε

1

ε0

)
vα(z)Ĝ(x, z)

]
dz

= α3

∫
B

[(
1− µ

0

µ1

)
∇zvα(αy)∇zĜ(x, αy)

+ k2

(
1− ε

1

ε0

)
vα(αy)Ĝ(x, αy)

]
dy

= α2

∫
B

(
1− µ

0

µ1

)
∇y(v0 + αw)∇zĜ(x, αy)

+ k2α3

∫
B

(
1− ε

1

ε0

)
vα(αy)Ĝ(x, αy) dy

+ α2

∫
B

(
1− µ

0

µ1

)
∇y(rα)∇zĜ(x, αy) dy.(35)

By expanding Ĝ in a Taylor series and using the above estimate for rα, we have
that ∫

B

∇yrα · ∇xĜ(x, αy) dy =
∫
B

∇yrα · ∇xĜ(x, 0) dy +O(α3/2),(36)

and since we have chosen rα to have integral zero around the boundary of B, the first
term on the right-hand side above is zero by integration by parts. Hence∫

B

∇yrα · ∇xĜ(x, αy) dy = O(α3/2).(37)

Inserting this into (35), we have shown that

vα(x)− v0(x) = α2

∫
B

(
1− µ

0

µ1

)
∇y(v0 + αw)∇zĜ(x, αy)

+ α3k2

∫
B

(
1− ε

1

ε0

)
vα(αy)Ĝ(x, αy) dy + o(α

3).

(38)
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From this expression, we now derive the formulae with the polarization tensor:

vα(x)− v0(x) = α3

(
1− µ

0

µ1

)[∫
B

∇xv0(αy) · ∇zĜ(x, αy) dy

+

∫
B

∇yw · ∇zĜ(x, αy) dy
]

+ k2α3

∫
B

(
1− ε

1

ε0

)
vα(αy)Ĝ(x, αy) dy + o(α

3)(39)

= α3

(
1− µ

0

µ1

)
|B|∇xv0(0) · ∇zĜ(x, 0)

+ α3

(
1− µ

0

µ1

)∫
B

∇yw · ∇zĜ(x, 0) dy(40)

+ k2α3

(
1− ε

1

ε0

)
|B|v0(0) Ĝ(x, 0) + o(α3)(41)

by Taylor expansions for v0 and Ĝ. Note that∫
B

∇yw dy =
∫
∂B

∂w−

∂νy
y dσy

and

ψ = w +∇xv0(0) · y = ∂v0
∂xl

(0)φl,

where the φl are defined by (4). Hence

|B|∇xv0(0) +
∫
B

∇yw dy =
∫
B

∇yψ dy,

from which we may rewrite (41) as

vα(x)− v0(x) = α3

(
1

µ1
− 1

µ0

)
∇u0(0) ·M

(
µ1

µ0

)
∇zĜ(x, 0)

+ k2

(
1− ε

1

ε0

)
u0(0)Ĝ(x, 0) + o(α

3)(42)

for M defined by (4). By standard elliptic regularity, we obtain (32), where the
term o(α3) is uniform for x ∈ ∂Ω.

We are now ready to prove Proposition 1. Integration by parts yields∫
∂Ω

G(x, y)
∂

∂νy
(∇zĜ(y, 0)) dσy =∇zG(x, 0) and∫

∂Ω

G(x, y)
∂

∂νy
(Ĝ(y, 0)) dσy =G(x, 0).

(43)

By applying the operator S to (32) and using (43), we arrive at the promised asymp-
totic expansion (13), which, along with the boundedness of the operator S, implies
that Tα converges to T0 pointwise, which is the claim in point (a). Furthermore,
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since the points zj are away from the boundary ∂Ω, it follows from (13) that the
family of operators Tα − T0 is collectively compact, and so point (b) holds. Rewrit-
ing Tα = T0 + (Tα − T0) and recalling that the operator T0 is invertible, it follows
immediately from [4] that T−1

α is well defined, and point (c) in Proposition 1 holds.
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[16] J. C. Nédélec, Acoustic and Electromagnetic Equations. Integral Representations for Har-
monic Problems, Springer-Verlag, New York, 2001.

[17] R. G. Novikov, Reconstruction of an exponentially decreasing potential for the three-
dimensional Schrödinger equation through the scattering amplitude at a fixed energy, C.
R. Acad. Sci. Paris Sér. I Math., 316 (1993), pp. 657–662.

[18] R. G. Novikov, On determination of the Fourier transform of a potential from the scattering
amplitude, Inverse Problems, 17 (2001), pp. 1243–1251.

[19] P. Stefanov and G. Uhlmann, Inverse backscattering for the acoustic equation, SIAM J.
Math. Anal., 28 (1997), pp. 1191–1204.

[20] J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value
problem, Ann. of Math. (2), 125 (1987), pp. 153–169.

[21] J. Sylvester and G. Uhlmann, The Dirichlet to Neumann map and applications, in Inverse
Problems in Partial Differential Equations (Arcata, CA, 1989), Proc. Appl. Math. 42,
SIAM, Philadelphia, 1990, pp. 101–139.

[22] M. E. Taylor, Partial Differential Equations II. Qualitative Studies of Linear Equations,
Appl. Math. Sci. 116, Springer-Verlag, New York, 1996.



900 H. AMMARI, E. IAKOVLEVA, AND S. MOSKOW

[23] M. E. Taylor, Estimates for approximate solutions to acoustic inverse scattering problems, in
Inverse Problems in Wave Propagation (Minneapolis, MN, 1995), IMA Vol. Math. Appl.
90, Springer-Verlag, New York, 1997, pp. 463–499.

[24] M. Vogelius and D. Volkov, Asymptotic formulas for perturbations in the electromagnetic
fields due to the presence of inhomogeneities, M2AN Math. Model. Numer. Anal., 34
(2000), pp. 723–748.

[25] D. Volkov, An Inverse Problem for the Time Harmonic Maxwell Equations, Ph.D. thesis,
Rutgers University, New Brunswick, NJ, 2001.
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Abstract. Let SN,r be the (nonlinear) space of free knot splines of degree r − 1 with at most

N pieces in [a, b], and let Mk be the class of all k-monotone functions on (a, b), i.e., those functions f
for which the kth divided difference [x0, . . . , xk]f is nonnegative for all choices of (k + 1) distinct
points x0, . . . , xk in (a, b).

In this paper, we solve the problem of shape preserving approximation of k-monotone functions
by splines from SN,r in the Lp-metric, i.e., by splines which are constrained to be k-monotone as
well. Namely, we prove that the order of such approximation is essentially the same as that by the
nonconstrained splines. Precisely, it is shown that, for every k, r,N ∈ N, r ≥ k, and any 0 < p ≤ ∞,
there exist constants c0 = c0(r, k) and c1 = c1(r, k, p) such that

dist(f,Sc0N,r ∩Mk)p ≤ c1 dist(f,SN,r)p ∀f ∈Mk.

This extends to all k ∈ N results obtained earlier by Leviatan and Shadrin and by Petrov for k ≤ 3.

Key words. free knot splines, constrained approximation, k-monotone approximation, approx-
imation order, Markov moment problem, Whitney-type estimates

AMS subject classifications. 41A15, 41A25, 41A29, 41A05, 65D05, 65D07

PII. S0036141002358514

1. Introduction and main results. In this paper, we solve the problem of
shape preserving approximation of k-monotone functions by splines with free knots
in the Lp-metric, i.e., by splines which are constrained to be k-monotone as well.
Namely, we prove that the order of such approximation is essentially the same as that
for the nonconstrained splines, thus confirming expectations of some standing.

Given k ∈ Z+ and an interval I = (a, b), a function f : I �→ R is said to be
k-monotone on I if its kth divided differences [x0, . . . , xk]f are nonnegative for all
choices of (k + 1) distinct points x0, . . . , xk in I. We denote the class of all such
functions by Mk := Mk(I). Thus f ∈ M0 is nonnegative, f ∈ M1 is nondecreasing,
and f ∈ M2 is a convex function. If f ∈ C

k(I), then f ∈ Mk if and only if f (k) ≥ 0
on I.

We would like to emphasize that functions from Mk are not assumed to be defined
at the endpoints of the interval (a, b) and hence have to be neither bounded nor
integrable on (a, b). For example, if f(x) = (−1)kx−1−1/p, then f ∈ Mk(0, 1) for
k ∈ N, but f /∈ Lp(0, 1), 0 < p ≤ ∞. (Throughout the paper, L∞(I) denotes
the space of all measurable essentially bounded functions equipped with the norm
‖f‖L∞(I) := ess supI |f |.)

Hence we now define Mk
p := Mk ∩Lp and also remark that the functions from the

cone Mk are sometimes referred to as “k-convex.”
Let f ∈ Mk

p and U be a subset of Lp. The best (nonconstrained) approximation
of f from U is defined by

E(f,U)p := inf
u∈U
‖f − u‖p.
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In contrast, in k-monotone approximation, one is interested in the value

E(k)(f,U)p := inf
u∈U∩Mk

‖f − u‖p.

That is, approximants are assumed to preserve the k-monotone shape of f . Clearly,
the shape preserving approximation is more restrictive; hence E(k)(f,U)p ≥ E(f,U)p
for all f ∈ Mk and U ⊂ Lp. Is it much worse? Lorentz and Zeller [10], [11] proved
that, for U = Πn, the space of all algebraic polynomials of order n, any k ∈ N, and
any constant c0 ∈ N, there exists a function f ∈Mk

p such that

E(k)(f,Πc0n)p
E(f,Πn)p

→∞ as n→∞.(1.1)

(The same estimate is true for a sequence of any reasonable linear subspaces Un
instead of Πn.) On the other hand, monotone and convex polynomial approximations
allow Jackson-type estimates, for example,

E(k)(f,Πn)∞ ≤ ckωk+1(f,
1
n )∞, k = 1, 2,

but they have essential restrictions (as well as gaps) in comparison with the noncon-
strained estimates.

Splines with free knots, s ∈ SN,r, are piecewise polynomials of order r (de-
gree r − 1), where only the number of pieces, N at most, not their position, is
prescribed. (Note that we do not make any assumptions about the smoothness of
functions in SN,r.) They are a classical tool of nonlinear approximation (along with
the rational functions). As that, they achieve a better rate of approximation compared
with the linear methods. The simplest example (see, e.g., [4, p. 365]) is that

E(f, SN,1)∞ ≤ K

2N
⇔ Var[0,1](f) ≤ K,

whereas, for L∞-approximation by piecewise constants with N equidistant knots, the
rate O(N−1) is attained only for W

1
∞, roughly the class of continuously differentiable

functions, which is much narrower than the class of functions of bounded variation.
It was DeVore who had much advocated the studies of the nonlinear methods in

k-monotone approximation. Set

EN,r(f)p := E(f, SN,r)p, E
(k)
N,r(f)p := E(k)(f, SN,r)p.

Notice that, since Mk(0, 1) ⊂ C
k−2(0, 1) (see Lemma 3.1), the set SN,r ∩Mk contains

functions other than k-monotone polynomials of order r only if r ≥ k. In 1995, Levi-
atan and Shadrin [9] and Petrov [14] independently proved that, for k = 1, 2, r ≥ k,
and 0 < p ≤ ∞, there exists a constant c0 = O(r) such that, for any f ∈Mk

p, k = 1, 2,

E
(k)
c0N,r

(f)p ≤ EN,r(f)p.(1.2)

This result showed that the order of monotone and convex approximation by free
knot splines is essentially the same as that in the nonconstrained case, which, in view
of (1.1), is a striking contrast to the linear approximation methods. Naturally, one
would expect that the situation is similar for k ≥ 3. However, the technique used in
[9], [14] was based on some explicit constructions and some properties of monotone
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and convex functions which have no straightforward analogues for general k. (Say, for
k = 1, 2, the maximum of two k-monotone functions is a k-monotone function, while
this is no longer true for larger k.) Petrov [15] has managed to adopt this technique
for k = 3 and p = ∞, obtaining an analogue of (1.2), but it became clear that, for
general k ∈ N, new ideas are required.

Here, we prove the following general result.
Theorem 1.1. Let k, r,N ∈ N, r ≥ k, and 0 < p ≤ ∞. Then there exist

constants c0 ≤ C(k)max(1, r − k) and c1 = c1(r, k, p) such that, for all f ∈Mk
p,

E
(k)
c0N,r

(f)p ≤ c1EN,r(f)p.(1.3)

Using [9, Lemma 3], the following result on k-monotone approximation by smooth
splines is an immediate corollary of Theorem 1.1.

Corollary 1.2. Let k, r,N ∈ N, r ≥ k, and 0 < p ≤ ∞, and denote Ẽ
(k)
N,r(f)p :=

E(k)(f, SN,r ∩ C
(r−2))p. Then there exist constants c0 ≤ C(k)max(1, r − k) and

c1 = c1(r, k, p) such that, for all f ∈Mk
p,

Ẽ
(k)
c0N,r

(f)p ≤ c1EN,r(f)p.

For k = 1 and 2, Theorem 1.1 is an immediate consequence of (1.2). Because
functions in M1(a, b) (unlike those in Mk(a, b) with k ≥ 2) do not have to be contin-
uous everywhere on (a, b), the case k = 1 is somewhat different from k ≥ 2 (though
constructions are much simpler, and some auxiliary statements become trivial if one
lets k be equal to 1). Thus, in order to make this paper more readable, we concentrate
below only on the more difficult case for k ≥ 2. At the same time, we mention that
some of the statements are valid or can be modified to become valid for k = 1 as well.

Now, all direct results for the best (unconstrained) free knot spline approximation
are being readily extended for the k-monotone case.

Corollary 1.3. Let k, r,N ∈ N, r ≥ k, and let f ∈ Mk
∞ be such that f (r−1) is

of bounded variation on [0, 1]. Then

E
(k)
N,r(f)∞ ≤ c(r, k)N−r Var[0,1](f

(r−1)).

This corollary is an immediate consequence of Theorem 1.1 and [4, Theorem
12.4.5]. It is related to an earlier result of Hu [5] which was actually the first result
in k-monotone approximation by free knot splines: For f ∈ W

r
1 ∩Mk

∞, the order of
k-monotone approximation by SN,r in L∞ is O(N−r).

The following corollary follows from Petrushev’s estimate of (unconstrained) free
knot spline approximation (see [16], [17, Theorem 7.3], and [4, Theorem 12.8.2]).

Corollary 1.4. Let k, r,N ∈ N, r ≥ k, 0 < p < ∞, and 0 < α < r. Then, if
f ∈Mk

p ∩Bα,

E
(k)
N,r(f)p ≤ c(α, p, r)N−α|f |Bα ,

where Bα := Bαγ (Lγ), 1/γ = α+1/p, denotes the Besov space with the seminorm |f |Bα

defined by

|f |Bα =

(∫ ∞
0

t−αγ−1ωr(f, t)
γ
γ dt

)1/γ

.
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Let us comment on the constants c0, c1 involved in (1.3), namely, on the question
of whether it is possible to have any (or both) of them equal to 1.

Leviatan and Shadrin [9] showed that, in order to retain the same degree of
approximation for the k-monotone free knot splines approximation as for the best
one, the increase of the knot number is unavoidable if r ≥ k + 2. Precisely, for any
r ≥ k + 2, N ∈ N, 0 < p ≤ ∞, any c > 0, and c∗ = 2 r−k2 �, there exists a function
f ∈Mk

∞ such that

E
(k)
c∗N,r(f)p > cEN,r(f)p, r ≥ k + 2.

Thus the question about whether or not it is necessary to increase the number of
knots remains open only for r = k and k + 1.

On the other hand, for r = k and p = ∞, a part of a theorem by Johnson
(see Braess [2, Theorem VIII.3.4, p. 238]) is that for any k, the best free knot spline
approximant of order k to a k-monotone function in the L∞-norm is k-monotone
itself ; i.e., in this case, c0 = c1 = 1, r = k, and, for any f ∈Mk

∞,

E
(k)
N,k(f)∞ = EN,k(f)∞.(1.4)

It would be interesting to find the exact order of c0(r, k) as a function of r and k.
Estimates (1.2) and (1.4) also suggest another question—namely, whether the value
c1 = 1 in (1.3) can be attained with some c′0 = c′0(r, k).

Notation. We let I = (a, b) if not stated otherwise and set Lp := Lp(I),
‖ · ‖p := ‖ · ‖Lp(I), SN,k := SN,k(I), etc.; i.e., the interval I is omitted if there is
no risk of confusion.

Further, f (i)(x+) and f (i)(x−) denote the right and the left ith derivatives of f
at x, respectively.

cp,r,k and c(p, r, k) stand for a constant which depends only on the parameters
given (p, r, and k in this case), where, for 0 < p ≤ ∞, dependence on p means
dependence on min(1, p).

The “prime” notation k′ is going to be reserved for k/2� + 1 throughout this
paper:

k′ := k/2�+ 1.

For f ∈ Lp(a, b) and a set U ⊂ Lp(a, b), we define

PU(f)p := PU(f)Lp(a,b) := {u ∈ U : ‖f − u‖p = E(f,U)p}.

In other words, PU(f)p is the set of all best Lp-approximants to f from U on (a, b).

2. Outline of the proof. The general direction of the proof is the same as
it was for k = 1, 2: given a k-monotone function f , one takes σ ∈ PSN,r

(f)p, a
best free knot spline approximant to f (which is not necessarily k-monotone), and
puts some corrections into it trying to convert it into a k-monotone spline preserving
the approximation order. For k = 1 and 2, these corrections were done by explicit
constructions which, unfortunately, have no straightforward generalizations for k ≥ 3,
and so our basic idea came from the following general considerations.

There is another notion of k-monotone approximation in which a function f which
is not in Mk is approximated by elements from the entire Mk. (Mk is a convex
cone.) There is an extended literature on this subject, where one studies existence
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and uniqueness of best k-monotone approximant of this type, its characterization, and
its structural properties; see, e.g., [19] and the references therein. When can one have
a need to approximate an arbitrary function by a k-monotone one? The only situation
we can think of is the necessity to correct the data which must be k-monotone by some
a priori assumptions. This is exactly the case of shape preserving approximation, and
this is how we correct σ.

Given f ∈Mk, we take σ ∈ PSN,r
(f)p, a best free knot spline approximant to f ,

and correct σ by f∗ ∈ PMk(σ)p, a best approximant to σ from Mk.
Here are two observations concerning this idea.
(1) Approximation property of f∗. The function f belongs to Mk, but f∗ is a best

approximant to σ from Mk; hence

‖σ − f∗‖p ≤ ‖σ − f‖p.

Therefore,

cp‖f − f∗‖p ≤ ‖f − σ‖p + ‖σ − f∗‖p ≤ 2‖f − σ‖p;

i.e., f∗ approximates f as well as σ.
(2) Spline structure of f∗. A result from the theory of approximation by el-

ements of Mk reads that (in the “piecewise sense”) either f∗ is identical with σ
(which is a spline of order r) or it is a spline of order k (because the functions
g(x) =

∑
α cα(x − xα)

k−1
+ , cα > 0, are the boundary points of the cone Mk). Thus

f∗ is a spline of order r. If f∗ had O(N) knots, then we could stop at this point. The
problem is that it may have too many knots (infinitely many, in fact).

The paper is organized as follows.
(1) First, to ease the exposition, we switch to a local version of the idea described

above and correct separately each polynomial part of σ by its best approximation f∗
from Mk[f ], a subclass of k-monotone functions defined locally (see section 3 for
precise definition of Mk[f ]).

(2) In section 3, we cite some known results concerning existence and structure of
the elements f∗ ∈ PMk[f ](σ)p. As mentioned earlier, f∗ is a spline of order r, but it may
have too many knots to be in ScN,r, in which case we modify it into an appropriate
spline s.

(3) Properties of s are formulated as Proposition 4.2 in section 4, where we use
them to prove Theorem 1.1.

(4) The proof of Proposition 4.2 takes the rest of the paper. In sections 5–7, we
blend f∗ with the polynomial parts of σ using some results from the theory of moments
and consider some general aspects of this procedure. In section 8, we prepare to show
that the blending spline s approximates f as well as f∗, and the final section 9 joins
all the parts of the proof together.

Remark 2.1. The number of knots of f∗ ∈ PMk[f ](σ)p is approximately the same
as the number of distinct zeros of σ−f∗ (see Lemma 3.8). In our proofs, we assume that
this number may be arbitrarily large. However, we conjecture that this is not the case;
i.e., a best k-monotone approximant to a piecewise polynomial σ (and perhaps to any
piecewise k-monotone function) with M pieces has only O(M) points of intersection
with σ. If this is indeed the case, then there is no need for the considerations given
in sections 5–9. This conjecture is true for k = 1, 2 as one can easily check, and our
method gives a simpler proof for these cases than in [9] and [14]. For k ≥ 3, the
problem is open.
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Remark 2.2. Actually, the correction of σ made explicitly for k = 1, 2 in
[9] and [14] is exactly the best k-monotone approximation of σ from Mk[f ] under
the additional restriction that this is also a one-sided approximation. This restriction
provides the constant c1 = 1 on the right-hand side of (1.2). For k ≥ 3, we cannot
pose such a restriction; hence c1 > 1 in (1.3).

3. Classes Mk[f ] and their properties. The following lemma lists some basic
properties of k-monotone functions for k ≥ 2.

Lemma 3.1. The following statements are equivalent for k ≥ 2:
(0) f ∈Mk(0, 1).
(1) f (k−2) exists and is convex on (0, 1).
(2) f (k−2) is absolutely continuous on any closed subinterval of (0, 1) and has

left and right derivatives, f (k−1)(·−) and f (k−1)(·+), which are, respectively,
left- and right-continuous and nondecreasing on (0, 1).

(3) For each closed subinterval [a, b] ⊂ (0, 1), there is a polynomial p ∈ Πk and a
bounded nondecreasing function µ such that

f(x) = p(x) +
1

k!

∫ b

a

k(x− t)k−1
+ dµ(t), x ∈ [a, b].

Proof. See Bullen [3, Theorem 7, Corollary 8]. See also [13], [18] for various prop-
erties of k-monotone functions (called “k-convex” there) and their applications.

Lemma 3.1(2) allows us to introduce the following classes of function.
By Mk

a+ := Mk
a+(a, b) and Mk

b− := Mk
b−(a, b) we denote the subclasses of those

functions f ∈Mk(a, b) for which the values {f (i)(a+)}k−1
i=0 and {f (i)(b−)}k−1

i=0 , respec-
tively, are finite, and we set Mk

∗ := Mk
∗(a, b) := Mk

a+ ∩Mk
b−.

For f ∈Mk
a+ and g ∈Mk

b−, we define

Mk
a+[f ] := {h ∈Mk | h(i)(a+) = f (i)(a+), i = 0, . . . , k − 2; h(k−1)(a+) ≥ f (k−1)(a+)},
Mk
b−[g] := {h ∈Mk | h(i)(b−) = g(i)(b−), i = 0, . . . , k − 2; h(k−1)(b−) ≤ g(k−1)(b−)}.

Finally, let

Mk[f, g] = Mk
a+[f ] ∩Mk

b−[g],

and, for f ∈Mk
∗,

Mk[f ] = Mk[f, f ].

Note that Mk[f ] is always nonempty (it contains f), while Mk[f, g] can be the
empty set. In section 7, we give a sufficient condition on f and g which guarantees
that there is a function h from Mk[f, g].

Lemma 3.2. Let f, g ∈ Mk(0, 1), and let [a, b] ⊂ (0, 1). Then f, g ∈ Mk
∗(a, b),

and, for any h ∈Mk[f, g](a, b) (if it exists), the function

h̃(x) :=


f(x), x ∈ (0, a],
h(x), x ∈ (a, b),
g(x), x ∈ [b, 1),

belongs to Mk(0, 1).
Proof. The proof is an immediate consequence of Lemma 3.1(2).
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We will use Lemma 3.2 without further reference to build k-monotone functions
from k-monotone pieces. For example, if f ∈ Mk

∗(0, 1), ∪I� = (0, 1) with I� ∩ I�′ = ∅
if $ �= $′, and h� ∈ Mk[f ](I�), then the function h, defined as h := h� on I�, belongs
to Mk[f ](0, 1).

Now we consider some properties of approximation from Mk[f ].
Lemma 3.3. Let k ≥ 2, 0 < p ≤ ∞, and f ∈ Mk

∗(a, b). Then, for any g ∈ Lp,
an element of its best Lp-approximation from Mk[f ] exists; i.e., the set PMk[f ](g)p is
not empty.

Proof. The proof is based on arguments similar to those used by Zwick
[20, Theorem 4] for the case p =∞. We give it here for completeness. Set

αi := f (i)(a+) and βi := f (i)(b−), i = 0, . . . , k − 1,

and consider a sequence (fj) ⊂Mk[f ] such that, for j ∈ N,

‖fj − g‖pp ≤ E(g,Mk[f ])pp + 1/j if 0 < p < 1

and

‖fj − g‖p ≤ E(g,Mk[f ])p + 1/j if 1 ≤ p ≤ ∞.

Since f
(k−2)
j (x) = αk−2 +

∫ x
a
f

(k−1)
j (t) dt and ‖f (k−1)

j ‖∞ ≤ max{|αk−1|, |βk−1|},
we conclude that (f

(k−2)
j ) is uniformly bounded and equicontinuous on [a, b]. There-

fore, there exists a subsequence (f
(k−2)
js

) which converges to a function h∗ uniformly on
[a, b], and this h∗ is necessarily convex and satisfies h′∗(a+) ≥ αk−1 and h′∗(b−) ≤ βk−1.
Now, the function f∗ such that f∗ := h∗, if k = 2, and

f∗(x) :=

k−3∑
i=0

αi
i!

(x− a)i +
1

(k − 3)!

∫ b

a

(x− t)k−3
+ h∗(t) dt, k ≥ 3,

is in Mk[f ] and satisfies ‖g − f∗‖p = E(g,Mk[f ])p, i.e., f∗ ∈ PMk[f ](g)p.

Lemma 3.4 (Zwick [21]). Let k ∈ N and f ∈ Mk
∗(a, b). Then there exist two

splines zν = zν(f, [a, b]), ν = 1, 2, such that

z1, z2 ∈Mk[f ] ∩ Sk′,k, k′ = k/2�+ 1,

and

z1 ≤ f ≤ z2 on [a, b].

If f does not belong to Sk′,k, then the inequalities are strict, respectively, on some
nonempty intervals I1, I2 in [a, b].

Remark 3.5. In [21], more precise conclusions regarding the number of polynomial
pieces k′ of the splines zν and their boundary values are given. The proof is based on
the Markov–Krein theorem from the theory of moments.

Remark 3.6. We emphasize that k′ denotes k/2�+ 1 throughout this paper.
A simple, yet important, consequence of Lemma 3.4 is the following result on the

structural properties of best Lp-approximants from Mk[f ].
Lemma 3.7. For k ≥ 2, 0 < p < ∞, and I = (a, b), let g ∈ C, f ∈ Mk

∗, and
f∗ ∈ PMk[f ](g)p. If the difference g− f∗ has no zeros inside an interval (c, d) ⊂ (a, b),
then f∗ ∈ Sk′,k[c, d].
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Proof. The idea of the proof is similar to what was considered by Zwick [21] in the
case for p = 1. Suppose that 0 < p < ∞. Without loss of generality, we can assume
that f∗(x) > g(x), x ∈ (c, d). Now suppose that f∗ /∈ Sk′,k[c+ ε, d− ε] for some ε > 0.

Consider a function f̃ obtained from f∗ by replacing it on the interval [c+ ε, d− ε] by
z1(f∗, [c + ε, d − ε]) (see Lemma 3.4). Then f̃ ∈ Mk[f ] and f∗ − f̃ ≥ 0 on [a, b] with
this inequality being strict on a nonempty interval contained in (c + ε, d− ε).

Since f∗ − g is a continuous positive function on a closed interval [c + ε, d − ε],
there exists δ > 0 such that f∗(x) ≥ g(x)+ δ, x ∈ [c+ ε, d− ε]. Therefore, there exists

0 < µ < 1 such that f̂(x) := µf∗(x)+(1−µ)f̃(x) satisfies the inequalities g(x) < f̂ ≤ f∗
on [c + ε, d− ε], and ‖f∗ − f̂‖Lp[c+ε,d−ε] �= 0. This implies that ‖f̂ − g‖p < ‖f∗ − g‖p,
which contradicts our assumption that f∗ ∈ PMk[f ](g)p.

Hence f∗ ∈ Sk′,k[c+ ε, d− ε] for all ε > 0, which implies that f∗ ∈ Sk′,k[c, d].
Lemma 3.8. For k ≥ 2, 0 < p < ∞, and I = (a, b), let g ∈ C, f ∈ Mk

∗, and
f∗ ∈ PMk[f ](g)p. Further, let Z be the set of zeros of g − f∗, i.e.,

Z := {z ∈ I | g(z) = f∗(z)},

and let Z∗ be the set of all limit points of Z. Then the following are true.
(1) f∗ = g on Z∗.
(2) If, for a closed interval [c, d] ⊂ I \ Z∗, the difference g − f∗ has (necessarily

finitely many) m− 1 distinct zeros in (c, d), then f∗ ∈ Smk′,k[c, d].
Proof. This lemma is a variation of Zwick [21, Theorem 2]. In a similar form

(though with Z∗ defined differently), it appeared in Damas and Marano [12]. Part 1
immediately follows from the continuity of g and f∗. Part 2 is a consequence of Lem-
ma 3.7.

For p = ∞, Lemma 3.7 is not valid because local changes influence the inte-
gral’s value but not necessarily the sup-norm; hence there may be best k-monotone
L∞-approximants with a structure different from that specified in Lemma 3.8. How-
ever, for our purposes, it is enough that there is at least one element from PMk[f ](g)∞
that has the spline structure. The following statement is valid.

Lemma 3.9. For k ≥ 2, p = ∞, and I = (a, b), let g ∈ C and f ∈ Mk
∗. Then

there exists f∗ ∈ PMk[f ](g)∞ such that all the conclusions of Lemma 3.8 hold true.
Proof. The idea of the proof is to take as f∗ an element which minimizes, say, the

L2-norm of g − f∗ over f∗ ∈ PMk[f ](g)∞. We omit the details.
Now the spline structure of the best k-monotone approximant to any spline readily

follows.
Corollary 3.10. For r ≥ k ≥ 2, 0 < p ≤ ∞, and I = (a, b), let g ∈ SN,r ∩ C

and f ∈ Mk
∗. Then there is an f∗ ∈ PMk[f ](g)p which is a piecewise polynomial of

order r.

4. Proof of Theorem 1.1. The following three propositions are the main com-
ponents of the proof.

Proposition 4.1. For k, r ∈ N, r ≥ k ≥ 2, 0 < p ≤ ∞, and I = (a, b), let
f ∈Mk

∗ and (−p) ∈ (Πr \Πk) ∩Mk. Then there exists a spline s such that

s ∈ S(k+1)k′,k ∩Mk[f ]

and

‖p− s‖p = E(p,Mk[f ])p.
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Proof. Let us show that f∗, a best approximant to p from Mk[f ], satisfies all the
conclusions of the proposition (hence s := f∗). Since, by the definition,

f∗ ∈Mk[f ], ‖p− f∗‖p = E(p,Mk[f ])p,

only the spline structure needs to be proved. Since (−p) is a k-monotone polynomial
of degree > k − 1, it is a strictly k-monotone function in the sense that (−p)(k−2) is
strictly convex. Hence the function (f∗ − p)(k−2) is strictly convex too; thus it has at
most two zeros, and, therefore, f∗ − p has not more than k distinct zeros on I. By
Lemma 3.8 (or Lemma 3.9 in the case for p = ∞), f∗ ∈ S(k+1)k′,k, and the proof is
complete.

Proposition 4.2. Let k, r ∈ N, r ≥ k ≥ 2, 0 < p ≤ ∞, I = (a, b), f ∈ Mk
∗,

and p ∈ Πr ∩Mk. Then there exist a constant C(k) independent of I and a spline
s ∈ SC(k),r ∩Mk[f ] such that

‖p− s‖p ≤ c2E(p,Mk[f ])p, c2 = c2(p, r, k).

Now, f∗ from PMk[f ](p)p is still a piecewise polynomial of order r, but we cannot
take s = f∗ because two k-monotone functions (f∗ and p in our case) may have any
number of intersections; hence f∗ may have any number of knots. We obtain s as
a modification of f∗, which will be done in the following sections with the proof of
Proposition 4.2 given in section 9.

Proposition 4.3. Let k, r ∈ N, r ≥ k ≥ 2, 0 < p ≤ ∞, I = (a, b), and f ∈Mk
∗,

and let p be such that either p ∈ Πr ∩Mk or (−p) ∈ (Πr \ Πk) ∩Mk. Then there
exists a spline s such that

s ∈ SC(k),r ∩Mk[f ]

and

‖f − s‖p ≤ c1‖f − p‖p, c1 = c1(p, r, k).(4.1)

Proof. Let s be the spline from either of Propositions 4.1 and 4.2 so that s ∈
SC(k),r ∩Mk[f ] and

‖p− s‖p ≤ c2E(p,Mk[f ])p.(4.2)

We need only to prove (4.1). Using the triangle inequality and the estimate (4.2), we
obtain

cp‖f − s‖p ≤ ‖f − p‖p + ‖p− s‖p ≤ ‖f − p‖p + c2E(p,Mk[f ])p.

Since f belongs to Mk[f ] in a trivial manner, it follows that

E(p,Mk[f ])p := inf
u∈Mk[f ]

‖p− u‖p ≤ ‖p− f‖p.

Thus

cp‖f − s‖p ≤ (c2 + 1)‖f − p‖p.
Finally, the following lemma shows that, in the proof of Theorem 1.1, instead of

an arbitrary f ∈ Mk
p(0, 1), we may consider f ∈ Mk

∗(0, 1); i.e., we may assume that
the function f and its derivatives are bounded at the endpoints.
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Lemma 4.4. Let k ∈ N, 0 < p ≤ ∞, and f ∈ Mk
p(0, 1). Then, for any ε > 0,

there exists fε ∈Mk
∗(0, 1) such that

‖f − fε‖p < ε.

Proof. For f ∈ Mk
p(0, 1) and x0 ∈ (0, 1), let Tx0 be the Taylor polynomial of

degree k − 1 at x0+ (or at x0−); i.e.,

Tx0
(x) :=

k−1∑
i=0

1

i!
f (i)(x0+)(x− x0)

i.

Given ε, for δ to be prescribed, let

fε :=


Tδ on [0, δ],
f on [δ, 1− δ],
T1−δ on [1− δ, 1].

Then obviously fε ∈Mk
∗(0, 1) and

‖f − fε‖p ≤ cp‖f − Tδ‖Lp[0,δ] + cp‖f − T1−δ‖Lp[1−δ,1].(4.3)

From [6, Theorem 1], it follows that, for I = (a, b), f ∈ Mk
p(I), and x∗ := a+b

2 , we
have

‖f − Tx∗‖Lp(I) ≤ ck,pωk(f)Lp(I),

where ωk(f)Lp(I) is the kth modulus of smoothness of f ∈ Lp(I) (see section 8 for the
definition), which, as is well known, has the property that ωk(f)Lp(J) → 0 if |J | → 0,
J ⊂ I. Applying this result to the interval (0, 2δ) ⊂ (0, 1), we obtain

‖f − Tδ‖Lp(0,δ) ≤ ‖f − Tδ‖Lp(0,2δ) ≤ ck,pωk(f)Lp(0,2δ) → 0 as δ → 0.

Similarly,

‖f − T1−δ‖Lp(1−δ,1) ≤ ck,pωk(f)Lp(1−2δ,1) → 0 as δ → 0.

Proof of Theorem 1.1. By Lemma 4.4, we can assume that f ∈ Mk
∗(0, 1). Let

σ ∈ SN,r be a spline of best Lp-approximation to f on (0, 1). We need to prove that
there exists a spline s such that

s ∈ Sc0N,r ∩Mk(0, 1) and ‖f − s‖p ≤ c1‖f − σ‖p.
Denote by {Jm} the set of largest subintervals of [0, 1] on which σ is a polynomial
of order r, and denote by {I�} the set of largest subintervals of Jm’s on which σ(k)

has a constant sign. Since σ ∈ SN,r[0, 1], there are at most N intervals Jm, and, on
each Jm, the spline σ(k) is a polynomial of degree r − 1− k; hence there are at most
max(1, r − k) subintervals I� in each interval Jm. Thus {I�} is a partition of [0, 1]
such that

[0, 1] = ∪I�, #{I�} ≤ N max(1, r − k),

and, on each I�,

either σ ∈ Πr ∩Mk or (−σ) ∈ (Πr \Πk) ∩Mk.



k-MONOTONE APPROXIMATION BY FREE KNOT SPLINES 911

By Proposition 4.3, on each interval I�, there exists a spline s� such that

s� ∈ SC(k),r ∩Mk[f ](I�)

and

‖f − s�‖Lp(I�) ≤ c1‖f − σ‖Lp(I�).(4.4)

Now define the spline s so that

s := s� on I�.

Relations s� ∈ SC(k),r(I�) and #{I�} ≤ N max(1, r − k) imply that

s ∈ Sc0N,r(0, 1), c0 = C(k)max(1, r − k),

while inclusions s� ∈Mk[f ](I�) with ∪I� = [0, 1] yield

s ∈Mk[f ](0, 1) ⊂Mk(0, 1).

Thus

s ∈ Sc0N,r ∩Mk(0, 1).

Finally, to estimate the degree of approximation of f by s for 0 < p < ∞ (modifica-
tions for p =∞ are obvious), from (4.4) we obtain

‖f − s‖p
Lp(0,1) ≤

∑
�

‖f − s�‖pLp(I�)
≤ cp1

∑
�

‖f − σ‖p
Lp(I�)

= cp1‖f − σ‖p
Lp(0,1),

i.e.,

E
(k)
c0N,r

(f)p ≤ c1EN,r(f)p.

5. k-monotone interpolation. If p − f∗ has many intersections (see Proposi-
tion 4.2), then the spline f∗ ∈ PMk[f ](p) has many knots. In this case, we will modify
f∗ into a spline s with a smaller number of knots by blending f∗ with p. This procedure
is related to the following general problem.

Problem 5.1. Given two k-monotone functions f, g on J and an interval (a, b) ⊂ J ,
determine whether or not there exists a k-monotone function h in Mk[f, g](a, b). Note

that the existence of such h implies that there is a function h̃ such that

h̃ ∈Mk(J) and h̃(x) =

{
f(x), x ≤ a,
g(x), x ≥ b.

We will refer to this problem as a blending of f, g ∈Mk(J) on [a, b]. Actually, all
we need is a k-monotone interpolation of data f (i)(a+), g(i)(b−), i = 0, . . . , k − 1, so
that we consider this topic more generally.

Let

x := (xi)
n+k
i=1 := {a = x1 ≤ · · · ≤ xn+k = b}

be a sequence of interpolation knots such that xi < xi+k, and let

y := y(x) := (yi)
n+k
i=1 .
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We use the usual convention that, if some of the knots in x are repeated, then inter-
polation of corresponding derivatives takes place. For each j = 1, . . . , n + k, denote
by lj the number of points xi such that xi = xj with i ≤ j; i.e.,

lj := lj(x) := #{i | 1 ≤ i ≤ j, xi = xj}.
Note that, because of the restriction xi �= xi+k, the inequality lj ≤ k is valid for all j.

Definition 5.2. A data sequence (x,y) := (xi, yi)
n+k
i=1 is called k-monotone if

there exists a k-monotone function f ∈Mk
∗(a, b) such that

f (lj−1)(xj) = yj , j = 1, . . . , n + k.(5.1)

Note that if all the knots in x are distinct, then the sequence (x,y) is k-monotone
if f(xi) = yi, j = 1, . . . , n+ k, for some f ∈Mk

∗(a, b). Also, if lj = k for some j, then
f (lj−1)(xj) = f (k−1)(xj) is understood as f (k−1)(xj+) or f (k−1)(xj−).

Since

f ∈Mk ⇔ [ti, . . . , ti+k]f ≥ 0 ∀ (ti),

where not all ti’s are the same, one must necessarily have for a k-monotone se-
quence (x,y)

[xi, . . . , xi+k]y ≥ 0.

If k = 1 or 2 (i.e., in the case of monotone or convex interpolation), this condition
is sufficient as well. However, it is not sufficient if k ≥ 3, as the following example
shows.

Example 5.3. The data set

x y δ1 δ2 δ3

−5 −77 ↘ 25 ↘−3 −27
↗
↘ −3 ↘13

↗
↘ 0

−1 −1
↗
↘ −3

↗
↘1

↗
↘ 1

1 1
↗
↘ 3

↗
↘13

↗
↘ 0

3 27
↗
↘ 3

↗
25
↗

5 77
↗

has nonnegative divided differences of order 3, but, at the same time,

[−5,−3,−1, 0]y + [0, 1, 3, 5]

= −1

5
[−5,−3,−1]y − 1

15
[−3,−1]y − 1

15
[−1]y +

1

15
[0]y

+
1

5
[1, 3, 5]y − 1

15
[1, 3]y +

1

15
[1]y − 1

15
[0]y

=
1

5
· 6− 1

15
· 26 +

1

15
· 2 = − 6

15
< 0.

Hence there is no 3-monotone function passing through (x,y).
Denote by

v := v(x,y) := (vi)
n
1 , vi := [xi, . . . , xi+k]y,
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the sequence of divided differences of y(x), and denote by

M := M(x) :=

(
1

k!
Mi

)
, Mi(t) := k[xi, . . . , xi+k](· − t)k−1

+ ,

the sequence of the B-splines of order k with the knot sequence x. Recall that
suppMi = [xi, xi+k], Mi ≥ 0,

∫
Mi = 1, and, for any f ∈ C

k(a, b) (in fact, the
condition f ∈W

k
1(a, b) is sufficient),

[xi, . . . , xi+k]f =
1

k!

∫ b

a

Mi(t)f
(k)(t) dt.

Notice that if a k-monotone function f belongs to C
k, then f (k) ≥ 0. Thus, to check

whether the data sequence (xi, yi) is k-monotone, one needs to form the sequence of
divided differences (vi) and check whether there is a nonnegative function λ such that

vi =
1

k!

∫
Mi(t)λ(t) dt.

The last problem is the so-called Markov moment problem, which we discuss in the
next section.

6. Markov moment problem and k-monotone interpolation. Let U :=
(ui)

n
i=1 be a sequence of continuous linearly independent real-valued functions on

I = (a, b), and let v := (vi)
n
i=1 be a sequence of real numbers.

Definition 6.1. A sequence v ∈ R
n is called a moment sequence with respect

to U if, for some bounded nondecreasing function µ, it admits the representation

vi =

∫ b

a

ui(t) dµ(t), 1 ≤ i ≤ n.

Lemma 6.2. A data sequence (x,y) is k-monotone if and only if the sequence of
divided differences v(x,y) is a moment sequence with respect to M(x), the sequence
of B-splines.

Proof. By Lemma 3.1(3), f ∈Mk
∗(a, b) can be represented as

f(x) = p(x) +
1

k!

∫ b

a

k(x− t)k−1
+ dµ(t),(6.1)

where p ∈ Πk and µ is a bounded nondecreasing function. If f |x = y, then

vi := [xi, . . . , xi+k]y = [xi, . . . , xi+k]f =
1

k!

∫ b

a

Mi(t) dµ(t),

i.e., v is a moment sequence with respect to M.
Conversely, if for the sequences v(x,y) and M(x) there exists a bounded non-

decreasing function µ such that

vi =
1

k!

∫ b

a

Mi(t) dµ(t), i = 1, . . . , n,

then, for any p ∈ Πk, the function f defined by (6.1) is in Mk
∗ and satisfies

[xi, . . . , xi+k]f = vi := [xi, . . . , xi+k]y, i = 1, . . . , n.(6.2)
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Finally, in (6.1), we can choose p ∈ Πk so that the equality in (5.1) holds for
j = 1, . . . , k, and that, together with (6.2), implies successively that it is also true for
j = k + 1, . . . , n + k; hence the sequence (xi, yi) is k-monotone.

Now we need a result from the theory of moments which gives a characterization
of the moment sequences.

Definition 6.3. A sequence v ∈ R
n of real numbers is called positive with

respect to U = (ui)
n
i=1 (recall that U is a sequence of continuous linearly independent

real-valued functions on [a, b]) if

n∑
i=1

aiui(t) ≥ 0, a ≤ t ≤ b, ⇒
n∑
i=1

aivi ≥ 0.

Theorem 6.4 (Krein and Nudelman [7, Theorem 3.1.1, p. 58], [8]). Let U :=
(ui)

n
i=1 be a sequence of continuous linearly independent real-valued functions on

I = [a, b] with the property that there exists a strictly positive polynomial p ∈ spanU.
A sequence v ∈ R

n is a moment sequence with respect to U if and only if v is positive
with respect to U.

Since spanM(x) contains constants, we may combine this theorem with Lemma
6.2 to obtain the following criterion for k-monotonicity of data.

Corollary 6.5. A data sequence (x,y) is k-monotone if and only if the sequence
of divided differences v(x,y) is positive with respect to M(x), i.e., if and only if

n∑
i=1

aiMi(t) ≥ 0 ⇒
n∑
i=1

aivi ≥ 0, vi = [xi, . . . , xi+k]y.

7. Blending of k-monotone functions. In this section, we will give a partial
solution to Problem 5.1. Namely, in Proposition 7.3, we prove that, provided f and g
have sufficiently many points of intersection, a function h ∈Mk[f, g] exists.

We need two auxiliary statements.
The following lemma is a particular case of Lemma 3.2 in Beatson [1] concern-

ing the spline blending. Actually, we will use a more detailed statement which is
formulated within the proof of Proposition 7.3.

Lemma 7.1 (Beatson [1]). Let k ∈ N, n = 2k2, and let p ∈ Πk be a nonnegative
polynomial on [a, b]. Then, for any knot sequence

t := {a = t0 ≤ t1 ≤ · · · ≤ tn < tn+1 = b},

there exists a nonnegative spline s2 ∈ St,k(R) (i.e., s2 is a spline of order r on the
knot sequence t) such that

s2 ≡ 0 on (−∞, a], 0 ≤ s2 ≤ p on [a, b], s2 = p on [b,∞).

The next statement is a well-known property of divided differences.
Lemma 7.2. Let (xj)

n+k
j=1 be any nondecreasing sequence such that xj < xj+k.

Then, for any subsequence (xi0 , . . . , xik) of length k + 1, there exist coefficients νj
such that, for any continuous f (which is differentiable at the repeated knots),

[xi0 , . . . , xik ]f =

n∑
j=1

νj [xj , . . . , xj+k]f.
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Proposition 7.3. For k ∈ N and n = 2k2, let f, g ∈Mk
∗(a, b) be such that

f(tj) = g(tj) on {a = t0 < t1 < · · · < tn < tn+1 = b}.

Then there exists a function h ∈Mk
∗(a, b) such that

h(l)(a+) = f (l)(a+), h(l)(b−) = g(l)(b−), l = 0, . . . , k − 1.

Note that the condition that all points ti in the statement of Proposition 7.3 are
distinct is not essential and is used here only in order to simplify the exposition.

Proof. Let us introduce two sequences x = (xi)
n+2k
i=1 and y = (yi)

n+2k
i=1 :

xj :=


a, 1 ≤ j ≤ k,
tj−k, k + 1 ≤ j ≤ n + k,
b, n + k + 1 ≤ j ≤ n + 2k,

and

yj :=


f (j−1)(a+), 1 ≤ j ≤ k,
f(xj) = g(xj), k + 1 ≤ j ≤ n + k,
g(j−n−k−1)(b−), n + k + 1 ≤ j ≤ n + 2k.

It is convenient to arrange this data set (x,y) as follows:

y1
�

(yj)
n+k+1
j=1

→ f(a) . . . f(k−1)(a) f(xk+1) . . . f(xn+k) f(b)

↑ ↑ ↑ ↑ ↑
x1= · · · = xk = a< xk+1 ≤· · ·≤ xn+k <b= xn+k+1 =· · ·= xn+2k

↓ ↓ ↓ ↓ ↓
g(a) g(xk+1) . . . g(xn+k) g(b) . . . g(k−1)(b) ← (yj)

n+2k
j=k

�

y2

Set

x∗ := (x1, . . . , xk, xn+k+1, . . . , xn+2k) := (

k︷ ︸︸ ︷
a, . . . , a,

k︷ ︸︸ ︷
b, . . . , b),

y∗ := (y1, . . . , yk, yn+k+1, . . . , yn+2k)

:=
(
f(a), . . . , f (k−1)(a), g(b), . . . , g(k−1)(b)

)
.

(7.1)

We need to interpolate y∗ on x∗ by a k-monotone function h. Denote by

M(x∗) =: (Bi)
k
i=1, v(x∗,y∗) =: (wi)

k
i=1

the sequences of the B-splines and of divided differences, respectively, which corre-
spond to (x∗,y∗). By Corollary 6.5, existence of a k-monotone interpolant h to the
data (7.1) will follow if we show that

k∑
i=1

aiBi(t) ≥ 0 ⇒
k∑
i=1

aiwi ≥ 0.(7.2)

We start with some preliminaries.
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(1) Let (vj)
n+k
j=1 and (Mj)

n+k
j=1 be the sequences of divided differences and B-splines,

respectively, constructed with respect to the entire set (xj , yj)
n+2k
j=1 . Consider two sets

of the following subsequences:

x1 := (xj)
n+k+1
j=1 , y1 := (yj)

n+k+1
j=1 , v1 := (vj)

n+1
j=1 , M1 := (Mj)

n+1
j=1 ;

x2 := (xj)
n+2k
j=k , y2 := (yj)

n+2k
j=k , v2 := (vj)

n+k
j=k , M2 := (Mj)

n+k
j=k .

(7.3)

By assumption, k-monotone f interpolates y1 on x1, and k-monotone g interpolates
y2 on x2; thus both sets of data (xν ,yν), ν = 1, 2, are k-monotone. Then Corollary 6.5
implies that

vν is positive with respect to Mν , ν = 1, 2.(7.4)

(2) Since (vj), (Mj) are divided differences of certain functions on x, while
(wi), (Bi) are divided differences of the same functions on x∗ ⊂ x, by Lemma 7.2
there exist expansions

wi =

n+k∑
j=1

cijvj , Bi(x) =

n+k∑
j=1

cijMj(x)

with the same coefficients (cij) in both of these equations. This implies that, for any
(ai)

k
i=1 ⊂ R, the expansions

k∑
i=1

aiBi(x) =

n+k∑
j=1

cjMj(x),

k∑
i=1

aiwi =

n+k∑
j=1

cjvj

have the same coefficients cj =
∑k
i=1 aicij .

(3) The B-splines (Bi) ∈M(x∗) have the form

Bi(t) := k[

k+1−i︷ ︸︸ ︷
a, . . . , a,

i︷ ︸︸ ︷
b, . . . , b](· − t)k−1

+

=
k

(b− a)k

(
k − 1

i− 1

)
(t− a)i−1(b− t)k−i, i = 1, . . . , k,

i.e., they are Bernstein basis polynomials of order k, so that∑
aiBi ∈ Πk ∀ (ai).

Now let us prove (7.2). Suppose that, for some sequence (ai),

pa(x) :=

k∑
i=1

aiBi(x) ≥ 0.

Since pa is a polynomial of order k,

pa(x) :=

k∑
i=1

aiBi(x) =

n+k∑
j=1

cjMj(x) ≥ 0, and n ≥ 2k2,
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the method of the proof of Beatson’s smoothing lemma [1, Lemma 3.2] shows that
there is an index l, k ≤ l ≤ n + 1, such that

s1(x) :=

l∑
j=1

cjMj(x) ≥ 0, s2(x) :=

n+k∑
j=l+1

cjMj(x) ≥ 0.(7.5)

(We will not repeat Beatson’s argument here and mention only that the sign vari-
ation diminishing property of B-spline series (see [4, section 5.10], for example) as
well as their finite support are used.) From the definitions in (7.3), it follows that
sν ∈Mν , ν = 1, 2, which allows us to conclude that, since vν are positive with respect
to Mν (see (7.4)), (7.5) implies

l∑
j=1

cjvj ≥ 0,

n+k∑
j=l+1

cjvj ≥ 0.

Finally,

k∑
i=1

aiwi =

n+k∑
j=1

cjvj =

l∑
i=1

cjvj +

n+k∑
j=l+1

cjvj ≥ 0.

Hence (7.2) is proved, and the proof of the proposition is now complete.
Now, having proved the existence of a function h ∈Mk[f, g], we may use Lemma

3.4 to derive the existence of a spline z ∈Mk[f, g].
Corollary 7.4. For k ∈ N, n = 2k2, let f, g ∈Mk

∗(a, b) be such that

f(tj) = g(tj) on {a = t0 < t1 < · · · < tn < tn+1 = b}.

Then there exists a spline z such that

z ∈ Sk′,k ∩Mk[f, g].

Note that, for k = 1 or 2, that is, for monotone or convex functions f and g, a
procedure of k-monotone blending of f and g is quite evident geometrically.

8. Auxiliary Whitney-type estimates. In this section, we give some Whitney-
type estimates for approximation of polynomials p ∈ Πr by splines and polynomials
of degree k.

As usual, ωk(f, δ, I)p denotes the kth modulus of smoothness of f with the step δ
on the interval I,

ωk(f, δ, I)p := sup
0<h≤δ

∥∥∆kh(f, ·, I)∥∥Lp(I)
,

where ∆kh(f, x, I) is the kth forward difference,

∆kh(f, x, I) :=

{ ∑k
i=0

(
k
i

)
(−1)k−if(x + ih) if [x, x + kh] ⊂ I,

0 otherwise.

It is also convenient to denote

ωk(f)p := ωk(f)Lp(I) := ωk(f, |I|, I)p.
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Lemma 8.1. Let k, r ∈ N, 0 < p ≤ ∞, I = (a, b), and p ∈ Πr, and let s be a
spline of order k with at most C(k) pieces in I (i.e., s ∈ SC(k),k). Then

‖p− s‖p ≥ cp,r,kωk(p)p.

Proof. Let J be a largest subinterval of I between two successive knots of s (and
hence |J |/|I| ≥ 1/C(k)), and let q ∈ Πk be the restriction of s to J . Then, using
Whitney’s inequality,

E(p,Πk)Lp(I)
p,k∼ ωk(p)Lp(I),(8.1)

and the Markov-type inequality (see [4, (4.2.10) and (4.2.16)])

‖p‖Lp(I) ≤ cp,r(|I|/|J |)r−1+1/p‖p‖Lp(J),

we find

‖p− s‖Lp(I) ≥ ‖p− q‖Lp(J) ≥ cp,r(|J |/|I|)r−1+1/p‖p− q‖Lp(I)

≥ cp,r,kE(p,Πk)Lp(I) ≥ c′p,r,kωk(p)p.

Lemma 8.2. Let k, r ∈ N, 0 < p ≤ ∞, I = (a, b), and p ∈ Πr, and let lk(p) be
the Lagrange polynomial of order k interpolating p at any k (not necessarily distinct)
points inside I. Then

‖p− lk(p)‖p ≤ cp,r,kωk(p)p.

Proof. Taking into account Lebesgue’s inequality

‖p− lk(p)‖p ≤
(

sup
q∈Πr

‖lk(q)‖p
‖q‖p + 1

)
E(p,Πk)p

and Whitney’s inequality (8.1), it suffices to prove that

‖lk(q)‖p ≤ cp,r,k‖q‖p ∀ q ∈ Πr.

We make use of Markov’s inequality

‖q(k)‖∞ ≤ cp,r,k|I|−k−1/p‖q‖p
and the well-known error bound for the Lagrange interpolation

‖f − lk(f)‖∞ ≤ ck|I|k‖f (k)‖∞
to obtain

‖q− lk(q)‖p ≤ |I|1/p‖q− lk(q)‖∞ ≤ ck|I|1/p|I|k‖q(k)‖∞ ≤ cp,r,k‖q‖p.
Lemma 8.3. Let k ∈ N and f ∈ Mk(a, b), and let lk(f, x;x1, . . . , xk) be the

Lagrange (Hermite–Taylor) polynomial of degree ≤ k− 1 interpolating f at the points
xi, 1 ≤ i ≤ k, where a =: x0 < x1 ≤ · · · ≤ xk < xk+1 := b. Then

(−1)k−i(f(x)− lk(f, x;x1, . . . , xk)) ≥ 0, x ∈ (xi, xi+1), i = 0, . . . , k.

In other words, f − lk changes sign at x1, . . . , xk.
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Proof. First, if all the points xi, 1 ≤ i ≤ k, are distinct, this is Theorem 5 in
Bullen [3].

If some of xi (but not all) coincide, the statement of the lemma is a conse-
quence of the following result which follows from [4, Theorem 4.6.3]: For a given
f ∈ C

(k−2)(a, b), the Lagrange–Hermite polynomial lk(X) = lk(f, x;x1, . . . , xk) is a
continuous function of X = (x1, . . . , xk) at each point X∗ = (x∗1, . . . , x

∗
k) ∈ (a, b)k

such that not all x∗i , i = 1, . . . , k, are the same.
If all points coincide, i.e., x1 = · · · = xk = ξ, the lemma follows from the following

statement, which can be proved by induction on k: Let k ∈ N, f ∈Mk(a, b), and ξ ∈
(a, b). If tk is a Taylor polynomial of degree ≤ k−1 for f at ξ, i.e., t

(i)
k (ξ) = f (i)(ξ±)

for i = 0, . . . , k − 1 (or, more precisely, t
(i)
k (ξ) = f (i)(ξ) for i = 0, . . . , k − 2 and

t
(k−1)
k (ξ) is either f (k−1)(ξ+) or f (k−1)(ξ−)), then

f(x)− tk(x) ≥ 0, x ∈ (ξ, b), and (−1)k(f(x)− pk(x)) ≥ 0, x ∈ (a, ξ).

The following is an immediate corollary of Lemma 8.3.
Corollary 8.4. For k ∈ N, f ∈ Mk

∗(a, b), and a set of interpolation points
{a = x0 ≤ · · · ≤ xk = b}, let

lk := lk(f ;x0 . . . , xk−1) and l̃k := l̃k(f, x1 . . . , xk)

be two Lagrange (Hermite–Taylor) interpolants to f on the given sets. Then f lies

between lk and l̃k on [a, b]; i.e.,

min{lk, l̃k} ≤ f ≤ max{lk, l̃k}.
Lemma 8.5. Let k, r ∈ N, 0 < p ≤ ∞, I = (a, b), p ∈ Πr ∩Mk, 0 ≤ µ ≤ k − 1,

and let g ∈Mk be a function such that

g(i)(a) = p(i)(a), i = 0, . . . , µ,(8.2)

and

g(i)(b) = p(i)(b), i = 0, . . . , k − µ− 1.(8.3)

(Here, in the cases µ = 0 and µ = k − 1, g(k−1)(b) and g(k−1)(a) are understood as
g(k−1)(b−) and g(k−1)(a+), respectively.) Then

‖p− g‖p ≤ cp,r,kωk(p)p.

Proof. Consider the following Lagrange (Hermite–Taylor) polynomials of order k
on [a, b]:

lk := lk(p;

µ+1︷ ︸︸ ︷
a, . . . , a,

k−µ−1︷ ︸︸ ︷
b, . . . , b) and l̃k := l̃k(p;

µ︷ ︸︸ ︷
a, . . . , a,

k−µ︷ ︸︸ ︷
b, . . . , b).

By Corollary 8.4, both k-monotone functions p and g lie between lk and l̃k in [a, b],
i.e.,

min{lk, l̃k} ≤ min{p, g} ≤ max{p, g} ≤ max{lk, l̃k}.
Therefore,

‖g − p‖p ≤ ‖lk − l̃k‖p ≤ cp‖lk − p‖p + cp‖p− l̃k‖p ≤ cp,r,kωk(p)p,
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where the last inequality follows from Lemma 8.2.
In our proof, we need a slightly stronger statement in the case for µ = 0.
Lemma 8.6. Let k, r ∈ N, 0 < p ≤ ∞, I = (a, b), and p ∈ Πr ∩Mk, and let

h ∈Mk be a function such that

h(a) = p(a) and h(i)(b) = p(i)(b), i = 0, . . . , k−2, h(k−1)(b−) ≤ p(k−1)(b).(8.4)

Then

‖p− h‖p ≤ cp,r,kωk(p)p.(8.5)

Proof. First, assume that there exists δ > 0 such that p ∈Mk(a, b + δ), and set

g =

{
h on [a, b),
p on [b, b + δ].

Then g is k-monotone on [a, b + δ] and satisfies all other assumptions of Lemma 8.5
(with µ = 0); hence

‖g − p‖Lp[a,b+δ] ≤ cp,r,kωk(p)Lp[a,b+δ].

Letting δ → 0, we obtain

‖h− p‖Lp[a,b] ≤ lim
δ→0
‖g − p‖Lp[a,b+δ] ≤ cp,r,k lim

δ→0
ωk(p)Lp[a,b+δ] = cp,r,kωk(p)Lp[a,b].

If, for any δ > 0, p /∈Mk(a, b + δ), one can replace p by

p̃(x) := p(x) + ε(x− a)(x− b)k−1.

Then p̃ ∈ Πmax{r,k+1} ∩Mk(a, b + ∆) for some ∆ > 0,

p̃(a) = p(a), p̃(i)(b) = p(i)(b), 0 ≤ i ≤ k − 2,

and

p̃(k−1)(b) = p(k−1)(b) + (k − 1)! ε(b− a) ≥ p(k−1)(b) ≥ h(k−1)(b−).

Now using the same argument as above and letting ε → 0 and ∆ → 0 complete the
proof of the lemma.

9. Proof of Proposition 4.2. The following statement summarizes the results
of sections 5–8.

Proposition 9.1. Let k ∈ N, n = 2k2, 0 < p ≤ ∞, I = (a, b), and p ∈ Πr ∩Mk,
and let g∗ ∈ SC(k),k ∩Mk

∗ be such that

g∗(tj) = p(tj) on {a = t0 < t1 < · · · < tn < tn+1 = b}.
Then there exists a spline z such that

z ∈ Sk′,k ∩Mk[g∗, p]

and

‖p− z‖p ≤ c2‖p− g∗‖p, c2 = c2(p, r, k).(9.1)



k-MONOTONE APPROXIMATION BY FREE KNOT SPLINES 921

Proof. First, Corollary 7.4 implies that there exists a spline z ∈ Sk′,k ∩Mk[g∗, p].
Now, since z satisfies condition (8.4) of Lemma 8.6 (which follows from the definition
of the class Mk[g∗, p] and the fact that g∗(a) = p(a)), we have the estimate

‖p− z‖p ≤ cp,r,kωk(p)p.

On the other hand, for g∗ ∈ SC(k),k, Lemma 8.1 yields

‖p− g∗‖p ≥ cp,r,kωk(p)p.

Combining both estimates, we obtain (9.1).
Remark 9.2. Applying Proposition 9.1 to p̃(t) := (−1)kp(−t) and g̃∗(t) :=

(−1)kg∗(−t), we conclude that there also exists a spline z̃ ∈ Sk′,k ∩ Mk[p, g∗] for
which (9.1) is valid.

We also need the following elementary statement.
Lemma 9.3. Let (xj)

∞
j=1 be such that xi �= xj if i �= j, and limj→∞ xj = L,

and let, for some k ≥ 2, f be (k − 2) times continuously differentiable in some
ε-neighborhood of L and have one-sided (k − 1)st derivatives at L. If f(xj) = 0
for all j, then f (i)(L) = 0 for i = 0, . . . , k − 2 and either f (k−1)(L+) = 0 or
f (k−1)(L−) = 0.

Proof of Proposition 4.2. If 0 < p < ∞, let f∗ be a best Lp-approximant to
p ∈ Πr ∩Mk from the set Mk[f ] whose existence is guaranteed by Lemma 3.3, and so
Lemma 3.8 is valid. If p = ∞, we choose f∗ to be a best L∞-approximant to p from
the set Mk[f ] which satisfies Lemma 3.9.

We need to prove that there exists a spline s such that

s ∈ SC(k),r ∩Mk[f ](9.2)

and

‖p− s‖p ≤ c2‖p− f∗‖p.(9.3)

Lemmas 3.8 and 3.9 imply that, on any interval (c, d) where the difference f∗(x)−p(x)
has exactly m− 1 distinct zeros, we have

f∗ ∈ Smk′,k, k′ = k/2�+ 1.(9.4)

Denote by Z the set of all zeros of the function f∗ − p, i.e.,

Z := {x ∈ [a, b] | f∗(x) = p(x)},
and let Z∗ be the set of all limit points of Z. Also, let #Z denote the cardinality
of Z. (Note that the set Z does not take into account multiplicity of zeros. This is
not essential and is done only to simplify the exposition.)

The proof is quite transparent. If Z consists of only a few (less than 4k2 + 4)
points, (9.4) implies that f∗ has to be in SC(k),k, and so there is nothing to prove. If
#Z is not less than 4k2 + 4 but is finite, we use Proposition 9.1 to blend f∗ and p on
intervals containing the first and the last 2k2 + 2 points from Z (and hence f∗, which
has many “knots” between these intervals, is replaced there by the polynomial p).
Finally, if Z is an infinite set, the set Z∗ is necessarily not empty and connected.
Hence Z∗ is a closed subinterval of (or a point in) [a, b]. We will show that f∗ ≡ p
on Z∗, and so it will remain to apply the above-mentioned argument in the case in
which #Z <∞ to the set [a, b] \ Z∗ which is a union of at most two intervals.
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We now fill in the details and consider the following three cases.
Case 1. #Z < 4k2 + 4. According to (9.4),

f∗ ∈ SC(k),k, C(k) ≤ (4k2 + 4)k′,

so we let s = f∗.
Case 2. 4k2+4 ≤ #Z <∞. Denote by Iν := [aν , bν ], ν = 1, 2, the smallest closed

subintervals of [a, b] which contain the first and the last 2k2+2 points of Z, respectively
(i.e., a1 = min(Z) and b2 = max(Z)). By (9.4), f∗ ∈ S(2k2+1)k′,k(Iν), ν = 1, 2, and
hence, by Proposition 9.1 and Remark 9.2, we conclude that there exist two splines
s1, s2 such that

s1 ∈ Sk′,k ∩Mk[f∗, p](I1), s2 ∈ Sk′,k ∩Mk[p, f∗](I2),

and

‖p− sν‖Lp(Iν) ≤ c2 ‖p− f∗‖Lp(Iν).(9.5)

Also note that f∗ ∈ Sk′,k[a, a1] and f∗ ∈ Sk′,k[b2, b], and define

s(x) =


f∗(x), x ∈ [a, a1] ∪ [b2, b],
s1(x), x ∈ [a1, b1],
p(x), x ∈ [b1, a2],
s2(x), x ∈ [a2, b2].

Then

s ∈ SC(k),r ∩Mk[f ](a, b), C(k) ≤ 4k′ + 1,

and, clearly, (9.3) is satisfied.
Case 3. #Z =∞. Clearly, the set of all limit points Z∗ is not empty in this case.

Also, Z∗ is closed, and we now show that it has to be connected. This will imply that
Z∗ = [c, d] ⊂ [a, b] (not excluding the possibility that c = d). Taking into account
that f∗ − p is (k − 2) times continuously differentiable and has one-sided (k − 1)st
derivatives on [a, b] (which is guaranteed by the assumption that f∗ ∈ Mk[f ]), we
apply Lemma 9.3 to conclude that, for every x ∈ Z∗, at least one of two relations
takes place:

f
(i)
∗ (x±) = p(i)(x), i = 0, . . . , k − 1.

Thus, if {c, d} ⊂ Z∗, then p ∈Mk[f∗](c, d) so that the function

g∗(x) =

{
f∗(x), x ∈ [a, b] \ [c, d],
p(x), x ∈ [c, d],

is in Mk[f∗](a, b) ⊂Mk[f ](a, b). Also, if f∗ �≡ p on [c, d], then g∗ approximates p better
(in the Lp-metric) than f∗ on [a, b] if 0 < p < ∞ and not worse than f∗ if p = ∞.
Therefore, we know (can assume) that f∗ ≡ p on [c, d]; hence [c, d] ⊂ Z∗.

Thus we can assume that Z∗ = [c, d] for some [c, d] ⊂ [a, b]. We also assume that
a < c ≤ d < b, the cases in which c = a or d = b being analogous (and simpler).

Since (a, c)∩Z∗ = ∅, any closed subinterval of (a, c) contains finitely many points
from Z.
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Now, if #((a, c) ∩ Z) < 2k2 + 2, (9.4) implies that f∗ ∈ S(2k2+2)k′,k[a, c], and we
define the spline s1 to be f∗ on [a, c].

If, on the other hand, #((a, c) ∩ Z) ≥ 2k2 + 2, then there exists c′ ∈ (a, c)
such that c′ ∈ Z, and the interval (a, c′) contains exactly 2k2 + 1 points from Z.
The same construction as in Case 2 allows us to obtain a k-monotone spline s̃1 ∈
S2k′,k(a, c

′) ∩Mk[f∗, p] which “blends” f∗ with p (in a k-monotone fashion) on (a, c′)
and approximates p as well as f∗. Now we define s1 by

s1(x) =

{
s̃1(x), x ∈ [a, c′],
p(x), x ∈ [c′, c].

The same argument can now be used “at the right end” to yield a construction of
s2 ∈ S(2k2+2)k′,k[d, b] satisfying all conditions required.

Finally, we set

s(x) =


s1(x), x ∈ [a, c],
p(x), x ∈ [c, d],
s2(x), x ∈ [d, b].

Then

s ∈ SC(k),k ∩Mk[f ][a, b], C(k) ≤ (4k2 + 4)k′ + 1,

which completes the proof of Case 3 and of Proposition 4.2.
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Abstract. The phenomena of concentration and cavitation and the formation of δ-shocks and
vacuum states in solutions to the Euler equations for isentropic fluids are identified and analyzed as
the pressure vanishes. It is shown that, as the pressure vanishes, any two-shock Riemann solution
to the Euler equations for isentropic fluids tends to a δ-shock solution to the Euler equations for
pressureless fluids, and the intermediate density between the two shocks tends to a weighted δ-
measure that forms the δ-shock. By contrast, any two-rarefaction-wave Riemann solution of the Euler
equations for isentropic fluids is shown to tend to a two-contact-discontinuity solution to the Euler
equations for pressureless fluids, whose intermediate state between the two contact discontinuities
is a vacuum state, even when the initial data stays away from the vacuum. Some numerical results
exhibiting the formation process of δ-shocks are also presented.
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1. Introduction. We are concerned with the phenomena of concentration and
cavitation and the formation of δ-shocks and vacuum states in solutions to the Euler
equations for compressible fluids as the pressure vanishes. In this paper, we consider
the Euler equations of isentropic gas dynamics in Eulerian coordinates,

∂tρ+ ∂x(ρv) = 0,(1.1)

∂t(ρv) + ∂x(ρv
2 + P ) = 0,(1.2)

where ρ, P , andm = ρv represent the density, the scalar pressure, and the momentum,
respectively; and ρ and m are in the physical region {(ρ,m) | ρ ≥ 0, |m| ≤ V0ρ} for
some V0 > 0. For ρ > 0, v = m/ρ is the velocity with |v| ≤ V0. The scalar pressure
P is a function of the density ρ and a small parameter ε > 0 satisfying

lim
ε→0

P (ρ, ε) = 0.

For concreteness, we focus on the prototypical pressure function for polytropic gases:

P (ρ, ε) = εp(ρ), p(ρ) = ργ/γ, γ > 1.(1.3)
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System (1.1)–(1.3) is an example of hyperbolic systems of conservation laws with
form

∂tu+ ∂xf(u, ε) = 0,(1.4)

with u = (ρ, ρv) and f(u, ε) = (ρv, ρv2 + εp(ρ)). Observe that system (1.1)–(1.3) with
parameter ε > 0 is generic in the sense that such a system can also be obtained under
the scaling

(x, t) −→ (αx, αt), ρ −→ αρ,

with α = ε−1/(γ−1) from system (1.1)–(1.2) with p = p(ρ).
In Chang, Chen, and Yang [4, 5, 6], a phenomenon of concentration in solutions

of the two-dimensional Riemann problem was first observed numerically, which led to
the occurrence of so-called smoothed δ-shocks for the Euler equations of gas dynamics
when the Riemann data produces four initial contact discontinuities with different
signs and the initial pressure data is close to zero. One of the main objectives of
this paper is to show rigorously that the phenomenon of concentration in solutions,
observed numerically in [4, 5, 6], for inviscid compressible fluid flow is fundamental
and occurs not only in the multidimensional situations but also naturally in the one-
dimensional case.

The limit system as ε→ 0 formally becomes the transport equations

∂tρ+ ∂x(ρv) = 0,(1.5)

∂t(ρv) + ∂x(ρv
2) = 0,(1.6)

which are also called the one-dimensional system of pressureless Euler equations,
modeling the motion of free particles which stick under collision (see [3, 11, 30]).

The transport equations (1.5)–(1.6) have been analyzed extensively since 1994;
for example, see [1, 2, 3, 11, 12, 13, 17, 18, 19, 20, 22, 28, 29] and the references cited
therein. In particular, the existence of measure solutions of the Riemann problem was
first presented in Bouchut [1], and a connection of (1.5)–(1.6) with adhesion particle
dynamics and the behavior of global weak solutions with random initial data were
discussed in E, Rykov, and Sinai [11]. Also see [14, 15, 16, 21, 26, 27] for related
equations and results. It has been shown that, for the transport equations (1.5)–
(1.6), δ-shocks and vacuum states do occur in the Riemann solutions. Since the
two eigenvalues of the transport equations coincide, the occurrence of δ-shocks and
vacuum states as t > 0 can be regarded as a result of resonance between the two
characteristic fields.

In this paper, we rigorously analyze the phenomena of concentration and cav-
itation and the formation of δ-shocks and vacuum states in solutions to the Euler
equations for isentropic fluids as the pressure vanishes. The vanishing pressure limit
can be regarded as a singular flux-function limit for hyperbolic systems of conserva-
tion laws (1.4). We show that such phenomena occur naturally in the one-dimensional
case as the pressure vanishes: any two-shock Riemann solution to the Euler equations
for isentropic fluids tends to a δ-shock solution to the Euler equations for pressure-
less fluids, and the intermediate density between the two shocks tends to a weighted
δ-measure that forms a δ-shock; by contrast, any two-rarefaction-wave Riemann solu-
tion to the Euler equations for isentropic fluids tends to a two-contact-discontinuity
solution to the Euler equations for pressureless fluids, whose intermediate state be-
tween the two contact discontinuities is a vacuum state even when the initial data
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stays away from the vacuum. These results show that the δ-shocks for the transport
equations result from a phenomenon of concentration, while the vacuum states result
from a phenomenon of cavitation in the process of the vanishing pressure limit; both
are fundamental and physical in fluid dynamics.

From the point of view of hyperbolic conservation laws, since the limit system
loses hyperbolicity, the phenomena of concentration and cavitation in the process of
the vanishing pressure limit can be regarded as phenomena of resonance between the
two characteristic fields. These phenomena show that the flux-function limit can be
very singular: the limit functions of solutions are no longer in the spaces of functions
BV or L∞; and the space of Radon measures, for which the divergences of certain
entropy and entropy flux fields are also Radon measures, is a natural space in order
to deal with such a limit in general. In this regard, a theory of divergence-measure
fields has been established in Chen and Frid [7, 8, 9].

The organization of this paper is as follows. In section 2, we discuss the δ-shocks
and vacuum states for the transport equations (1.5)–(1.6) and examine the dependence
of the Riemann solutions on the parameter ε > 0 for the Euler equations (1.1)–(1.3).
In section 3, we analyze the formation of δ-shocks in the Riemann solutions to the
Euler equations (1.1)–(1.3) as the pressure vanishes. In section 4, we analyze the
formation of vacuum states in the Riemann solutions to (1.1)–(1.3), even when the
initial data stays away from the vacuum, as the pressure decreases. In section 5, we
present some representative numerical results, produced by using the higher order
essentially nonoscillatory (ENO) scheme in [23, 24], to examine the phenomenon of
concentration and the formation process of δ-shocks in the level of the Euler dynamics
(1.1)–(1.3) as the pressure decreases.

2. δ-shocks, vacuum states, and Riemann solutions. In this section, we
first discuss δ-shocks and vacuum states in the Riemann solutions to the transport
equations (1.5)–(1.6), and then we examine the dependence of the Riemann solutions
on the parameter ε > 0 to the Euler equations (1.1)–(1.3).

2.1. δ-shocks and vacuum states for the transport equations. Consider
the Riemann problem of the transport equations (1.5)–(1.6) with Riemann initial data

(ρ, v)(x, 0) = (ρ±, v±), ±x > 0,(2.1)

with ρ± > 0. Since the equations and the Riemann data are invariant under uniform
stretching of coordinates

(x, t)→ (βx, βt), β constant,

we consider the self-similar solutions of (1.5), (1.6), and (2.1):

(ρ, v)(x, t) = (ρ, v)(ξ), ξ = x/t.

Then the Riemann problem is reduced to a boundary value problem for ordinary
differential equations:

− ξρξ + (ρv)ξ = 0,

− ξ(ρv)ξ + (ρv2)ξ = 0,

(ρ, v)(±∞) = (ρ±, v±).
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As shown in [22], in the case in which v− < v+, we can obtain a solution (ρ, v)(ξ)
that consists of two contact discontinuities and a vacuum state which are uniquely
determined by the Riemann data (ρ±, v±). That is,

(ρ, v)(ξ) =


(ρ−, v−), −∞ < ξ ≤ v−,
(0, ξ), v− ≤ ξ ≤ v+,
(ρ+, v+), v+ ≤ ξ <∞.

In the case in which v− > v+, a key observation in [22] is that the singularity cannot
be a jump with finite amplitude; that is, there is no solution which is piecewise
smooth and bounded. Hence a solution containing a weighted δ-measure (i.e., δ-
shock) supported on a line was constructed in order to establish the existence in a
space of measures from the mathematical point of view (see also [26, 27]).

To define the measure solutions, the weighted δ-measure w(t)δS supported on a
smooth curve S = {(x(s), t(s)) : a < s < b} can be defined by

〈w(·)δS , ψ(·, ·)〉 =
∫ b

a

w(t(s))ψ(x(s), t(s))

√
x′(s)2 + t′(s)2ds

for any ψ ∈ C∞0 ((−∞,∞)× [0,∞)).
With this definition, a family of δ-measure solutions with parameter σ in the case

in which v− > v+ can be obtained as

ρ(x, t) = ρ0(x, t) + w(t)δS , v(x, t) = v0(x, t),

where S = {(σt, t) : 0 ≤ t <∞},

ρ0(x, t) = ρ−+[ρ]χ(x−σt), v0(x, t) = v−+[v]χ(x−σt), w(t) =
t

1 + σ2
(σ[ρ]− [ρv]),

in which [h] := h+ − h− denotes the jump of function h across the discontinuity, and
χ(x) is the characteristic (or indicator) function that is 0 when x < 0 and 1 when
x > 0.

It was shown in [22] that the δ-measure solutions (ρ, v) constructed above satisfy

〈ρ, φt〉+ 〈ρv, φx〉 = 0,(2.2)

〈ρv, φt〉+ 〈ρv2, φx〉 = 0(2.3)

for any φ ∈ C∞0 ((−∞,∞)× (0,∞)), where

〈ρ, φ〉 =
∫ ∞

0

∫ ∞
−∞

ρ0φdxdt+ 〈wδS , φ〉

and

〈ρv, φ〉 =
∫ ∞

0

∫ ∞
−∞

ρ0v0φdxdt+ 〈σwδS , φ〉.

A unique solution can be singled out by the so-called δ-Rankine–Hugoniot condition

σ =

√
ρ+v+ +

√
ρ−v−√

ρ+ +
√
ρ−

(2.4)

that satisfies the δ-entropy condition

v+ < σ < v−.(2.5)

The entropy condition (2.5) means that, in the (x, t)-plane, all the characteristic lines
on either side of a δ-shock run into the line of δ-shock, which implies that a δ-shock
is an overcompressive shock.
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2.2. Riemann solutions to the Euler equations for isentropic fluids. The
eigenvalues of system (1.1)–(1.3) are

λ1 = v − c(ρ, ε), λ2 = v + c(ρ, ε) for ρ > 0

with

c(ρ, ε) =
√
ε p′(ρ) =

√
ε ρθ, θ =

γ − 1

2
.

The Riemann invariants are

w = v +

∫ ρ

0

√
εp′(s)
s

ds, z = v −
∫ ρ

0

√
εp′(s)
s

ds.

Then the Riemann solutions, which are functions of ξ = x/t, are solutions of

− ξρξ + (ρv)ξ = 0,(2.6)

− ξ(ρv)ξ + (ρv2 + ε p(ρ))ξ = 0,(2.7)

(ρ, v)(±∞) = (ρ±, v±).(2.8)

Shock curves. The Rankine–Hugoniot conditions for discontinuous solutions of
(1.1)–(1.3) are

−σ[ρ] + [ρv] = 0, −σ[ρv] + [ρv2 + ε p(ρ)] = 0.

The Lax entropy inequalities imply

ρ+ > ρ− (one-shock), ρ+ < ρ− (two-shock).

Then, given a state u− = (ρ−, ρ−v−), the shock curves in the phase plane, which are
the sets of states that can be connected on the right by a one-shock or a two-shock,
are the following.

One-shock curve S1(u−):

v − v− = −
√
ε (p(ρ)− p(ρ−))
ρ−ρ(ρ− ρ−) (ρ− ρ−), ρ > ρ−.

Two-shock curve S2(u−):

v − v− = −
√
ε (p(ρ)− p(ρ−))
ρ−ρ(ρ− ρ−) (ρ− ρ−), ρ < ρ−.

Then the shock curves are concave or convex, respectively, with respect to the
point u− = (ρ−, ρ−v−) in the ρ−m plane with m = ρv; that is, the quotient m−m−

ρ−ρ−
as a function of ρ is monotone.

We now turn to analyzing the Riemann solutions that consist of rarefaction waves
and constant states. There are also two families of rarefaction waves, corresponding
to characteristic fields λ1 and λ2, respectively.

Rarefaction wave curves. A rarefaction wave is a continuous solution of (2.6)–
(2.8) of the form (ρ, ρv)(ξ), ξ = x/t, satisfying

ξ = v ∓
√
ε p′(ρ), −ξρξ + (ρv)ξ = 0.
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Then, given a state u− = (ρ−, ρ−v−), the rarefaction-wave curves in the phase plane,
which are the sets of states that can be connected on the right by a one-rarefaction
or two-rarefaction wave, are the following.

One-rarefaction wave curve R1(u−):

v − v− = −
∫ ρ

ρ−

√
ε p′(s)
s

ds, ρ < ρ−.

Two-rarefaction wave curve R2(u−):

v − v− =

∫ ρ

ρ−

√
ε p′(s)
s

ds, ρ > ρ−.

The rarefaction wave curves are concave or convex, respectively, in the ρ − m
plane.

Given a left state u− = (ρ−, ρ−v−), the set of states that can be connected on
the right by a shock or a rarefaction wave in the phase plane consists of the one-shock
curve S1(u−), the one-rarefaction curve R1(u−), the two-shock curve S2(u−), and the
two-rarefaction curve R2(u−). These curves divide the phase plane into four regions
S2S1(u−), S2R1(u−), R2S1(u−), and R2R1(u−); any right state of the Riemann data
staying in one of them yields a unique global Riemann solution R(x/t), which contains
a one-shock (or a one-rarefaction wave) and/or a two-shock (or a two-rarefaction wave)
satisfying

w(R(x/t)) ≤ w(u+), z(R(x/t)) ≥ z(u−), w(R(x/t))− z(R(x/t)) ≥ 0.

In particular, when u+ ∈ S2S1(u−), R(x/t) contains a one-shock, a two-shock, and a
nonvacuum intermediate constant state; and, when u+ ∈ R2R1(u−), R(x/t) contains
a one-rarefaction wave, a two-rarefaction wave, and an intermediate constant state
that may be a vacuum state. Since the other two regions S2R1(u−) and R2S1(u−)
have empty interiors when ε → 0, it suffices to analyze the limit process for the two
cases u+ ∈ S2S1(u−) (in section 3) and u+ ∈ R2R1(u−) (in section 4). For more
details about Riemann solutions, see [10, 25].

3. Formation of δ-shocks. In this section, we study the formation of δ-shocks
in the Riemann solutions to the Euler equations for isentropic fluids in the case u+ ∈
S2S1(u−) with v− > v+ and ρ± > 0 as the pressure vanishes.

3.1. Limiting behavior of the Riemann solutions as ε → 0. For fixed
ε > 0, let uε∗ := (ρε∗, ρ

ε
∗v
ε
∗) be the intermediate state in the sense that u− and uε∗

are connected by one-shock S1 with speed σε1 and that uε∗ and u+ are connected by
two-shock S2 with speed σε2. Then (ρε∗, v

ε
∗) are determined by

vε∗ − v− = −
√
ε (p(ρε∗)− p(ρ−))
ρ−ρε∗(ρε∗ − ρ−)

(ρε∗ − ρ−), ρε∗ > ρ−,(3.1)

and

v+ − vε∗ = −
√
ε (p(ρ+)− p(ρε∗))
ρ+ρε∗(ρ+ − ρε∗)

(ρ+ − ρε∗), ρε∗ > ρ+.(3.2)



δ-SHOCKS AND VACUUM STATES IN THE VANISHING PRESSURE LIMIT 931

Define g(s, τ) =
√

( 1
s − 1

τ )(p(τ)− p(s)) for s, τ > 0. Thus a combination of the

jump conditions (3.1) and (3.2) gives

v− − v+ =
√
ε (g(ρε∗, ρ−) + g(ρε∗, ρ+)) > 0.(3.3)

Then one must have limε→0 g(ρ
ε
∗, ρ±) = ∞, which yields limε→0 ρ

ε
∗ = ∞. Letting

ε→ 0 in (3.3) yields

lim
ε→0

ε(ρε∗)
γ =

√
ρ−ρ+√

ρ− +
√
ρ+

(v− − v+).

Therefore, we have the following lemma.

Lemma 3.1. limε→0 ε
1/γρε∗ = (

√
ρ−ρ+√

ρ−+
√
ρ+

(v− − v+))1/γ .

Lemma 3.2. Set σ =
√
ρ−v−+

√
ρ+v+√

ρ−+
√
ρ+

∈ (v+, v−). Then

lim
ε→0

vε∗ = lim
ε→0

σε1 = lim
ε→0

σε2 = σ

and

lim
ε→0

ρε∗(σ
ε
2 − σε1) = σ[ρ]− [ρv].

Proof. First, Lemma 3.1 and (3.1)–(3.2) immediately imply that

lim
ε→0

vε∗ = σ.

On the other hand, using the Lax entropy inequalities for the shocks, we have

vε∗ −
√
ε (ρε∗)

θ < σε1 < min(vε∗ +
√
ε (ρε∗)

θ, v− −
√
ε (ρ−)θ)(3.4)

and

max(vε∗ −
√
ε (ρε∗)

θ, v+ +
√
ε (ρ+)θ) < σε2 < v

ε
∗ +
√
ε (ρε∗)

θ.(3.5)

Noting that
√
ε (ρε∗)

θ = ε
1
2γ (ε1/γρε∗)

θ, we can see from Lemma 3.1 that, for γ > 1,

lim
ε→0

√
ε (ρε∗)

θ = 0.(3.6)

Then (3.4)–(3.6) yield

lim
ε→0

vε∗ = lim
ε→0

σε1 = lim
ε→0

σε2 = σ.(3.7)

The Rankine–Hugoniot conditions for (1.1) on the shocks and the results of (3.7) yield

ρε∗(σ
ε
2 − σε1) = σε2 ρ+ − σε1 ρ− − [ρv]→ σ[ρ]− [ρv] as ε→ 0.

This completes the proof of Lemma 3.2.
Remark 3.1. The quantity σ that is the limit of vε∗, σ

ε
1, and σε2 uniquely de-

termines the δ-shock solution of (1.5)–(1.6) as the limit of the Riemann solutions
when ε→ 0 and is consistent with the δ-Rankine–Hugoniot condition (2.4) and the δ-
entropy condition (2.5), as proposed for the Riemann solutions for pressureless Euler
equations.
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3.2. Weighted δ-shocks. We now show the following theorem characterizing
the vanishing pressure limit in the case in which v− > v+.

Theorem 3.1. Let v− > v+. For each fixed ε > 0, assume that (ρε,mε) =
(ρε, ρεvε) is a two-shock solution of (1.1)–(1.3) with Riemann data u± = (ρ±, ρ±v±),
constructed in section 2.2. Then, when ε → 0, ρε and mε converge in the sense of
distributions, and the limit functions ρ and m are the sums of a step function and a
δ-measure with weights

t√
1 + σ2

(σ[ρ]− [ρv]) and
t√

1 + σ2
(σ[ρv]− [ρv2]),

respectively, which form a δ-shock solution of (1.5)–(1.6) with the same Riemann data
u±.

Proof. 1. Set ξ = x/t. Then, for each fixed ε > 0, the Riemann solution can be
written as

ρε(ξ) =


ρ− for ξ < σε1,

ρε∗(ξ) for σε1 < ξ < σ
ε
2,

ρ+ for ξ > σε2

and

vε(ξ) =


v− for ξ < σε1,

vε∗(ξ) for σε1 < ξ < σ
ε
2,

v+ for ξ > σε2,

satisfying the following weak formulations: For any ψ ∈ C1
0 (−∞,∞),

−
∫ ∞
−∞

(vε(ξ)− ξ)ρε(ξ)ψ′(ξ)dξ +

∫ ∞
−∞

ρε(ξ)ψ(ξ) dξ = 0,(3.8)

and

−
∫ ∞
−∞

(vε(ξ)− ξ)ρε(ξ)vε(ξ)ψ′(ξ)dξ +

∫ ∞
−∞

ρε(ξ)vε(ξ)ψ(ξ)dξ(3.9)

= ε

∫ ∞
−∞

p(ρε(ξ))ψ′(ξ)dξ.

2. The first integral in (3.8) can be decomposed into

−
{∫ σε

1

−∞
+

∫ σε
2

σε
1

+

∫ ∞
σε
2

}
(vε(ξ)− ξ)ρε(ξ)ψ′(ξ)dξ.(3.10)

The sum of the first and last term of (3.10) is

−
∫ σε

1

−∞
(v− − ξ)ρ−ψ′(ξ)dξ −

∫ ∞
σε
2

(v+ − ξ)ρ+ψ
′(ξ)dξ

= −ρ−v−ψ(σε1) + ρ+v+ψ(σε2) + ρ−σε1ψ(σε1)− ρ+σ
ε
2ψ(σε2)

−
∫ σε

1

−∞
ρ−ψ(ξ)dξ −

∫ ∞
σε
2

ρ+ψ(ξ)dξ,
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which converges as ε→ 0 to

([ρv]− σ[ρ])ψ(σ)−
∫ ∞
−∞

ρ0(ξ − σ)ψ(ξ)dξ

with

ρ0(ξ) = ρ− + [ρ]χ(ξ),

where χ(ξ) is the characteristic function.
For the second term of (3.10),

lim
ε→0

∫ σε
2

σε
1

(vε(ξ)− ξ)ρε(ξ)ψ′(ξ)dξ

= ρε∗(σ
ε
2 − σε1)

{
vε∗
ψ(σε2)− ψ(σε1)

σε2 − σε1
− σ

ε
2ψ(σε2)− σε1ψ(σε1)

σε2 − σε1
+

1

σε2 − σε1

∫ σε
2

σε
1

ψ(ξ)dξ

}
,

which converges as ε→ 0 to

([ρv]− σ[ρ]){−σψ′(σ) + σψ′(σ) + ψ(σ)− ψ(σ)} = 0

since ψ ∈ C1
0 (−∞,∞), limε→0 v

ε
∗ = σ, and limε→0 σ

ε
j = σ for j = 1, 2.

Then the integral identity (3.8) yields

lim
ε→0

∫ ∞
−∞

(ρε(ξ)− ρ0(ξ − σ))ψ(ξ)dξ = (σ[ρ]− [ρv])ψ(σ)

for any function ψ ∈ C∞0 (−∞,∞).
3. We now turn to justifying the limit of momentum mε = ρεvε using the weak

formulation (3.9). As done previously, we can obtain the limit for the first term on
the left of (3.9) as

− lim
ε→0

∫ ∞
−∞

(vε(ξ)− ξ) ρε(ξ)vε(ξ)ψ′(ξ)dξ

= ψ(σ) ([ρv2]− σ[ρv])−
∫ σ

−∞
ρ−v− ψ(ξ)dξ −

∫ ∞
σ

ρ+v+ ψ(ξ)dξ.

The term on the right of (3.9) equals

ε

∫ ∞
−∞

p(ρε)ψ′(ξ)dξ = ε

{∫ σε
1

−∞
+

∫ σε
2

σε
1

+

∫ ∞
σε
2

}
p(ρε)ψ′(ξ)dξ,

which converges to

ε {p(ρ−)ψ(σε1) + p(ρε∗)(ψ(σε2)− ψ(σε1))− p(ρ+)ψ(σε2)}
= o(ε) + ε p(ρε∗)(ψ(σε2)− ψ(σε1))→ 0 as ε→ 0,

where we used the fact that εp(ρε∗) is bounded and limε→0 σ
ε
j = σ for j = 1, 2.

Returning to the weak formulation (3.9), one has

lim
ε→0

∫ ∞
−∞

((ρεvε)(ξ)− (ρ0v0)(ξ − σ))ψ(ξ)dξ = ψ(σ)(σ[ρv]− [ρv2]).
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4. Finally, we are in a position to study the limits of ρε and mε = ρεvε by tracking
the time-dependence of the weights of the δ-measures as ε→ 0.

Let φ(x, t) ∈ C∞0 ((−∞,∞)× [0,∞)) be a smooth test function, and let φ̃(ξ, t) :=
φ(ξt, t). Then we have

lim
ε→0

∫ ∞
0

∫ ∞
−∞

ρε(x/t)φ(x, t)dxdt = lim
ε→0

∫ ∞
0

t

(∫ ∞
−∞

ρε(ξ)φ̃(ξ, t)dξ

)
dt.

On the other hand, we have

lim
ε→0

∫ ∞
−∞

ρε(ξ)φ̃(ξ, t)dξ =

∫ ∞
−∞

ρ0(ξ − σ)φ̃(ξ, t)dξ + (σ[ρ]− [ρv])φ̃(σ, t)

= t−1

∫ ∞
−∞

ρ0(x− σt)φ(x, t)dx+ (σ[ρ]− [ρv])φ(σt, t).

Combining the two relations above yields

lim
ε→0

∫ ∞
0

∫ ∞
−∞

ρε(x/t)φ(x, t)dxdt

=

∫ ∞
0

∫ ∞
−∞

ρ0(x− σt)φ(x, t)dxdt+
∫ ∞

0

t([ρv]− σ[ρ])φ(σt, t)dt.

The last term, by the definition, equals

〈w1(·)δS , φ(·, ·)〉
with

w1(t) =
t√

1 + σ2
(σ[ρ]− [ρv]).

Similarly, we can show that

lim
ε→0

∫ ∞
0

∫ ∞
−∞

mε(x/t)φ(x, t)dxdt

=

∫ ∞
0

∫ ∞
−∞

(ρ0v0)(x− σt)φ(x, t)dxdt + 〈w2(·)δS , φ(·, ·)〉

with

w2(t) =
t√

1 + σ2
(σ[ρv]− [ρv2]).

This completes the proof of Theorem 3.1.

4. Formation of vacuum states. In this section, we show the formation of
vacuum states in the Riemann solutions of (1.1)–(1.3) in the case in which u+ ∈
R2R1(u−) with v− < v+ and ρ± > 0 as the pressure decreases.

As stated previously, on the rarefaction waves, the solution satisfies

ξ = x/t = vε ±
√
ε p′(ρε)(4.1)

for each fixed ε > 0. More precisely, we have that, on the one-rarefaction wave,

ξ = vε −
√
ε p′(ρε), v− −

√
ε p′(ρ−) < ξ < vε∗ −

√
ε p′(ρε∗), ρ− > ρε∗,
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and, on the two-rarefaction wave,

ξ = vε +
√
ε p′(ρε), vε∗ +

√
ε p′(ρε∗) < ξ < v+ +

√
ε p′(ρ+), ρε∗ < ρ+,

where (ρε∗, ρ
ε
∗v
ε
∗) is the intermediate state in the Riemann solutions. Since (ρε∗, ρ

ε
∗v
ε
∗)

is on the curve R1(u−), we have

vε∗ = v− −
∫ ρε∗

ρ−

√
ε p′(s)
s

ds ≤ v− +

∫ ρ−

0

√
ε p′(s)
s

ds = v− +
√
ε
ρθ−
θ
≡ Aε.

When v− < v+ < Aε, that is,

ε >

(
θ(v+ − v−)

ρθ−

)2

≡ ε0(u−, u+),(4.2)

there is no vacuum in the solution. This implies that, for a fluid with strong pressure,
no vacuum occurs in the solution generically.

However, when ε decreases so that ε < ε0(u−, u+), then Aε < v+, and the inter-
mediate state (ρε∗, ρ

ε
∗v
ε
∗) becomes a vacuum state with

(ρε∗, v
ε
∗)(ξ) = (0, ξ), vε1 ≤ ξ ≤ vε2,

where

vε1 = v− +

∫ ρ−

0

√
εp′(s)
s

ds, vε2 = v+ −
∫ ρ+

0

√
εp′(s)
s

ds.

The uniform boundedness of ρε(ξ) with respect to ε in this case leads to

lim
ε→0

vε1 = v−, lim
ε→0

vε2 = v+,

and

lim
ε→0

vε(ξ) = ξ for ξ ∈ (v−, v+).

In summary, the limit function (ρ, v) in this case is

(ρ, v)(ξ) =


(ρ−, v−), −∞ < ξ ≤ v−,
(0, ξ), v− ≤ ξ ≤ v+,
(ρ+, v+), v+ ≤ ξ <∞,

which is a solution to the transport equations (1.5)–(1.6) containing a vacuum state
that fills up the region formed by the two contact discontinuities ξ = x/t = v±.

We can clearly see from the analysis above that, when ε decreases, the left bound-
ary of the one-rarefaction wave and the right boundary of the two-rarefaction wave
are fixed, the right boundary of the one-rarefaction wave becomes closer to the left
boundary of the one-rarefaction wave, and the left boundary of the two-rarefaction
wave becomes closer to the right boundary of the two-rarefaction wave; while the
state between the right boundary of the one-rarefaction wave and the left bound-
ary of the two-rarefaction wave in the Riemann solution is a vacuum state; and, in
the limit, the left boundary of the one-rarefaction wave and the right boundary of
the two-rarefaction wave become two contact discontinuities of the transport equa-
tions (1.5)–(1.6), and the vacuum state fills up the region between the two contact
discontinuities.
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Fig. 5.1. Density and velocity for ε = 1.4.

5. Formation process of δ-shocks: Numerical simulations. After the cav-
itation process in the Riemann solutions of (1.1)–(1.3) has been described clearly as
the pressure decreases in section 4, understanding the formation process of δ-shocks
in the Riemann solutions as the pressure decreases becomes more constructive for
comparison. For this purpose, in this section we present a selected group of repre-
sentative numerical results in the level of Euler dynamics (1.1)–(1.3) starting with
Riemann initial data. We have performed many more numerical tests to make sure
what we present are not numerical artifacts.

We solve the Riemann problem for (1.1)–(1.3) with p(ρ) = ργ/γ and γ = 1.4 for
an ideal gas. The Riemann initial data is

(ρ, v)(x, 0) =

{
(1.0, 1.5) for x < 0,
(0.2, 0.0) for x > 0.

To discretize the system, we use the higher order ENO scheme to obtain a method-
of-line ordinary differential equation in time and then discretize the ordinary differen-
tial equation by the classical higher order explicit Runge–Kutta method (see [23, 24]).
We calculate by the third-order ENO scheme [24] up to t = 0.2 with mesh 100. The
numerical simulations with different choices of ε are presented in Figures 5.1–5.3.
These figures show the formation process of a δ-shock in the two-shock Riemann
solutions for the Euler equations (1.1)–(1.3) for isentropic fluids as the pressure de-
creases. We start with ε/γ = 1.0 and choose then ε/γ = 0.05 and finally ε/γ = 0.001.
Figures 5.1a–5.3a show the concentration process of the density yielding a weighted
δ-measure in the limit, in which the horizontal axis stands for the space variable x
and the vertical axis stands for the density. Figures 5.1b–5.3b show the change of the
velocity as ε decreases yielding a step function in the limit, in which the horizontal
axis stands for the space variable x and the vertical axis stands for the velocity.

We can see clearly from these numerical results that, when ε decreases, the lo-
cations of the two shocks become closer, and the density of the intermediate state
increases dramatically, while the velocity is closer to a step function. In the vanishing
pressure limit, the two shocks coincide to form, along with the intermediate state, a
δ-shock of the transport equations (1.5)–(1.6), while the velocity is a step function.

We remark that it is delicate to calculate solutions of hyperbolic systems of con-
servation laws that strict hyperbolicity fails, for which the system of pressureless Euler
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Fig. 5.2. Density and velocity for ε = 0.07.
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Fig. 5.3. Density and velocity for ε = 0.0014.

equations for (1.5)–(1.6) is an example. In this section, we have proposed an efficient
numerical approach to calculate the solutions containing δ-shocks for (1.5)–(1.6) via
the vanishing pressure limit. It would be interesting to apply the approach and ideas
set forth here to develop efficient numerical algorithms to calculate solutions for more
complex physical models.
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1. Introduction. Superconductivity is modeled by the two-dimensional Ginz-
burg–Landau free energy

J(u,A) =
1

2

∫
Ω

|∇Au|2 + |h− hex|2 + κ2

2
(1− |u|2)2.(1.1)

We are interested in studying critical points of this energy when the applied field hex

gets close (from below) to the “second critical field” Hc2 .
Let us first explain the notation. Ω is a smooth, bounded, simply connected

domain of R
2, corresponding to the section of an infinite cylindrical body. J is a

function of u, the “order parameter,” complex-valued function, and of the “vector
potential” A : Ω �→ R

2. u indicates the local state of the material, |u|2 ≤ 1 being
the local density of superconducting electrons. Roughly speaking, where |u| ∼ 1 it
is the “superconducting phase,” while where |u| ∼ 0 it is the “normal phase.” A is
the potential associated to the magnetic field h = curlA = ∂1A2 − ∂2A1 (real-valued
function) that exists in the sample. ∇A denotes the covariant derivation ∇ − iA; it
is an abelian gauge theory, and everything is invariant under gauge transformations:
u→ ueiΦ, A→ A+∇Φ. A configuration is really an orbit of gauge-equivalent couples
(u,A).

The parameter hex is the intensity of the applied magnetic field (assumed to be
uniform, parallel to the cylinder axis). Finally κ is the Ginzburg–Landau parameter;
it is the ratio of two characteristic lengths of the material.
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The equations associated to this functional are the Ginzburg–Landau equations

−∇2
Au = κ2u(1− |u|2) in Ω,(1.2)

−∇⊥h = 〈iu,∇Au〉 in Ω,(1.3)

h = hex on ∂Ω,(1.4)

(∇u− iAu) · ν = 0 on ∂Ω,(1.5)

where ∇⊥ denotes (−∂2, ∂1) and 〈., .〉 is the scalar product in C identified with R
2.

When type-II superconductors are submitted to a magnetic field, they exhibit
phase transitions for certain critical fields, denoted Hc1 , Hc2 , and Hc3 . When hex ≤
Hc1 , the sample is in the superconducting phase everywhere and repels the magnetic
field (called the Meissner effect). At Hc1 , there is a phase transition where vortices
appear. Vortices are zeros of the order parameter u around which u has a nonzero
winding number. (For a mathematical description of vortices in Ginzburg–Landau
without magnetic field, see [BBH] and subsequent works.) As hex increases, vortices
get more and more numerous and tend to arrange in a triangular lattice, called an
“Abrikosov lattice.” When Hc2 ≤ hex ≤ Hc3 , the material is in the normal phase
everywhere except on a layer near the boundary where superconductivity persists,
while for hex ≥ Hc3 it is normal everywhere (u ≡ 0). For a more thorough physical
presentation, one may see [DeG, SST, T].

We are interested in the “London limit” κ → +∞. We will also write ε = 1
κ . ε

is the lengthscale of a vortex. Letting ε → 0 corresponds to having vortices that are
small compared to the scale of the sample.

Mathematically, a lot of results have been proved on this functional. Let us
start with the situation around the third critical field Hc3 . First, observe that there
is always a trivial normal solution (u ≡ 0, h ≡ hex) and that its energy is 1

4 |Ω|κ2.
When the applied field hex is decreased to Hc3 , there is a bifurcation from that
normal solution to a branch of solutions with superconductivity on the boundary. This
superconductivity actually first appears at Hc3 near the point of maximal curvature
of the boundary.

The story goes back to Saint-James and de Gennes [SdG] and later Chapman [C],
who studied the bifurcation in the half-space based on formal analysis. Rigorously,
it was proved by Giorgi and Phillips [GP] that Hc3 = O(κ2) and that above Hc3

the only solution is the normal one. Then, in the particular case of a disc-domain,
Bauman, Phillips, and Tang [BPT] considered radially symmetric solutions bifurcating
from eigenfunctions. In a general domain, a formula relating Hc3 to the curvature
of the boundary, as well as a result showing that eigenfunctions concentrate around
the points of maximal curvature of the boundary, was first given by Bernoff and
Sternberg in [BS] through a formal analysis, by Del Pino, Felmer, and Sternberg
[DFS], and simultaneously by Lu and Pan in [LP3], based on the linear analysis of
[LP1, LP2]. Finally, Helffer and Pan, using the analysis of [HM], obtained in [HP]
the most accurate result, stating that superconductivity first appears at Hc3 near the
point of maximum curvature of the boundary and that

Hc3 ∼κ→∞
κ2

β0
+

(
C1

β
3/2
0

kmax

)
κ,(1.6)

where β0 is the lowest eigenvalue of a Schrödinger operator with magnetic field in the
half-plane, and kmax is the maximum of the curvature on the boundary of Ω.
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Let us now turn to the situation further below Hc3 . Recently, Pan proved in [P1]
a very nice result describing global minimizers of the energy between Hc2 and Hc3 .
He showed that Hc2 can be defined as the infimum of hex such that global minimizers
of J do not have bulk-superconductivity but only surface-superconductivity, and that

Hc2 ∼κ→∞ κ2.(1.7)

Following his notation, we define b by

hex = (b+ o(1))κ2,(1.8)

and we will also denote by JD the Ginzburg–Landau functional restricted to a sub-
domain D of Ω.

He proved the following.
Theorem 1.1 (Pan [P1]). Let (u,A) be a minimizer of J . For 1 < b < 1

β0
, there

exist positive numbers Eb and κb such that for κ > κb,

J(u,A) ∼κ→∞
|Ω|
4

κ2 − κEb|∂Ω|+ o(κ),(1.9)

where |Ω| denotes the volume of Ω and |∂Ω| denotes the length of ∂Ω. For any closed
subdomain D of Ω, for κ > κD,

JD(u,A) ∼κ→∞
|D ∩ Ω|

4
κ2 − κEb|D ∩ ∂Ω|+ o(κ).(1.10)

Moreover, 1
κ |∇Au| and |u| exponentially decay in the interior of Ω in the sense that

for all α > 0, for κ > κ(α),∫
Ω

(
|u|2 + 1

κ2
|∇Au|2

)
exp(ακdist(x, ∂Ω)) dx ≤ O(1)

κ
.

He also proved results for the case b = 1. Let us point out that slightly stronger
exponential-decay results have been proved by Almog in [Al1] replacing the large-
kappa limit by the large-domain limit.

Thus, when hex is decreased and crosses Hc3 , superconductivity first nucleates at
the points of maximal curvature of the boundary, and u is a small perturbation of
the normal solution 0. As hex further decreases, a uniform superconducting sheath
of scale ε = 1

κ rapidly forms on the entire boundary of the sample, while the bulk
remains normal as shown in the previous theorem. Superconductivity increases on
the boundary as b→ 1.

On the other hand, the situation is also well understood for small applied fields:
the superconducting state belowHc1 has been studied in [S1, S3, SS1]; the value ofHc1

being asymptotic to C(Ω) log κ was proved in [S1, SS1, SS5]. Above Hc1 , we showed
vortices appear first near the center of the domain [S1, S2], and a vortex region where
the density of vortices is uniform and proportional to hex, surrounded by a purely
superconducting region, forms and inflates (see [SS3]). As soon as hex � log κ, the
vortex region covers up the whole sample, and we have proved the following.

Theorem 1.2 (Sandier and Serfaty [SS2]). Assume hex is any function of κ such
that log κ� hex � κ2 as κ→∞. If (u,A) is a corresponding minimizer of J , then

J(u,A) ∼κ→∞
1

2
|Ω|hex log

κ√
hex

,(1.11)
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where |Ω| denotes the volume of Ω; and if D is any closed subdomain of Ω, then

JD(u,A) ∼κ→∞
1

2
|D|hex log

κ√
hex

.(1.12)

Moreover, the density of vortices converges in some sense to the uniform density hex.
In this regime hex � κ2, the superconducting phase surrounding the vortices still

dominates in the sense that, from estimate (1.11),
∫
Ω
(1 − |u|2)2 = o(1). Essentially,

one can think of the vortices as of degree 1 and placed regularly, for example, on
a periodic lattice, one per cell of size 1√

hex
, which remains much larger than their

characteristic size ε (as long as hex � κ2).
The question is thus to bridge the gap between the situations of these two theo-

rems (that of hex � κ2, i.e., b = 0, and that above Hc2 , i.e., b > 1) in the only range
of applied fields which remained unstudied: b ∈ [0, 1]. How do the vortices disap-
pear and how does the bulk superconductivity disappear? Essentially two scenarios
could be suggested. One is that as hex increases, the distance between the vortices
decreases, and before it becomes smaller than their size O(ε), the vortices merge into
one “giant vortex” of large degree. The other scenario is that max |u| decreases in the
bulk, while the vortex array structure remains unchanged, until |u| is close to 0 in the
bulk, and superconductivity remains only on the boundary, as described by Pan. It
is considered by physicists that it is the second scenario rather than the first which
occurs, at least in this limit κ→∞, and the results we prove confirm this. However,
giant vortices do occur (and are observed) for smaller κ.

We start with a general lower bound result, proved through a very simple argu-
ment. Introducing the operator DA = ∂1 + i∂2 − i(A1 + iA2), we have the identity

|DAu|2 = |∇Au|2 − curl (iu,∇Au)− |u|2h.(1.13)

This operator is the one that was used by Bogomoln’yi (see [JT]) to exhibit the
self-duality of the Ginzburg–Landau equations for κ = 1√

2
. By a purely algebraic

manipulation quite similar to the trick of Bogomoln’yi (the same kind of manipulation
was also behind the results of [M] and [GP]), we deduce from (1.13) the following
nontrivial lower bound.

Proposition 1.3. Let (u,A) be any solution of the Ginzburg–Landau system
(1.2)–(1.5) and B ⊂ Ω any ball of radius R� ε = 1

κ . Then if b ≥ 1,

JB(u,A)

|B| ≥ κ2

4
+ o(κ2),(1.14a)

while if b ≤ 1,

JB(u,A)

|B| =

(
b

2
− b2

4

)
κ2 +

1

2|B|
∫
B

|DAu|2 + κ2

2
(1− b− |u|2)2 + |h− hex|2 + o(κ2)

≥
(
b

2
− b2

4

)
κ2 + o(κ2).

(1.14b)

By this we mean that given a function R(κ)� 1/κ, there exists a function o(κ2) such
that the above inequalities are verified for any solution of (1.2)–(1.5).

Observe that this estimate is true for any solution of the equations, not necessarily
minimizing or stable. It is in fact true for any configuration that satisfies the a priori
estimates ‖u‖L∞(Ω) ≤ 1, ‖∇Au‖L∞(Ω) ≤ Cκ, ‖h− hex‖L∞(Ω) ≤ Cκ (see the proof).
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Let us now turn to energy-minimizers. We denote by minJBR
the minimum of

the energy-functional on a ball BR, i.e.,

minJBR
= min

(u,A)

1

2

∫
BR

|∇Au|2 + |curlA− hex|2 + κ2

2
(1− |u|2)2.

We also denote by (u,A) a minimizer for this problem.
Theorem 1.4. Let 0 ≤ b ≤ 1. There exists a continuous increasing function

f from [0, 1] to [0, 1
4 ] such that, as κ → ∞, for (u,A) any minimizer of J , for all

Rκ � ε = 1
κ , and for all balls BRκ in Ω,

JBR
(u,A)

κ2|BR| ∼
minJBR

κ2|BR| −→ f(b),(1.15)

1

|BR|
∫
BR

|u|4 ∼
1

|BR|
∫
BR

|u|4 −→ 1− 4f(b),(1.16)

|u|4 ⇀ 1− 4f(b) in L∞ weak-*,(1.17)

1− 4f(b)

1− b
− o(1) ≤ 1

|BR|
∫
BR

|u|2 ≤
√
1− 4f(b) + o(1),(1.18)

and the following estimates hold: There exists universal constants 0 < α < 1 and
c > 0 such that

b

2
− b2

4
≤ f(b) ≤ min

(
b

4

(
log

1

b
+ c

)
,
1− α(1− b)2

4

)
≤ 1

4
,(1.19)

and hence

α(1− b)2 ≤ 1− 4f(b) ≤ (1− b)2.

Corollary 1.5. For all D closed subdomains of Ω,

JD(u,A) ∼κ→∞ |D|f(b)κ2.

Corollary 1.6. f(0) = 0 and f(1) = 1
4 . Therefore for b = 0 and for all Rκ � ε

we get the following result proved in [SS2]:

lim
κ→∞

JBR
(u,A)

κ2|BR| = 0.

For b ≥ 1 and for all Rκ � ε we get

lim
κ→∞

JBR
(u,A)

κ2|BR| =
1

4
,

which follows also from [P1] and Proposition 1 in [SS2].
We thus show that the loss of superconductivity happens through a decrease of

the average of |u|4, such as (1 − b)2 in Ω, and that the energy-repartition remains
uniform. Those two facts go in the direction of the second scenario.

We have given asymptotic estimates of the minimal energy which extend that of
(1.11). We have proved that the energy is uniformly spread over Ω and that a mini-
mizer almost minimizes locally the energy at any scale� ε (ε being the characteristic
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scale of variation of u). At scales O(ε) this ceases to be true: minimizers in regions
of smaller sizes start to depend greatly on the region-size, as seen in [AD]. We have
also shown that for global minimizers, some superconductivity remains in the bulk as
long as b < 1, since from (1.18) the average of |u|2 remains larger than α(1− b).

This theorem relies on upper and lower bounds for the energy, in the spirit of
gamma-convergence. It seems difficult to give a more explicit expression or a finer
estimate on f(b). The lower bound is given by Proposition 1.3. The upper bound
is obtained by constructing test configurations. They are chosen to be periodic with

respect to a square lattice of size
√

2π
b ε, with a vortex of degree 1 in each cell. In

view of (1.14), a minimizer (u,A) should almost be a minimizer of 1
2

∫
Ω
|DAu|2 + |h−

bκ2|2 + κ2

2 (1 − b − |u|2)2. We choose our test configuration to satisfy |u| ≤ C
√
1− b

and also DAu = 0 (following somewhat the construction of [JT] of vortex solutions
in the self-dual case). This configuration of course has no reason to be optimal (nor
does the square-shape) but gives the right order of energy.

We get as a corollary of Proposition 1.3 and Theorem 1.4 that, for energy-
minimizers,

lim sup
κ→∞

1

2κ2|BR|
∫
BR

|DAu|2 + κ2

2
(1− b− |u|2)2 + |h− hex|2 ≤ f(b)− b

2
+

b2

4

≤ 1− α

4
(1− b)2

and that

1

R2

∫
BR

(1− b− |u|2)2 ≤ (1− α)(1− b)2,(1.20)

from which one can deduce (1.18). It is also tempting, in view of (1.14), to think that
|u|2 ≤ C(1− b) in the bulk.

There remain many open questions on the behavior of minimizers, which all seem
quite delicate.

First of all, we conjecture that, next to an interior point of Ω, a minimizing
solution should converge, after blow-up at the scale ε, to a unique limiting profile in
R

2. A much more difficult task would be to show that this limiting profile is periodic.
For a study of periodic solutions of Ginzburg–Landau, see [Du], [C], and [Al2].

We have not mentioned vortices of the minimizers. It is difficult to describe them
and even define them: |u| becomes uniformly small, so one can no longer define the
vortices as the regions where |u| is small. Nevertheless, there should be vortices (they
appear in our upper bound construction), with a total degree 2πhex on the boundary
of Ω. Heuristically, using the second Ginzburg–Landau equation,

−∇
⊥h
ρ2

+ h = ∇ϕ,

where we write u = ρeiϕ in polar coordinates. Taking the curl of this equation, we
are led to

div

(∇h
ρ2

)
+ h = π

∑
i

diδai ,

where the ai are the zeros (or vortices) of u, and di their degrees or winding number.
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Since h→ hex strongly, we should have, at least formally,

2π
∑
i

diδai ∼ hex

(as we had for hex � κ2). However, it seems difficult to give a rigorous meaning to
this statement. We can prove that on any subdomain D of volume R2 � 1

κ2 such
that |u| > c > 0 independently of κ on ∂D, and such that the perimeter of D is less
than O(R), the total degree of u on ∂D is equivalent to hex|D|. But the existence of
such a D is not proved.

To conclude, it would be very nice, but certainly difficult, to prove a bifurcation
at Hc2 from the surface-superconductivity solution to one of the known periodic-like
vortex solutions.

2. The algebraic trick. From now on, we denote h = curlA and u = ρeiϕ in
polar coordinates. Then

|∇Au|2 = |∇ρ|2 + ρ2|∇ϕ−A|2.

We are interested in this section in studying families of solutions of Ginzburg–Landau,
or configurations which satisfy the following a priori estimates.

Lemma 2.1. If (u,A) is a solution of Ginzburg–Landau, we have

‖h− hex‖C1(Ω) ≤ Cκ, ‖h− hex‖C2(Ω) ≤ Cκ2,(2.1)

‖∇Au‖L∞(Ω) ≤ Cκ, ‖∇ρ‖L∞(Ω) ≤ Cκ,(2.2)

eκ(u,A) := |∇Au|2 + |h− hex|2 + κ2

2
(1− ρ2)2 ≤ Cκ2.(2.3)

These estimates are proved in [HP, Proposition 4.3]; see also [P1, Lemma 7.1].
They rely on a blow-up at scale ε = 1

κ , which leads to equations at scale 1, for which
all the quantities are uniformly bounded.

Proof of Proposition 1.3. As already mentioned, the proof relies on the Bogo-
moln’yi identity on the operator DA = ∂1 + i∂2 − i(A1 + iA2). One can check that,
in polar coordinates,

|DAu|2 = |ρ(∇ϕ−A)−∇⊥ρ|2.(2.4)

Expanding the square on the right-hand side, one gets the crucial identity

|DAu|2 = |∇Au|2 − curl j − ρ2h,(2.5)

where j is the superconducting current 〈iu,∇Au〉. Inserting (2.5) in J , we are led to

JBR
(u,A) =

1

2

∫
BR

|DAu|2 + curl j + ρ2h+ |h− hex|2 + κ2

2
(1− ρ2)2.(2.6)

Moreover, using the fact that |j| ≤ |∇Au| ≤ Cκ with (2.2), we have∣∣∣∣∫
BR

curl j

∣∣∣∣ = ∣∣∣∣∫
∂BR

j · τ
∣∣∣∣ ≤ ∫

∂BR

|j| ≤ O(Rκ).(2.7)
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Also h = hex +O(κ) = bκ2 + o(κ2) in view of (2.1). Combining these facts with (2.6)
yields

(2.8)

JBR
(u,A) =

1

2

∫
BR

|DAu|2 + ρ2bκ2 +
κ2

2
(1− ρ2)2 + |h− hex|2 +O(Rκ) + o(R2κ2)

=
1

2

∫
BR

|DAu|2 + κ2

(
1

2
+ ρ2(b− 1) +

ρ4

2

)
+ |h− hex|2 +O(Rκ) + o(R2κ2).

If b ≥ 1, this immediately implies that

JBR
(u,A)

κ2|BR| ≥
1

4
+ o(1).

(Thus, we see why the value b = 1 plays a particular role.)

If b ≤ 1, we observe that ρ2(b− 1)+ ρ4

2 = 1
2 (ρ

2− (1− b))2− 1
2 (1− b)2 and obtain

(2.9)

JBR
(u,A) = |BR|κ

2

4
(1− (1− b)2) +

1

2

∫
BR

|DAu|2 + κ2

2
(1− b− ρ2)2 + |h− hex|2

+O(Rκ) + o(R2κ2).

We conclude that (1.14) holds.

3. Energy localization and convergence. We are now interested in fami-
lies of global minimizers of J . The following lemma allows us to localize all energy
comparisons.

Lemma 3.1. Let Rκ be such that Rκ � ε. Then, (u,A) being a minimizer of J ,
for any ball BR of radius Rκ in Ω,

JBR
(u,A)

κ2|BR| =
minJBR

κ2|BR| + o(1).

Proof. One inequality is obvious:

JBR
(u,A) ≥ minJBR

.

The converse relies on a comparison argument. Let (ũ, Ã) be a minimizer of JBR
. We

construct a test configuration in Ω which coincides with (u,A) in Ω\BR, and with
(ũ, Ã) in BR−3ε.

Let χ be a C∞(Ω) function such that

χ(x) = 1 in Ω\BR,
χ(x) = 0 in BR− ε

2
\BR− 5

2 ε
,

χ(x) = 1 in BR−3ε,

|∇χ| ≤ C

ε
,∫

Ω

|∇χ|2 ≤ O

(
R

ε

)
.

(3.1)
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We define (u,A) by

(u,A) = (χu,A) in Ω\BR−ε,
(u,A) = (χũ, Ã) in BR−2ε.

There remains the matter of extending (u,A) in BR−ε\BR−2ε. We take u = 0 there
and may extend A in such a way that

‖curlA− hex‖L∞(Ω) ≤ Cκ(3.2)

(indeed, this is true for A and Ã.) Then, (u,A) being a minimizer of J , we have

0 ≥ J(u,A)− J(u,A) =

∫
BR

eκ(u,A)− eκ(u,A)(3.3)

=

∫
BR\BR−ε

+

∫
BR−ε\BR−2ε

+

∫
BR−2ε\BR−3ε

+

∫
BR−3ε

eκ(u,A)− eκ(u,A).

Then

(3.4)

∣∣∣∣∣
∫
BR\BR−ε

eκ(u,A)− eκ(u,A)

∣∣∣∣∣
=

1

2

∣∣∣∣∣
∫
BR\BR−ε

|∇ρ|2 + ρ2|∇ϕ−A|2 + κ2

2
(1− ρ2)2

−
∫
BR\BR−ε

|∇(χρ)|2 + χ2ρ2|∇ϕ−A|2 + κ2

2
(1− ρ2χ2)2

∣∣∣∣∣
=

1

2

∣∣∣∣∣
∫
BR\BR−ε

(1− χ2)|∇Au|2 + κ2

2

(
(1− ρ2)2 − (1− ρ2χ2)2

)− ∫
BR\BR−ε

ρ2|∇χ|2
∣∣∣∣∣

≤ O

(
R

ε

)
,

where we have used (2.3) and (3.1). Similarly, exchanging the roles of (u,A) and
(ũ, Ã), we find ∣∣∣∣∣

∫
BR−2ε\BR−3ε

eκ(u,A)− eκ(u,A)

∣∣∣∣∣ ≤ O

(
R

ε

)
.(3.5)

In BR−ε\BR−2ε, u = 0, so with (2.3) again and (3.2),

∣∣∣∣∣
∫
BR−ε\BR−2ε

eκ(u,A)− eκ(u,A)

∣∣∣∣∣≤O

(
R

ε

)
+

1

2

∫
BR−ε\BR−2ε

|curlA− hex|2 ≤ O

(
R

ε

)
.

(3.6)

By (2.3) again, we have∫
BR−3ε

eκ(u,A) =

∫
BR

eκ(u,A) +O

(
R

ε

)
,(3.7) ∫

BR−3ε

eκ(ũ, Ã) =

∫
BR

eκ(ũ, Ã) +O

(
R

ε

)
.(3.8)
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But, since (ũ, Ã) minimizes JBR
, we have∫

BR

eκ(u,A) ≥
∫
BR

eκ(ũ, Ã).(3.9)

Combining this with (3.7) and (3.8), and using the fact that (u,A) is equal to (ũ, Ã)
in BR−3ε, we deduce that∫

BR−3ε

eκ(u,A)− eκ(u,A) ≥ O

(
R

ε

)
.

Combining this with (3.3)–(3.7), we get∣∣∣∣∫
BR

eκ(u,A)− eκ(u,A)

∣∣∣∣ ≤ O

(
R

ε

)
,

i.e.,

JBR
(u,A) = JBR

(ũ, Ã) +O(Rκ),

which leads to the result.
What we did with balls in the previous lemma can be done with squares KR of

size R.
Lemma 3.2. For all b ≥ 0, and for Rκ ≥ R′κ � ε,

minJKR

κ2|KR| =
minJKR′

κ2|KR′ | + o(1);(3.10)

hence
min JKR

κ2|KR| does not depend on R� ε (up to an o(1)).

Proof. Let us denote by [.] the integer part of a real number. Assume first that
R′ � R. KR can be split into at least [R2/R′2] disjoint squares of size R′. Thus, for
(u,A) a minimizer of JKR

,

JKR
(u,A) ≥

[
R2

(R′)2

]
JKR′ (u,A)

≥
[

R2

(R′)2

]
minJK′

R
.

We deduce that

minJKR

κ2|KR| ≥
minJKR′

κ2|KR′ | (1 + o(1)).

Conversely, let us split KR into [R2/(R′)2]+o(1) squares of size R′ with a layer of size
3ε between them. Using the pasting procedure of Lemma 3.1, we can construct a test
configuration (u,A) in KR that agrees with the minimizer of JKR′ in each subsquare
of size R′, and such that

JKR
(u,A) ≤ ([R2/(R′)2] + o(1))

(
minJKR′ + C

R′

ε

)
.

We can check that the error terms are negligible and deduce that

minJKR

κ2|KR| ≤
minJKR′

κ2|KR′ | (1 + o(1)).
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Since for all R,
min JKR

κ2|KR| ≤ 1
4 ≤ O(1) (by comparison with the normal solution), we

deduce that (3.10) holds. If R and R′ are of the same order, one may introduce R′′

such that R′ � R′′ � ε. From the above, one deduces that

minJK′
R

κ2|K ′R|
=

minJKR′′

κ2|KR′′ | + o(1),

and the same with R′ replaced by R, from which it follows that

minJKR

κ2|KR| =
minJK′

R

κ2|K ′R|
+ o(1).

Lemma 3.3. For all Rκ � ε,
min JBR

κ2|BR| has a limit as κ→∞, which depends only

on b. We denote it by f(b). f is continuous, increasing in [0, 1].
Proof. Consider Rκ � ε and (u,A) as a minimizer of JBR

. We denote for a
moment by Jκ,BR

the functional for κ defined on BR (b being fixed, hex = bκ2). Let
λ < 1, and define in BR

λ
,

v(x) = u(λx), B(x) = λA(λx).

Then, by change of variables, we have

minJκ,BR
= Jκ,BR

(u,A) =
1

2

∫
BR/λ

|∇Bv|2 + 1

λ2
|curlB − κ2λ2b|2 + κ2λ2

2
(1− |v|2)2.

(3.11)

Since 1
λ > 1, this implies that

minJκ,BR

κ2R2
≥ 1

2κ2R2

∫
BR/λ

|∇Bv|2 + 1

λ2
|curlB − κ2λ2b|2 + κ2λ2

2
(1− |v|2)2

≥ Jκλ,BR/λ
(v,B)

κ2R2
+

1

2κ2R2

(
1

λ2
− 1

)∫
BR/λ

|curlB − κ2λ2b|2

≥ minJκλ,BR/λ

(κλ)2(R/λ)2
+

1

2κ2R2
(1− λ2)

∫
BR

|curlA− bκ2|2.

But from Lemma 3.2, we have

minJκλ,BR/λ

(κλ)2(R/λ)2
=

minJκλ,BR

(κλ)2R2
+ o(1).

Hence, we deduce that for all λ < 1,

minJκ,BR

κ2R2
≥ minJκλ,BR

(κλ)2R2
+ o(1) + (1− λ2)

1

2κ2R2

∫
BR

|curlA− bκ2|2.(3.12)

Hence
min Jκ,BR

κ2R2 is monotonic (up to o(1)) with respect to κ and must have a limit
as κ → ∞, which depends only on b. We denote it by f(b). Then letting κ tend to
infinity in (3.12) yields

f(b) ≥ f(b) + lim sup
κ→∞

(1− λ2)
1

2κ2R2

∫
BR

|curlA− bκ2|2;
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thus we also deduce that

1

2κ2R2

∫
BR

|h− hex|2 = o(1).(3.13)

This means that, for energy-minimizers, the term
∫
Ω
|h − hex|2 is negligible in the

energy. This will be helpful later.
We now prove that f is monotonic. Let λ < 1 again and let Jb,BR

now denote
the functional restricted to BR for the value bκ2 of the applied field. Let us consider
the same v and B as defined previously. By definition,

Jλ2b,BR/λ
(v,B) =

1

2

∫
BR/λ

|∇Bv|2 + |curlB − λ2bκ2|2 + κ2

2
(1− |v|2)2

=
1

λ2
Jb,BR

(u,A)−
(

1

λ2
− 1

)
1

2

∫
BR/λ

|∇Bv|2−
(

1

λ4
− 1

)
1

2

∫
BR/λ

|curlB−λ2bκ2|2,

where we have used (3.11). Thus, using (3.13),

Jλ2b,BR/λ
(v,B) =

1

λ2
Jb,BR

(u,A)−
(

1

λ2
− 1

)
1

2

∫
BR

|∇Au|2 − o(1).(3.14)

Therefore,

minJλ2b,BR/λ

κ2(R/λ)2
≤ Jb,BR

(u,A)

λ2κ2(R/λ)2
.

In view of the previous results, the left-hand side of this inequality converges to f(λ2b),
while the right-hand side converges to f(b). We deduce that for all λ < 1,

f(λ2b) ≤ f(b);

thus f is nondecreasing. One can even deduce from (3.14) that f is increasing, because
lim inf 1

κ2R2

∫
BR
|∇Au|2 > 0. Now taking λ ≥ 1, we get, as in (3.14), that

f(λ2b) ≤ f(b)− ψ(λ),

where ψ(λ)→ 0 as λ→ 1. This implies that f is continuous.
In view of the result of Proposition 1.3, we have, for b ≤ 1,

b

2
− b2

4
≤ f(b) ≤ 1

4
.(3.15)

We will prove the upper bound on f in the next section. Leaving it aside, let us now
complete the proof of the theorem.

End of the proof of Theorem 1.4. Taking the scalar product of the first Ginzburg–
Landau equation (1.2) with u yields the standard equation for ρ = |u|:

−∆ρ+ ρ|∇ϕ−A|2 = κ2ρ(1− ρ2).(3.16)

Then we multiply it by ρ and integrate. We are led, after integration by parts (using
(1.5)), to ∫

Ω

|∇ρ|2 + ρ2|∇ϕ−A|2 =

∫
Ω

κ2ρ2(1− ρ2).
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We deduce the following relation, true for any solution of Ginzburg–Landau:

J(u,A) =
κ2

4

∫
Ω

(1− ρ4) +
1

2

∫
Ω

|h− hex|2.(3.17)

In view of (3.13), if (u,A) is an energy-minimizer, this becomes

J(u,A) =
κ2

4

∫
Ω

(1− ρ4) + o(κ2).

If we integrate over BR instead of Ω and use (2.2) to handle the boundary term, we
find, still for minimizers,

JBR
(u,A) =

κ2

4

∫
BR

(1− ρ4) +O(κR) + o(κ2R2).(3.18)

Applying (3.18) to u and u successively gives (1.16).
Then

1

|BR|
∫
BR

|u|4 → 1− 4f(b)

for all R � ε, which implies the weaker conclusion that |u|4 ⇀ 1 − 4f(b) in L∞

weak-*.
We also deduce from (1.14) combined with (1.19) that (1.20) holds. Plugging

(1.16) in (1.20), we obtain

1

|BR|
∫
BR

|u|2 ≥ (1− b)2 + 1− 8f(b) + 2b− b2

2(1− b)

≥ 1− 4f(b)

1− b
≥ α(1− b),

while

1

|BR|
∫
BR

|u|2 ≤
√

1

|BR|
∫
BR

|u|4

comes from the Cauchy–Schwarz inequality.
This completes the proof of the theorem.

4. Construction of test configurations. The upper bound of Theorem 1.4
relies on the construction of two test configurations, one being more interesting when
b → 1, the other one when b → 0. Let us start with the first one, which follows
somehow the construction of vortex solutions of [JT] in the self-dual situation.

Proposition 4.1. With the notation of the previous section, there exists a uni-
versal constant 0 < α < 1 such that

f(b) ≤ 1− α(1− b)2+
4

.(4.1)

Proof. Assume b ≤ 1 (otherwise the conclusion is trivial). We construct a test

configuration which is periodic with respect to a square lattice of size
√

2π
b ε. Let
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K√ 2π
b ε

denote an elementary square of the lattice and let K√2π denote the square of

size
√
2π centered at the origin. We solve for

∆ log ρ0 + 1 = 2πδ0 in K√2π,

∂ log ρ0

∂n
= 0 on ∂K√2π,∫

K√
2π

log ρ0 = 0.

(4.2)

There exists a (unique) solution to this system because the volume of K√2π is 2π. Let
(r, θ) be the polar coordinates in the plane. We observe that log ρ0 − log r is smooth
in K√2π; hence

ρ
r too, and thus ρ0(0) = 0. We then define in K√ 2π

b ε
,

ρ(x) = Cρ0

(
x
√
b

ε

)
,

where C minimizes
∫
K√

2π
b

ε

(1− b− C2ρ2
0(
x
√
b

ε ))2, i.e. (after a little computation),

ρ(x) =
√
1− b

√√√√∫K√
2π

ρ2
0∫

K√
2π

ρ4
0

ρ0

(
x
√
b

ε

)
.(4.3)

One can see that ρ is a solution of
∆ log ρ+ b

ε2 = 2πδ0 in K√ 2π
b ε

,

∂ log ρ

∂n
= 0 on ∂K√ 2π

b ε
.

(4.4)

ρ0 is symmetric with respect to the axes of symmetry of the square and ∂ρ0
∂n = 0 on

∂K√2π; thus we may extend ρ to any ball BR (R � ε) by periodicity and get a C1

function, which vanishes on a lattice Λ.
We then pick A to solve {

curlA = bκ2 in BR,
div A = 0 in BR

and ϕ to satisfy

∇ϕ =
∇⊥ρ
ρ

+A = ∇⊥ log ρ+A.(4.5)

To achieve this, we fix a point x0 of BR\Λ and define

ϕ(x) =

∫ x

x0

∂n log ρ+A · τ.

This definition does not depend on the path joining x0 to x, modulo 2π. Indeed, if
γ = ∂ω is a closed path in BR\Λ with positive orientation, using (4.4), we have∫
γ

∂n log ρ+A · τ =

∫
ω

∆ log ρ+ curlA =

∫
ω

∆ log ρ+ bκ2 = 2πcard(ω ∩ Λ) ∈ 2πZ.
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Hence eiϕ(x) is well defined in BR\Λ. We then take

u(x) = ρ(x)eiϕ(x),

which has a continuous extension in BR because ρ vanishes on Λ. Once this test
configuration (u,A) is constructed, we evaluate its energy. In view of (2.9),

JBR
(u,A) = |BR|κ2

(
b

2
− b2

4

)
+

1

2

∫
BR

|DAu|2 + κ2

2
(1− b− ρ2)2 +O(Rκ2).(4.6)

But |DAu|2 = |ρ(∇ϕ − A) − ∇⊥ρ|2 = 0 by construction; cf. (4.5). Moreover, from
(4.3), ∫

K√
2π
b

ε

(1− b− ρ2)2 = (1− b)2
∫
K√

2π
b

ε

(
1−

∫
K√

2π
ρ2
0∫

K√
2π

ρ4
0

ρ2
0

(
x
√
b

ε

))
dx

= (1− b)2

2π

b
ε2 − ε2

b

(∫
K√

2π
ρ2
0

)2∫
K√

2π
ρ4
0

 .(4.7)

Let us write

α =

(∫
K√

2π
ρ2
0

)2

2π
∫
K√

2π
ρ4
0

.

Since ρ0 is not a constant function (see (4.2)), we have a strict Cauchy–Schwarz
inequality (∫

K√
2π

ρ2
0

)2

< 2π

∫
K√

2π

ρ4
0,

and hence 0 < α < 1. Then, from (4.7),∫
BR

(1− b− ρ2)2 = |BR|(1− b)2(1− α) + o(R2).(4.8)

Combining (4.6) and (4.8), we are led to

JBR
(u,A) = |BR|κ2

(
b

2
− b2

4
+

(1− b)2(1− α)

4

)
+ o(κ2R2).

We conclude that

f(b) ≤ lim sup
κ→∞

minJBR

κ2|BR| ≤ lim sup
κ→∞

JBR
(u,A)

κ2|BR| ≤
1− α(1− b)2

4
.

Proposition 4.2. There exists a universal constant c such that for b ≤ 1,

f(b) ≤ b

4

(
log

1

b
+ c

)
.(4.9)
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Proof. This estimate is stronger than (4.1) when b → 0 and corresponds to a
regime in which the distance between vortices is rather large compared to their core
size ε, i.e., is close to the regime described in [SS2]. In order to prove this estimate,
we just adjust the construction of a test function that we did in [SS2].

This test function is again periodic with respect to a square lattice of size
√

2π
b ε.

Let us consider an elementary square K√ 2π
b ε

centered at the origin, with Bε the ball

of radius ε centered at the origin, which is included in K√ 2π
b ε

for all b ≤ 1. The

centers of the squares of the lattice will be denoted ai. We take a ρ ≤ 1, which
satisfies 

ρ ≡ 1 in K√ 2π
b ε
\Bε,

ρ ≡ 0 in Bε/2,∫
K√

2π
b

ε

|∇ρ|2 + κ2

2
(1− ρ2)2 ≤ C.

(4.10)

Then we take h such that
−∆h+ h = 8

ε21Bε/2
in K√ 2π

b ε
,

∂h

∂n
= 0 on ∂K√ 2π

b ε
,

(4.11)

where 1 denotes a characteristic function. We extend ρ and h by periodicity to BR
(R� ε) and pick A such that curlA = h and div A = 0. Then we take ϕ such that

∇ϕ = −∇⊥h+A,(4.12)

i.e., by choosing a point x0 in BR\ ∪i Bε/2(ai) and setting

ϕ(x) =

∫ x

x0

−∂h

∂n
+A · τ.

This integral does not depend on the path joining x0 to x in BR\∪iBε/2(ai), modulo
2π. This can be seen from (4.11). Thus eiϕ is well defined in BR\ ∪i Bε/2(ai), and

u(x) = ρ(x)eiϕ(x)

has a meaning on all of BR (since ρ ≡ 0 in ∪iBε/2(ai)). Exactly as in [SS2], one shows
that

1

2

∫
K√

2π
b

ε

|∇h|2 + |h− hex|2 ≤ π log

√
1
b ε

b
+ C =

π

2
log

1

b
+ C.(4.13)

There remains the matter of evaluating the energy of (u,A) per square. From (4.12),
we have ρ2|∇ϕ−A|2 ≤ |∇h|2, and hence

JK(u,A) =

∫
K√

2π
b

ε

|∇ρ|2 + ρ2|∇ϕ−A|2 + |h− hex|2 + κ2

2
(1− ρ2)2

≤ π

2
log

1

b
+ c.
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Multiplying this estimate by the number of squares in BR,
|BR|b
2πε2 , we find

JBR
(u,A) ≤ |BR|κ2

(
b

4
log

1

b
+ cb

)
.

We then conclude, as in the previous proposition, that (4.9) holds.
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SUPERCONDUCTING FILMS IN PERPENDICULAR FIELDS AND
THE EFFECT OF THE DE GENNES PARAMETER∗
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Abstract. In this paper we study superconductivity of a thin film placed in a perpendicular
magnetic field. We discuss the dependence of the upper critical field HC3 on the thickness l of the
film and the Ginzburg–Landau parameter κ, and we examine nucleation of superconductivity. We
show that a critical change occurs at l = 2γκ−2. If l > aκ−2 (a > 2γ), the film exhibits type II
behaviors: as the applied magnetic field decreases from HC3

, superconductivity nucleates in a strip
at the lateral surface and develops a lateral surface superconducting state. If l ≤ 2γκ−2+Cκ−4, the
film exhibits type I behaviors.

Key words. superconductivity, Ginzburg–Landau system, critical field, Schrödinger operator
with a magnetic field, de Gennes parameter, thin film

AMS subject classifications. 35Q55, 82D55

PII. S0036141002406734

1. Introduction. Motivated by the recent work of Richardson and Rubinstein
[RR1, RR2], we study the effect of the de Gennes parameter on superconductivity of
thin films.

Mathematical models of superconducting thin films have been studied recently
by many authors; see, for instance, Du and Gunzburger [DG], Chapman, Du, and
Gunzburger [CDG], Chen, Elliott, and Tang [CET], Berger and Rubinstein [BR1,
BR2], Rubinstein and Schatzman [RS], Richardson and Rubinstein [RR1, RR2], Jimbo
and Morita [JM], Ding and Du [DD], and references therein.1 Among other things,
it was shown in [CDG] that all superconducting materials, whether type I (with
small Ginzburg–Landau parameter κ) or type II (with large κ), behave as type II
superconductors when made into sufficiently thin films; and for a very thin film placed
in a magnetic field, only the perpendicular component of the applied field has influence
on the superconductivity.2 On the other hand, the recent works of Richardson and
Rubinstein [RR1, RR2] show that the de Gennes parameter has an important effect on
superconductivity of thin films. It was mentioned in [RR1] that “the effect of the de
Gennes boundary condition is to depress the temperature at which superconductivity
occurs,” and they conjectured that “for sufficiently thin wires or small de Gennes
distance,3 superconductivity may never be favorable.” This question motivated us to
study nucleation of superconductivity of thin films in a general content.

Let us consider a superconducting film of thickness l and a cross-section Ω:

Dl = {(x, z) : x ∈ Ω, 0 < z < l},
∗Received by the editors May 2, 2002; accepted for publication (in revised form) October 31,

2002; published electronically April 9, 2003. This work was partially supported by the National
Natural Science Foundation of China, the Science Foundation of the Ministry of Education of China,
the Zhejiang Provincial Natural Science Foundation of China, and NUS Academic Research grants
R-146-000-022-112 and R-146-000-033-112.

http://www.siam.org/journals/sima/34-4/40673.html
†Department of Mathematics, National University of Singapore, Singapore 119260 (matpanxb@

nus.edu.sg), and Department of Mathematics, Zhejiang University, Hangzhou 310027, China.
1Superconductivity on samples with small size has also been studied by Aftalion and Dancer

[ADa] and Aftalion and Du [ADu].
2See also [HT, Chapter 8].
3A large de Gennes parameter gives a small de Gennes distance.
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where 0 < l� 1, and Ω is a bounded, simply-connected, and smooth (C4) domain in
R

2. Throughout this paper, x = (x1, x2) denotes a point in Ω̄, (x, z) denotes a point
in Dl; ds denotes the measure on ∂Ω, dS denotes the measure on ∂Dl; ν denotes the
unit outer-normal vector of ∂Ω, and νD denotes the unit outer-normal vector of the
boundary of Dl, which is well defined in ∂∗Dl, where

∂∗Dl = ∂Ω× (0, l)
⋃

Ω× {0, l}.

Let

d∂Ω(x) = dist(x, ∂Ω), dl(x, z) = dist((x, z), ∂Dl).

Let κr be the curvature of ∂Ω, and set

κmax = max
x∈∂Ω

κr(x), N (∂Ω) = {x ∈ ∂Ω : κr(x) = κmax}.

According to the Ginzburg–Landau theory, superconductivity is described by a
complex-valued function ψ (order parameter) and a real vector field A (magnetic
potential), and (ψ,A) is a minimizer of the Ginzburg–Landau functional. Let us
consider a homogeneous applied magnetic field H = σh, where h is a constant unit
vector and σ is a positive number. In this paper, as we are concerned with the behavior
of a film in a perpendicular field, h is chosen to be perpendicular to Ω:

h = e3 = (0, 0, 1).

We shall treat σ as a parameter. So we set A = σA. With a proper scaling, we may
rewrite the Ginzburg–Landau functional as (see [GL, dG, CHO, DGP, R])

G[ψ,A] =

∫
Dl

{
|∇κσAψ|2 +

κ2

2
(|ψ|2 − 1)2

}
dxdz + γ

∫
∂Dl

|ψ|2dS

+ κ2σ2

∫
R3

|curl A− h|2dxdz.

The minimizers (ψ,A) satisfy the following Ginzburg–Landau system:



− ∇2
κσAψ = κ2(1− |ψ|2)ψ in Dl,

curl2A = − i

2κσ
(ψ̄∇ψ − ψ∇ψ̄)− |ψ|2A in Dl,

curl2A = 0 in R
3 \Dl,

(∇κσAψ) · νD + γψ = 0, [νD ·A] = 0, [νD × curl A] = 0 on ∂∗Dl,

curl A → h as |(x, z)| → ∞.

(1.1)

Here i =
√−1, κ is the Ginzburg–Landau parameter, and [·] denotes the jump in the

enclosed quantity across ∂Dl. The boundary condition for ψ in the fourth equality
was posed by de Gennes [dG] for a superconductor adjacent to other material. γ ≥ 0
is the de Gennes parameter.4 γ is very small for insulators, very large for magnetic

4In the literature d = 1/γ is called the de Gennes distance.
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materials, and lying in between for nonmagnetic materials. In this paper we shall
always assume that γ > 0. Note that in the above system the unit of length is the
penetration depth.

We call a minimizer (ψ,A) of the functional G a minimal solution of (1.1). Let
Fh be a smooth vector field defined on R

3 such that

curl Fh = h and div Fh = 0 in R
3.(1.2)

(0,Fh) is a trivial solution of (1.1), and it is the only minimal solution if σ is large.
As in [LP4], we define the upper critical field (here emphasizing the dependence of
HC3

on the thickness of the film) by

HC3
(h, κ, l) = inf{σ > 0 : (0,Fh) is a minimizer of G}.

We are interested in the dependence of HC3 on κ, l, γ and on the geometry of the
cross-section of the film. Using the methods developed in [LP1, LP2, LP3, LP4,
LP5, LP6, HM1, HP], and especially in [P1], we are able to establish an estimate of
HC3(h, κ, l) for small l.

Theorem 1.1. Let h be a unit vector perpendicular to Ω and let γ > 0 be given.
Let a, b, and c be fixed positive constants. For large κ we have

HC3(h, κ, l)

=



κ
β0

+ C1

β
3/2
0

(κmax − 3γ)− 2γ
aβ0

+ o(1) if l = aκ−1, a > 0,

(1− 2γ
a ) κ

β0
+ C1

β
3/2
0

(κmax − 3γ)(1− 2γ
a )1/2 + o(1) if l = aκ−2, a > 2γ,

c
2γβ0

+ O(κ−1) if l = 2γκ−2 + cκ−3, c > 0,

O(κ−1) if l = 2γκ−2 + bκ−4, b ≥ b0,

0 if l = 2γκ−2 + bκ−4, b < b0,

(1.3)

where C1 and β0 are universal constants and b0 depends only on Ω and γ.
The numbers C1, β0, and b0 will be given in section 2. In section 6 we shall give

a proof of Theorem 1.1 and also discuss nucleation of superconductivity.
Remark 1. One may expect that a superconducting thin film placed in a perpen-

dicular magnetic field will behave as a two-dimensional superconductor.5 In fact, this
is true if l > aκ−2 for some a > 2γ. Recall that for a two-dimensional superconductor
Ω placed in an applied magnetic field perpendicular to Ω, we have the following (see
[LP4, HP, P2]):

(a) For large κ,

HC3(κ) =
κ

β0
+

C1

β
3/2
0

κmax + O(κ−1/3).(1.4)

(b) As the applied field decreases from HC3(κ), superconductivity nucleates first
in the set of the maximum points of the curvature, N (∂Ω), and then develops a surface
superconducting state.6

5By a two-dimensional superconductor we actually mean a superconducting cylinder with infinite
height and a cross-section Ω, and placed in an applied magnetic field perpendicular to Ω. In this
case one may reduce the Ginzburg–Landau system to a two-dimensional system on Ω.

6See [P2, footnote on p. 328] for the meaning of a “surface superconducting state.”
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We may call such types of behavior two-dimensional type II behaviors.7 For a
thin film Dl = Ω× (0, l) with l ≥ aκ−2 (a > 2γ), we have the following (see Theorem
1.1 above and Theorems 6.2 and 6.3 in section 6):

(a′) HC3(h, κ, l) has order of κ and depends on the curvature of the cross-section.
(b′) As the applied field decreases from HC3 , superconductivity nucleates first in

the strip N (∂Ω)× [0, l] and then develops a lateral surface superconducting state.8

So we can say that a film with thickness l ≥ aκ−2 (a > 2γ) also exhibits two-
dimensional type II behaviors when placed in a perpendicular field.
Remark 2. Equation (1.3) also indicates a thin film behavior, which is presented

by the quantities involving the de Gennes parameter γ. These quantities become
important when l is close to 2γκ−2. In fact, l = 2γκ−2 is a critical value in the
following sense:

(i) When l ≥ aκ−2 (a > 2γ), the film exhibits a two-dimensional behavior of type
II superconductors.

(ii) When l ∼ 2γκ−2, the film behaves like a type I superconductor.
(iii) The film loses superconductivity if l < 2γκ−2 + b0κ

−4.
In order to estimate the value of HC3 , we need an estimate of the lowest eigenvalue

µγ(A) of the following problem associated with a given vector field A:{−∇2
Aφ = µφ in Dl,

(∇Aφ) · νD + γφ = 0 on ∂∗Dl.
(1.5)

We especially need to estimate µγ(bFh) for large b. We shall discuss only a perpen-
dicular field (h = (0, 0, 1)) in this paper and wish to consider applied fields in general
directions in the near future. We expect that the parallel components of the applied
field play roles in determining the location of nucleation.

The outline of this paper is the following. In section 2 we collect some preliminary
results that will be used in later sections. In section 3 we study an eigenvalue problem
in a two-dimensional domain and extend the Helffer–Morame estimate [HM1] of the
lowest eigenvalue to the problems with de Gennes boundary conditions. In section 4
we give some elliptic estimates for the minimizers of the Ginzburg–Landau functional
in the films Dl, with constants independent of l. In section 5 we present estimates
of the lowest eigenvalue for eigenvalue problems on the films. In section 6 we study
superconductivity of the films in perpendicular magnetic fields, establish an estimate
of HC3 , and find the location of nucleation. From the results established in section 6
we get Theorem 1.1.

We should mention that the Ginzburg–Landau system with de Gennes boundary
conditions has been studied in Lu and Pan [LP1, LP2, LP3, LP4, LP5, LP6]. In
particular, Lu and Pan [LP1] discussed the Ginzburg–Landau system without applied
fields and described the asymptotic behavior of the minimal solutions for large value
of the de Gennes parameter. Combining the results in this paper and those in [LP1]
we see that the effect of the de Gennes parameter is important when its value is large
compared with the scale of the samples.

The upper critical field HC3 and surface superconductivity have been studied
by many physicists and mathematicians. For early research see Saint-James and de

7More precisely, two-dimensional behaviors are those of a cylindrical superconductor of infinite
height and a constant cross-section in response to an applied magnetic field perpendicular to the
cross-section.

8For a film, a lateral surface superconducting state is such a state that superconductivity is
confined in a thin layer around the lateral surface, and superconductivity in the layer is not weak.
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Gennes [SdG], Saint-James and Sarma [SST], and Tinkham [T]; for recent mathe-
matical research on the estimates of HC3 and the study of the surface nucleation
phenomenon, see Chapman [C], Bauman, Phillips, and Tang [BPT], Giorgi and
Phillips [GP], Bernoff and Sternberg [BS], Lu and Pan [LP1, LP2, LP3, LP4, LP5],
del Pino, Felmer, and Sternberg [DFS], Jadallah [J], Pan [P1, P2, P3], Pan and
Kwek [PK], Helffer and Morame [HM1, HM2], Helffer and Pan [HP], and Almog [Al].

2. Preliminaries. In this section we give some preliminary results which will
be used in later sections. We first recall an eigenvalue variation problem. For every
constant z, let β(z) denote the lowest eigenvalue of the following problem in L2(R+):

−u′′ + (z + t)2u = β(z)u for t > 0, u′(0) = 0.(2.1)

It was first proved by Dauge and Helffer [DH] (also see Bolley and Helffer [BH]) that9

there is a unique z0, z0 < 0 such that

β0 ≡ β(z0) = inf
z∈R

β(z).(2.2)

Moreover, β0 = z2
0 and 0.5 < β0 < 0.76. Throughout this paper, β0 always denotes

the number given in (2.2), and C1 always denotes the number defined by

C1 =
u2(0)

3‖u‖2L2(R+)

,

where u(t) is the positive eigenfunction of (2.1) for z = z0 and β = β0. β0 and C1

appeared in (1.3) and (1.4) and will be used frequently in later sections.
In Lemma 2.1 below we shall give a simple estimate for the lowest eigenvalue

µγ(A) of (1.5). For this purpose, we need the numbers βγ,Ω, µγ,Ω, and τγ(l), where

βγ,Ω = inf
φ∈W 1,2(Ω)

∫
Ω
|∇φ|2dx + γ

∫
∂Ω
|φ|2ds∫

Ω
|φ|2dx ,

µγ,Dl
= inf

φ∈W 1,2(Dl)

∫
Dl
|∇φ|2dxdz + γ

∫
∂Dl

|φ|2dS∫
Dl
|φ|2dxdz ,

and λ = τγ(l)2 is the lowest eigenvalue of{−ξ′′ = λξ for 0 < t < l,

ξ′(0) = γξ(0), ξ′(l) = −γξ(l).
(2.3)

τγ(l) is determined by the smallest positive solution of the algebraic equation

tan(τγ(l)l) =
2γτγ(l)

τγ(l)2 − γ2
,

and the eigenfunctions of (2.3) associated with τγ(l)2 are cξl(t), where

ξl(t) = τγ(l) cos(τγ(l)t) + γ sin(τγ(l)t).(2.4)

9It was proved again by Lu and Pan [LP2] (also see [LP4]) without their knowing the results of
[DH] and [BH]. The methods are different though.
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When 0 < l < π
2γ , we have τγ(l) > γ, and τγ(l)l→ 0 as l→ 0. Using Taylor expansion

we find

2γ

l
− γ2

3
< τγ(l)2 <

2γ

l
− γ2

3
+ O(γ3l) as l→ 0.(2.5)

The following equality shows the relation between these numbers:

µγ,Dl
= βγ,Ω + τγ(l)2,(2.6)

which is obtained by solving, using the separable variables method, the eigenvalue
problem corresponding with µγ,Dl

.
Lemma 2.1. (i) For any vector field A, the lowest eigenvalue µγ(A) of (1.5)

satisfies

µγ(A) ≥ µγ,Dl
> βγ,Ω +

2γ

l
− γ2

3
.

(ii) For any unit vector h, HC3
(h, κ, l) > 0 if and only if µγ,Dl

< κ2.
Proof. For any vector field A and any φ ∈ W 1,2(Dl), from Kato’s inequality we

have ∫
Dl

|∇Aφ|2dxdz ≥
∫
Dl

∣∣∇|φ|∣∣2dxdz.
Hence µγ(A) ≥ µγ,Dl

. We get (i) from this and (2.5), (2.6).
If HC3

(h, κ, l) > 0, then for 0 < σ < HC3
, the Ginzburg–Landau functional G

has a nontrivial minimizer (ψ,A) and thus the lowest eigenvalue µγ(σκA) < κ2; see
[LP4, Lemma 2.1]. From conclusion (i) we must have µγ,Dl

< κ2.
On the other hand, if µγ,Dl

< κ2, then for the vector field Fh given in (1.2),
µγ(σκFh) < κ2 for all sufficiently small σ > 0. Hence the functional G has a nontrivial
minimizer; see [LP4, Lemma 2.1]. Thus HC3(h, κ, l) > 0. (ii) is proved.

Remark 3. (i) As a consequence of Lemma 2.1, if κ2 + γ2

3 − βγ,Ω > 0 and if

0 < l <
2γ

κ2 + γ2

3 − βγ,Ω

,(2.7)

then µγ,Dl
> κ2, and hence µγ(A) > κ2 for any vector field A. Thus (1.1) has no

nontrivial solution; see [LP4, Lemma 2.1]. Hence superconductivity is not favorable
for a very thin film with its thickness l satisfying (2.7). This verifies the prediction of
Richardson and Rubinstein [RR1, RR2].

(ii) Let us define l = l(κ) to be the positive root of the equation

µγ,Dl
= κ2.

Lemma 2.1 indicates that nontrivial minimal solutions (ψ,A) of the Ginzburg–Landau
system (1.1) bifurcate from (0,0) when the parameter (κ, l) moves upward in the
parameter space {(κ, l) : κ > 0, l > 0} away from the bifurcation point (κ, l(κ)).
From (2.5) we find that for large κ,

l(κ) = 2γκ−2 + 2γ

(
βγ,Ω − γ2

3

)
κ−4 + O(κ−6).
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(iii) The number b0 that appeared in (1.3) is defined by

b0 = 2γ

(
βγ,Ω − γ2

3

)
.(2.8)

If l = 2γκ−2+bκ−4 with b < b0 and κ is large, the minimizers of the Ginzburg–Landau
functional G are trivial. This verifies the last conclusion in Theorem 1.1.

(iv) Since superconducting states exist on thin films only when l > l(κ), we
assume in the following that

κ2 > µγ,Dl
.

It implies that κ→∞ as l→ 0. Thus we consider only thin films with large value of
κ. We remark that a bulk superconductor is type II if κ is large; however, a thin film
with large κ and l ∼ 2γκ−2 may present a type I behavior; see Theorem 6.5 below.

3. A two-dimensional eigenvalue problem. In this section we estimate the
lowest eigenvalue βγ(ε−2A), as ε→ 0, of the problem{−∇2

ε−2Aφ = βφ in Ω,

(∇ε−2Aφ) · ν + γφ = 0 on ∂Ω,
(3.1)

where Ω is a bounded C4 domain in R
2, γ is a positive constant, and the vector field

A = (A1, A2) is given and satisfies

curl A ≡ ∂1A2 − ∂2A1 = 1 and div A = 0 in Ω, A · ν = 0 on ∂Ω.(3.2)

From the variational characterization, the lowest eigenvalue is given by

βγ(ε−2A) = inf
φ∈W 1,2(Ω)

∫
Ω
|∇ε−2Aφ|2dx + γ

∫
∂Ω
|φ|2ds∫

Ω
|φ|2dx .

Theorem 3.1. Let A satisfy (3.2) and let γ > 0 be fixed. We have, as ε→ 0,

βγ(ε−2A) =
1

ε2
[β0 + C1(3γ − κmax)ε + O(ε4/3)],(3.3)

where β0 and C1 are the numbers given in section 2, and κmax is the maximum value
of the curvature of ∂Ω.
Proof. An upper bound of HC3 with different error terms, which can be controlled

by careful computations, has been obtained by [LP4, Lemma A.3].10 When γ = 0,
the lower bound estimate was obtained by Helffer and Morame [HM1]. Note that the
key ingredients in Helffer and Morame’s arguments are (i) the estimates of various
cut-off functions; (ii) the estimate of the lowest eigenvalue of an ordinary differen-
tial operator with parameter ε in the half-line R+, with a homogeneous Neumann
boundary condition u′(0) = 0. When γ > 0, (i) is still valid, and (ii) needs a minor
modification to fit the de Gennes boundary condition u′(0) + εγu(0) = 0, and hence
we can modify Helffer and Morame’s arguments to get the lower bound. The details
are omitted.

10The constant C2 appeared in [LP4] and was given by
u(0)2

‖u‖2

L2

, where u is the eigenfunction of
(2.1) for z = z0. Hence C2 = 3C1.
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As in [HM1], we can show that the eigenfunctions of (3.1) concentrate at the set
of the maximum points of the curvature of ∂Ω, N (∂Ω), as ε→ 0. In a neighborhood
of ∂Ω, Ωδ = {x : dist(x, ∂Ω) < δ}, where δ > 0 is small, d∂Ω(x) is a smooth function.
Thus we can introduce a local coordinate (s, t), with s measuring the tangential
distance and t = d∂Ω(x) measuring the normal distance. Any point x ∈ Ωδ can be
represented by a vector-valued function x(s, t), with |s| ≤ L = |∂Ω|/2 and 0 ≤ t < δ.
Thus a point x(s, t) ∈ Ωδ corresponds with a unique (s, t), and hence we have functions
s(x) and t(x), which are well defined on Ωδ. After extending these functions onto Ω̄,
every point x ∈ Ω̄ can be represented as x = x(s, t).

Corollary 3.2. Let A satisfy (3.2) and let γ > 0 be fixed. There exist positive
constants αj, cj, and Mj depending only on Ω such that for the eigenfunctions φε of
(3.1) associated with µγ(ε−2A), we have

(i)
∫
Ω

exp
(
α1ε
−1d∂Ω(x)

)|φε|2dx ≤M1

∫
Ω∩{d∂Ω(x)<c2ε} |φε|2dx;

(ii)
∫
Ω

exp
(
α2ε
−1/2[κmax − κr(s)− c1ε

1/3]
)|φε|2dx ≤M2

∫
Ω∩{d∂Ω(x)<c2ε} |φε|2dx.

Proof. Conclusion (i) has been established in [HM1] when γ = 0, and the proof
works when γ > 0, with a slight modification. In order to prove (ii), we use the
method in [HM1] and (3.3) to show that for any A satisfying (3.2) and γ > 0, there
exists a positive constant C such that for any φ ∈W 1,2(Ω) and small ε > 0,∫

Ω

|∇ε−2Aφ|2dx + γ

∫
∂Ω

|φ|2ds ≥ 1

ε2

∫
Ω

WΩ(x)|φ|2dx,(3.4)

where

WΩ(x) =

{
1− Cε4/3 if d∂Ω(x) ≥ 2ε1/3,

β0 + C1[3γ − κr(s)]ε− Cε4/3 if d∂Ω(x) < 2ε1/3.
(3.5)

Here β0 and C1 are the numbers given in section 2, and s = s(x) is associated with x
through the representation x = x(s, t). Then we apply the argument in [HP, proof of
Theorem 6.1] and use (3.4) to get (ii).

4. Elliptic estimates of minimizers. The regularity of the weak solutions
of the Ginzburg–Landau system in three-dimensional domains has been discussed in
[P4]. In this section we establish the estimates on a film, with constants independent
of the thickness of the film. Let

D1,2(R3) = {φ ∈ L2
loc(R

3) : ∇φ ∈ L2(R3)},

and on D1,2(R3) we define a seminorm ‖φ‖1,2 = ‖∇φ‖L2(R3). After identifying two
functions that differ by a constant, (D1,2(R3), ‖ · ‖1,2) is a Hilbert space [G, Lemma
II.5.1]. Let D1,2(R3) denote the corresponding space of vector fields. It follows from
Theorem II.6.2 in [G] that for any B ∈ D1,2(R3), there exists a unique constant vector
b such that B − b can be approximated in the norm ‖ · ‖1,2 by C∞0 vector fields. It
is well known that for any B ∈ D1,2(R3),

‖B‖21,2 ≡
∫

R3

|∇B|2dxdz =

∫
R3

{|curl B|2 + |div B|2}dxdz;(4.1)

see [L], as well as [GP, (3.2)]. The following space will also be useful to us:

D1,2(R3,div)= {B ∈ D1,2(R3) : div B = 0 in R
3}.
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Let W 1,2(Dl,C) be the Sobolev space of all complex-valued functions defined on D̄l.
Given a unit vector h, define Fh by (1.2), and let

W(Dl) = {(ψ,A) : ψ ∈W 1,2(Dl,C), A− Fh ∈ D1,2(R3)}.(4.2)

We consider the variational problem for the Ginzburg–Landau functional G onW(Dl).
Define

C(h, κ, l, σ) = inf
(ψ,A)∈W(Dl)

G[ψ,A].(4.3)

Due to the gauge invariance of G, we can replace A by Â that satisfies curl Â = curl A
and div Â = 0 in R

3; see [GP, Lemma 3.1]. So we can restrict the functional G on a
subspace of W(Dl):

W(Dl,div) = {(ψ,A) ∈ W(Dl) : div A = 0 in R
3}.(4.4)

It is easy to show that the (global) minimizers exist, and they are the weak solutions
of the Euler equations

− ∇2
κσAψ = κ2(1− |ψ|2)ψ in Dl,

curl2A =
1

κσ
�{ψ̄∇κσAψ}χDl

in R
3,

(∇κσAψ) · νD + γψ = 0 on ∂∗Dl,

A− Fh ∈ D1,2(R3,div),

(4.5)

where χDl
is the characteristic function of Dl, namely, χDl

equals 1 in Dl and equals
0 in R

3 \ Dl. In the content of weak solutions, (4.5) is equivalent to (1.1); see [L,
Chapter 5, section 4].

Lemma 4.1. Let κ > 0, σ > 0, and let (ψ,A) be a minimal solution of (1.1).
Then, for any 0 < α < 1,

ψ ∈ C2+α(Dl ∪ ∂Ω× [0, l])
⋃

C2+α(Dl ∪ Ω× {0, l}),

A ∈ C1+α(D̄l) ∪ C2+α
loc (Dl) ∪ C2+α

loc (R3 \ D̄l).

(4.6)

Moreover, we have the following estimates:

(i) There exists C > 0 independent of h, l, κ, and σ such that

‖A− Fh‖L6(R3) ≤ C

σ
‖ψ‖2L4(Dl)

,

‖curl A− h‖L2(R3) ≤ C

σ
‖ψ‖2L4(Dl)

.

(4.7)

(ii) For any 0 < α < 1, and for any R > 0 such that D̄l ⊂ BR, there exists
C(α,R) > 0 independent of h, l, κ, and σ such that for q = 3/(1− α),

‖A− Fh‖C1+α(RR) ≤ C(α,R)

{
1

σ
‖ψ‖2L4(Dl)

+
1

κσ
‖�{ψ̄∇κσAψ}‖Lq(Dl)

}
.(4.8)
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(iii) For any positive numbers a < b and q > 1, there exist positive constants
C(a, b) and C(a, b, q) independent of h, l, κ, and σ (aκ−1 ≤ σ ≤ bκ) such that

‖�{ψ̄∇κσAψ}‖L∞(Dl) ≤ C(a, b)
√
κσ‖ψ‖2L∞(Dl)

,

‖�{ψ̄∇κσAψ}‖Lq(Dl) ≤ C(a, b, q)
√
κσ‖ψ‖Lq(Dl)‖ψ‖L∞(Dl).

(4.9)

Proof. Step 1. We prove (4.7). From the first equation in (1.1) we have∫
Dl

|∇κσAψ|2dxdz = κ2

∫
Dl

(1− |ψ|2)|ψ|2dxdz.

So

G[ψ,A] =
κ2

2
|Dl| − κ2

2

∫
Dl

|ψ|4dxdz + κ2σ2

∫
R3

|curl A− h|2dxdz.

Since C(h, κ, l, σ) ≤ G[0,Fh] = κ2

2 |Dl|, we have

κ2σ2

∫
R3

|curl A− h|2dxdz = C(h, κ, l, σ)− κ2

2
|Dl|+ κ2

2

∫
Dl

|ψ|4dxdz ≤ κ2

2
‖ψ‖4L4(Ω).

So the second inequality in (4.7) is true. Using the Sobolev imbedding theorem we
have

‖A− Fh‖2L6(R3) ≤ C

∫
R3

{|curl(A− Fh)|2 + |div(A− Fh)|2}dxdz.

Since div(A− Fh) = 0, the first inequality in (4.7) follows.
Step 2. We prove (4.8). Let

f =
1

κσ
�{ψ̄∇κσAψ}χDl

, U = A− Fh.

f ∈ L2(R3), and U is a weak solution of the equation curl2U = f in R
3. Since

div U = 0, this equation can be written as

−∆U = f in R
3.(4.10)

Applying the De Giorge L∞ estimate [GT, Theorem 8.17] to each component of (4.10),
we find that there exists C > 0 independent of κ and σ such that for any 0 < r < R,

‖U‖L∞(Br) ≤ C
{

(R− r)−3/2‖U‖L2(BR) + R1/2‖f‖L2(BR)

}
.

Let us choose ρ > max(x,z)∈Dl

√|x|2 + z2 and ρ < r < R. We have

‖U‖L∞(Br) ≤ C(r,R)
{‖U‖L2(BR) + ‖f‖L2(BR)

}
.

Then, applying the Hölder estimate for weak solutions [GT, Theorem 8.24], we find
that for some 0 < α0 < 1 and for all ρ < r < R,

‖U‖Cα0 (Br) ≤ C(r,R)
{‖U‖L2(BR) + ‖f‖L2(BR)

}
.(4.11)

In particular, A ∈ Cα0(D̄l).
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Next, from (1.1) we see that ψ satisfies
− ∆ψ + 2iκσA · ∇ψ + κ2σ2|A|2ψ = κ2(1− |ψ|2)ψ in Dl,

∂ψ

∂νD
− iκσ(A · νD)ψ + γψ = 0 on ∂∗Dl.

(4.12)

Since A ∈ Cα0(D̄l), applying the Hölder estimate (see, for instance, [GT, Lemma
6.27]) on D̄l, we find that

ψ ∈ C1+α0(Dl ∪ ∂Ω× [0, l])
⋃

C1+α0(Dl ∪ Ω× {0, l}).
Therefore,

f ∈ Cα0(Dl ∪ ∂Ω× [0, l])
⋃

Cα0(Dl ∪ Ω× {0, l}),

and hence f ∈ L∞(R3).
Now we apply the Hölder gradients estimate to (4.10) again and find that for any

0 < α < 1, U ∈ C1+α
loc (R3) (hence A ∈ C1+α

loc (R3)), and for q = 3/(1− α),

‖∇U‖Cα(Br) ≤ C(r,R, α)
{‖f‖Lq(BR) + ‖∇U‖L2(BR) + ‖U‖L2(BR)

}
.

Since div A = 0, we find that

‖∇U‖Cα(Br) ≤ C(r,R, α)
{‖f‖Lq(BR) + ‖curl U‖L2(BR) + ‖U‖L2(BR)

}
.

Using this inequality and ‖U‖L2(BR) ≤ CR‖U‖L6(BR), together with (4.11) and (4.7),
we get (4.8).
Step 3. For any 0 < α < 1, since A ∈ C1+α(D̄l), we apply the Hölder estimate

to (4.12) again (see [GT, Lemma 6.27]) and find that

ψ ∈ C2+α(Dl ∪ Ω× [0, l])
⋃

C2+α(Dl ∪ ∂Ω × {0, l}).

Step 4. We prove (4.9). First we assume l ≥ (κσ)−1/2. Without loss of generality
we assume κσ � 1. We use a blow-up argument in the scale of (κσ)−1/2 and get a
limiting equation with bounded coefficients and apply the L∞ estimate to it. Then
we return to the original scale and find

‖∇κσAψ‖L∞(Dl) ≤ C
√
κσ‖ψ‖L∞(Dl).(4.13)

Equation (4.9) follows from (4.13) immediately. We omit the details but refer to [HP,
Proposition 4.2] for a two-dimensional problem.

Next we assume that l ≤ (κσ)−1/2. Recall that div A = 0. Let χ ∈ W 1,2(Dl) be
a weak solution of the equation

∆χ = 0 in Dl,
∂χ

∂νD
= A · νD on ∂∗Dl,

and satisfy
∫
Dl

χdxdz = 0. Note that χ is a piecewise C2+α function, and (see [GT,

Lemma 6.27])

‖χ‖C2+α(Dl ∪ ∂Ω×[0,l]) + ‖χ‖C2+α(Dl ∪ Ω̄×{0,l})

≤ C
{
‖A · νD‖C1+α(Dl ∪ ∂Ω×[0,l]) + ‖A · νD‖C1+α(Dl ∪ Ω̄×{0,l})

}
≤ C‖A‖C1+α(Bρ),

(4.14)
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where ρ > max(x,z)∈Dl

√|x|2 + z2.

Let ψ̃ = e−iκσχψ and Ã = A−∇χ. Then Ã · νD = 0 on ∂∗Dl. In particular,

Ã3(x1, x2, 0) = Ã3(x1, x2, l) = 0.(4.15)

ψ̃ satisfies
−∆ψ̃ + 2iκσÃ · ∇ψ̃ + κ2σ2|Ã|2ψ̃ = κ2(1− |ψ̃|2)ψ̃ in Dl,

∂ψ̃

∂νD
+ γψ̃ = 0 on ∂∗Dl.

Let ξl be the eigenfunction of (2.3) and cl = 1/‖ξl‖L∞([0,l]). Using (2.4) and (2.5) we
can find C > 0 such that for all small l,

max
0≤z≤l

∣∣∣∣ξ′l(z)

ξl(z)

∣∣∣∣ ≤ C.

Let

φ =
ψ̃

clξl
=

e−iχ

clξl
ψ.

Then φ satisfies



− ∆φ + 2iκσÃ · ∇φ + κ2σ2|Ã|2φ− 2ξ′l
ξl

∂zφ +
[
τγ(l)2 + 2iκσÃ3

ξ′l
ξl

]
φ

= κ2(1− c2l ξ
2
l |φ|2)φ in Dl,

∂φ

∂z
= 0 if z = 0, or l,

∂φ

∂ν
+ γφ = 0 on ∂Ω × (0, l).

(4.16)

Using (4.15), we can extend φ and Ã in the z direction in the following way: for
0 < z < l,

Ãj(x1, x2,−z) = Ãj(x1, x2, z) and Ãj(x1, x2, l + z) = Ãj(x1, x2, l − z), j = 1, 2,

Ã3(x1, x2,−z) = Ã3(x1, x2, z) and Ã3(x1, x2, l + z) = −Ã3(x1, x2, l − z),

φ(x1, x2,−z) = φ(x1, x2, z) and φ(x1, x2, l + z) = φ(x1, x2, l − z).

Extend ξl by letting ξl(−z) = ξl(z) and ξl(l+ z) = ξl(l− z). Then we get an equation
for φ on Ω× (−l, 2l), which is an extension of (4.16):



− ∆φ + 2iκσÃ · ∇φ + κ2σ2|Ã|2φ− 2ξ′l
ξl

∂zφ +
[
τγ(l)2 + 2iκσÃ3

ξ′l
ξl

]
φ

= κ2(1− c2l ξ
2
l |φ|2)φ in Ω× (−l, 2l),

∂φ

∂z
= 0 if z = −l, or 2l,

∂φ

∂ν
+ γφ = 0 on ∂Ω × (−l, 2l).

(4.17)
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We can verify that Ã ∈ Cα(Ω̄×[−l, 2l]). After the extension ξ′l is no longer continuous

at z = 0 and l, however, ξ′l∂zφ and Ã3ξ
′
l vanish at z = 0 and l. So we can verify that

φ is a weak solution of (4.17) on Ω× (−l, 2l).
We can repeat this process and extend φ onto a cylinder Ω× (a, b) with b−a = 1,

and φ is a weak solution of a new equation similar to (4.17) on the cylinder. Then we
apply the elliptic estimate to the new equation and conclude that

‖∇κσÃφ‖L∞(Ω̄×[a,b]) ≤ C
√
κσ‖φ‖L∞(Ω×[a,b]) = C

√
κσ‖ψ‖L∞(Dl).

Returning to Dl we get

‖∇κσÃφ‖L∞(Dl) ≤ C
√
κσ‖ψ‖L∞(Dl).

Since ψ = clξlφe
iκσχ and A = Ã +∇χ, we have

ψ̄∇κσAψ = c2l ξ
2
l φ̄∇κσÃφ + c2l |φ|2ξl∇ξl,

�{ψ̄∇κσAψ} = c2l ξ
2
l �{φ̄∇κσÃφ}.

Hence

‖�{ψ̄∇κσAψ}‖L∞(Dl) ≤ ‖�{φ̄∇κσÃφ}‖L∞(Dl) ≤ C
√
κσ‖ψ‖2L∞(Dl)

,

‖�{ψ̄∇κσAψ}‖Lq(Dl) ≤ ‖�{φ̄∇κσÃφ}‖Lq(Dl) ≤ C(q)
√
κσ‖ψ‖Lq(Dl)‖ψ‖L∞(Dl).

Equation (4.9) is proved.

5. An eigenvalue problem on films. In this section we study the lowest eigen-
value µγ(ε−2F) of {−∇2

ε−2Fφ = µφ in Dl,

(∇ε−2Fφ) · νD + γφ = 0 on ∂∗Dl,
(5.1)

where curl F = e3 = (0, 0, 1).
Theorem 5.1. Let curl F = (0, 0, 1). For small ε and l we have

µγ(ε−2F) = τγ(l)2 + β0ε
−2 + C1(3γ − κmax)ε−1 + O(ε−2/3),(5.2)

where τγ(l)2 is the lowest eigenvalue of (2.3), and β0 and C1 are the numbers given
in section 2.
Proof. Due to gauge invariance of the operator−∇2

ε−2F, we choose F = (−x2, 0, 0).
Then (5.1) is a separable equation. The eigenfunctions have the form φ(x, z) =
ϕ(x1, x2)ξl(z), and

µγ(ε−2F) = βγ(ε−2E) + τγ(l)2,

where ξl is the function given in (2.4), E = (−x2, 0), and βγ(ε−2E) is the lowest
eigenvalue of (3.1) for A = E. An estimate for βγ(ε−2E) has been obtained in (3.3).
So the conclusion follows.

Next we establish an integral inequality for functions vanishing at the lateral
surface of Dl. Let

W 1,2(Dl, 0) = {φ ∈W 1,2(Dl) : φ = 0 on ∂Ω× [0, l]}.
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Lemma 5.2. Let A = (A1, A2, A3) ∈ C1(D̄l). For any φ ∈W 1,2(Dl, 0) we have

∫
Dl

|∇ε−2Aφ|2dxdz + γ

∫
∂Dl

|φ|2dS ≥
∫
Dl

{ε−2(∂1A2 − ∂2A1) + τγ(l)2}|φ|2dxdz.
(5.3)

In particular, for any φ ∈W 1,2(Dl, 0),∫
Dl

|∇ε−2Fφ|2dxdz + γ

∫
Dl

|φ|2dS ≥ [ε−2 + τγ(l)2
] ∫

Dl

|φ|2dxdz.(5.4)

Proof. Let φ ∈ W 1,2(Dl, 0) ∩ C1(D̄l). For a fixed z ∈ [0, l], since φ(x, z) = 0 for
x ∈ ∂Ω, using Theorem 4 in [M] we have∫

Ω

{|(∂1−iε−2A1)φ(x, z)|2+|(∂2−iε−2A2)φ(x, z)|2}dx ≥ 1

ε2

∫
Ω

(∂1A2−∂2A1)|φ(x, z)|2dx.

Integrating this inequality in z we get∫
Dl

{|(∂1 − iε−2A1)φ|2 + |(∂2 − iε−2A2)φ|2}dxdz ≥ 1

ε2

∫
Dl

(∂1A2 − ∂2A1)|φ|2dxdz.

On the other hand, for a fixed x ∈ Ω, using the Kato’s inequality we find∫ l

0

|(∂z − iε−2A3)φ(x, z)|2dz + γ
[|φ(x, 0)|2 + |φ(x, l)|2]

≥
∫ l

0

∣∣∂z|φ(x, z)|∣∣2dz + γ
[|φ(x, 0)|2 + |φ(x, l)|2] ≥ τγ(l)2

∫ l

0

|φ(x, z)|2dz.

Thus∫
Dl

|(∂z − iε−2A3)φ|2dxdz + γ

∫
Ω

[|φ(x, 0)|2 + |φ(x, l)|2]dx ≥ τγ(l)2
∫
Dl

|φ|2dxdz.

So we get (5.3). Since ∂1F2 − ∂2F1 = 1, (5.4) follows.
The inequality (5.4) yields an estimate of the lowest eigenvalue of −∇2

ε−2F in
Dl with Dirichlet boundary condition on the lateral surface ∂Ω × [0, l] and Robin
condition on the top and bottom faces:

−∆φ + 2iε−2x2∂1φ + ε−4x2
2φ = λφ in Ω× (0, l),

∂zφ = γφ on Ω× {0},
∂zφ = −γφ on Ω× {l},
φ = 0 on ∂Ω× (0, l).

This problem can be solved by the method of separable variables as for (5.1). Hence
the lowest eigenvalue is given by λ = α + τγ(l)2, where α is the lowest eigenvalue of
the Dirichlet problem{

−∆ϕ + 2iε−2x2∂1ϕ + ε−4x2
2ϕ = αϕ in Ω,

ϕ = 0 on ∂Ω.

Using the result in [LP2, Theorem 2] about an eigenvalue problem in the entire plane
we find that α ≥ ε−2. So λ ≥ ε−2 + τγ(l)2. Hence we get (5.4) again.
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Now we can establish an integral inequality on Dl, which can be viewed as a
three-dimensional version of (3.4) and is useful in the study of the concentration
phenomenon of order parameters on films.

Theorem 5.3. For any φ ∈W 1,2(Dl) we have∫
Dl

|∇ε−2Fφ|2dxdz + γ

∫
∂Dl

|φ|2dS ≥ ε−2

∫
Dl

WDl
(x, z)|φ|2dxdz.(5.5)

WDl
is defined by

WDl
(x, z) =

{
1 + ε2τγ(l)2 − Cε4/3 if d∂Ω(x) ≥ 2ε1/3,

β0 + C1[3γ − κr(s)]ε + ε2τγ(l)2 − Cε4/3 if d∂Ω(x) < 2ε1/3,
(5.6)

where β0, C1, and τγ(l) are the numbers given in section 2, C depends only on Ω and
γ, and s = s(x) is associated with x through the representation x = x(s, t).
Proof. We apply the idea in [HM1]. Let (s, t) be the local coordinates in Ωδ

described in section 3, and (s, t) has been extended onto Ω̄. Then (s, t, z) gives the
new coordinates on D̄l. Choose cut-off functions η0(t) and η1(t) depending only on t
such that

spt(η0) ⊂
[
ε1/3

20
,+∞

)
, spt(η1) ⊂

(
−∞,

ε1/3

10

]
, |η′j(t)| ≤ Cε−1/3, η2

0 + η2
1 = 1.

Then ∫
Dl

|∇ε−2Fφ|2dxdz + γ

∫
∂Dl

|φ|2dS

=
1∑

j=0

{∫
Dl

[|∇ε−2F(ηjφ)|2 − |∇ηj |2|φ|2
]
dxdz + γ

∫
∂Dl

|ηjφ|2dS
}

.

(5.7)

Note that η0φ is supported in Ωε × [0, l], where

Ωε =

{
x ∈ Ω : d∂Ω(x) ≥ ε1/3

20

}
,

namely, η0φ = 0 in a thin cylinder around the lateral surface ∂Ω × [0, l]. η1φ is
supported near the lateral surface.
Step 1. We estimate η0φ. The sum in (5.7) involving η0φ is

S1 ≡
∫
Dl

|∇ε−2F(η0φ)|2dxdz+γ

∫
Ωε

η2
0{|φ(x, 0)|2 + |φ(x, l)|2}dx−

∫
Dl

|∇η0|2|φ|2dxdz.

Since |∇η0| ≤ Cε−1/3, we use (5.4) to get

S1 ≥
[
ε−2 + τγ(l)2

] ∫
Dl

|η0φ|2dxdz −O(ε−2/3)

∫
Dl

|φ|2dxdz.

Step 2. We estimate η1φ. The sum in (5.7) involving η1φ is

S2 ≡
∫
Dl

|∇ε−2F(η1φ)|2dxdz + γ

∫
∂Dl

|η1φ|2dS −
∫
Dl

|∇η1|2|φ|2dxdz.
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Choose a family of cut-off functions {χi}i∈I such that∑
i∈I

χ2
i (x) = 1 for all x ∈ Ωε1/3 ,

∑
i∈I
|∇χi(x)|2 ≤ Cε−2/3.

Then

S2 =
∑
i∈I

{∫
Dl

|∇ε−2F(χiη1φ)|2dxdz + γ

∫
∂Dl

|χiη1φ|2dS
}

−
∫
Dl

|∇η1|2|φ|2dxdz −
∑
i∈I

∫
Dl

|∇χi|2|η1φ|2dxdz.

For each i ∈ I, let φi = χiη1φ. Note that χiη1 depends only on x. D̄l ∩ spt(φi) is
contained in a set Gi, whose coordinates (s, t, z) satisfy

|s− si| ≤ Cε1/3, 0 ≤ t ≤ ε1/3

10
, 0 ≤ z ≤ l.

φi = 0 on three of the faces of Gi, which correspond with t = ε1/3

10 , s = si − Cε1/3,

and s = si + Cε1/3, respectively. Hence, to estimate S2, we are led to an eigenvalue
problem on Gi with Dirichlet conditions on the three faces of Gi and Robin conditions
on the other three faces of Gi. As in Theorem 5.1, we find the lowest eigenvalue λi of
this problem by the method of separable variables:

λi =
1

ε2
[β0 + C1(3γ − κi)ε + O(ε4/3)] + τγ(l)2,(5.8)

where

κi = max
x∈∂Ω∩Ḡi

κr(x).

Note that if |s− si| ≤ Cε1/3, then |κr(s)− κr(si)| ≤ Cε1/3. Using this and (5.8) we
get ∫

Dl

|∇ε−2Fφi|2dxdz + γ

∫
∂Dl

|φi|2dS ≥ λi

∫
Dl

|φi|2dxdz

=
{
ε−2
[
β0 + C1(3γ − κi)ε + O(ε4/3)

]
+ τγ(l)2

}∫
Dl

|φi|2dxdz

≥ ε−2

∫
Dl

{
β0 + C1(3γ − κr(s))ε + O(ε4/3) + ε2τγ(l)2

}|φi|2dxdz.

So ∑
i∈I

{∫
Dl

|∇ε−2F(χiη1φ)|2dxdz + γ

∫
∂Dl

|χiη1φ|2dS
}

≥ ε−2

∫
Dl

{
β0 + C1(3γ − κr(s))ε + O(ε4/3) + ε2τγ(l)2

}|η1φ|2dxdz.

From the choice of η1 and χi we have∫
Dl

|∇η1|2|φ|2dxdz ≤ Cε−2/3

∫
Dl

|φ|2dxdz,∑
i∈I

∫
Dl

|∇χi|2|η1φ|2dxdz ≤ Cε−2/3

∫
Dl

|φ|2dxdz.
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Hence we have

S2 ≥ ε−2

∫
Dl

{
β0 + C1(3γ − κr(s))ε + ε2τγ(l)2

}|η1φ|2dxdz −O(ε−2/3)

∫
Dl

|φ|2dxdz.

Step 3. Combining the computations in Steps 1 and 2 we find∫
Dl

|∇ε−2Fφ|2dxdz + γ

∫
∂Dl

|φ|2dS = S1 + S2

≥ ε−2

∫
Dl

{
[1 + ε2τγ(l)2]|η0φ|2 + [β0 + C1(3γ − κr(s))ε + ε2τγ(l)2]|η1φ|2

}
dxdz

−O(ε−2/3)

∫
Dl

|φ|2dxdz

≥ ε−2

∫
Dl

WDl
(x, z)|φ|2dxdz,

where WDl
(x, z) is the function given in (5.6).

Corollary 5.4. Let curl F = (0, 0, 1) and let φε be an eigenfunction associated
with µγ(ε−2F). Then there exist positive numbers αj, bj, cj, and Mj independent of
l such that, for all small ε > 0,

(i)
∫
Dl

exp
(
α1ε
−1d∂Ω(x)

)|φε|2dxdz ≤M1

∫
Dl∩{d∂Ω(x)<c1ε} |φε|2dxdz;

(ii)
∫
Dl

exp
(
α2ε
−1/2[κmax−κr(s)−b2ε

1/3]
)|φε|2dxdz≤M2

∫
Dl∩{d∂Ω(x)<c2ε}|φε|2dxdz.

Moreover, if l� ε,
(iii)
∫
Dl

exp
(
α3ε
−1dl(x, z)

)|φε|2dxdz ≤M3

∫
Dl∩{dl(x,z)<c3ε} |φε|2dxdz.

Remark 4. The above corollary shows that, as ε→ 0, the eigenfunctions of (5.1)
associated with the lowest eigenvalue localize in the strip N (∂Ω)×[0, l]. Conclusion (i)
gives an exponential decay of the eigenfunctions in the direction normal to the lateral
surface, conclusion (ii) shows an exponential decay in tangential direction away from
N (∂Ω) × [0, l], and conclusion (iii) shows an exponential decay away from the total
boundary of Dl. These conclusions are proved using the Agmon argument [A], and the
details are omitted (see the proof of Theorem 6.2 in section 6 for a related estimate).

6. Films in perpendicular fields. In this section we study a film with small
l and large κ (l may vary with κ) that is placed in a perpendicular applied field,
namely, h ≡ e3 = (0, 0, 1). We shall estimate the value of HC3 and study nucleation
of superconductivity. Let curl F = e3.

First, using Theorem 5.1 and applying the argument in [LP4, Appendix], we
obtain a lower bound of HC3

.
Lemma 6.1. When l − 2γκ−2 � κ−4 we have

HC3(e3, κ, l) ≥
(

1− 2γ

lκ2

)
κ

β0
+

C1

β
3/2
0

(κmax − 3γ)

(
1− 2γ

lκ2

)1/2

+ O(κ−1/3).

Proof. As observed in [LP4],

HC3 ≥ σ∗ ≡ σ∗(κ) = max{σ > 0 : µγ(κσF) = κ2}.

Using the equality

κ2 = µγ(κσ∗F) = βγ(κσ∗E) + τγ(l)2,
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where E = (−x2, 0), and the condition l − 2γκ−2 � κ−4, we find that as κ → ∞,
βγ(κσ∗E) →∞, and hence κσ∗ →∞. Then we use Theorem 5.1 to get

κ2 = β0κσ∗ + C1(3γ − κmax)
√
κσ∗ + O((κσ∗)1/3) +

2γ

l
− γ2

3
+ O(γ3l).

Thus

√
κσ∗ =

1

2β0

{
C1(κmax − 3γ) +

[
4β0

(
κ2 − 2γ

l

)
+ O(κσ∗)1/3

]1/2}
.

So σ∗ = O(κ), and

σ∗ =

(
1− 2γ

lκ2

)
κ

β0
+

C1

β
3/2
0

(κmax − 3γ)

(
1− 2γ

lκ2

)1/2

+ O(κ−1/3).

This yields the conclusion.
The upper bound of HC3 and the nature of nucleation of superconductivity vary

according to the scale of l and κ. In Theorem 6.2 we consider the case where l has
order of κ−1, namely, there exist positive constants a < b such that

aκ−1 ≤ l ≤ bκ−1.(6.1)

In Theorems 6.3, 6.4, and 6.5, we consider the case where l has order of κ−2.
Theorem 6.2. Assume the condition (6.1).
(i) Given 0 < α < 1/3 we have, for large κ,

HC3(e3, κ, l) =
κ

β0
+

C1

β
3/2
0

(κmax − 3γ)− 2γ

β0κl
+ o(κ−α).(6.2)

(ii) As the applied field decreases from HC3(e3, κ, l), superconductivity nucleates
first in the strip N (∂Ω)× [0, l]. More precisely, assume that

σ = HC3
(e3, κ, l)− ρ > 0.(6.3)

For any 0 < p < 1/9, there exist positive constants c1, c2, and C such that for any
minimal solution (ψ,A) of (1.1), we have∫

Dl

exp
(
c1
√
κ[κmax − κr(x)− c2ρ− c2κ

−p]
)|ψ|2dxdz ≤ Cκ−2.(6.4)

Proof. Step 1. Lemma 6.1 provides a lower bound of HC3
(e3, κ, l). To prove (6.2),

let us fix 0 < α < 1/3 and choose σ such that

κ

β0
+

C1

β
3/2
0

(κmax − 3γ)− 2γ

β0κl
+ O(κ−1/3) < σ < HC3(e3, κ, l).(6.5)

For our convenience we introduce ε = (κσ)−1/2. From (6.1) and (6.5) we see that
l has order of ε. From Lemma 6.1, the Ginzburg–Landau functional has nontrivial
minimizers, which will be denoted by (ψε,Aε). We need some elliptic estimates for
(ψε,Aε). In the following, C denotes a generic constant which may vary from line to
line.
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Claim 1. Assume (6.1) and (6.5).
(i) There exists C1(a, b) > 0 independent of l and ε such that

‖ψε‖L∞(Dl) = o(1) as ε→ 0,

‖∇ε−2Aεψε‖L∞(Dl) ≤
C1(a, b)

ε
‖ψε‖L∞(Dl).

(6.6)

(ii) For any 0 < α < 1, there exists C2(a, b, α) > 0 independent of l and ε, and
q = 3/(1− α) such that

‖Aε − F‖C1+α(D̄l) ≤ εC2(a, b, α)
{‖ψε‖2L4(Dl)

+ ‖ψε‖Lq(Dl)‖ψε‖L∞(Dl)

}
.(6.7)

(iii) For any 0 < α < 2
√

1− β0, there exists C3(a, b, α) > 0 independent of l and
ε such that ∫

Dl

exp
(
αε−1d∂Ω(x)

){|ψε|2 + ε2|∇ε−2Aεψε|2}dxdz ≤ C3(a, b, α)lε.(6.8)

As in the proof of Lemma 4.1 (Step 4), we use a blow-up argument in the scale ε
to prove (6.6). Since l has order of ε, the blow-up process leads to a limiting equation
with bounded coefficients in a domain of the form (−∞,∞)× (0,∞)× (0, L), where
L > 0. We first apply the L∞ estimates to this equation and then return to the
original scale and obtain the second inequality in (6.6). To prove the first inequality
in (6.6), we use the fact that the limiting nonlinear equation has no nontrivial bounded
solutions (see [LP4, Proposition 2.5 and Theorem 5.1] for two-dimensional problems).

Equation (6.7) follows from (6.6) and (4.8).
Equation (6.8) can be proved by an Agmon-type argument [A]. For a two-

dimensional linear problem, such an estimate has been established by Helffer and
Morame [HM1, (6.25), (6.59)]. For a two-dimensional nonlinear problem, a similar
estimate was proved in [P2, Lemma 7.2]. Here we sketch an outline of the proof. Let
χ be a smooth function which vanishes at ∂Ω × [0, l]. From the equation for ψε we
get

∫
Dl

|∇ε−2Aε(χψε)|2dxdz+γ

∫
∂Dl

|χψε|2dS =

∫
Dl

{
κ2(1− |ψε|2)|χψε|2 + |∇χ|2|ψε|2}dxdz.(6.9)

From (6.7) we have |curl(Aε − F)| = O(ε). Thus

∂1A
ε
2 − ∂2A

ε
1 ≥ 1 + O(ε).

So we use Lemma 5.2 to get∫
Dl

|∇ε−2Aε(χψε)|2dxdz + γ

∫
∂Dl

|χψε|2dS ≥ 1 + O(ε) + ε2τγ(l)2

ε2

∫
Dl

|χψε|2dxdz.

From this and (6.9), and using the fact ε2κ2 = κ
σ = β0 + o(1) < 1 (see (6.5)), we have∫

Dl

|χψε|2dxdz ≤ ε2(1 + o(1))

1− β0

∫
Dl

|∇χ|2|ψε|2dxdz.

Now we choose

χ(x, z) = χ(x) = η(x) exp
(α

2
ε−1ζ(x)

)
,
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where 0 < α < 2
√

1− β0 is a constant, ζ(x) is a smooth function on Ω̄ such that
ζ(x) = d∂Ω(x) on Ωδ0 , η(x) is a cut-off function such that η(x) = 0 if d∂Ω(x) < ε,
η(x) = 1 if d∂Ω(x) > 2ε, and |∇η(x)| ≤ 4

ε . Plugging it into the above inequality we
find ∫

Dl

η2 exp
(
αε−1ζ

)|ψε|2dxdz ≤ C

∫
Dl∩{dist(x,∂Ω)<2ε}

|ψε|2dxdz ≤ Clε,

which implies that for a larger C,∫
Dl

exp
(
αε−1d∂Ω(x)

)|ψε|2dxdz ≤ Clε.

Using this and (6.9) we find∫
Dl

exp
(
αε−1d∂Ω(x)

)|∇ε−2Aεψε|2dxdz ≤ Cl

ε
.

Hence (6.8) is true. Now Claim 1 is proved.
As a consequence of (6.8) we have, for any nonnegative integer k,∫

Dl

d∂Ω(x)k
{|ψε|2 + ε2|∇ε−2Aεψε|2}dxdz ≤ Cklε

k+1.(6.10)

In particular ∫
Dl

|ψε|2dxdz ≤ Clε.(6.11)

We define, for q > 3,

d(ε) = ‖ψε‖2L4(Dl)
+ ‖ψε‖Lq(Dl)‖ψε‖L∞(Dl).(6.12)

From (6.11) we find

d(ε) ≤ C
{

(lε)1/2‖ψε‖L∞(Dl) + (lε)1/q‖ψε‖2(q−1)/q
L∞(Dl)

}
.(6.13)

Step 2. Now we establish the weighted L2 estimates. In the following, let φε de-
note the eigenfunction of the operator −∇2

ε−2Aε associated with the lowest eigenvalue
µγ(ε−2Aε). Similar to Corollary 5.4 we have the following.

Claim 2. Assume (6.1) and (6.5).
(i) For any 0 < α < 2

√
1− β0, there exists a positive constant C4(a, b, α) inde-

pendent of l and ε such that

∫
Dl

exp
(
αε−1d∂Ω(x, z)

){|φε|2 + ε2|∇ε−2Aεφε|2}dxdz ≤ εC4(a, b, α)

∫
Dl

|φε|2dxdz.
(6.14)

(ii) There exists a positive constant C independent of l and ε such that for any
smooth function χ we have∫

Dl

|∇ε−2Aε(χφε)|2dxdz + γ

∫
∂Dl

|χφε|2dS

≥ ε−2

∫
Dl

WDl
(x, z)|χφε|2dxdz − Cε−4/3d(ε)2/3

∫
Dl

|χφε|2dxdz.
(6.15)
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Here WDl
(x, z) is the function given in (5.6).

Equation (6.14) can be proved as for (6.8). Before proving (6.15), we would like
to mention that in the two-dimensional case studied in [HP], the magnetic potentials
vanish at the boundary. This condition makes it easy to control error terms in various
estimates. In the three-dimensional case discussed here, on the contrary, this condition
is no longer true, and hence a harder estimate is needed in order to obtain (6.15).
We should also mention the difference between (5.5) and (6.15), although they look
similar. The inequality (5.5) is regarding a fixed vector field, F, while (6.15) gives
a uniform estimate for a family of vector fields Aε. When proving (5.5), we divided
Dl into subsets in the form of the product Ωj × [0, l], where {Ωj} is a partition of
Ω. In order to prove (6.15), we need a finer partition and have to choose the cut-off
functions carefully. If l is small compared with ε (for example, if l has order of ε), we
may choose cut-off functions to be independent of z, and hence cut Dl into a finite
number of blocks with height l. If l is not very small, the interval [0, l] should also
be divided, and hence the cut-off functions must depend on z. In the following we
describe the choice of cut-off functions which are valid for a general case, not only for
the purpose here.

Let {η0,τ(ε), η1,τ(ε)} be the partition of unity on R introduced in [HM2, (9.22),
(9.23)] such that

η2
0,τ(ε)(t) + η2

1,τ(ε)(t) = 1, |η′j,τ(ε)(t)| ≤
C

τ(ε)
for j = 0, 1,

spt (η0,τ(ε)) ⊂
[
τ(ε)

20
,+∞

)
, spt (η1,τ(ε)) ⊂

(
−∞,

τ(ε)

10

]
.

As in [HM1, (9.10)–(9.14)], let {χi(x, z)}I be a partition of unity of R
3 such that

I = Z
3 and

χi ∈ C∞(R3,R) and spt (χi) ⊂ i + [−1, 1]3 for any i ∈ I,∑
i∈I

χ2
i (x, z) = 1,

∑
i∈I
|∇χi(x, z)|2 < C.

Let δ0 > 0 be chosen such that the distance function d∂Ω is differentiable in Ωδ0 . Let
ω(ε) be a function of ε such that 0 < ω(ε) < δ0 for all small ε, and set

χi,ω(ε)(x, z) = χi

(
x

ω(ε)
,

z

ω(ε)

)
, i ∈ I.

Thus we have a new partition of unity such that

spt(χi,ω(ε)) ⊂ ω(ε)i + [−ω(ε), ω(ε)]3,∑
i∈I

χi,ω(ε)(x, z)2 = 1,
∑
i∈I
|∇χi,ω(ε)(x, z)|2 <

C

ω(ε)2
.

(6.16)

In the following, we choose 0 < τ(ε) ≤ ω(ε). Let us introduce

I(ω(ε)) =
{
i ∈ I : spt(χi,ω(ε)) ∩Dl �= ∅, dist

(
spt(χi,ω(ε)), ∂Ω× [0, l]

) ≤ ω(ε)
}
.

Note that Ωδ0 can be covered by a finite number of open sets Ωj such that on each of
them we can define a diffeomorphism that straightens a portion of ∂Ω. For simplicity
we let f denote any of these maps. Then Ωδ0 × [0, l] is covered by a finite number of
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open sets Ωj × [ak, bk], and on each of them we can define a diffeomorphism of the
form F(y, z) = (f(y), z). For each i ∈ I(ω(ε)), we can choose x(i) ∈ ∂Ω, z(i) ∈ [0, l]
such that

spt(χi,ε) ⊂ B2

(
x(i),

3

2
ω(ε)

)
× [z(i)− ω(ε), z(i) + ω(ε)],

where B2
(
x(i), 3

2ω(ε)
)

denotes a two-dimensional disc with center x(i) and radius
3
2ω(ε). Choose y(i) = (y1(i), 0) such that F(y(i), z(i)) = (x(i), z(i)). Let

K(i, ε) = {F(y1, y2, z) : |y1 − y1(i)| < 2ω(ε), 0 ≤ y2 ≤ τ(ε), |z − z(i)| ≤ 2ω(ε)}.
Then, for small ε > 0, spt(χi,ε) ∩ D̄l ⊆ K(i, ε), and {K(i, ε) : i ∈ I(ω(ε))} covers the
thin cylinder Ωτ(ε) × [0, l].

Given a smooth function χ, we write

φε(x, z) = χφε(x, z),

uε(x, z) = η1,τ(ε)(t(x))φε(x, z),

ui,ε(x, z) = χi,ω(ε)uε(x, z),

where t(x) = d∂Ω(x). Note that for any smooth functions φ and ψ we have

∫
Dl

|∇ε−2Aεφ|2dxdz + γ

∫
∂Dl

|φ|2dS

=
1∑

j=0

{∫
Dl

[|∇ε−2Aε(ηj,τ(ε)φ)|2 − |φ∇ηj,τ(ε)|2
]
dxdz + γ

∫
∂Dl

|ηjφ|2dS
}

,∫
Dl

|∇ε−2Aεψ|2dxdz + γ

∫
∂Dl

|ψ|2dS

=
∑

i∈I(ω(ε))

{∫
Dl

[|∇ε−2Aε(χi,ω(ε)ψ)|2 − |ψ∇χi,ω(ε)|2
]
dxdz + γ

∫
∂Dl

|ψχi,ω(ε)|2dS
}

.

(6.17)

Applying the second equality in (6.17) to ψ = uε, and using (6.16), we find

∫
Dl

|∇ε−2Aεuε|2dxdz + γ

∫
∂Dl

|uε|2dS

=
∑

i∈I(ω(ε))

{∫
Dl

|∇ε−2Aεui,ε|2dxdz + γ

∫
∂Dl

|ui,ε|2dS
}
− O(1)

ω(ε)2

∫
Dl

|uε|2dxdz,

(6.18)

where O(1) remains bounded as ε→ 0.
Now we fix i ∈ I(ω(ε)) and estimate the integral of |∇ε−2Aεui,ε|2. Note that∫

Dl

|∇ε−2Aεui,ε|2dxdz =

∫
K(i,ε)

|∇ε−2Aεui,ε|2dxdz.

On K(i, ε) we write

Aε(x, z) = F(x, z) + Bi(x, z) + bi, ui,ε(x, z) = vi,ε(x, z)eibi·(x,z),



SUPERCONDUCTING FILMS 979

where bi = Aε(x(i), z(i))− F(x(i), z(i)). From (6.7) we have

‖Bi‖C1+α(D̄l) = O(ε)d(ε), |bi| = O(ε),

where d(ε) is given in (6.12) with q = 3/(1− α). Since Bi(y(i), z(i)) = 0, we have

|Bi(x, z)| ≤ Cεd(ε)
√
|x− x(i)|2 + |z − z(i)|2 ≤ Cεd(ε)ω(ε) on K(i, ε).(6.19)

We compute∫
K(i,ε)

|∇ε−2Aεui,ε|2dxdz =

∫
K(i,ε)

|∇ε−2(F+Bi)vi,ε|2dxdz

=

∫
K(i,ε)

{|∇ε−2Fvi,ε|2 − 2ε−2Bi · �(v̄i,ε∇ε−2Fvi,ε) + ε−4|Bi|2|vi,ε|2
}
dxdz

≥
∫
K(i,ε)

|∇ε−2Fvi,ε|2dxdz − 2ε−2

∫
K(i,ε)

Bi · �(v̄i,ε∇ε−2Fvi,ε)dxdz.

Using (6.19) we have, for a constant M > 0,

2ε−2
∣∣∣∫

K(i,ε)

Bi · �(v̄i,ε∇ε−2Fvi,ε)dxdz
∣∣∣

≤ Mε−4

∫
K(i,ε)

|Bi|2|vi,ε|2dxdz + M−1

∫
K(i,ε)

|∇ε−2Fvi,ε|2dxdz

≤ CMd(ε)2ω(ε)2ε−2

∫
K(i,ε)

|vi,ε|2dxdz + M−1

∫
K(i,ε)

|∇ε−2Fvi,ε|2dxdz.

Therefore∫
K(i,ε)

|∇ε−2Aεui,ε|2dxdz

≥ (1−M−1)

∫
K(i,ε)

|∇ε−2Fvi,ε|2dxdz − CMd(ε)2ω(ε)2ε−2

∫
K(i,ε)

|vi,ε|2dxdz.

Since |vi,ε| = |ui,ε|, using Theorem 5.3 and the above inequality we find

∫
K(i,ε)

|∇ε−2Aεui,ε|2dxdz + γ

∫
∂Dl

|ui,ε|2dS

≥ (1−M−1)ε−2

∫
K(i,ε)

WDl
|ui,ε|2dxdz − CMd(ε)2ω(ε)2ε−2

∫
K(i,ε)

|ui,ε|2dxdz.

(6.20)

From (6.18) and (6.20) we get∫
Dl

|∇ε−2Aεuε|2dxdz + γ

∫
∂Dl

|uε|2dS

≥ (1−M−1)ε−2
∑

i∈I(ω(ε))

∫
K(i,ε)

WDl
|ui,ε|2dxdz

− CMd(ε)2ω(ε)2ε−2
∑

i∈I(ω(ε))

∫
K(i,ε)

|ui,ε|2dxdz − O(1)

ω(ε)2

∫
Dl

|uε|2dxdz

≥ (1−M−1)ε−2

∫
Dl

WDl
|uε|2dxdz − C

{
Md(ε)2ω(ε)2ε−2 +

1

ω(ε)2

}∫
Dl

|uε|2dxdz.
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Equation (6.1) implies that WDl
is uniformly bounded. If we choose

ω(ε) = ε1/2d(ε)−1/2M−1/4,

then we get∫
Dl

|∇ε−2Aεuε|2dxdz + γ

∫
∂Dl

|uε|2dS

≥ (1−M−1)ε−2

∫
Dl

WDl
|uε|2dxdz − Cd(ε)M1/2ε−1

∫
Dl

|uε|2dxdz

≥ ε−2

∫
Dl

WDl
|uε|2dxdz − C{M−1ε−2 + d(ε)M1/2ε−1}

∫
Dl

|uε|2dxdz.

Now we let

M = [εd(ε)]−2/3.

Then

ω(ε) = ε2/3d(ε)−1/3,

and we obtain ∫
Dl

|∇ε−2Aεuε|2dxdz + γ

∫
∂Dl

|uε|2dS

≥ ε−2

∫
Dl

WDl
|uε|2dxdz − Cε−4/3d(ε)2/3

∫
Dl

|uε|2dxdz.
(6.21)

Next, we choose τ(ε) = ω(ε) = ε2/3d(ε)−1/3 and use (6.21) and the first equality
in (6.17) to get

∫
Dl

|∇ε−2Aε(χφε)|2dxdz + γ

∫
∂Dl

|χφε|2dS

≥
∫
Dl

|∇ε−2Aεuε|2dxdz + γ

∫
∂Dl

|uε|2dS − Cε−4/3d(ε)2/3
∫
Dl

|χφε|2dxdz

≥ ε−2

∫
Dl

WDl
|uε|2dxdz − Cε−4/3d(ε)2/3

∫
Dl

|uε|2dxdz − Cε−4/3d(ε)2/3
∫
Dl

|χφε|2dxdz.

(6.22)

Finally, using (6.14), we find∫
Dl

WDl
|uε|2dxdz =

∫
Dl

[WDl
+ O(ε)]|χφε|2dxdz,∫

Dl

|uε|2dxdz =

∫
Dl

[1 + O(ε)]|χφε|2dxdz.

Using these equalities and (6.22) we get (6.15).
Step 3. We establish a uniform lower bound estimate of the lowest eigenvalue.

From (6.15) we have, for all small ε > 0,

µγ(ε−2Aε) ≥ 1

ε2
{β0 + C1(3γ − κmax)ε + ε2τγ(l)2 − Cε4/3 − Cε2/3d(ε)2/3}.
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From (6.6) and (6.13) we have d(ε) = o((lε)1/q). Thus

µγ(ε−2Aε) ≥ 1

ε2

{
β0 + C1(3γ − κmax)ε + ε2τγ(l)2 − Cε4/3 − o(l

2
3q ε

2(1+q)
3q )
}
.(6.23)

Note that (6.23) holds if we only assume l ≥ cκ−1.
Now we use the condition (6.1) to simplify (6.23) and get

µγ(ε−2Aε) ≥ 1

ε2

{
β0 + C1(3γ − κmax)ε + ε2τγ(l)2 − Cε4/3 − o(εb)

}
,

where b = 2(2+q)
3q . For any 0 < α < 1/3 we can choose 3 < q < 4 such that b = 1 + α.

So, under the condition (6.1) we have

µγ(ε−2Aε) ≥ 1

ε2

{
β0 + C1(3γ − κmax)ε + ε2τγ(l)2 − o(ε1+α)

}
.(6.24)

Step 4. We prove an upper bound estimate of HC3(e3, κ, l). Recall that in order
to have nontrivial minimizers we must have µγ(ε−2Aε) < κ2; see [LP4]. Using this
and (6.1), (6.24) we find that

σ ≤ κ

β0
+

C1

β
3/2
0

(κmax − 3γ)− τγ(l)2

β0κ
+ o(κ−α).

From this and (2.5) we get

HC3(e3, κ, l) ≤ κ

β0
+

C1

β
3/2
0

(κmax − 3γ)− 2γ

β0lκ
+ o(κ−α).

Now (6.2) is proved.
Step 5. Using (6.2), the conclusion about the location of nucleation can be proved

following the argument in [HP, proof of Theorem 6.1]. In the following we outline
the proof. Assume σ satisfies (6.3). Again we let ε = (κσ)−1/2, and let (ψε,Aε) be
the minimizer. For any smooth function χ, we have (6.9). As in Step 2 we have (see
(6.22)) ∫

Dl

|∇ε−2Aε(χψε)|2dxdz + γ

∫
∂Dl

|χψε|2dS

≥ ε−2

∫
Dl

WDl
|χψε|2dxdz − Cε−4/3d(ε)2/3

∫
Dl

|χψε|2dxdz.

Using this and (6.9) we get∫
Dl

|χψε|2{WDl
− ε2κ2 − Cε2/3d(ε)2/3}dxdz ≤ ε2

∫
Dl

|∇χ|2|ψε|2dxdz.(6.25)

From (6.2) and (6.3) we have, for some α with p < α < 1/3,

ε2κ2 =
κ

σ
= β0 −

[√
β0C1(κmax − 3γ)− 2γβ0

κl

]
κ−1 + β2

0ρκ
−1 + o(κ−1−α),

ε =
1√
κσ

=
√

β0κ
−1 + O(κ−2).
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So we have

ε2µγ(ε−2F)− ε2κ2 = β0 + C1(3γ − κmax)ε + ε2τγ(l)2 − ε2κ2 + O(ε4/3)

=
2γ

lκ

(
1

σ
−
√

β0ε

)
− β

3/2
0 ερ + O(ε1+α) = −β

3/2
0 ερ + O(ε1+α).

From this and (6.25) we get

ε2

∫
Dl

|∇χ|2|ψε|2dxdz

≥
∫
Dl

|χψε|2{WDl
− ε2µγ(ε−2F)− β

3/2
0 ερ− Cε2/3d(ε)2/3 + O(ε1+α)}dxdz.

Using Theorems 5.1 and 5.3 we find∫
Dl

{
C1[kmax−κr(x)]−β

3/2
0 ρ−Cεα−Cε−1/3d(ε)2/3

}|χψε|2dxdz ≤ ε

∫
Dl

|∇χ|2|ψε|2dxdz.

Recall that d(ε) = o(lε)1/q for some q > 3. Thus ε−1/3d(ε)2/3 = o(εb), where b =
4
3q − 1

3 . We can choose q close to 3 such that b ≥ α > p.

Let φ(x) be a smooth function such that φ(x) = κmax−κr(x) in Ωδ0 . There exists

C0 > 0 such that |∇φ|2 ≤ C0φ. Let a =
√

C1

2C0
and

χ = exp
(
aε−1/2φ(x)

)
.

Plugging it into the above integral inequality we get∫
Dl

|ψε|2 exp
(
2aε−1/2φ

){
C1[kmax − κr(x)]− 2β

3/2
0 ρ− o(εp)

}
dxdz ≤ 0.

So there exist positive constants c and M1 such that∫
{κmax−κr(x)≥cρ+cεp, 0≤z≤l}

|ψε|2 exp
(
2aε−1/2(φ− cρ− cεp)

)
dxdz

≤M1

∫
{κmax−κr(x)≤cρ+cεp, 0≤z≤l}

|ψε|2dxdz,

and hence∫
Dl

|ψε|2 exp
(
2aε−1/2(φ−cρ−cεp)

)
dxdz ≤ 2M1

∫
{κmax−κr(x)≤cρ+cεp, 0≤z≤l}

|ψε|2dxdz.

Using this and (6.8) we get, for some M3 > M2 > 2M1 and m > 0,∫
Dl

|ψε|2 exp
(
2aε−1/2(φ− cρ− cεp)

)
dxdz

≤M2

∫
{κmax−κr(x)≤cεp, d∂Ω(x)<mε, 0≤z≤l}

|ψε|2dxdz ≤M3lε.

From this we get (6.4).



SUPERCONDUCTING FILMS 983

Remark 5. (i) From (6.23) and Lemma 6.1 we find that if l ≥ aκ−1, then for any
q > 3 fixed, we have

HC3
(e3, κ, l) =

κ

β0
+

C1

β
3/2
0

(κmax − 3γ)− 2γ

β0lκ
+ o(l

2
3q κ

q−2
3q ).(6.26)

In particular, if there exists α0, 1/2 < α0 < 1, such that aκ−1 ≤ l ≤ bκ−α0 , then we
choose 3 < q < 2 + 2α0 in (6.26) and also get (6.2) with α = α0.

(ii) We expect that if l � κ−1, the solutions on Dl behave as the solutions on a
bulk domain, say, a cylinder with a finite height,11 and we expect that superconduc-
tivity nucleates at a subset of the top and bottom edges, namely, at the set

N (∂Ω)× {0}
⋃
N (∂Ω)× {l}.

In the following we consider the films with l ∼ aκ−2. We shall see in Theorems
6.3, 6.4, and 6.5 that HC3

(e3, κ, l) depends sensitively on the value of a, and a = 2γ
is a critical value.

Theorem 6.3. Assume that

l = aκ−2 + O(κ−4), a > 2γ.(6.27)

(i) Let 1
6 < α < 1

3 . For large κ we have

HC3
(e3, κ, l) =

(
1− 2γ

a

)
κ

β0
+

C1

β
3/2
0

(κmax − 3γ)

(
1− 2γ

a

)1/2

+ o(κ−α).(6.28)

(ii) As the applied field decreases from HC3(e3, κ, l), superconductivity nucleates
first in the strip N (∂Ω)× [0, l]. More precisely, assume that σ satisfies (6.3), and let
(ψ,A) be the minimizer of the Ginzburg–Landau functional G. Then for any 0 < p <
1/3, there exist positive constants c1, c2, and C such that (6.4) holds.
Proof. We modify the proof of Theorem 6.2 to get the conclusions.
Step 1. From Lemma 6.1 we get a lower bound of HC3 :

HC3
(e3, κ, l) ≥

(
1− 2γ

a

)
κ

β0
+

C1

β
3/2
0

(κmax − 3γ)

(
1− 2γ

a

)1/2

+ O(κ−1/3).(6.29)

Now let us choose σ such that

(
1− 2γ

a

)
κ

β0
+

C1

β
3/2
0

(κmax − 3γ)

(
1− 2γ

a

)1/2

+ O(κ−1/3) < σ < HC3(e3, κ, l).

(6.30)

Again we let ε = (κσ)−1/2. Then l has order of ε2. Let (ψε,Aε) be a minimizer
of the Ginzburg–Landau functional. Then, as in the proof of Theorem 6.2, we have
‖ψε‖L∞(Dl) = o(1). Using the second inequality of (4.9) we have, for any q > 3,

‖�{ψ̄ε∇ε−2Aεψε}‖Lq(Dl) ≤
C(q)

ε
‖ψε‖Lq(Dl)‖ψε‖L∞(Dl).(6.31)

11Minimal solutions on such domains have been examined in [P1].
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We use (4.8) to get

‖Aε − F‖C1+α(D̄l) ≤ C(α)ε{‖ψε‖2L4(Dl)
+ ‖ψε‖Lq(Dl)‖ψε‖L∞(Dl)}.

Then we use the argument in the proof of Theorem 6.2 to show that (see (6.11))

‖ψε‖L2(Dl) = O((lε)1/2).

Hence for 0 < α0 < 1 and q = 3/(1− α0),

‖Aε − F‖C1+α0 (D̄l) = o(ε)d(ε), d(ε) = (lε)1/2 + (lε)1/q = O(ε
3
q ),

since l = O(ε2). Let φε be the eigenfunction of −∇2
ε−2Aε associated with the lowest

eigenvalue. As in the proof of Theorem 6.2 (Step 2) we can show that for any smooth
function χ,

∫
Dl

|∇ε−2Aε(χφε)|2dxdz ≥
∫
Dl

|∇ε−2F(χφε)|2dxdz − Cε−4/3d(ε)2/3
∫
Dl

|χφε|2dxdz.
(6.32)

Then, similar to (6.23), now we have

µγ(ε−2Aε) ≥ 1

ε2
{β0 + C1(3γ − κmax)ε + ε2τγ(l)2 − o(ε

2
3+ 2

q )}.

Since (ψε,Aε) is nontrivial, we have µγ(ε−2Aε) < κ2. If 1
6 < α < 1

3 , we choose
3 < q < 4 such that 2

q − 1
3 = α. Using this and (6.32) we find

HC3(e3, κ, l) ≤
(

1− 2γ

a

)
κ

β0
+

C1

β
3/2
0

(κmax − 3γ)

(
1− 2γ

a

)1/2

+ o(κ−α).

Equation (6.28) follows from this and (6.29).
Step 2. Using the argument in the proof of Theorem 6.2 (Step 5) and (6.28), we

can show that superconductivity nucleates in the strip N (∂Ω) × [0, l]. In fact, now
(6.25) also holds, and d(ε) = O(ε3/q). From (6.28) and (6.3) we have, for some α with
p < α < 1/3,

κ

σ
= β0

(
1− 2γ

a

)−1

− C1(κmax − 3γ)

√
β0

κ

(
1− 2γ

a

)−3/2

+
β2

0ρ

κ

(
1− 2γ

a

)−2

+ o(κ−1−α),

ε =

√
β0

κ

(
1− 2γ

a

)−1/2

+ O(κ−2),

ε2µγ(ε−2F)− ε2κ2 = −β
3/2
0

(
1− 2γ

a

)−1/2

ερ + o(ε1+α).

Thus we have∫
Dl

{
[C1(κmax − κr(x)]− β

3/2
0

(
1− 2γ

a

)−1/2

ρ− o(εα)

}
|χψε|2dxdz

≤ ε

∫
Dl

|∇χ|2|ψε|2dxdz.
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Then we can proceed as in Step 5 of the proof of Theorem 6.2 to obtain (6.4).
Next we consider the case where

l = 2γκ−2 + cκ−3 + O(κ−4), c > 0.(6.33)

We shall see that HC3(e3, κ, l) remains bounded between two positive numbers. The
discussion is valid for a more general case 2γκ−2 + aκ−3 ≤ l ≤ 2γκ−2 + bκ−3.

Theorem 6.4. Assume (6.33).
(i) For large κ we have

HC3
(e3, κ, l) =

c

2γβ0
+

C1

β
3/2
0

(κmax − 3γ)

√
c

2γ
κ−1/2 + O(κ−2/3).(6.34)

(ii) Fix σ0 such that

c

2γ
< σ0 <

c

2γβ0
,(6.35)

and let (ψ,A) be the minimizer of the Ginzburg–Landau functional G for σ = σ0.

Then for any constant 0 < α < 2
√

σ0 − c
2γ there exists C(α) > 0 independent of κ

and l such that∫
Dl

exp
(
α
√
κd∂Ω(x)

){|ψ|2 + κ−2|∇σ0κAψ|2}dxdz ≤ Cκ−5/2.(6.36)

Proof. Step 1. From (6.33) and (2.5) we have

κ2 − τγ(l)2 =
c

2γ
κ + O(1).(6.37)

Using (6.37) and the proof of Lemma 6.1 we get the lower bound of HC3 . To obtain
an upper bound of HC3 , we choose σ such that

σ∗ + O(κ−1/3) < σ < HC3
(e3, κ, l).

Note that σ is bounded away from 0. Let ε = (κσ)−1/2 and let (ψε,Aε) be the
minimizer. From the second inequality in (4.9) we have, for q > 3,

‖�{ψ̄ε∇ε−2Aεψε}‖Lq(Dl) ≤
C(q)

ε
‖ψε‖Lq(Dl)‖ψε‖L∞(Dl).

For q = 3/(1− α), where 0 < α < 1, we get

‖Aε − F‖C1+α(D̄l) ≤ Cδ, where δ =
1

σ
‖ψε‖2L4(Dl)

+ ε‖ψε‖Lq(Dl)‖ψε‖L∞(Dl).

(6.38)

Note that ‖ψ‖Lq(Dl) = O(l1/q). Hence

δ ≤ C(l1/2 + εl1/q).

Let φε be the eigenfunction of −∇2
ε−2Aε associated with the lowest eigenvalue. As in

the proof of Theorem 6.2 (Step 2), we find∫
Dl

|∇ε−2Aεφε|2dxdz ≥
∫
Dl

|∇ε−2Fφ
ε|2dxdz − Cε−2δ2/3

∫
Dl

|φε|2dxdz.(6.39)
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Therefore

κ2 > µγ(ε−2Aε) ≥ τγ(l)2 +
1

ε2

{
β0 + C1(3γ − κmax)ε− Cε4/3 − Cδ2/3

}
.(6.40)

So

κ2 − τγ(l)2 >
β0 + o(1)

ε2
= [β0 + o(1)]κσ.

Using this and (6.37) we find

σ ≤ c

2γβ0
+ o(1).

Hence ε has order of κ−1/2, and l has order of ε4. We choose 3 < q < 4 in (6.38) and
find

δ ≤ Cε2.

Then we write (6.40) as

κ2 > µγ(ε−2Aε) ≥ τγ(l)2 +
1

ε2
{β0 + C1(3γ − κmax)ε− Cε4/3}.

From this we obtain

HC3
(e3, κ, l) ≤ c

2γβ0
+

C1

β
3/2
0

(κmax − 3γ)

√
c

2γ
κ−1/2 + O(κ−2/3).

Equation (6.34) is proved.
Step 2. Let σ satisfy (6.35), and let (ψ,A) be the minimizer for σ = σ0. Let χ

be a smooth function vanishing at ∂Ω× [0, l]. From the equation of ψ we get

∫
Dl

|∇κσ0A(χψ)|2dxdz + γ

∫
∂Dl

|χψ|2dS =

∫
Dl

{κ2(1− |ψ|2)|χψ|2 + |∇χ|2|ψ|2}dxdz.
(6.41)

Note that |ψ| ≤ 1, and (6.38) remains true. We choose 3 < q < 4 in (6.38) to find

‖A− F‖C1+α(D̄l) ≤ C
{‖ψ‖2L4(Dl)

+ κ−1/2‖ψ‖Lq(Dl)

} ≤ C(l1/2 + κ−1/2l1/q) ≤ Cκ−1.

Thus ∂1A2 − ∂2A1 = 1 + O(κ−1). Using this and Lemma 5.2 we get∫
Dl

|∇κσ0A(χψ)|2dxdz + γ

∫
∂Dl

|χψ|2dS ≥ [κσ0(1 + O(κ−1)) + τγ(l)2
] ∫

Dl

|χψ|2dxdz.

From this, (6.37), and (6.41) we have{(
σ0 − c

2γ

)
κ + O(1)

}∫
Dl

|χψ|2dxdz ≤
∫
Dl

|∇χ|2|ψ|2dxdz.

Now we choose

χ(x, z) = χ(x) = η(x) exp
(α

2

√
κζ
)
,
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where 0 < α < 2
√

σ0 − c
2γ , ζ(x) is a smooth function on Ω̄ such that ζ(x) = d∂Ω(x)

on Ωδ0 , η(x) is a cut-off function such that η(x) = 0 if d∂Ω(x) < κ−1/2, η(x) = 1 if
d∂Ω(x) > 2κ−1/2, and |∇η(x)| ≤ 4

√
κ. Plugging it into the above inequality we find∫

Dl

|ψ|2η2 exp(α
√
κζ)dxdz ≤ C

∫
Dl∩{dist(x,∂Ω)<2κ−1/2}

|ψ|2dxdz ≤ Clκ−1/2,

which implies that for a larger C,∫
Dl

|ψ|2 exp
(
α
√
κd∂Ω(x)

)
dxdz ≤ Clκ−1/2.

Using this and (6.41) we find∫
Dl

|∇κσ0Aψ|2 exp
(
α
√
κd∂Ω(x)

)
dxdz ≤ Clκ3/2.

From these two inequalities and the condition (6.33) we get (6.36).
Theorem 6.5. Assume that

l(κ) < l < 2γκ−2 + O(κ−4),(6.42)

where l(κ) was defined in section 2. For large κ we have HC3
(e3, κ, l) = O(κ−1).

Proof. We show that κHC3
(e3, κ, l) is bounded as κ → ∞. Suppose this is not

the case. Then for each κ we can find σ, 0 < σ < HC3(e3, κ, l), such that σκ → ∞
as κ → ∞. Thus ε = (κσ)−1 → 0. Let (ψε,Aε) be the minimizer of the Ginzburg–
Landau functional. As in the proof of Theorem 6.4 we have

‖Aε − F‖C1+α(Dl) ≤ Cδ, where we choose δ =
1

σ
‖ψε‖2L4(Dl)

+ ε‖ψε‖Lq(Dl).

Since σ = 1
ε2κ and ‖ψ‖Lq(Dl) = O(l1/q), we have

δ ≤ Cε2κl1/2 + Cεl1/q = O(ε2 + εl1/q).

As in the proof of Theorem 6.4 we get (6.39). Hence, as ε→ 0,

κ2 > µγ(ε−2Aε)− Cε−2δ2/3 = τγ(l)2 +
β0 + o(1)

ε2
,

so

β0 + o(1) ≤ ε2[κ2 − τγ(l)2] = ε2

[
C

2γ
+

γ2

3
+ o(1)

]
→ 0.

This contradiction shows that ε is bounded away from 0. Hence σ ≤ Cκ−1.
Remark 6. Assume that l = 2γκ−2 + cκ−4. From Theorem 6.5, HC3(e3, κ, l) ≤

Cκ−1. Now we look for a lower bound. Let a0 > 0 be the smallest positive number
such that

µγ(a0E) =
c

2γ
+

γ2

3
.

Then

HC3(e3, κ, l) ≥ a0 + o(1)

κ
.(6.43)
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To prove (6.43), we let σκ = a < a0 and choose test functions (ψ,F) with ψ(x, z) =
alξl(z)φ(x), where ξl is the function given in (2.4), and al = 1/‖ξl‖L2([0,l]). Recall
that F = (−x2, 0, 0) and E = (−x2, 0). We have

G[ψ,F] = lJκ[φ] +
κ2l|Ω|

2
,

where

Jκ[φ] =

∫
Ω

{
|∇κσEφ|2 − (κ2 − τγ(l)2)|φ|2 +

κ2bl
2
|φ|4
}

dx + γ

∫
∂Ω

|φ|2ds

and

bl =
‖ξl‖4L4([0,l])

‖ξl‖4L2([0,l])

.

Note that lbl → 1 and κ2bl → 2γ as l→ 0. When κσ = a < a0, the functional Jκ has
a nontrivial minimizer with negative energy. Thus G has a nontrivial minimizer. So
(6.43) is true.
Proof of Theorem 1.1. It follows from Theorems 6.2, 6.3, 6.4, and 6.5, and Re-

mark 3.
Remark 7. We may further discuss the behavior of thin films subjected to a

perpendicular magnetic field far below HC3 . We would like to give some observations.
(i) Consider a film with large κ and l = 2γκ−2 + cκ−3 placed in a perpendicular

magnetic field H = σe3.
If c

2γ < σ < c
2γβ0

, superconductivity concentrates in a thin cylinder with thick-

ness O(κ−1/2) around the lateral surface ∂Ω × [0, l]. In fact, from Theorem 6.4, the
order parameters exponentially decay in the direction normal to the lateral surface.
Moreover the minimizers have energy

G[ψ,A] =
κ2l|Ω|

2
+ O(κ3/2l).

If 0 < σ < c
2γ , superconductivity occurs in the interior. To see this, let us compute

the energy of the minimizers. Using (6.37) we can show that when 0 < σ < c
2γ , the

functional Jκ has a nontrivial minimizer wκ(x), and there exists a constant C > 0
such that for all large κ,

∫
Ω
|wκ|4dx ≥ C|Ω| (see, for instance, [SS]). Hence

Jκ[wκ] = −κ2b

2

∫
Ω

|wκ|4dx ≤ −Cκ2l|Ω|
2

.

Let ψκ = αlξl(z)wκ(x), and choose (ψκ,F) as a test function. As in Remark 6 we
find that G[ψ,F] ≤ 1

2 (1− C)κ2l|Ω|. Thus the minimizers have energy

G[ψ,A] ≤ 1

2
(1− C)κ2l|Ω|.

Hence the local energy of the minimizers in the interior is not negligible.
If we compare these phenomena with the behaviors of the minimizers of the two-

dimensional Ginzburg–Landau functional (see [P2]), we may say that a film with
thickness l = 2γκ−2 + cκ−3 exhibits a lateral surface superconductivity in a perpen-
dicular field with magnitude c

2γ < σ < c
2γβ0

and exhibits a bulk superconductivity if
0 < σ < c

2γβ0
.
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(ii) Now consider a film with l = aκ−1, a > 2γ. From Theorems 6.2 and 6.3 we
know that in a perpendicular magnetic field, superconductivity nucleates in a strip
N (∂Ω)× [0, l]. Now consider the applied field far below HC3 and assume H = λκe3.

If 1 < λ < 1/β0, we expect that the minimizers concentrate at a thin layer around
the lateral surface ∂Ω × [0, l]. Moreover, the behavior of the minimizers in the thin
layer, after rescaling, can be described by the solutions of the limiting equation{

−∇2
Fψ = λ(1− |φ|2)ψ in R

2
+ × (0, a),

∇Fψ · ν = 0 if x2 = 0, or if z = 0, a.

Thus we may say that in a perpendicular applied field lying in between κ and HC3 ,
a film with thickness l = aκ−1 behaves like a type II superconductor and exhibits a
lateral surface superconducting state. We do not present the discussion here since it
is similar to what we have done in [P2] for cylindrical domains with infinite height.12

If 0 < λ < 1, we can show that superconductivity occurs at interior (see item (i)).
(iii) Similarly we can analyze the films with l = aκ−2, where a > 2γ.
From Theorem 1.1 we have

HC3
(e3, κ, l) ∼


κ
β0

if l = aκ−1, a > 0,

(1− 2γ
a ) κ

β0
if l = aκ−2, a > 2γ,

c
2γβ0

if l = 2γκ−2 + cκ−3, c > 0.

The above observations suggest that

HC2(e3, κ, l) ∼


κ if l = aκ−1, a > 0,

(1− 2γ
a )κ if l = aκ−2, a > 2γ,

c
2γ if l = 2γκ−2 + cκ−3, c > 0.

REFERENCES

[A] S. Agmon, Lectures on Exponential Decay of Solutions of Second Order Elliptic Equa-
tions: Bounds on Eigenfunctions of N-Body Schrödinger Operators, Princeton Univer-
sity Press, Princeton, NJ, 1982.

[ADa] A. Aftalion and E. N. Dancer, On the symmetry and uniqueness of solutions of the
Ginzburg–Landau equations for small domains, Commun. Contemp. Math., 3 (2001),
pp. 1–14.

[ADu] A. Aftalion and Q. Du, The bifurcation diagrams for the Ginzburg–Landau system of
superconductivity, Phys. D, 163 (2002), pp. 94–105.

[Al] Y. Almog, Non-linear surface superconductivity for type II superconductors in the large
domain limit, Arch. Ration. Mech. Anal., 165 (2002), pp. 271–293.

[BPT] P. Bauman, D. Phillips, and Q. Tang, Stable nucleation for the Ginzburg–Landau system
with an applied magnetic field, 142 (1998), pp. 1–43.

[BH] C. Bolley and B. Helffer, An application of semi-classical analysis to the asymptotic
study of the super cooling field of a superconducting material, Ann. Inst. H. Poincaré
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Abstract. We prove a new qualitative result on finite speed of propagation for the thin film
equation subjected to Navier slippage or even weaker slip conditions. Our approach works in multiple
space dimensions and is based on a novel technique which combines recently established weighted
energy estimates with a Hardy-type inequality and with Stampacchia’s iteration lemma. It can be
adapted to degenerate parabolic equations of order different from four as well.
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1. Introduction. In this paper, we present a new method for the proof of qual-
itative results on finite speed of propagation for degenerate parabolic equations. It is
inspired by the idea developed by Dal Passo, Giacomelli, and Grün in [10] to show
the occurrence of a waiting time phenomenon for the thin film equation. We apply
the method to establish new results on finite speed of propagation for the thin film
equation

ut + div(|u|n∇∆u) = 0 in R
N × (0,∞),

u(·, 0) = u0 on R
N

(1.1)

in the parameter range n ∈ [2, 3) in space dimensions N < 4. For ease of presentation,
we confine ourselves to a mobility m(u) := |u|n. However, modifications of (1.1)
obtained by replacing the term |u|n with more general functions m ∈ C2(R; R+

0 ),
m(0) = 0, could be handled as well.

Let us make a few comments on the physical background. In the course of lu-
brication approximation (see, e.g., Bernis [2] or Oron, Davis, and Bankoff [29]), the
equation

ht +
σ

3η
div (m(h)∇∆h) = 0(1.2)

is derived to describe the surface tension driven evolution of the thickness h of a thin
film of viscous liquid spreading on a horizontal surface. Here, η is the viscosity of
the liquid and σ denotes surface tension. The explicit form of the mobility m(·) is
determined by the flow condition at the liquid-solid interface. In case of a no-slip
condition we get m(h) = h3, whereas a generic slip condition

�vhor

∣∣∣∣
z=0

= βhn−2 · ∂�vhor

∂z

∣∣∣∣
z=0

entails

m(h) = h3 + βhn.
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Here, �vhor denotes the horizontal component of the fluid velocity field, β is a positive
parameter, and z stands for the vertical coordinate. For n = 2, the classical slip
condition of Navier is recovered, but in the physical literature (cf., e.g., [15], [16],
or [27]) different parameters of n ∈ (0, 3) were suggested as well to model effects of
stronger (n < 2) or weaker (n ∈ (2, 3)) slippage.

Analytically, the qualitative behavior of solutions is governed by the smoothness
of m(·) in its point of degeneracy, i.e., in h0 = 0. For this reason, in the mathematical
literature usually the model problem (1.1) is studied, as it exhibits already all the
essential mathematical difficulties. So let us emphasize that the physically important
case of surface tension driven thin film flow subjected to Navier’s slip condition or to
even weaker slip conditions corresponds in the framework of the model problem (1.1)
to the choices n = 2 or 2 < n < 3, respectively. Hence, it is covered by the results to
be presented in the present paper.

Recall that (1.1) admits globally nonnegative solutions (cf., e.g., Bernis and Fried-
man [5] or Grün [19]) and that it implicitly defines a free boundary problem where
the free boundary at time T ≥ 0 is given by ∂[supp(u(·, T ))]. It is one of the striking
features of (1.1) that the qualitative behavior of solutions is sensitive to the mobility
growth exponent n > 0. Despite the fact that scaling invariances of (1.1) (for details
cf. Giacomelli and Otto [14]) suggest the existence of compactly supported self-similar
solutions for arbitrary n > 0, these solutions only exist for 0 < n < 3 (cf. Bernis,
Peletier, and Williams [6] and Ferreira and Bernis [13]). Moreover, for n > 4 the
support of arbitrary solutions is constant in time, as was proven by Beretta, Bertsch,
and Dal Passo [1]. And asymptotic analysis suggests that this behavior holds true for
all n ≥ 3. This is in good agreement with the spreading paradox observed by Dussan
and Davis [12] in the framework of Navier–Stokes equations. It says that a no-slip
condition at the liquid-solid interface (which entails n = 3) implies infinite energy
dissipation at the liquid-solid-gas contact line in the case of moving droplets. On the
other hand, it is well known (see Bernis and Friedman [5], Beretta, Bertsch, and Dal
Passo [1], and Bertozzi and Pugh [7] in space dimension N = 1; Dal Passo, Garcke,
and Grün [9] and Grün [18] in the multidimensional case) that for n ∈ (0, 3) in space
dimensions N < 4 so called strong solutions exist. They exhibit a zero contact angle
at the free boundary, and for t→∞ their support tends to cover the spatial domain
entirely.

The existence of compactly supported self-similar solutions indicates that solu-
tions to (1.1) have the property of finite speed of propagation. In Bernis [3], [4] and in
Bertsch et al. [8], this could be confirmed rigorously for n ∈ (0, 2) in space dimensions
N < 4 and for n ∈ [2, 3) in space dimension N = 1. Surprisingly, the case n ∈ [2, 3),
N > 1, remained open for rather a long time. Only recently, the author succeeded in
proving in his habilitation thesis [21] a first result on finite speed of propagation in
the higher-dimensional setting for that critical parameter regime.

While the result of [21] took advantage of Bernis’s technique of higher order
differential inequalities, the new approach to be presented here essentially uses an
iteration lemma due to Stampacchia, and it seems to be technically less involved. Let
us emphasize that this method also applies to degenerate parabolic equations of sixth
or even higher order or of second order like the porous-media equation or like doubly
degenerate parabolic equations (cf., e.g., Vazquez [30] or Ivanov [26]).

Before describing the outline of the present paper, let us recall the peculiarities of
the regime n ∈ [2, 3) which seem to exclude an applicability of the techniques used for
n ∈ (0, 2). As (1.1) is fourth order parabolic, comparison principles do not hold and
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the argumentation has to be based solely on integral estimates. At this time, there
are basically two types of integral estimates known: first the energy estimate

1

2

∫
RN

|∇u(·, T )|2 +

∫ T

0

∫
RN

un|∇∆u|2 ≤ 1

2

∫
RN

|∇u0|2(1.3)

and second the α-entropy estimate

1

α(α + 1)

∫
RN

uα+1(·, T ) + C−1

∫ T

0

∫
RN

{
|∇u

α+n+1
4 |4 + |D2u

α+n+1
2 |2

}
≤ 1

α(α + 1)

∫
RN

uα+1
0 ,

(1.4)

which is valid for

α ∈
(

1

2
− n, 2− n

)
\ {−1, 0}.(1.5)

Note that for compactly supported initial data, the global version of estimate (1.4)
is valid only for n ∈ (0, 3). Observe, moreover, that condition (1.5) does not permit
the parameter α to be chosen positive in the parameter regime n ∈ [2, 3). As a
consequence, in that regime the entropy uα+1(T ) can no longer be controlled in terms
of the initial entropy. This is the reason why analytical approaches based on the
entropy estimate are restricted to the interval n ∈ (0, 2).

On the other hand, the energy estimate requires additional analytical tools in
order to become accessible to Gagliardo–Nirenberg-type arguments. To this end,
it would be desirable to estimate the dissipated energy

∫
un|∇∆u|2 from below by

derivatives of certain powers of u. In the multidimensional case, this goal was achieved
only recently by virtue of the interpolation inequality∫

Ω

|∇u
n+2

6 |6 +

∫
Ω

|∇∆u
n+2

2 |2 ≤ C(n,N)

∫
Ω

un|∇∆u|2,(1.6)

which was proven in [21] (see also the recently published paper [20]) and which holds
on convex domains Ω for positive functions of class H2 having zero normal derivatives
on the boundary.

This result was the key observation to establish in [21] on bounded convex domains
Ω the existence of strong solutions to the thin film equation associated with compactly
supported, nonnegative initial data which satisfy, besides an α-entropy estimate, the
following energy-type estimate:

∫
Ω

|∇u(·, T )|2 + C(n,N)

{∫ T

0

∫
Ω

|∇u
n+2

6 |6 +

∫ T

0

∫
Ω

|∇∆u
n+2

2 |2
}
≤
∫

Ω

|∇u0|2.

(1.7)

By virtue of appropriate weighted versions of that estimate, first existence results
for the Cauchy problem in the parameter regime n ∈ (2 −√8/(8 + N), 3) could be
established as well; see [21].

In the present paper, we will prove that these solutions have the property of finite
speed of propagation in the following sense.

Definition 1.1. Let v : R
N × [0,∞)→ R be a nonnegative function and assume

that v(., 0) has compact support in R
N . We say that v has finite speed of propagation
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iff for each ball BR0
(x0), x0 ∈ R

N , R0 > 0, that contains supp v(·, 0), a continuous,
monotonically increasing function R : [0,∞)→ R

+
0 , R(0) = 0, exists such that

supp v(., t) ⊂ BR0+R(t)(x0) .

In section 2, we will recall the properties of strong solutions to the Cauchy problem
as constructed in [21]. Section 3 is devoted to the proof of a Hardy-type inequality
on exterior domains. Combining that Hardy-type inequality with the aforementioned
weighted version of the energy estimate, we may formulate an integral estimate which
will serve as the key ingredient for the subsequent proof of finite speed of propagation
which follows in section 4. The idea of proof is to derive via appropriate interpolation
arguments a recursive inequality for the function

GT (R) :=

∫ T

0

(∫
RN\BR

u2

)n+2
2

which permits an application of Stampacchia’s iteration lemma (see Lemma 4.3). This
way, we deduce for fixed T > 0 the existence of a number 0 < R(T ) < ∞ such that
GT (R(T )) = 0. As a consequence, it becomes evident that supp(u(·, t)) ⊂ BR(T )(0)
for all 0 ≤ t < T . Furthermore, R(T ) continuously depends on T , which gives the
result.

Throughout the paper, we use the usual notation for Sobolev and Lebesgue spaces.
We write ‖u‖p for (

∫ |u|p)1/p also in the case 0 < p < 1. Finally, BR(x) denotes the
ball with radius R and center x ∈ R

N , and [u > 0]T stands for the set {(x, t) ∈
R
N × (0, T )|u(x, t) > 0}.

2. Preliminaries. In this section, we will summarize recent results on strong
solutions for the Cauchy problem in the multidimensional case. In addition, we will
formulate a version of Gagliardo–Nirenberg’s inequality to be used in what follows.

Theorem 2.1. Let n ∈ (2−√8/(8 + N), 3), N < 4, and assume u0 ∈ H1(RN )
to be nonnegative with compact support in the sense that u0(x) = 0 almost everywhere
on R

N \BR0(0) for a positive number R0. Then a nonnegative function u exists that
has the following properties:

(i) Regularity:

ut ∈ L2(R+; (W 1,p(Ω))′) for p >
4N

2N + n(2−N)
and any Ω ⊂⊂ R

N ,(2.1)

u ∈ L∞(R+;H1(RN )),(2.2)

D2u
α+n+1

2 ∈ L2(RN × R
+) for any α ∈ (max{−1, 1/2− n}, 2− n),(2.3)

∇u
α+n+1

4 ∈ L4(RN × R
+) for any α ∈ (max{−1, 1/2− n}, 2− n),(2.4)

J =

{
un∇∆u on [u > 0]T

0 on [u = 0]T
∈ L2(R+;Lq(RN ))(2.5)

for any 1 < q <
4N

2N + n(N − 2)
.

(ii) u is a solution to the Cauchy problem in the sense that∫ T

0

〈ut, φ〉(W 1,p(B(0)))′×W 1,p(B(0)) −
∫

[u>0]T

un∇∆u∇φ = 0(2.6)
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for p > 4N
2N+n(2−N) , arbitrary T > 0, and for all test functions φ contained

in L2((0, T );W 1,∞(RN )) such that
⋃

t∈(0,T ) supp(φ(., t)) ⊂ B(0), where B(0)

is an arbitrary ball centered in the origin 0 ∈ R
N .

(iii) The solution u attains initial data u0 in the sense that

lim
t↘0

u(·, t) = u0(·) in Lβ
loc(RN )(2.7)

for arbitrary 1 ≤ β < 2N
N−2 .

(iv) The solution u is an element of L∞(R+;Lβ(RN )) for 1 < β < 2N
N−2 . More

precisely, a positive constant C = C(β,N) exists such that the following esti-
mate holds:

sup
t∈R+

∫
RN

uβ(x, t)dx ≤ C(β,N)

{(∫
RN

|∇u0|2
)1/2

+

∫
RN

u0

}β

.(2.8)

(v) u satisfies for arbitrary T > 0 the basic energy estimate∫
RN

|∇u(·, T )|2 + C−1
0

∫ T

0

∫
RN

{
|∇u

n+2
6 |6 + |∇∆u

n+2
2 |2

}
≤
∫

RN

|∇u0|2 .
(2.9)

Moreover, for arbitrary R0 ≥ 0 and arbitrary T > 0 the following weighted
version of the energy estimate holds with a positive constant C1 that depends
only on n and N :

∫
RN\BR0

(0)

(|x| −R0)6|∇u(·, T )|2 dx

+ C−1
1

∫ T

0

∫
RN\BR0

(0)

(|x| −R0)6
{
|∇u

n+2
6 |6 + |∇∆u

n+2
2 |2

}
≤
∫

RN\BR0
(0)

(|x| −R0)6 · |∇u0|2 dx + C1

∫ T

0

∫
RN\BR0

(0)

un+2.

(2.10)

Remark 1. For n ∈ ( 1
8 , 2 −

√
8/(8 + N)), an existence result for the Cauchy

problem can be found in Bertsch et al. [8]. However, the solution concept applied
in that paper is technically much more involved since third order derivatives are not
controlled.

In the course of proof of the result on finite speed of propagation, we need a
homogeneous version of Gagliardo–Nirenberg’s inequality valid on the complement of
balls in R

N . It reads as follows.
Lemma 2.2. Let 1 ≤ r <∞, 0 < q < p, m ∈ N+ such that

1

r
− m

N
<

1

p
.

Assume w to be contained in Wm,r(RN \BR(0))∩Lq(RN \BR(0)). There is a positive
constant K1 = K1(N,m, p, q, r) such that

‖w‖p,RN\BR(0) ≤ K1 · ‖Dmw‖a
r;RN\BR(0)

· ‖w‖1−a
q,RN\BR(0)

.(2.11)
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Here, a = (1
q − 1

p )/( 1
q + m

N − 1
r ).

Remark 2. With a slight misuse of notation, we write ‖u‖p for (
∫ |u|p)1/p also in

the case 0 < p < 1.

Before giving the proof, let us state Gagliardo–Nirenberg’s inequality in the fol-
lowing form (see Dal Passo, Giacomelli, and Shishkov [11]).

Lemma 2.3. Let 1 ≤ r ≤ ∞, 0 < q < p, m ∈ N+ such that

1

r
− m

N
<

1

p
.

If Ω ⊂ R
N is bounded with piecewise smooth boundary, then positive constants c1 and

c2 depending only on Ω, r, p,m, and q exist such that for any u ∈ Lq(Ω) satisfying
Dmu ∈ Lr(Ω), the following inequality holds:

‖u‖p ≤ c1‖Dmu‖ar‖u‖1−aq + c2‖u‖q,(2.12)

where a = ( 1
q − 1

p )/( 1
q + m

N − 1
r ).

Especially, if Ω is an infinite cone, i.e., for given points x0, y0 ∈ R
N , x0 �∈ B1(y0)

a set

Cx0,y0
:=
{
z ∈ R

N |z = x0 + λ(y − x0), y ∈ B1(y0), λ > 0
}
,

then (2.12) holds with constants c1 = c(‖x0 − y0‖, r, p,m, q) and c2 = 0.

Proof of Lemma 2.2. Let us prove the result first for the special case Ω = R
N \

B1(0). To this purpose, we write

Ω = Ω+ ∪ Ω−,

where Ω+ and Ω− are open sets which are Wm,∞-diffeomorphic to the half-space
R
N
+ := {x ∈ R

N |xN > 0}. In the case m = 1, for instance, we may choose Ω+ and Ω−
as the complements in R

N of the closed sets

A+ := B1(0) ∪ {x ∈ R
N |xN ≥ 0

}
and

A− := B1(0) ∪ {x ∈ R
N |xN ≤ 0

}
,

respectively. For m > 1, an appropriate smoothing procedure has to be applied.

By virtue of Lemma 2.3 and a straightforward transformation argument, a
Gagliardo–Nirenberg inequality in the spirit of (2.11) holds both on Ω+ and on Ω−.
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This is sufficient to prove (2.11) for Ω = R
N \B1(0). Indeed,∫

Ω

|w|p ≤
∫

Ω+

|w|p +

∫
Ω−
|w|p

≤ C

{(∫
Ω+

|Dmw|r
) ap

r

·
(∫

Ω+

|w|q
) p

q (1−a)

+

(∫
Ω−
|Dmw|r

) ap
r

·
(∫

Ω−
|w|q

) p
q (1−a)}

≤ C

(∫
Ω+

|Dmw|r +

∫
Ω−
|Dmw|r

) ap
r
(∫

Ω+

|w|q +

∫
Ω−
|w|q

) p
q (1−a)

≤ K1

(∫
Ω

|Dmw|r
) ap

r
(∫

Ω

|w|q
) p

q (1−a)

.

In the second step of this estimate, we used the assumption

1

r
− m

N
<

1

p
<

1

q

together with the calculus inequality

k∑
i=1

aαi b
β
i ≤

(
k∑

i=1

ai

)α( k∑
i=1

bi

)β

,

which holds for numbers α, β and ai, bi, i = 1, . . . , k, that satisfy

ai, bi ≥ 0, α, β > 0, and α + β ≥ 1.

For a proof, see, for instance, Dal Passo, Giacomelli, and Shishkov [11]. Finally, (2.11)
follows for arbitrary R > 0 by a straightforward scaling argument.

3. An application of Hardy’s inequality. In this section we will prove a
Hardy-type estimate on R

N \BR(0), which will be combined with the weighted energy-
type estimate (2.10) to yield a key ingredient for the proof of the main result of the
paper. The Hardy-type estimate reads as follows.

Lemma 3.1. Assume that w(r) := r4 and v(r) := r6 and that u ∈ H1
loc(R

N ) ∩
C(RN ) satisfies the inequalities∫

RN

v(|x|) · |∇u|2 dx <∞,(3.1) ∫
∂BR(0)

u2 dHN−1 ≤ C1 ·R−1 .(3.2)

Then a positive constant C2 exists which is independent of R > 0 such that∫
RN\BR(0)

w(dist(x,BR(0))) · u2 dx ≤ C2

∫
RN\BR(0)

v(dist(x,BR(0)))|∇u|2 dx .(3.3)

Let us first recall the following version of Hardy’s inequality in one space dimen-
sion (see [23], [24], and the monograph [28]).
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Lemma 3.2. Let a be a real number and assume the weight functions v, w to be
nonnegative and measurable on (a,∞). Consider for x ∈ (a,∞) the quantity

FHar(x) :=

∫ x

a

w(s)ds ·
∫ ∞
x

v−1(s)ds.

If supa<x<∞ FHar(x) < ∞, then there exists a positive constant C = C(a, v, w) such
that ∫ ∞

a

w(s) · u2(s)ds ≤ C

∫ ∞
a

v(s) · u2
x(s)ds(3.4)

for all

u ∈ ACR(a,∞) := {u ∈W 1,1
loc (a,∞) : lim

x↗∞
u(x) = 0}.

Proof of Lemma 3.1. The strategy is to apply the one-dimensional Hardy inequal-
ity (3.4) to appropriate integrals over spheres of radius r. Therefore, let us switch to
polar coordinates and prove an estimate on the derivative of the L2-norm of u over
such spheres. First we need some notation.∫

RN\BR(0)

w(dist(x,BR(0))u2 dx =

∫ ∞
R

∫
SN−1

w(r −R)u2rN−1 dSN−1 dr

=

∫ ∞
R

w(r −R)U2(r)rN−1 dr,

(3.5)

where we defined

U(r) :=

(∫
SN−1

u2(r, θ) dSN−1

)1/2

.

Note that we use “u” to denote the function u in both polar and Euclidean coordinates.
Here,“θ” is an abbreviation of the angular coordinates and “dSN−1” stands for the
surface element on the unit sphere. We have in particular that

∂

∂r
U(r) =

(∫
SN−1

u2(r, θ) dSN−1

)−1/2

·
(∫

SN−1

u(r, θ) · ur(r, θ) · dSN−1

)
︸ ︷︷ ︸

≤(
∫
SN−1 u2 dSN−1)

1/2
(
∫
SN−1 u2

r dSN−1)
1/2

,

(3.6)

which implies that ∣∣∣∣ ∂∂rU(r)

∣∣∣∣2 ≤ ∫
SN−1

u2
r dS

N−1 .(3.7)

On the other hand, (3.2) entails the decay estimate

U(r) ≤ C · r−N
2

for r > 0. Altogether,

U(r) ∈ ACR(R,∞).
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Now assuming that we may apply Hardy’s inequality for the weight functions

w̃(r) := (r −R)4 · rN−1

and

ṽ(r) := (r −R)6 · rN−1,

we obtain the following result by virtue of Lemma 3.2:∫
RN\BR(0)

w(dist(x,BR(0)))u(x)2 dx =

∫ ∞
R

w̃(r) · U2(r)dr

≤ C

∫ ∞
R

ṽ(r) · U2
r (r)dr

(by (3.7))

≤
∫

RN\BR(0)

v(dist(x,BR(0)))|∇u|2 dx .

(3.8)

It remains to verify that we were indeed allowed to use Hardy’s inequality. This means
we have to convince ourselves that

sup
R<x<∞

{∫ x

R

w̃(s)ds ·
∫ ∞
x

ṽ−1(s)ds

}
<∞ .

Indeed, we find for arbitrary x ∈ (R,∞) that∫ x

R

(r −R)4 · rN−1 dr ·
∫ ∞
x

(r −R)−6r1−N dr

≤ xN−1 ·
∫ x

R

(r −R)4 dr · x1−N
∫ ∞
x

(r −R)−6 dr

≤
∫ x

R

(r −R)4 dr ·
∫ ∞
x

(r −R)−6

=
1

25
,

and the lemma is proved.
Lemma 3.1 can be combined with Theorem 2.1 to establish the following estimate

on solutions to the Cauchy problem.
Lemma 3.3. Let u be a solution to the Cauchy problem as constructed in The-

orem 2.1. Then a positive constant C2 which is independent of R0 ≥ 0 exists such
that ∫

RN\BR0
(0)

(|x| −R0)4u(·, T )2 dx

+ C−1
2

∫ T

0

∫
RN\BR0

(0)

(|x| −R0)6
{
|∇u

n+2
6 |6 + |∇∆u

n+2
2 |2

}
≤ C2

{∫
RN\BR0

(0)

(|x| −R0)6 · |∇u0|2 dx +

∫ T

0

∫
RN\BR0

(0)

un+2

}
.

(3.9)
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Proof. The proof will be an immediate consequence of Lemma 3.1 and the
weighted energy estimate (2.10), provided we can show a decay estimate like (3.2)
for
∫
∂BR(0)

u2dHN−1.

Note that the weighted energy estimate (2.10) and the global energy estimate∫
RN

|∇u(·, T )|2 + C1

∫ T

0

∫
RN

{
|∇u

n+2
6 |6 + |∇∆u

n+2
2 |2

}
≤
∫

RN

|∇u0|2

imply that

sup
0<t<T

∫
RN

|x|2 |∇u(x, t)|2 <∞.(3.10)

On the other hand, (2.8) entails that

sup
0<t<T

∫
RN

u2(x, t)dx <∞.

Then the result follows by application of the following lemma.
Lemma 3.4. Assume that a function v ∈ H1(RN ) satisfies∫

RN

x2|∇v|2 dx +

∫
RN

v2 dx <∞.(3.11)

Then there is a positive constant C3 such that∫
∂BR(0)

v2dHN−1 ≤ C2 ·R−1(3.12)

for arbitrary R > 0.
Proof. Let us denote the transformation of v to polar coordinates by v̂. Consider

the quantity

r · ‖v̂‖22,∂Br(0) := r ·
∫
SN−1

v̂2(r, θ) · rN−1 dSN−1 .(3.13)

Differentiation with respect to r gives

∂

∂r

(
r‖v̂‖22,∂Br(0)

)
= 2r

∫
SN−1

v̂v̂rr
N−1 dSN−1 + N

∫
SN−1

v̂2rN−1 dSN−1 .

Integrating this identity over the interval (0, R) with respect to r implies that

R

∫
SN−1

v̂2RN−1 dSN−1

= 2

∫ R

0

∫
SN−1

rv̂v̂rr
N−1 dSN−1 dr + N

∫ R

0

∫
SN−1

v̂2rN−1 dSN−1 dr

≤ C

(∫ R

0

∫
SN−1

r2v̂2
rr

N−1 dSN−1 dr +

∫ R

0

∫
SN−1

v̂2rN−1 dSN−1 dr

)

≤ C

(∫
BR

|x|2|∇v|2 dx +

∫
BR

v2 dx

)
.

This proves the assertion of Lemma 3.4.
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4. The main result. This section is devoted to the proof of Theorem 4.1.
Theorem 4.1. Let n ∈ (2 −√8/(8 + N), 3), N < 4, and assume initial data

u0 ∈ H1(RN ) to be nonnegative with compact support in the sense that u0(x) = 0
almost everywhere on R

N \ BR0(0) for a positive number R0. Let u be the strong
solution to the Cauchy problem constructed in Theorem 2.1. Then u has finite speed
of propagation in the sense of Definition 1.1. More precisely, supp(u(·, t)) ⊂ BR(t)(0),
where

R(t) = R0 + C · t 1
α

∫ t

0

(∫
RN\BR0

u2

)n+2
2


n
2α

(4.1)

with a positive constant C = C(n,N) and α = (8+Nn)(n+2)
4 .

Remark 3. 1. The notion of finite speed of propagation formulated in Defini-
tion 1.1 is still a rather weak one. However, it is possible to replace balls by general
convex sets having sufficiently smooth boundary. With—sometimes rather tedious—
technical changes, the results to be proved in this section continue to hold. For further
improvements, e.g., the treatment of initial data with nonconvex support, refined ver-
sions of Hardy’s inequality will be necessary. In the forthcoming paper [17], we will
prove a Hardy-type inequality valid on infinite cones. On the basis of the finite speed
of propagation result established in the present paper, new weighted energy estimates
will be formulated for which the spatial support will be given by an infinite cone.
These estimates will be the key ingredient for proving local results both on finite
speed of propagation and on the occurrence of a waiting time phenomenon wherever
the support of initial data locally satisfies an exterior cone condition.

2. Note that (4.1) can be combined with the global energy estimate (2.9) to yield
the estimate

R(t) ≤ R0 + Ĉ · t 2
8+nN

with a constant Ĉ depending on n,N, ‖∇u0‖2, and the initial mass. However, the
exponent γ = 2

8+nN is not optimal as a comparison with self-similar solutions reveals
(see Ferreira and Bernis [13]). Nevertheless, the merely qualitative result presented
here is the starting point for providing optimal quantitative estimates on the diameter
of supp(u(·, t)). This is the subject of the forthcoming paper [22].

Proof of Theorem 4.1. The starting point is the estimate (3.9), which can be
simplified for arbitrary R ≥ R0 and T > 0 in the following way:

sup
t∈(0,T )

∫
RN\BR

(|x| −R)4u(·, t)2 + C−1
2

∫ T

0

∫
RN\BR

(|x| −R)6|∇u
n+2

6 |6

≤ C2

∫ T

0

∫
RN\BR

un+2.

(4.2)

Consider positive numbers 4 > R. Obviously, |x| − R > 4 − R on R
N \ B�. This

implies that

sup
t∈(0,T )

∫
RN\B

u(·, t)2 + (4−R)2
∫ T

0

∫
RN\B

|∇u
n+2

6 |6

≤ C

(4−R)4

∫ T

0

∫
RN\BR

un+2

(4.3)
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for 4 > R ≥ R0.
By virtue of Lemma 2.2, the term on the right-hand side can be estimated as

follows:

∫ T

0

∫
RN\BR

un+2 ≤ K1

(∫ T

0

∫
RN\BR

|∇u
n+2

6 |6
) nN

nN+12

∫ T

0

(∫
RN\BR

u2

)n+2
2


12

nN+12

.

(4.4)

Young’s inequality yields

1

(4−R)4

∫ T

0

∫
RN\BR

un+2 ≤ (4−R)
2nN

nN+12K1

(∫ T

0

∫
RN\BR

|∇u
n+2

6 |6
) nN

nN+12

· (4−R)−4− 2nN
nN+12

∫ T

0

(∫
RN\BR

u2

)n+2
2


12

nN+12

≤ ε(4−R)
2
∫ T

0

∫
RN\BR

|∇u
n+2

6 |6

+ Cε(4−R)
−(4+nN

2 )
∫ T

0

(∫
RN\BR

u2

)n+2
2

.

(4.5)

Putting everything together gives

sup
t∈(0,T )

∫
RN\B

u2(·, t) + (4−R)
2
∫ T

0

∫
RN\B

|∇u
n+2

6 |6

≤ ε(4−R)
2
∫ T

0

∫
RN\BR

|∇u
n+2

6 |6 +
Cε

(4−R)
4+nN

2

∫ T

0

(∫
RN\BR

u2

)n+2
2

(4.6)

for all 4 > R > R0.
Introducing the quantities

V (4) := sup
t∈(0,T )

∫
RN\B

u2, U(4) :=

∫ T

0

∫
RN\B

|∇u
n+2

6 |6,

Fε(4,R) :=
Cε

(4−R)
4+nN

2

∫ T

0

(∫
RN\BR

u2

)n+2
2

,

(4.6) can be written as follows:

V (4) + (4−R)
2
U(4) ≤ ε(4−R)

2
U(R) + Fε(4,R)

for all ε > 0 and all 4 > R ≥ R0. An application of the subsequent iteration result
Lemma 4.2 shows that

V (4) +
(4−R)

2

4
U(4) ≤ KεFε(4,R)
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for sufficiently small but fixed ε > 0. Therefore,

sup
t∈(0,T )

∫
RN\B

u2(·, t) + (4−R)
2
∫ T

0

∫
RN\B

|∇u
n+2

6 |6

≤ Kε

(4−R)
4+nN

2

∫ T

0

(∫
RN\BR

u2

)n+2
2

.

(4.7)

Using the estimate∫ T

0

(∫
RN\B

u2

)n+2
2

≤ T · sup
t∈(0,T )

(∫
RN\B

u2

)n+2
2

,

we find that

∫ T

0

(∫
RN\B

u2

)n+2
2

≤ CT

(4−R)
(4+nN

2 )n+2
2

·
∫ T

0

(∫
RN\BR

u2

)n+2
2


n+2

2

.(4.8)

Introducing

G(4) :=

∫ T

0

(∫
RN\B

u2

)n+2
2

,

α :=

(
4 +

nN

2

)
n + 2

2
, β :=

n + 2

2
> 1,

(4.8) can be rewritten in the form

G(4) ≤ CT

(4−R)
α ·G(R)β

for all 4 > R ≥ R0. An application of Stampacchia’s iteration lemma (Lemma 4.3)
shows that G(4) = 0, provided

(4−R0)α ≥ C · T ·
∫ T

0

(∫
RN\BR0

u2

)n+2
2


n
2

.

Hence, we obtain for R(T ) the estimate given in equation (4.1). Recalling in addition
that u ∈ L∞(R+;Lβ(RN )) for all 1 < β < 2N

N−2 , we have proved finite speed of
propagation.

We used the following iteration lemma, which is a slight modification of an argu-
ment presented in the proof of Theorem 6.1 of [10] (see also [25]). For the reader’s
convenience, we sketch the proof.

Lemma 4.2. Assume that

V (4′) + (4′ −R′)2U(4′) ≤ ε(4′ −R′)2U(R′) + Fε(4
′, R′)(4.9)

for ε > 0 sufficiently small and 0 ≤ R0 ≤ R < R′ < 4′ < 4. Then there exists a
positive constant Kε such that

V (4) +
(4−R)

2

4
U(4) ≤ KεFε(4,R).(4.10)
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Proof. Introduce for k ∈ N points 4k, Rk such that

4k = R +
(4−R)

2k−1
, Rk := R +

(4−R)

2k
,(4.11)

i.e.,

Rk = 4k+1 and 4k −Rk =
(4−R)

2k
.(4.12)

Along the lines of the corresponding result in [10], we may prove that

V (4) +
(4−R)

2

4
U(4) ≤ εM

4
(4−R)

2
U(RM ) +

M∑
k=1

(4ε)k−1Fε(4k, Rk).(4.13)

Now estimating

Fε(4k, Rk) ≤ 2k(4+nN
2 ) Cε

(4−R)
4+nN

2

∫ T

0

(∫
RN\BR

u2

)n+2
2

,

it becomes evident that for ε sufficiently small, the right-hand side of (4.13) is con-
vergent, which proves the lemma.

For the sake for completeness, we state the following.
Lemma 4.3 (Stampacchia’s iteration lemma). Assume that a given nonnegative,

nonincreasing function G : (0, 40)→ R satisfies

G(ξ) ≤ c0
(ξ − η)α

G(η)β

for 0 ≤ η < ξ ≤ 40 and positive numbers c0, α, β with β > 1. Assume further that

4α0 ≥ 2
αβ
β−1 · c0 ·G(0)β−1.

Then G has a root in 40.
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Abstract. We present a sufficient condition for robust permanence of ecological (or Kolmogorov)
differential equations based on average Liapunov functions. Via the minimax theorem we rederive
Schreiber’s sufficient condition [S. Schreiber, J. Differential Equations, 162 (2000), pp. 400–426] in
terms of Liapunov exponents and give various generalizations. Then we study robustness of perma-
nence criteria against discretizations with fixed and variable stepsizes. Applications to mathematical
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1. Introduction. The concept of permanence (also known as uniform persis-
tence) emerged in the late seventies as the appropriate mathematical description of
coexistence in deterministic models of interacting species, replacing the previously
used, but far too restrictive, global asymptotic stability of an equilibrium. It simply
requires that the boundary of the state space, or the set of all extinction states, be a
repeller for the dynamics of the ecological system.

In the late eighties it was realized [16], [28] that the proper framework for perma-
nence (for the boundary as a whole) in topological dynamics was already developed
by Zubov, Ura, Kimura, and others (see historical remarks in section 2), while Con-
ley’s Morse decompositions allow a finer description. New ideas of Schreiber [57] in a
Cr setting are the use of invariant measures and ergodic theory, in particular smooth
ergodic theory, and lead to characterizations of a robust form of permanence, meaning
that nearby systems are still permanent.

In the present paper we derive sufficient conditions for robust permanence along
a more classical approach using topological dynamics, in particular “good” aver-
age Liapunov functions (GALF), the Zubov–Ura–Kimura theorem, and Morse de-
compositions. Our key result is to relate the standard average Liapunov functions
P (x) =

∏
xpii via the minimax theorem to invariant measures. This allows us to

rederive and strengthen Schreiber’s [57] sufficient conditions stated in terms of “un-
saturated” invariant measures. (Our paper does not concern Schreiber’s necessary
conditions for robust permanence, based on the deep theory of measurable stable
manifolds of Pesin.) Our approach leads to sharper robustness results: First, we
allow C0-perturbations; second, we prove uniform separation of the dual attractor
from the repelling boundary. Similar sharper results were recently and independently
obtained also by Hirsch, Smith, and Zhao [26] by refining the invariant measure ap-
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proach of [57]. However, our approach, based on GALF, is suitable to derive explicit
estimates; see Remark 2.7. It also leads to exponential repulsivity; see section 3,
where we also shed light on the relation between GALF and Liapunov functions.

We work out the details for dynamics on the probability simplex and indicate
that similar results hold for ecological (or Kolmogorov) systems in R

n
+ (as in [57]) and

also for systems with a compact codimension 1 invariant manifold; see section 11.1.
In the second part of the paper we transfer the previous results to discrete-time

systems and then turn our attention to discretization problems. We show that natural
discretizations of ecological differential equations respect the invariance of boundary
faces. For such discretizations of Kolmogorov type we prove robustness of permanence
and discuss also Kloeden–Schmalfuss pullback attractor–repeller pairs with free step-
size sequences.

In section 10 we give a short review (including open problems) of the literature on
index theorems ensuring that isolated invariant sets on the boundary actually repel
trajectories into the interior.

In the final section 11 we illustrate the theory with a number of applications
to ecological and game theoretic models, such as Lotka–Volterra equations, replica-
tor equations, and imitation dynamics, as well as their discretized versions. Other
applications concern invasion of an ecological system by a new species and explicit
characterizations of totally permanent systems which are robustly permanent together
with all their subsystems.

We use the terminology of standard textbooks like Conley [12] and Nemytzkii and
Stepanov [55] without any further notice. In particular, we use the terms attractor
and repeller as in [12]. Index theory and ergodic theory of dynamical systems, used
in this paper, are contained in these two monographs. We recommend also [2], [51],
and [62].

Notation. The nonnegative orthant in R
n is denoted by R

n
+ and the positive

orthant by intR
n
+. The boundary, closure, and interior of a subset S ⊂ X are denoted

by ∂S, cl(S), and int(S). B[A, ε] = {x : d(x,A) ≤ ε} and B(A, ε) = {x : d(x,A) < ε}
denote the closed and open ε-neighborhood of a set A.

Capital Greek letters Φ,Ψ denote continuous-time dynamical systems. Discretiza-
tions are denoted by the respective lowercase Greek letters. In dynamical concepts like
γ+Φ (x), AΨ, ωϕ(h,·)(x), etc., the subscripts refer to the corresponding continuous-time
or discrete-time dynamical systems.

2. Robust permanence. We consider an autonomous differential equation of
Kolmogorov type,

ẋi = xifi(x), x ∈ X,(1)

where X is the probability simplex {x ∈ R
n : xi ≥ 0,

∑
i xi = 1} and f : X → R

n

is a continuous function satisfying
∑

i xifi(x) = 0 for each x ∈ X. The standard
interpretation in biology is that xi represents the proportion of the ith species in a
given ecosystem, i = 1, 2, . . . , n.

Together with (1), we consider its δ-perturbations of the form

ẋi = xigi(x), x ∈ X, such that |gi(x)− fi(x)| < δ for all x ∈ X.(2)

It is of course assumed that g : X → R
n is a continuous function and

∑
i xigi(x) = 0

for each x ∈ X. We assume further that both (1) and (2) have the uniqueness
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property. Denote by Φ(·, x) and Ψ(·, x) the solutions of (1) and (2) starting in x ∈ X.
It is immediate that both Φ : R×X → X and Ψ : R×X → X are dynamical systems
on X.

The boundary of X is denoted by Y . Y is invariant under Φ and Ψ. System (1) is
called permanent (or uniformly persistent) if Y is a repeller. In ecological equations,
permanence means the ultimate survival of all species. If (2) is permanent, then
(AΨ, Y ) forms an attractor–repeller pair, where AΨ denotes the maximal compact
Ψ-invariant set in X \ Y .

The aim of this section is to give a sufficient condition for robust permanence,
guaranteeing that every system near (1) is permanent.
Definition 2.1. Let us call a continuous mapping P : R

n
+ → R a good average

Liapunov function (GALF) for (1) if
(a) P (x) = 0 for all x ∈ ∂Rn

+, P (x) > 0 for all x ∈ intR
n
+;

(b) P is differentiable on intR
n
+ and pi(x) := xi

P (x)
∂P
∂xi

can be extended to a con-

tinuous function on X for every i;
(c) for every y ∈ Y there is a positive constant Ty with the property that∫ Ty

0

∑
i

pi(Φ(t, y))fi(Φ(t, y)) dt > 0.

Now we are in a position to present the main result of this section.
Theorem 2.2. If there is a GALF for (1), then (1) is robustly permanent: There

are a δ > 0 and a compact subset S of X \Y such that every δ-perturbation (2) of (1)
is permanent and AΨ is contained in S.

Remark 2.3. If the inequality in (c) is reversed, then Y can be shown to be a
robust attractor for (1).

The concept of an average Liapunov function (ALF) for (1) (with (a), (c), and a
weaker version of (b), namely, the assumption that

the function
Ṗ

P
=

n∑
i=1

1

P (x)

∂P

∂xi
xifi(x) is continuous on X )(3)

and Theorem 2.2 (without the robustness conclusion) are due to Hofbauer [27], in-
spired by Schuster, Sigmund, and Wolff [58]. The standard candidate for an ALF
satisfying (a) and (b) is P (x) =

∏n
i=1 x

pi
i with constants pi > 0.1 In this case

pi(x) = pi, and Theorem 2.2 reduces to the following.
Corollary 2.4. Suppose there are positive constants pi, i = 1, . . . , n, such that

for each y ∈ Y of (1) there is a time Ty > 0 such that
∫ Ty

0

∑
i pifi(Φ(t, y)) dt > 0.

Then (1) is robustly permanent.
The concept of an ALF is—like that of a Liapunov function—a topological one:

It can be formulated [37] in metric spaces X to show that a closed invariant subset
Y is a repeller. The concept of a GALF, on the other hand, makes use of the smooth
structure of X. Besides for the simplex, it applies to X being any manifold with
corners (i.e., modeled after R

n
+). Theorem 2.2 continues to hold in this more general

1In most practical applications this function has been used. Hutson [37] and Hofbauer [28] use
more general ALFs (that are not GALFs, however). But in these instances, the standard form
P (x) =

∏n

i=1
x
pi
i would be sufficient if used as in Theorem 5.5 below, i.e., taking different choices

of the vector p on different Morse sets.
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setting as long as X is compact. A simple example, arising in section 11.5, is X
being a product of simplices. For another simple example let X be a manifold with
smooth boundary, as in section 11.1. In this case, the standard GALF is simply the
distance to the boundary manifold Y . This standard GALF is even good enough here
to characterize robust repulsivity of Y .

If the state space is not compact, then some adjustments have to be made. We
describe the most important case of (1) defining an ecological differential equation on
R
n
+. We restrict ourselves to systems (1) that generate dissipative (semi)flows. Φ need

no longer define a flow on R
n
+ (solutions need not be defined for all negative times,

as, e.g., in the logistic equation ẋ = x(1− x) on R+). Let X be a compact absorbing
subset for the local flow Φ. Then Y = X ∩∂Rn

+ is also compact and forward invariant
under (1). There are at least two ways to define robustness:

1. Consider δ-perturbations only on X and assume that X remains absorbing
for the perturbed flow Ψ, i.e., Ψ(t,X) ⊂ X holds for all t ≥ 0. This is done
in [26, Cor. 4.6], where X is taken as a cube.

2. Allow perturbations of f in (1) in the strong Whitney topology, an approach
taken in [57].

Either way, Theorem 2.2 and Corollary 2.4 remain true as stated.
Corollary 2.4 (again without the robustness conclusion) has been widely used to

prove permanence of population dynamical systems; see Hofbauer and Sigmund [35].
The new aspect treated in this paper and the difference between ALF and GALF is
illustrated by the following example. For a different kind of robustness, see [38].

Example 2.5. Consider n = 2, so that (1) is of the form ẋ1 = x1(1 − x1)F (x1),
ẋ2 = −x2(1− x2)F (1− x2). Both systems

(i)

{
ẋ1 = x1(1− x1)(1/2− x1),
ẋ2 = −x2(1− x2)(x2 − 1/2)

and (ii)

{
ẋ1 = x21(1− x1)2(1/2− x1),
ẋ2 = −x22(1− x2)2(x2 − 1/2)

are permanent, since Y = {(0, 1)} ∪ {(1, 0)} is a repeller. However, (i) is robustly
permanent, whereas (ii) is not. The reason is of course that in (i) both {(0, 1)} and
{(1, 0)} are hyperbolic, but they are not for (ii). This is captured by the auxiliary
function P (x1, x2) = x1x2 (or xp11 x

p2
2 for any p1, p2 > 0): Condition (c) reduces to

min{F (0),−F (1)} > 0, which holds for (i) but not for (ii). Hence P is a GALF for (i)
but not (ii). On the other hand, the new auxiliary function P̃ (x1, x2) = e−1/x1−1/x2

satisfies

x1(1− x1)2
(
1

2
− x1

)
p̃1(x1, x2)− x2(1− x2)2

(
x2 − 1

2

)
p̃2(x1, x2) =

(x1 − x2)2
2

for each (x1, x2) ∈ X \ Y . Taking continuous extensions, we see that (a), (c), and (3)
are satisfied for (ii). But (b) is violated since p̃1(x1, x2) = 1/x1 and p̃2(x1, x2) = 1/x2
do not have continuous extensions to X. Thus P̃ is not a GALF (but only an ALF)
for (ii).

Next we illustrate the method of GALFs by deriving a stability criterion for a
heteroclinic cycle. For further examples, see [27] for the planar case and [31] for
higher-dimensional examples.

Example 2.6. Consider the replicator dynamics

ẋi = xi((Ax)i − xAx), i = 1, 2, . . . , n,(4)
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on the simplex X = {x ∈ R
n : xi ≥ 0,

∑n
i=1 xi = 1}, with n = 3 for a rock-scissors-

paper game with payoff matrix

A =

 0 −a2 b3
b1 0 −a3
−a1 b2 0

 .(5)

Then the boundary Y forms a heteroclinic cycle, with “outgoing” eigenvalues bi > 0
and “incoming” eigenvalues −ai < 0 at the ith corner. Consider the standard function
P (x) =

∏3
i=1 x

pi
i (with pi > 0 to be suitably chosen), which satisfies (a) and (b). Since

every orbit on the boundary Y converges to one of the corners, it is sufficient to check
(c) at these three equilibria. Hence (c) leads to a system of three linear inequalities

b1p2 > a1p3, b2p3 > a2p1, b3p1 > a3p2,(6)

which can be summarized as

AT p > 0 for suitable p > 0.(7)

Obviously (6) has a solution in pi > 0 if and only if

b1b2b3 > a1a2a3.(8)

In this case, by Corollary 2.4, (4) is robustly permanent, i.e., the heteroclinic cycle
Y is robustly repelling. If the inequalities in (6), (7), or, equivalently, in (8) are
reversed, then, by Remark 2.3, the heteroclinic cycle Y is robustly attracting for (4).
Note that the result does not depend on the special dynamics (4) but only on the
“external eigenvalues” at the three corner equilibria which correspond to the entries
of the matrix A. (Note that the above derivation of the stability criterion (8) using
GALFs is much easier compared to other methods, such as finding a true Liapunov
function near Y or applying Poincaré sections [35].)

Now we turn to the proof of Theorem 2.2. We shall make use of Corollary 6.1.2
of [8], which is a reformulation of Theorem 9 of the 1957 Russian edition2 of Zubov’s
monograph [68].
Zubov–Ura–Kimura theorem. Let (W,d) be a locally compact separable met-

ric space and let Θ be a dynamical system on W . Finally, let ∅ �= M be a compact
isolated Θ-invariant set in W . Suppose that M is not a repeller. Then ∅ �= ω(x) ⊂M
for some x /∈M .

Neither Zubov’s work [68] nor the paper by Ura and Kimura [64] had been gener-
ally known before the 1970 monograph of Bhatia and Szegö [8]. Had they been known
before, they might have led to essential simplifications in establishing such important
notions of topological dynamics as the Auslander–Seibert duality between stability

2The proof of Theorem 9 in [68] is based on Theorem 7 of that work. Unfortunately, this latter
statement is false. As it is remarked in the 1964 English edition [69], the error was pointed out by
S. Lefschetz to V. I. Zubov. A corrected version of Theorem 7 was published by Bass [5], an associate
of Lefschetz. A corrected version of Theorem 7 appears also in [69] and (although the last sentence
on p. 35 of [69] is still false) makes the derivation of Theorem 9 correct, too. From Theorem 8
onward, section 11 of the English edition is a word-for-word translation of the Russian edition and
contains several interconnected results on the local behavior of continuous-time dynamical systems
near compact isolated invariant sets. More or less the same set of results was obtained by Ura and
Kimura [64] independently in 1960. What we call the Zubov–Ura–Kimura theorem is a collection of
several technical lemmas of [64, pp. 26–31].
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and boundedness, Bhatia’s concept of weak attraction, and the Wilson–Yorke hyper-
bolic Liapunov function in the early sixties.3 A large number of much later results in
persistence theory during the eighties (including the Butler–McGehee lemma in the
appendix of [15]) followed easily from those in [68] and [64].

Proof of Theorem 2.2. Suppose P is a GALF for (1). We claim that there are three
constants c, δ, T > 0 and a compact subset S of X \ Y with the following property.
Given x ∈ cl(X \ S) \ Y arbitrarily, there exists a time Tx ∈ (0, T ] such that

P (Ψ(Tx, x)) > (1 + c)P (x) for every δ-perturbation (2) of (1).(9)

In fact, condition (c) plus an easy compactness argument imply that there are
positive constants c, d, and T such that for all x ∈ I(d) = {x ∈ X : P (x) ≤ d} (= a
small compact neighborhood of Y ) there is a time Tx ∈ (0, T ] with∫ Tx

0

∑
i

pi(Φ(t, x))fi(Φ(t, x)) dt > 3c > 0.(10)

Uniform continuity of pifi, i = 1, 2, . . . , n, provides an ε > 0 such that

|pi(z)fi(z)− pi(w)fi(w)| < c

nT
whenever z, w ∈ X and |z − w| < ε.

Since the pi’s are bounded and |g − f | < δ, we obtain for δ small enough by the
triangle inequality that

|pi(z)gi(z)− pi(w)fi(w)| < 2c

nT
whenever z, w ∈ X and |z − w| < ε.

By a standard Arzelà–Ascoli argument, the uniqueness property of (1) implies there is
a δ > 0 such that |Ψ(t, x)−Φ(t, x)| < ε for t ∈ [0, T ], x ∈ X, and every δ-perturbation
(2) of (1). In view of inequality (10), we conclude via condition (b) that

log(P (Ψ(Tx, x))− log(P (x)) =

∫ Tx

0

∑
i

pi(Ψ(t, x))gi(Ψ(t, x)) dt

≥ −
∫ Tx

0

∣∣∣∣∣∑
i

pi(Ψ(t, x))gi(Ψ(t, x))−
∑
i

pi(Φ(t, x))fi(Φ(t, x))

∣∣∣∣∣ dt
+

∫ Tx

0

∑
i

pi(Φ(t, x))fi(Φ(t, x)) dt ≥ −2Txc

T
+ 3c ≥ c for each x ∈ I(d) \ Y.

Set S = cl(X \ I(d)) and note that cl(X \ S) = I(d). Since ec > 1 + c, inequality (9)
follows.

3All proofs of the Zubov–Ura–Kimura theorem work equally well for discrete-time dynamical
systems. However, the first discrete-time version of the Zubov–Ura–Kimura theorem was discovered
independently of [68] and [64]. It is Lemma 1 in Browder [10] (termed “a crucial one” by Browder
himself), stating that a strongly ejective fixed point is repulsive. Establishing his famous existence
theorem on nonejective fixed points, Browder worked out a great deal of basic topological dynamics
using his own terminology. His crucial lemma is a direct consequence of the (discrete-time semidy-
namical version of the) Zubov–Ura–Kimura theorem. (Multivalued and various discretization aspects
are investigated in [61] and [22], respectively.)
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Next we point out that

I(d) \ γ+Ψ(x) �= ∅ for each x /∈ Y.(11)

In fact, suppose there is a z ∈ I(d) such that γ+Ψ(z) ⊂ I(d). Then P attains its
maximum value on cl(γ+Ψ(z)) at some point w. In particular, if z /∈ Y , this implies
P (w) > 0 and the existence of a time sequence {τn} ⊂ R+ such that P (Ψ(τn, z)) →
P (w) as n → ∞. Applying (9), we obtain that P (Ψ(TΨ(τn,z),Ψ(τn, z))) ≥ (1 +
c)P (Ψ(τn, z)) → (1 + c)P (w), a contradiction to the choice of w.

As a byproduct of (11), I(d) is an isolating neighborhood of Y and for each
x ∈ I(d) \ Y , inclusion ∅ �= ωΨ(x) ⊂ Y is impossible. By the Zubov–Ura–Kimura
theorem, Y is a repeller for (2) and the dual attractor AΨ is contained in S.

Remark 2.7. As for any proof using compactness considerations, the proof of
Theorem 2.2 is also nonconstructive. However, it is not hard to see that all “intrinsi-
cally nonconstructive ingredients” of the proof are contained in assumption (c). To be
more precise, assume that the conditions of Theorem 2.2 are all satisfied. In addition,
assume that

(H1) there exist positive constants c, T with the property that, given y ∈ Y arbi-

trarily,
∫ Ty

0

∑
i pi(Φ(t, y))fi(Φ(t, y)) dt > 4c for some Ty ∈ (0, T ].

Finally, assume that (no extra assumptions on the gi’s are needed!)
(H2) the functions pi, fi, i = 1, 2, . . . , n, are (globally) Lipschitz.

Reconsidering the proof of Theorem 2.2, it is routine to check that all compactness
arguments including the Zubov–Ura–Kimura argument can be replaced by Gronwall
inequalities. The final conclusion is that the parameters δ and the distance of S from
Y are both larger than Λc exp(−λT ), where λ,Λ > 0 are computable constants and
do not depend on c, T (provided by (H1)) and on the perturbation g, but only on
the various Lipschitz constants (provided by (H2)). Hence the GALF assumption,
together with (H1) and (H2), provides a way of estimating the distance between S
and Y . Thus we have a feasible approach to the problem of “practical persistence”
discussed by Hutson and Mischaikow [39] in two dimensions.

3. Exponential repulsivity. In this section we explore the concept of an av-
erage Liapunov function and its relation to exponential repulsion and existence of
(ordinary) Liapunov functions.
Theorem 3.1. (1) If P is an ALF for (1), then there exist an open neighborhood

N of Y in X and positive constants κ1, κ2 such that

P (Φ(t, x)) ≤ κ1eκ2tP (x) for each x ∈ N and t ≤ 0.(12)

(2) If P is a GALF for (1), then there exist an open neighborhood N of Y in X
and positive constants δ, κ1, κ2 such that for each δ-perturbation

P (Ψ(t, x)) ≤ κ1eκ2tP (x) for each x ∈ N and t ≤ 0.

(3) If P (x) =
∏n

i=1 x
pi
i is a GALF for (1) and letting δ > 0 be the same constant

as in Theorem 2.2, then there exist an open neighborhood N of Y in X and positive
constants κ1, κ2, κ3 such that

dE(Ψ(t, x), Y ) ≤ κ1eκ2t(dE(x, Y ))
κ3 for each x ∈ N and t ≤ 0.

Here dE(x, Y ) denotes the Euclidean distance between a point x ∈ X and the set Y .
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Proof. The proof of assertion 1 will be omitted since it is the same as that of 2
but ignores the robustness.

(2) The application of the Zubov–Ura–Kimura theorem in the last step of proving
Theorem 2.2 will be replaced by an explicit computation, as in the earlier proofs in [27],
[37]. Parameters introduced and auxiliary inequalities derived in proving Theorem 2.2
will be used throughout.

Since
∑ |pigi| ≤ κ for some κ > 0, we obtain via integrating the identity

d

dt
logP (Ψ(t, x)) =

n∑
i=1

pi(Ψ(t, x))gi(Ψ(t, x)) for t ∈ R and x ∈ X \ Y ,(13)

a consequence of assumption (b) that

eκτP (x) ≥ P (Ψ(τ, x)) ≥ e−κτP (x) for every x ∈ X , τ ≥ 0(14)

and every δ-perturbation (2) of (1).
Suppose now that x ∈ I(d) \ Y . Since AΨ ⊂ S = cl(X \ I(d)), there exists

a nonnegative integer K(x) with the properties that Ψ([0,K(x)T ], x) ⊂ I(d) but
Ψ(t, x) /∈ I(d) for some t ∈ (K(x)T, (K(x) + 1)T ]. Set Tx,0 = 0 and, recursively, as
long as Tx,k ≤ K(x)T , set Tx,k+1 = TΨ(Tx,k,x), k = 0, 1, . . . , (say) k(x). Inequality (9)
can be iterated k(x) times and yields that

P (Ψ(Tx,k, x)) ≥ (1 + c)
k
P (x) for each k = 0, 1, . . . , k(x).

Recall that 0 < Tx,k+1 − Tx,k ≤ T . In view of inequality (14), it follows immediately
that

P (Ψ(t, x)) ≥ e−κT (1 + c)
k
P (x) whenever Tx,k ≤ t ≤ Tx,k+1 ,

and k = 0, 1, . . . , k(x) . By using Tx,k+1 ≤ (k + 1)T , we conclude that

P (Ψ(t, x)) ≥ e
−κT

1 + c
· (1 + c)

t/T · P (x) whenever t ∈ [0,K(x)T ].(15)

Choose T ∗ > 0 in such a way that e−κT ·(1 + c)
−1+T∗/T

> 1 and set ∆ = e−κT
∗
d.

We claim that

P (Ψ(t, I(∆))) ≤ d for each t ≤ 0.(16)

Suppose this is not the case. Then there exist a t∗ > 0 and an x∗ ∈ X with P (x∗) ≤ ∆,
P (Ψ(−t∗, x∗)) = d but P (Ψ(t, x∗)) < d for each t ∈ (−t∗, 0]. By the construction,

e−κt
∗
d = e−κt

∗
P (Ψ(−t∗, x∗)) ≤ P (Ψ(t∗,Ψ(−t∗, x∗))) = P (x∗) ≤ ∆,

and thus t∗ ≥ T ∗. A similar application of (14) and the simple inequality T < T ∗

show that

P (Ψ([0, T ], x∗)) ≤ eκTP (x∗) < eκT∗
∆ = d.

We conclude that K(Ψ(−t∗, x∗))T ≥ t∗ ≥ T ∗, and hence, by using inequality (15)
with t = T ∗ and x = Ψ(−t∗, x∗),

P (Ψ(−t∗ + T ∗, x∗)) ≥ e−κT · (1 + c)
−1+T∗/T · P (Ψ(−t∗, x∗)) > 1 · d = d,

a contradiction.
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Set N = {x ∈ X | P (x) < ∆}. By virtue of (16), we can pass to negative times
and obtain from inequality (15) that

P (Ψ(t, x)) ≤ 1 + c

e−κT
· (1 + c)

t/T · P (x) whenever x ∈ N and t ≤ 0.(17)

This completes the proof of assertion 2.
(3) The Euclidean distance between a point x ∈ X and the set Y equals

dE(x, Y ) =

min


n∑
j=1

(xj − yj)2 | y ∈ Y

1/2

= min
1≤j≤n

xj .

By compactness, there exist continuous, strictly increasing functions α, β : [0, 1/n]→
R

+ with the properties that α(0) = β(0) = 0 and

α(dE(x, Y )) ≤ P (x) ≤ β(dE(x, Y )) whenever x ∈ X.(18)

Combining (16) and (18), the rate of repulsion near Y can be estimated in terms of
the Euclidean distance function.

For example, the standard GALF P (x) =
∏n

i=1 x
pi
i satisfies

(dE(x, Y ))
∑n

i=1
pi =

n∏
i=1

(
min

1≤j≤n
xj

)pi

≤ P (x) ≤ min
1≤i≤n

xpii ≤ (dE(x, Y ))
min1≤i≤n pi

for each x ∈ X and leads to the desired exponential rate of repulsion. In fact, given
x ∈ N arbitrarily, we obtain that

(dE(Ψ(t, x), Y ))
∑n

i=1
pi ≤ 1 + c

e−κT
· (1 + c)

t/T · (dE(x, Y ))
min1≤i≤n pi

for each t ≤ 0. This shows how constants κ1, κ2, κ3 in assertion 3 must be cho-
sen.
Corollary 3.2. If P is an ALF for (1), then there exists an exponentially

increasing Liapunov function for (1). In other words, there exist a negatively invariant
open neighborhood U of Y in X, a positive constant κ, and a continuous function
V : U → R+ such that V (x) = 0 if and only if x ∈ Y and

V (Φ(t, x)) ≤ eκtV (x) for each x ∈ U and t ≤ 0.(19)

Proof. The standard integration trick [8] is used for eliminating κ1 from (12). We
fix a negatively invariant open neighborhood U of Y in N and define

V (x) =

∫ 0

−∞
e−κ2t/(1+∆)P (Φ(t, x))dt for each x ∈ U .(20)

Here ∆ > 0 is arbitrary and κ = κ2/(1 + ∆) in (19).
Lemma 3.3. If P is a GALF for (1) andW = exp (w) is any positive C1 function,

then P̃ = PW is also a GALF for (1).
Proof. P̃ obviously satisfies condition (a) in Definition 2.1. (b) follows from

p̃i :=
xi

P̃ (x)
∂P̃
∂xi

= pi + xi
∂w
∂xi

, i = 1, 2, . . . , n. And the identity

1

T

∫ T

0

∑
i

(p̃i(Φ(t, y))− pi(Φ(t, y))) fi(Φ(t, y)) dt =
w(Φ(T, y))− w(y)

T
, y ∈ Y,

together with Lemma 4.2 below, shows (c).
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Theorem 3.4. For P (x) =
∏n

i=1 x
pi
i (with pi > 0) and f ∈ C1(X,Rn) the

following conditions are equivalent:
(A) P (x) is a GALF for (1).
(B) There exist a negatively invariant open neighborhood U of Y in X, a positive

constant κ, and a C1 function W : U → (0,∞) such that V = PW is an
exponentially increasing Liapunov function for (1):

V̇ (x) ≥ κV (x) for all x ∈ U .(21)

Proof. If (B) holds, then V is a GALF, and hence by Lemma 3.3, with P,W, P̃
replaced by V, 1/W,P , also P must be a GALF. Now suppose that P (x) =

∏n
i=1 x

pi
i

is a GALF for (1). We write Φi(t, x) = xiQi(t, x). By Corollary 6.1, Qi(t, x) > 0 for
all t ∈ R and x ∈ X. Define q(t, x) :=

∑
i pi logQi(t, x). Then (12) implies

P (Φ(t, x)) = eq(t,x)P (x) ≤ κ1eκ2tP (x) for t ≤ 0.(22)

Furthermore ∂q(t,x)
∂t =

∑
i pifi(Φ(t, x)) =: f̃(Φ(t, x)), and for the partial derivatives

∂

∂t

∂q

∂xj
(t, x) =

∑
i

∂f̃

∂xi
(Φ(t, x))

∂Φi

∂xj
(t, x).(23)

Let L be a Lipschitz constant of (1). Then Gronwall’s inequality implies |∂Φi

∂xj
(t, x)| ≤

eL|t|, and hence in (23) ∣∣∣∣ ∂∂t ∂q∂xj (t, x)
∣∣∣∣ ≤ CeL|t|.(24)

After integration this gives ∣∣∣∣ ∂q∂xj (t, x)
∣∣∣∣ ≤ C ′eL|t|(25)

for some positive constants C,C ′. Now use Pα (for any α > 0) instead of P in (20)
and consider

Vα(x) =

∫ 0

−∞
e−ακ2t/(1+∆)P (Φ(t, x))αdt = P (x)αWα(x)(26)

with

Wα(x) =

∫ 0

−∞
e−ακ2t/(1+∆)eαq(t,x)dt.(27)

Then, by (22), for every α > 0 and ∆ > 0, the function Vα is continuous on X and
satisfies (19) with κ = ακ2/(1 + ∆). The function Wα is continuous and positive on
X. Formal differentiation of (27) gives

∂Wα

∂xj
(x) =

∫ 0

−∞
e−ακ2t/(1+∆)eαq(t,x)α

∂q

∂xj
(t, x)dt.(28)
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With (22) and (25) we can estimate the integrand up to a constant factor by
exp(−ακ2t

1+∆ + ακ2t− Lt) (for t < 0). Hence for

α >
1 + ∆

∆

L

κ2
(29)

the indefinite integral in (28) converges absolutely and uniformly in x ∈ X. This
implies that for all these α large enough, Wα is C1. Then the claim follows for

V = V
1/α
α = PW

1/α
α =: PW.

Remark 3.5. We note thatW (and hence V ) can be made as smooth as the vector
field (1) by choosing α sufficiently large: This follows easily by further differentiating
(28). The relationship between (12) and (21) is in line with the general observa-
tion that, under certain conditions, inequalities can be differentiated with respect to
parameters [9], [47].

Remark 3.6. Lemma 3.3 shows that to each GALF P there belongs a whole
equivalence class of GALFs differing by a smooth positive factor. Theorem 3.4 shows
that for a standard GALF, there is a true Liapunov function among these equivalent
GALFs. Still, the advantage of the GALF concept is its considerably easier practical
applicability, as compared to a true Liapunov function. Finding a standard GALF
for (1) is reduced in the next section to the algebraic problem of finding suitable
constants pi > 0. In the setting of manifolds with smooth boundary in section 11.1,
there is essentially a unique standard GALF, which is simply the distance to the
boundary manifold. The GALF conditions for this simple function characterize robust
repulsivity of the boundary. Finding an explicit true Liapunov function is considerably
more difficult.

Remark 3.7. Theorem 3.4 (B) implies another, very simple proof of robust per-
manence (under the stronger assumption f ∈ C1): Write V = Pew. Then along
interior solutions of a δ-perturbation (2)

V̇ /V =
∑
i

pi
ẋi
xi

+ ẇ =
∑
i

(
pi + xi

∂w

∂xi

)
gi(x)

=
∑
i

(
pi + xi

∂w

∂xi

)
fi(x) +

∑
i

(
pi + xi

∂w

∂xi

)
(gi(x)− fi(x)).

The first sum is ≥ κ > 0 by (21) and the second term is less than a constant (since w
is C1) times δ. Hence for δ small enough, V is a local Liapunov function near Y also
for (2).

4. GALF and minimax. We need the minimax theorem in the following sim-
plified formulation (see, e.g., [59]).
Minimax theorem. Let A,B be Hausdorff topological vector spaces and let

Γ : A×B → R be a continuous bilinear function. Finally, let C and D be nonempty,
convex, compact subsets of A and B, respectively. Then

min
a∈C

max
b∈D

Γ(a, b) = max
b∈D

min
a∈C

Γ(a, b).

In what followsMΦ denotes the collection of Φ-invariant Borel probability mea-
sures on Y . The collection of all Borel probability measures on Y is denoted byM.
Recall that both MΦ and M are nonempty, convex, weakly-∗ compact subsets of
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C∗w(Y,R), the dual space of C(Y,R) equipped with the weak-∗ topology. The sub-
set ME

Φ of ergodic Φ-invariant measures is the set of extreme points of MΦ. The
characteristic function of a Borel set B ⊂ Y is denoted by χB .
Lemma 4.1.4 Let h : Y → R be a continuous function. Then

min
µ∈MΦ

∫
Y

h dµ = min
y∈Y

{
lim sup
T→∞

1

T

∫ T

0

h(Φ(t, y)) dt

}
.(30)

Proof. Replacing “lim” by “lim sup” in the ergodic theorem, we have that∫
Y

h dµ = lim sup
T→∞

1

T

∫ T

0

h(Φ(t, y)) dt for µ–almost all y ∈ Y.(31)

Note that the right-hand side of (31) defines a lower semicontinuous function on Y .
Since Y is compact andMΦ is weakly-∗ compact, we can take minima on both sides.
This proves the “≥ part” of (30).

To prove the “≤ part,” we argue via reductio ad absurdum and suppose there
exist a y0 ∈ Y , an ε0 > 0, and a time sequence {τn} ⊂ R+ such that τn →∞ and∫

Y

h dµ > ε0 +
1

τn

∫ τn

0

h(Φ(t, y0)) dt for each µ ∈MΦ and n = 1, 2, . . . .(32)

By letting µn(B) = 1
τn

∫ τn
0
χB(Φ(t, y0)) dt for each Borel set B ⊂ Y , a µn ∈ M

is defined and the inequality in (32) goes over into
∫
Y
h dµ > ε0 +

∫
Y
h dµn. We

may assume that, in the weak-∗ topology, µn → µ0 for some µ ∈ M. The crucial

observation is that |µn(Φ(τ,B)) − µn(B)| ≤ 2|τ |
τn

for each Borel set B ⊂ Y , τ ∈ R

and n = 1, 2, . . . . By letting n→∞, we conclude that5 µ0 ∈ MΦ. Hence
∫
Y
h dµ0 ≥

ε0 +
∫
Y
h dµ0, a contradiction.

Lemma 4.2. For any continuous function h : Y → R, the following properties
are equivalent:

(i) miny∈Y {lim supT→∞
1
T

∫ T
0
h(Φ(t, y)) dt} > 0.

(ii) For every y ∈ Y there is a T (y) > 0 with
∫ T (y)

0
h(Φ(t, y)) dt > 0.

Proof. (i) ⇒ (ii) is trivial. Suppose now that (ii) is satisfied. By an easy com-
pactness argument, we see there is no loss of generality in assuming there are positive
constants c0, T1, T2 such that

T1 ≤ T (y) ≤ T2 and

∫ T (y)

0

h(Φ(t, y)) dt > c0 for all y ∈ Y.

Set τ0 = 0 and, recursively, τn(y) = τn−1(y)+T (Φ(τn−1(y), y)). By the construction,
nT1 ≤ τn ≤ nT2 and

1

τn(y)

∫ τn(y)

0

h(Φ(t, y)) dt ≥ c0
T2

for each n = 1, 2, . . . .

Even with lim sup replaced by lim inf, (i) follows immediately.

4This is Exercise 8.5 on p. 57 in [51] (with “limsup” replaced by “liminf”). Proofs were written
in [30] and [56], who derived it from a much more general setting. Other generalizations were given
in [3] and [11]. We include a proof for completeness.

5The argumentation leading to µ0 is truly fundamental and plays a vital role in the ergodic
theory of dynamical systems from its very beginnings in Krylov and Bogoliubov [46] to (proving the
first part of) Theorem 4.3 of Schreiber [57].
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Remark 4.3. Note that condition (c) in Definition 2.1 has to be checked only for
y ∈ MCΦ(Y ), the minimal center of attraction of Y (i.e., by definition, the smallest
compact Φ-invariant set containing the support of each invariant measure inMΦ(Y )).
This follows from a twofold application of Lemmas 4.1 and 4.2 with Y and Y replaced
by MCΦ(Y ); cf. [56]. Note that MCΦ(Y ) is contained in the closure of the set of all
Φ|Y -recurrent points.
Theorem 4.4. The following properties are equivalent:
(α) For some p1, p2, . . . , pn > 0 suitably chosen, P (x) =

∏n
i=1 x

pi
i is a GALF

for (1).
(β) For every µ ∈MΦ there exists an i ∈ {1, 2, . . . , n} with

∫
Y
fi dµ > 0.

(γ) There are p1, p2, . . . , pn > 0 such that
∑n

i=1 pi
∫
Y
fi dµ > 0 holds for every

ergodic µ ∈ME
Φ .

Proof. We may assume by homogeneity that p = (p1, p2, . . . , pn) ∈ X. Applying
the lemmas for h =

∑
i pifi, we obtain that

(α)⇔ max
p∈X

min
µ∈MΦ

n∑
i=1

pi

∫
Y

fi dµ > 0.(33)

On the other hand, it is elementary to check that

(β)⇔ min
µ∈MΦ

max
p∈X

n∑
i=1

pi

∫
Y

fi dµ > 0.(34)

With C = MΦ, D = X, A = C∗w(Y,R), B = R
n, and Γ(p, µ) =

∑
i pi

∫
Y
fi dµ, the

minimax theorem implies the equivalence of (α) and (β). Since the minimum in (33)
is attained at an ergodic measure, the equivalence of (α) and (γ) follows.

Example 4.5. Returning to the rock-scissors-paper game (4)–(5), note that

MΦ =

{
3∑

k=1

qkδk

∣∣∣∣∣ qk ≥ 0,

3∑
k=1

qk = 1

}
,

where δk is the Dirac measure at the kth vertex of the two-dimensional simplex,
k = 1, 2, 3. By using homogeneity, condition (β) then translates into the requirement
that

for any q > 0 there exists an i ∈ {1, 2, 3} with (Aq)i > 0.(35)

The equivalence of (7) and (35), for arbitrary n×m real matrices, is the well-known
Farkas lemma on linear inequalities. Note that in an alternative proof of Theorem 4.4,
the minimax theorem can be replaced by using an infinite-dimensional version of the
Farkas lemma.

The integrals
∫
Y
fi dµ are Liapunov exponents of µ. If µ is ergodic, then there

exists a unique nonempty supporting subset I ⊂ {1, 2, . . . , n} such that µ(XI) = 1
for the (relatively) open face XI := {x ∈ X : xi > 0 for i ∈ I and xj = 0 for j /∈ I}.
According to Lemma 5.1 in [57],

∫
Y
fi dµ = 0 for i ∈ I (compare also Remark 5.4).

The integrals
∫
Y
fi dµ for i /∈ I are called external Liapunov exponents. Biologically,

they describe the invasion rate of the missing species i at µ. For point measures
δx̄, the external Liapunov exponents reduce to the external eigenvalues fi(x̄) at the
boundary equilibrium x̄; see [35]. For periodic orbits in Y , the external Liapunov
exponents coincide with the (normalized) external Floquet exponents; see [57].
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Combining Theorems 2.2 and 4.4, we see that (β) is a sufficient condition for ro-
bust permanence. This is a version of the main result in [57]. Strengthening condition
(β) leads to the following result on “totally permanent systems” due to Mierczyński
and Schreiber [52].
Corollary 4.6. If for every µ ∈ ME

Φ all external Liapunov exponents
∫
Y
fidµ

are positive, then (1) and each of its subsystems are robustly permanent.
Proof. This follows immediately from Theorems 2.2 and 4.4, together with the

aforementioned Lemma 5.1 of [57] or Remark 5.4 below. Note that P (x) =
∏n

i=1 x
pi
i

is a GALF for (1) for any choice of the exponents pi > 0.
Using Pesin theory, a converse result can also be shown; see [52].

5. Local GALFs and Morse decompositions. Throughout this section, let
K be a nonempty Φ-invariant compact subset of Y , and let U be an open neighborhood
of K in R

n
+.

Definition 5.1. A continuous mapping PK : U → R is a GALF for (1) on K if
(a)K PK(x) = 0 for all x ∈ U ∩ ∂Rn

+, PK(x) > 0 for all x ∈ U ∩ intR
n
+;

(b)K PK is differentiable on U ∩ intR
n
+ and pi(x) := xi

PK(x)
∂PK

∂xi
can be extended to

a continuous function on U for every i;
(c)K for every y ∈ K there is a positive constant Ty with the property that∫ Ty

0

∑
i pi(Φ(t, y))fi(Φ(t, y)) dt > 0.

Theorem 5.2. If PK is a GALF for (1) on K, then there exist an open neighbor-
hood NK of K in X and positive constants δ, κ1, κ2 such that for each δ-perturbation

PK(Ψ(t, x)) ≤ κ1eκ2tPK(x) whenever {Ψ(τ, x) | t ≤ τ ≤ 0} ⊂ NK .
In particular, NK \ Y does not contain entire trajectories of Ψ and, for each x ∈
NK \ Y , inclusion ∅ �= ωΨ(x) ⊂ K is impossible.

Proof. Reconsidering the respective proofs in sections 2 and 3, we see that the
existence of a local GALF implies that both (17) and (11) remain valid in the local
setting.

The collection of Φ-invariant Borel probability measures on K is denoted by
MΦ(K). ClearlyMΦ(Y ) =MΦ and, for a general K,MΦ(K) can be identified with
{µ ∈MΦ : µ(K) = 1}. The collection of ergodic measures inMΦ(K) is denoted by
ME

Φ(K).
Theorem 5.3. The following properties are pairwise equivalent:

(α)K There are p1, p2, . . . , pn > 0 such that P (x) =
∏n

i=1 x
pi
i is a GALF for (1) on

K.
(β)K For every µ ∈MΦ(K) there exists an i ∈ {1, 2, . . . , n} with

∫
K
fi dµ > 0.

(γ)K There are p1, p2, . . . , pn > 0 such that
∑n

i=1 pi
∫
K
fidµ > 0 for all µ ∈ME

Φ(K).

Proof. This is the localized version of Theorem 4.4, replacing Y by K, with the
same proof.

Remark 5.4. Assume that K ⊂ {y ∈ Y : yn > 0}. Then∫
K

fn dµ = 0 for each µ ∈MΦ(K).

In fact, a twofold application of the Φ-invariance of µ implies via Fubini’s theorem
that∫

K

fn dµ =

∫ 1

0

∫
K

fn(Φ(t, ·)) dµdt =
∫
K

∫ 1

0

fn(Φ(t, ·)) dtdµ

=

∫
K

{log(Φn(t, ·))}t=1
t=0 dµ =

∫
K

log(Φn(1, ·)) dµ−
∫
K

log(Φn(0, ·)) dµ = 0.
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The property established above (proved differently in [57, Lem. 5.1], using the ergodic
theorem and Poincaré’s recurrence theorem) helps check whether (β)K is satisfied or
not.

Schreiber [57] (working on R
n
+) defines an invariant probability measure µ ∈

MΦ to be unsaturated if max1≤i≤n
∫
Y
fi dµ > 0, i.e., at least one external Liapunov

exponent is positive. (For point measures this reduces to the notion of an unsaturated
equilibrium from [35].) He calls a compact invariant set K ⊂ Y unsaturated if every
µ ∈MΦ(K) is unsaturated. By our Theorem 5.3, K is unsaturated if and only if there
exists a local GALF near K of the standard form

∏
i x

pi
i . One of the main results

in [57] and [26] says that if Y has a Morse decomposition with all Morse sets being
unsaturated, then (1) is robustly permanent. This result is generalized as follows.
Theorem 5.5. Let M1,M2, . . . ,M$ be a Morse decomposition on Y for Φ|Y .

Further, for k = 1, 2, . . . , 9, let Uk be an open neighborhood of Mk in Y and let
Pk : Uk → R be a GALF for (1) on Mk. Then (1) is robustly permanent.

Proof. Arguing as in the first paragraph of the proof of Theorem 2.2, we obtain
that there are three constants c, δ, T > 0 and, for k = 1, 2, . . . , 9, there is an open
neighborhood Nk of Mk in Uk with cl(Nj)∩ cl(Nk) = ∅ for j �= k and the property as
follows. Given x ∈ Nk \ Y , k = 1, 2, . . . , 9, arbitrarily, there exists a time Tx ∈ (0, T ]
such that

Pk(Ψ(Tx, x)) > (1 + c)Pk(x) for every δ-perturbation (2) of (1).

We claim that, for δ sufficiently small,

γΨ(x) ⊂ B[Y, δ]⇒ αΨ(x) ∪ ωΨ(x) ⊂
$⋃

k=1

Nk.(36)

Since
⋃
kMk is the intersection of a finite collection of attractor–repeller pairs, there is

no loss of generality in assuming that 9 = 2 and that (M1,M2) is an attractor–repeller
pair for Φ|Y .

Since M1 is an attractor for Φ|Y , there exists a compact neighborhood S1 of M1

in N1 satisfying Φ(R+, Y ∩S1) ⊂ N1. We point out next that, for δ sufficiently small,

γΨ(z) ⊂ B[Y, δ] plus z ∈ S1 ⇒ γ+Ψ(z) ⊂ N1.(37)

To the contrary, suppose that, for each j = 1, 2, . . . , there exists a 1
n -perturbation (2)

of (1), a zj ∈ S1, and a time tj > 0 satisfying γΨj (zj) ⊂ B[Y, 1j ] but wj = Ψj(tj , zj) /∈
N1. We may assume that zj ∈ ∂S1, wj ∈ ∂N1, Ψj((0, tj), zj) ⊂ N1 \ S1 and, by
compactness, zn → z0 and wn → w0 for some z0 ∈ Y ∩ ∂S1 and w0 ∈ Y ∩ ∂N1.
We distinguish two cases according to whether {tj} ⊂ R+ is bounded or not. By
passing to a subsequence, we may assume that tj → t0 for some t0 ∈ R+ or tj →∞.
If tj → t0, then Φ(t0, z0) = w0, a contradiction. If tj → ∞, we may assume that
qj = Ψj(tj/2, zj) → q for some q ∈ Y ∩ cl(N1 \ S1). It is readily checked that
γΦ(q) ⊂ Y ∩ cl(N1 \ S1), a contradiction.

By continuity (and passing to a smaller δ if necessary), we see there exist positive
times T1, T2 > T1 such that

Ψ([T1, T2],B[Y \ (N1 ∪N2), δ]) ⊂ S1 for every δ-perturbation (2) of (1).

In view of property (37), this ends the proof (of case 9 = 2) of (36).
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The rest is easy. For each k = 1, 2, . . . , 9, the Zubov–Ura–Kimura argument we
used in the last two paragraphs of the proof of Theorem 2.2 applies in cl(Nk) individ-
ually.

Remark 5.6. The proof of Theorem 5.5 shows that any continuous function
P : X → R satisfying conditions (a) and P |Nk

= Pk|Nk
, k = 1, 2, . . . , 9, satisfies

condition (9), too. Thus, in a technical sense, local GALFs can be joined together to
a global “nearly-GALF.”

6. Discrete-time analogues. Mutatis mutandis, all the previous results remain
valid for discrete-time dynamical systems.

With Fi : X → R, i = 1, 2, . . . , n, continuous, consider a mapping of the form

F : X → X, x→ (x1F1(x), x2F2(x), . . . , xnFn(x)).(38)

Throughout this section, it is assumed that F is a self-homeomorphism ofX. Brouwer’s
open mapping theorem implies that F(X \Y ) = X \Y and F(Y ) = Y . In particular,
Fi(x) > 0 for each x ∈ X \ Y , i = 1, 2, . . . , n. Throughout this section, we assume
further that Fi(y) > 0 for each y ∈ Y , i = 1, 2, . . . , n.

Our next result implies that this latter assumption is quite natural. It will also be
crucial in establishing Lemma 7.2, the starting point of the theory of discretizations
of Kolmogorov type in the next chapter, and it was used already in the proof of
Theorem 3.4.
Surjectivity theorem. Let Fi : X → R+, i = 1, 2, . . . , n, be continuous

functions,
∑

i xiFi(x) = 1 for each x ∈ X, and consider the mapping F : X → X,
x→ (x1F1(x), x2F2(x), . . . , xnFn(x)). Then F(S) = S for each subsimplex S of X.

Proof. By the particular form of our mapping, this is certainly true for the zero-
dimensional subsimplices (vertices) of X. For a k-member subset {i1, i2, . . . , ik} of
{1, 2, . . . , n}, consider the subsimplex of the form S = {x ∈ X : xi1 = xi2 = · · · =
xik = 0}. Applying Fi(x) = xiFi(x) for i = i1, i2, . . . , ik, we obtain that F(S) ⊂ S.
By induction on the subsimplices, we may assume that S = X and F(s) = s for
each facet s of S = X. Consider a point p0 ∈ int(S) arbitrarily chosen. For any
λ ∈ [0, 1], any facet s of S, and any point p ∈ s, the convexity of s implies that
(1− λ)p+ λF(p) ∈ s. It follows that

(1− λ)p+ λF(p) �= p0 whenever p ∈ ∂S and λ ∈ [0, 1].

By the homotopy property of Brouwer’s degree, it follows that

deg(F , p0, int(S)) = deg(idRn , p0, int(S)),

where idRn denotes the identity on R
n. Since deg(idRn , p0, int(S)) = 1, the existence

property of the degree implies that p0 ∈ F(S).
Corollary 6.1. In addition, assume that Fi, i = 1, 2, . . . , n, is of class C1 (in

the sense that Fi admits a C1 extension F̂i : Ui → R defined on an open neighborhood
Ui of X in R

n) and that F is a C1 self-diffeomorphism of X. Then Fi(y) > 0 for
each y ∈ Y , i = 1, 2, . . . , n.

Proof. Pick y ∈ Y arbitrarily. For index j satisfying yj �= 0, inequality Fj(y) > 0
is a direct consequence of the surjectivity theorem when applied to the X-facet Sj =
{x ∈ X : xj = 0}. For j satisfying yj = 0, inequality Fj(y) > 0 follows from the
diffeomorphism assumption. To the contrary, assume that Fj(y) = 0 (and yj = 0). A
direct computation shows that the jth row of the Jacobian of F evaluated at y equals
(0, 0, . . . , 0), a contradiction.
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The discrete-time version of an ALF for F [40] is a continuous mappingR : X → R

with the following properties:
(d) R(x) = 0 for all x ∈ Y , R(x) > 0 for all x ∈ X \ Y .
(e) There exists a continuous function r : X → R such that r(x) = log(R(F(x)))
− log(R(x)) whenever x ∈ X \ Y .

(f) For every y ∈ Y there is a positive integer Ny > 0 with the property that∑Ny

k=1 r(Fk−1(y)) > 0.
In contrast to the continuous-time case, we did not find a reasonable analogue

of the notion of GALF for discrete time. Hence for studying robust permanence in
discrete-time systems, we restrict ourselves to the standard ALF of the form R(x) =∏n

i=1 x
ri
i with ri > 0, i = 1, 2, . . . , n. For this choice of R, condition (e) holds with

r(x) =
∑

i ri logFi(x).
Remark 6.2. One can characterize thisR by a functional equation. More precisely,

if the continuous mappings ri, R : X → R satisfy condition (d) and logR(F(x)) −
logR(x) =

∑
i ri(x) logFi(x) for arbitrary F , then ri(x) = ri and R(x) = cn

∏n
i=1 x

ri
i

for some positive constants ri, i = 1, 2, . . . , n, and cn. For a proof, see [19].
With Gi : X → R, i = 1, 2, . . . , n, continuous, consider δ-perturbations of F of

the form G : X → X, x → (x1G1(x), x2G2(x), . . . , xnGn(x)), where |Gi(x) − Fi(x)|
< δ, i = 1, 2, . . . , n. It is of course assumed that

∑
xiGi(x) = 1 for each x ∈ X. We

assume further that G is a self-homeomorphism of X. If G is permanent, then (AG , Y )
forms an attractor–repeller pair, where AG denotes the maximal compact G-invariant
set in X \ Y . In analogy to the relation between (2) and (1), we say that G is a
δ-perturbation of F if |Gi(x)− Fi(x)| < δ for each x ∈ X and i = 1, 2, . . . , n.
Theorem 6.3. If there is an ALF for F , then F is permanent. Moreover, assume

that for some constants ri > 0 suitably chosen, R(x) =
∏n

i=1 x
ri
i is an ALF for F .

Then F is robustly permanent. There are a δ > 0 and a compact subset S of X \ Y
with the properties as follows. Every δ-perturbation G of F is permanent and AG is
contained in S.

Proof. The proof of Theorem 2.2 can be repeated. The computations are based
on the formulae

log(R(FNx(x)))− log(R(x)) =

Nx∑
k=1

r(Fk−1(x))

and

log(R(GNx(x)))− log(R(x)) =

Nx∑
k=1

n∑
i=1

ri · log(Gi(Gk−1(x))),

respectively. The last step is the application of the discrete-time version of the Zubov–
Ura–Kimura theorem.

The first statement of Theorem 6.3 is due to [40]; see also [36]. The robustness
result is new.

The set of F-invariant Borel probability measures on Y is denoted byMF . When
combined with Theorem 6.3, our next result establishes a sufficient condition for
robust permanence of F . Note that inequality

∫
Y
log(Fi) dν > 0 is stronger than the

(seemingly) “more natural” inequality
∫
Y
Fi dν > 1. A special case of heteroclinic

cycles was treated in [24].
Theorem 6.4. The following properties are equivalent:

(α)d For some r1, r2, . . . , rn > 0 suitably chosen, R(x) =
∏n

i=1 x
ri
i is an ALF for

F .
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(β)d For every ν ∈MF there exists an i ∈ {1, 2, . . . , n} with
∫
Y
logFi dν > 0.

(γ)d There are r1, r2, . . . , rn > 0 such that
∑n

i=1 ri
∫
Y
logFi dν > 0 holds for every

ergodic ν ∈ME
F .

Proof. The proof of Theorem 4.4 can be repeated. Almost no changes are needed.
The method of proving Lemma 4.1 yields for each h ∈ C(Y,R) that

min
ν∈MF

∫
Y

h dν = min
y∈Y

lim sup
N→∞

1

N

N∑
k=1

h(Fk−1(y)).

The compactness argument we used in proving Lemma 4.2 implies that inequality
minν∈MF

∫
Y
h dν > 0 is equivalent to the following assertion: For every y ∈ Y there

is a positive integer Ny > 0 such that
∑Ny

k=1 h(Fk−1(y)) > 0. We may assume by
homogeneity that r = (r1, r2, . . . , rn) ∈ X. With h =

∑
ri · log(Fi), the minimax

theorem applies.
Theorem 6.5. Let M1,M2, . . . ,M$ be a Morse decomposition on Y for F|Y .

Further, for k = 1, 2, . . . , 9, let Uk be an open neighborhood of Mk in Y and let
Rk : Uk → R be an ALF for F on Mk. Then F is permanent. Moreover, assume

that each Rk is of the special form Rk(x) =
∏n

i=1 x
rki
i for some positive constants

rk1 , r
k
2 , . . . , r

k
n. Then F is robustly permanent.

Proof. The method we used in proving Theorem 5.5 applies.
The formulation of the discrete-time version of Theorems 3.1, 3.4, 5.2, and 5.3 is

left to the reader.

7. Discretizations of Kolmogorov type. We discuss definition and basic
properties of Pth order one-step discretizations of (1).

Let h0 be a positive constant. Let P ≥ 1, k ≥ 0 be integers with P + k ≥ 2.
Assume that f1, f2, . . . , fn are CP+k+1 functions. The CP+k+1 property on closed
sets like X (or [0, h0] × X) is understood as the existence of a CP+k+1 extension
defined on an open neighborhood of X in R

n (or of [0, h0]×X in R×R
n). Consider

a CP+k+1 discretization operator ϕ : [0, h0]×X → R
n. We assume that ϕ is of order

P, i.e., there exists a positive constant K (depending only on {fi}ni=1) such that

|Φ(h, x)− ϕ(h, x)| ≤ KhP+1 for all h ∈ [0, h0] and x ∈ X.
We require also that ϕ is locally determined by {fi}ni=1; i.e., we assume the existence
of a continuous function ∆ : [0, h0]→ [0,∞) such that ∆(0) = 0 and, for all h ∈ (0, h0]
and x ∈ X, ϕ(h, x) is determined solely by the restriction of {fi}ni=1 to B(x,∆(h)). All
these assumptions are satisfied if ϕ comes from a (general r-stage explicit or implicit)
Runge–Kutta method. The standard theory of discretization operators (see, e.g.,
Stuart and Humphries [60]) implies that for all h sufficiently small, say h ∈ [0, h0],
ϕ(h, ·) is a CP+k+1 diffeomorphism of X onto ϕ(h,X).

Now we are in a position to define discretizations of Kolmogorov type. Besides
the above requirements on differentiability, consistency, and determinacy (these three
were grouped together in [7] for the first time), two further conditions on a general
discretization operator are imposed.
Definition 7.1. We say that our discretization operator is of Kolmogorov type

on X for (1) if, for each i = 1, 2, . . . , n, there exists a CP+k+1 function qi : [0, h0]×
X → R satisfying

ϕi(h, x) = xiqi(h, x) whenever h ∈ [0, h0] and x ∈ X(39)

and, in addition, ϕ(h,X) ⊂ X for each h ∈ [0, h0].
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Lemma 7.2. Let ϕ be a discretization operator of Kolmogorov type on X for (1).
Then, for all h sufficiently small, say h ∈ [0, h0], ϕ(h, ·) defines a CP+k+1 discrete-
time dynamical system on X.

Proof. We know already that ϕ(h, ·) is a CP+k+1 diffeomorphism of X onto
ϕ(h,X) ⊂ X. The surjectivity theorem applies.

Remark 7.3. In accordance with (39), the solution operator of (1) satisfies

Φi(h, x) = xiQi(h, x) whenever h ∈ [0, h0] and x ∈ X,(40)

where Q : [0, h0]×X → R
n is a CP+k function defined by

Qi(h, x) =

∫ 1

0

d

dxi
Φi(h, x1, . . . , xi−1, θxi, xi+1, . . . , xn) dθ, i = 1, 2, . . . , n.

Actually, Q is of class CP+k+1. Existence and continuity of the last derivative is a
consequence of the CP+k+1 parametrized version of the Picard–Lindelöf theorem. In
fact, with x ∈ X as a parameter, let z(·;x) denote the solution of the initial value
problem

żi = zifi(x1z1, x2z2, . . . , xnzn) and zi(0) = 1, i = 1, 2, . . . , n.

Since (x1z1(·;x), x2z2(·;x), . . . , xnzn(·;x)) is a solution to (1), we have by uniqueness
that z(t;x) = Q(t, x) for all t ∈ R and x ∈ X.

Example 7.4. Let ϑ : [0, h0]×X → R
n be a discretization operator coming from a

(general r-stage explicit or implicit) Runge–Kutta method. It is a straightforward but
rather lengthy task to check that, for all h sufficiently small, say h ∈ [0, h0], formula

ϕi(h, x) =
ϑi(h, x)∑
j ϑj(h, x)

, x ∈ X, i = 1, 2, . . . , n,

makes sense and defines a Pth order discretization operator of Kolmogorov type on
X for (1). For example, the explicit Euler method leads to

ϕEi (h, x) = xi
1 + hfi(x)

1 + h
∑

j xjfj(x)
, (h, x) ∈ [0, h0]×X, i = 1, 2, . . . , n ,

a first order discretization operator of Kolmogorov type.
The difference between exact and discretized solutions of (1) on finite-time inter-

vals can be estimated as follows.
Lemma 7.5. Let ϕ be a Pth order discretization operator of Kolmogorov type on

X for (1). Given T > 0 arbitrarily, there exists a positive constant κ(T ) such that for
any M = 0, 1, 2, . . . with Mh ≤ T , the estimate

|Φi(Mh, x)− {ϕM (h, ·)}i(x)| ≤ xi · κ(T ) · hP , (h, x) ∈ [0, h0]×X(41)

holds true. (Here of course {ϕM (h, ·)}i denotes the ith coordinate function of the Mth
iterate of the discretization mapping ϕ(h, ·), i = 1, 2, . . . , n.)

Proof. Writing out the coordinate functions explicitly, we find that methods of
deriving the standard error estimate |Φ(Mh, x)− ϕM (h, x)| ≤ κ0(T )hP (e.g., in [60])
apply and κ is an exponential function of T . For details, see [21].
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Lemma 7.6. The previous lemma holds true for variable stepsize sequences. More
precisely, given T > 0 arbitrarily and κ(T ) denoting the same constant as in (41), the
estimate∣∣∣∣∣Φi

(
M∑
m=1

hm, x

)
− {ϕ(hM , ·) ◦ · · · ◦ ϕ(h1, ·)}i(x)

∣∣∣∣∣ ≤ xi · κ(T ) ·
(

max
1≤m≤M

hm

)P
holds true whenever hm ∈ (0, h0], m = 1, 2, . . . ,M, with

∑
m hm < T , and x ∈ X.

Proof. The proof is almost the same as that for constant stepsizes.

8. Permanence for discretizations. Results in this section fit well in the list
of papers in [60] on attraction, Liapunov functions, and discretization. They are par-
ticularly closely related to continuity results on exponentially attracting attractors in
[4] and on convergence rates of perturbed attracting sets with vanishing perturbation
[25]. For the qualitative theory of discretizations in general, see the monograph [60]
as well as the fundamental paper [48].
Lemma 8.1. Fix pi > 0, i = 1, 2, . . . , n, and consider mapping P : X → R+,

P (x) =
∏n

i=1 x
pi
i . Then P is an ALF for (1) if and only if P is an ALF for F =

Φ(1, ·).
Proof. By letting b = 1 and a = k − 1, k = 1, 2, . . . , N , in the identity

log(Qi(b,Φ(a, y))) =
∫ a+b
a
fi(Φ(t, y)) dt (a simple consequence of (40)) and forming

the respective linear combinations,

N∑
k=1

n∑
i=1

pi · log(Qi(1, (Fk−1(y)))) =

∫ N

0

n∑
i=1

pifi(Φ(t, y)) dt

holds for each y ∈ Y and N = 1, 2, . . . . Consequently, if P is an ALF for F , then P

is an ALF for (1) and Ty = Ny. Conversely, assume that
∫ Ty

0

∑
fi(Φ(t, y)) dt > 0 for

some Ty > 0. The compactness argument we used in proving Lemma 4.2 implies that∫ τy
0

∑
fi(Φ(t, y)) dt > 0 for some positive integer τy. Thus P is an ALF for F and

Ny = τy.
Remark 8.2. Together with Lemma 4.1, a similar argument implies that

min
ν∈MΦ(1,·)

∫
Y

log(Qi(1, ·)) dν = min
µ∈MΦ

∫
Y

fi dµ for each i = 1, 2, . . . , n.

This is somewhat strange because MΦ ⊂ MΦ(1,·) and the set MΦ(1,·) is usually a
much larger subset ofM thanMΦ. It is not hard to establish that the dependence of
MΦ(t,·) on the parameter t ∈ (0,∞) is weakly-∗ upper semicontinuous. Moreover, if U
is an open neighborhood ofMΦ in the weak-∗ topology ofM, thenMΦ(t,·) ⊂ U for |t|
sufficiently small. Similarly, if ϕ is a discretization operator of Kolmogorov type, then
there exists a positive constant hU such thatMϕ(h,·) ⊂ U whenever 0 < h ≤ hU . (A
detailed proof of this latter statement is contained in [21].) No upper semicontinuity
result holds true for (the closure of the union of) supports of (all) invariant measures.
On the general problem of measures and discretization, we recommend [14] and the
references therein. Several upper semicontinuity results of numerical dynamics are
contained also in [60].

Lemma 8.1 enables us to give a short proof for permanence under discretization.
Theorem 8.3. Assume that P (x) =

∏n
i=1 x

pi
i is an ALF for (1). Let ϕ be a Pth

order discretization operator of Kolmogorov type for (1). Then, for all h sufficiently
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small, say h ∈ (0, h0], Y is a repeller for the discrete-time dynamical system induced
by ϕ(h, ·). In addition, there is a compact subset S of X \ Y with the property that
the dual attractor Aϕ(h,·) is contained in S, h ∈ (0, h0].

Proof. Assume that 0 < h ≤ h0 < 1 and consider the positive integer Mh

satisfying Mhh < 1 ≤ (Mh + 1)h. Since6 Y is ϕ(h, ·)-invariant, Y is a repeller
for ϕ(h, ·) if and only if Y is a repeller for ϕMh(h, ·). Combining Lemma 8.1 and
Theorem 6.3, we see it is enough to point out that G = ϕMh(h, ·) is a δ-perturbation
of F = Φ(1, ·).

In fact, for each x ∈ X, h ∈ (0, h0] and i = 1, 2, . . . , n, inequality 0 < 1−Mhh ≤ h
implies that

|Φi(1, x)− Φi(Mhh, x)| = |Φi(1−Mhh,Φ(Mhh, x))− Φi(Mhh, x)| ≤ xi · (eKh − 1)

with K = max1≤i≤nmaxx∈X |fi(x)|. We conclude via (41) that

|Φi(1, x)− {ϕMh(h, ·)}i(x)| ≤ xi
{
(eKh − 1) + κ(1) · hP} .(42)

Note that the coefficient of xi on the right-hand side of (42) approaches zero as
h → 0+. Thus G = ϕMh(h, ·) is a δ-perturbation of F = Φ(1, ·) for h small enough
and Theorem 6.3 applies.

We do not know if Theorem 8.3 is true for a general GALF. The main difficulty
is in proving the inequality

|P (Φ(Mh, x))− P (ϕM (h, x))| ≤ κ̃1(T )hP · P (x) if 0 < T, 0 ≤Mh ≤ T,(43)

which seems to be a rather delicate matter.
Remark 8.4. Assume that the conditions of Theorem 8.3 are all satisfied. Com-

bining Theorem 4.4 and the discretization result in Remark 8.2, one can estab-
lish the existence of positive constants c∗, h∗ with the following property: For ev-
ery stepsize h ∈ (0, h∗] and µh ∈ Mϕ(h,·) there exists an i ∈ {1, 2, . . . , n} with∫
Y
log qi(h, ·) dµh > c∗h. An alternative presentation of a great part of sections 8, 9,

10, and 11 can be centered around (the local version of) this inequality.

9. Variable stepsize discretizations. In this section we present a generaliza-
tion of Theorem 8.3 for variable stepsize discretizations.

The natural framework of handling variable stepsize sequences is that of nonau-
tonomous dynamics. For general considerations, including several attractor definitions
in the nonautonomous setting, we refer to [45]. In what follows we restrict ourselves
to recalling the concept of cocycle attractors/repellers and to presenting a special case
of the key result from Kloeden and Schmalfuss [44].
Theorem 9.1. Assume that (1) is permanent and let ϕ be a discretization opera-

tor of Kolmogorov type for (1). In addition, let UY be an open neighborhood of Y in X,
let UAΦ

be an open neighborhood of AΦ in X, and assume that UY ∩ UAΦ = ∅. Then
there are positive constants h∗ and τ with the following properties: Given an arbitrary
set C with UAΦ ⊂ C ⊂ X \ UY and a doubly infinite stepsize sequence h = {hk}∞k=−∞
with

∑∞
k=1 hk =

∑0
k=−∞ hk =∞ and ‖h‖ = suphk ≤ h∗,

{ϕ(hM , ·) ◦ · · · ◦ ϕ(h1, ·)}(C) , {ϕ(h0, ·) ◦ · · · ◦ ϕ(h−M , ·)}(C) ⊂ UAΦ
(44)

6Consider W = [−1, 1] ⊂ R, F0(w) = −w3 for w ∈W . Then {1} is a repeller for F2
0 but not forF0. The reason is that {1} is not F0-invariant.
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whenever
∑M

k=1hk ≥ τ and
∑0

k=−Mhk ≥ τ . In addition, the set

A(h) =
⋂

M≥0
cl
(⋃

m≥M{ϕ(h0, ·) ◦ · · · ◦ ϕ(h−m, ·)}(C)
)

is independent of C and is contained in cl(UAΦ),(45)

cl
(⋃

m≥M{ϕ(h0, ·) ◦ · · · ◦ ϕ(h−m, ·)}(C)
)
→ A(h)(46)

in the Hausdorff metric asM →∞, and, with θmh denoting the doubly infinite shifted
stepsize sequence defined by (θmh)k = hk+m,

{ϕ(hm, ·) ◦ · · · ◦ ϕ(h1, ·)}(A(h)) = A(θmh) for each m = 1, 2, . . . .(47)

Proof. This is a restatement of Theorems 3.1 and 4.5 of [44] within the context of
the present paper. Actually, the original results in Kloeden and Schmalfuss [44] are
proved under the additional requirement

sup{hk/h$ | k, 9 ∈ {0,±1,±2, . . . }} ≤ const.(48)

The starting point of their proof is a classical result in converse Liapunov theory, The-
orem 22.5 of Yoshizawa [67] on the existence of Lipschitz continuous Liapunov func-
tions. However, when starting from Conley’s C∞ Liapunov function for the attractor–
repeller pair (AΦ, Y ), condition (48) turns out to be irrelevant. It is enough to replace
Lemma 4.1 of [44] by Lemma 9.2 below and to reconsider the Kloeden–Schmalfuss ar-
gumentation. We find that Theorem 9.1 holds true for free stepsize sequences (subject

only to the requirements
∑∞

k=1 hk =
∑0

k=−∞ hk =∞ and ‖h‖ = suphk ≤ h∗).
For convenience, recall Lemma 1 of [20], which we “inserted” in the original proof

of Theorem 9.1 in [44] above.
Lemma 9.2. There exists a C∞ function V : X → [0, 1] with the following prop-

erties: For every x ∈ X \ (AΦ ∪ Y ), function R → (0, 1), t → Φ(t, x) is strictly
decreasing, and, in addition, V −1(0) = AΦ, V

−1(1) = Y . Finally, for c ∈ (0, 1) arbi-
trarily given, there exists a positive constant h∗(c) such that V (ϕ(h, x)) < c whenever
h ∈ (0, h∗(c)] and V (x) ≤ c.

Proof. This is a discretization consequence of Theorem 6.12 of Akin [2]. Details
can be found in [20].

Most results in [44], [45] are stated and proved for abstract cocycles with the shift
operator θ acting on a compact parameter space. Having applications to stochastic
numerics in mind, no attempt is made in these papers to lift/weaken condition (48)
in the simplest special case of deterministic discretizations with variable stepsize.
The set A(h) is called a cocycle or pull-back attractor. Properties (44), (45), (46),
and (47) are called the upper semicontinuity, uniqueness, pull-back convergence, and
equivariance properties, respectively. Elementary examples show that, together with
the stepsize sequence h = {hk}∞k=−∞, the accompanying push-forward sequence of
sets {ϕ(hM , ·) ◦ · · · ◦ ϕ(h1, ·)}(C) may also exhibit an oscillating behavior in UAΦ .
This explains why cocycle attractors are defined as they are, i.e., by using pull-back
convergence. For constant stepsize sequences, Theorem 9.1 reduces to results in [43],
the starting point of the theory on numerical attractors.

The dual concept to cocycle attractors is that of a cocycle repeller. Reversing time,
Theorem 9.1 establishes the existence of a cocycle repeller R(h). Nevertheless, even
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for discretizations of Kolmogorov type, the general theory says only that R(h) → Y
in an upper semicontinuous way. However, in the case that permanence is granted by
the standard GALF assumption, R(h) = Y for every doubly infinite stepsize sequence
with ‖h‖ sufficiently small.

Actually, a stronger result—a discretized version of Theorem 3.1—holds true.
Theorem 9.3. Assume that P (x) =

∏n
i=1 x

pi
i is a GALF and let ϕ be a Pth order

discretization operator of Kolmogorov type for (1) on X. Then there exist an open
neighborhood W of Y in X and positive constants h0, λ1, λ2, λ3 with the properties
as follows. Given an infinite stepsize sequence {hk}∞k=1 with

∑∞
k=1 hk = ∞ and

suphk ≤ h0,
dE

({ϕ−1(h1, ·) ◦ · · · ◦ ϕ−1(hM , ·)}(x), Y
) ≤ λ1e

−λ2(h1+···+hM )(dE(x, Y ))
λ3

whenever x ∈ W, M = 1, 2, . . . . Here of course ϕ−1(hk, ·) denotes the inverse of
ϕ(hk, ·), k = 1, 2, . . . ,M, established by Lemma 7.2.

Proof. The proof is an expanded version of that of Theorem 3.1. For details, see
[21].

A similar result holds true for asymptotically autonomous systems. Consider the
ordinary differential equation

ẋi = xiei(t, x), (t, x) ∈ R×X,(49)

where ei : R×X → X is a continuous function satisfying

ei(t, x)→ fi(x) uniformly in x ∈ X as t→∞, i = 1, 2, . . . , n

and
∑

i xiei(t, x) = 0 for each (t, x) ∈ R × X. Assume that system (49) has the
uniqueness property and that function f in the limiting autonomous system (1) is
Lipschitz. The solution of (49) through (t0, x) ∈ R×X is denoted by Ψ(·, t0, x).

If the limiting autonomous system (1) is robustly permanent due to a standard
GALF, then (49) is permanent too. More precisely, the following result holds true.
Theorem 9.4. Assume that P (x) =

∏n
i=1 x

pi
i is a GALF for (1) on X. Let UAΦ

be an open neighborhood of AΦ in X and let C be a compact subset of X \ Y . Given
an initial time t0 arbitrarily, there exists a time T such that

Ψ(t0 + t, t0, x) ∈ UAΦ whenever t ≥ T and x ∈ C.
Proof. The proof is a simple variation of the proof of Theorem 9.3. Some details

are contained in [21].

10. Connections to index theories. Let K be a nonempty Φ-invariant com-
pact subset of Y . Following Szymczak, Wojcik, and Zgliczynski [63], we say that K
is of repelling type if {x ∈ X : ∅ �= ω(x) ⊂ K} ⊂ Y . In view of Theorem 5.2 above,
the existence of a GALF for (1) on K implies that K is of repelling type and, for
some η > 0, B(K, η) \ Y does not contain entire trajectories. Starting from property
(β)K , the very same conclusions are derived in the first part of the proof of Theo-
rem 4.4 of Schreiber [57]. By (α)K ⇔ (β)K in Theorem 5.3, property (β)K means
that PK : X → R, PK =

∏n
i=1 x

pi
i defines a GALF for Φ on K. In particular, the

existence of a local GALF plus the isolatedness of K with respect to the boundary
flow Φ|Y imply that K is isolated (i.e., isolated with respect to the entire flow Φ
on X).

From now on, assume that ∅ �= K ⊂ Y is a compact isolated invariant set of
repelling type. Assume, in addition, that K is a repeller for Φ|Y . In view of the
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Zubov–Ura–Kimura theorem, K is a repeller for Φ (i.e., an attractor for the backward
flow Φ∗ defined by Φ∗(t, x) = Φ(−t, x) for all (t, x) ∈ R×X) and thus ∅ �= α(x) ⊂ K
for any x ∈ X with dE(x,K) sufficiently small. Alternatively, assume that K is an
attractor for Φ|Y . Applying the Zubov–Ura–Kimura theorem again, we find there
exists an x ∈ X \ Y with ∅ �= α(x) ⊂ K. Geometrically, the property italicized above
means thatK repels a trajectory from Y intoX\Y . However, ifK is neither a repeller
nor an attractor for Φ|Y , then the existence of an x ∈ X \ Y with ∅ �= α(x) ⊂ K is a
rather delicate matter and requires methods of algebraic topology.

By using standard degree theory, the same problem in R
n−1 × [0,∞) (and K ⊂

R
n−1×{0} being a finite collection of equilibria (and R

n−1×{0} invariant)) was first
investigated by Hofbauer [29]. Capietto and Garay [13] used the fixed point index
(which is an appropriate version of degree theory) and a more general index theory
developed by Conley [12]. Their approach, however, worked only for flows induced
by vector fields and some special kinds of isolated invariant sets. Both restrictions
were removed and much more Conley-type results proved by Wojcik [65]. Generaliza-
tions for discrete-time semidynamical systems were given by Szymczak, Wojcik, and
Zgliczynski [63]. For details, in particular for the index theories involved, we refer to
the original papers [13], [65], [63] and the references cited therein.

The next theorem is a straightforward consequence of the main results of [63]
within the context of the present paper.
Theorem 10.1. Let ∅ �= K ⊂ Y be a compact isolated invariant set of repelling

type. Assume that the homotopical Conley index IC(K,Φ|Y , Y ) of K with respect
to the boundary flow Φ|Y in Y is nontrivial. Then there exists an x ∈ X \ Y with
∅ �= α(x) ⊂ K.

Proof. If K = Y , then the Zubov–Ura–Kimura theorem applies.
If K �= Y , then consider a point y0 ∈ Y \K and note that the pair (X \ {y0}, Y \

{y0}) is homeomorphic to the pair (Rn−2 × [0,∞),Rn−2 × {0}). Modifying the dy-
namics in a small vicinity of y0 in X, we may assume that y0 is an equilibrium point
for Φ. Hence all results in [63] (proved for compact isolated invariant subsets of
R
n−2 × {0}, the boundary of the half-space (Rn−2 × [0,∞)) translate into results on

compact Φ-invariant subsets of Y \ {y0}.
By Theorem 2 of [63], the homotopical Conley index IC(K,Φ(1, ·), X) of K with

respect to the time-one map of Φ in X is trivial. If x ∈ X \ Y with ∅ �= α(x) ⊂ K
for no x ∈ X \ Y , then K is also of attracting type, and thus, by Theorem 1 of
[63], IC(K,Φ(1, ·), X) = IC(K,Φ(1, ·)|Y , Y ). Since the index map is homotopic to
the identity, we conclude that, together with IC(K,Φ(1, ·)|Y , Y ), also IC(K,Φ|Y , Y )
is trivial, a contradiction.

Unfortunately, it is in general very difficult to check whether the homotopical
Conley index IC(K,Φ|Y , Y ) is nontrivial or not. Note, however, that nontriviality
of IC(K,Φ|Y , Y ) is a consequence of IF (K,Φ|Y , Y ) �= 0, nontriviality of the fixed
point index, and that this latter condition can be fairly easily checked [1]. Besides,
IF (K,Φ

∗|Y , Y ) = (−1)nIF (K,Φ|Y , Y ). The time-duality problem for the homotopical
Conley index, in particular the question of whether nontriviality of IC(K,Φ∗|Y , Y )
is equivalent to the nontriviality of IC(K,Φ|Y , Y ), seems to be open. The answer is
affirmative on the homology–cohomology level of the Conley index [53].

The following result is a discretization analogue of Theorem 10.1.
Theorem 10.2. Let ∅ �= K ⊂ Y be a compact isolated invariant set of repelling

type. Let U be an open neighborhood of K in R
n
+ and let PK : U → R, x→∏n

i=1 x
pi
i

be a GALF for (1) on K. In addition, assume that K is the maximal compact Φ|Y -
invariant set in cl(U) ∩ Y and that the cohomological Conley index iC(K,Φ|Y , Y ) is
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nontrivial. Finally, let Kh ⊂ Y denote the maximal compact ϕ(h, ·)|Y -invariant set in
cl(U) ∩ Y . Then, for h sufficiently small, Kh �= ∅ and, for some xh ∈ X \ Y suitably
chosen, ∅ �= αϕ(h,·)(xh) ⊂ Kh.

Proof. If K = Y and h is small enough, then Kh = Y is a repeller for ϕ(h, ·)
by Theorem 8.3, and the discrete-time version of the Zubov–Ura–Kimura theorem
applies.

If K �= Y and h is small enough, then iC(Kh, ϕ(h, ·)|Y , Y ) = iC(K,Φ|Y , Y ) by
the main result in Mrozek and Rybakowski [54] (when applied to Y \ {y0}, which is
locally Lipschitz homeomorphic to R

n−2 for any y0 ∈ Y \ K). Hence Kh �= ∅. On
the other hand, Kh ⊂ U ∩ Y by the upper semicontinuity result in [22], h sufficiently
small. Furthermore, combining the proofs of Theorems 5.2 and 8.3, it is not hard
to show that Kh (as a subset of X) is isolated with respect to ϕ(h, ·) and, for each
x ∈ U \ Y , inclusion ∅ �= ωϕ(h,·)(x) ⊂ Kh is impossible. Thus ∅ �= Kh ⊂ Y is
a compact isolated ϕ(h, ·)-invariant set of repelling type and (as a weakening of the
nontriviality of the cohomological Conley index iC(Kh, ϕ(h, ·)|Y , Y )), the homotopical
Conley index IC(Kh, ϕ(h, ·)|Y , Y ) is nontrivial. Using Theorems 1 and 2 of [63], the
desired result follows immediately.

Discretizations have better topological properties than general discrete-time dy-
namical systems. For example, they preserve orientation. Near transversal sections,
discretizations (for h small enough) embed to continuous-time local dynamical sys-
tems [17], [23]. A further nontrivial topological property of discretizations is what
we called numerical Wazewski property [22], [18]. In certain applications, as it was
pointed out by Conley [12] himself, the classical Wazewski principle is stronger than
the index.
Conjecture. We conjecture that the nontriviality of the cohomological Conley

index iC(K,Φ|Y , Y ) in Theorem 10.2 can be replaced by the following requirement:
Assume that B+ is not a retract of B, where B ⊂ U is an isolating block with respect
to the boundary flow Φ|Y for K in Y and B+ denotes the entry set of B.

Combining Theorems 1 in [13] and C4 in [22], we find that the conjecture holds
true under the additional conditions that K is contained in a single face of Y and B is
an isolating block with corners. One of the major difficulties in proving the conjecture
is constructing C∞ Liapunov functions for attractor–repeller pairs on manifolds with
corners (such as Y ).

11. Applications. In all the previous sections we worked with the simplex as
the phase space and noted only that analogous results are valid in R

n
+ for dissipative

flows. In the present section we give applications to systems on other phase spaces
such as compact smooth manifolds, half-spaces, products of a simplex with a ray, and
products of simplices.

Subsection 11.1 is devoted to differential equations near compact smooth codi-
mension 1 submanifolds of R

n. Note that a much deeper codimension k ≥ 1 analysis,
based on Oseledec’s theory, is given in [3], [11] for diffeomorphisms. It is an open
problem to extend the concept of GALF (which is at present a codimension 1 object)
to codimension k problems.

In subsections 11.2 and 11.3 we study robust permanence of replicator and Lotka–
Volterra equations. The problem of successful invasion is discussed in subsection 11.4.
Subsection 11.5 is devoted to discretized game dynamics with variable stepsizes.

11.1. Manifolds with smooth boundary. Let Ω be a bounded open set in R
n

and assume that Z = ∂Ω is a compact smooth codimension 1 submanifold of R
n. Let

U be an open neighborhood of Z in R
n and let F : U → R

n be a C1 function. Assume
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that Z is invariant with respect to the (local) flow Θ of the ordinary differential
equation ẋ = F (x), x ∈ U . The set of Θ-invariant Borel probability measures on Z
is denoted by MΘ(Z). Finally, for z ∈ Z, let ν(z) ∈ R

n denote the outer normal
unit vector of Z at z. It is well known that, for some ε > 0, mapping (−ε, ε)× Z →
U , (λ, z) → x = z + λν(z) is a coordinate transformation. In this new system of
normal and tangential coordinates, ẋ = F (x), x ∈ U can be rewritten as the system
λ̇ = N(λ, z), ż = T (λ, z), (λ, z) ∈ (−ε, ε) × Z. Since N(0, z) = 0 for each z ∈ Z,
there exists a continuous function S : (−ε, ε)× Z → R satisfying N(λ, z) = λS(λ, z).
With P (x) = λ (or, equivalently, P (x) = λp for any p > 0) as GALF and applying
(the corresponding analogue, with (X,Y ) replaced by (cl(Ω), Z), of) Theorem 2.2 and
Lemmas 4.1 and 4.2, we obtain the following theorem.
Theorem 11.1. If the normal Liapunov exponent∫

Z

S(0, z) dµ > 0(50)

for each (ergodic) µ ∈MΘ(Z), then Z is a repeller for Θ.
It is not hard to compute S(0, z) explicitly:

S(0, z) =
n∑
i=1

n∑
j=1

dFi
dxj

(z) · νj(z) · νi(z) = 〈ν(z),J (z)ν(z)〉,

where J (z) denotes the Jacobian of F evaluated at z and 〈·, ·〉 denotes the standard
scalar product in R

n.
We note that an analogous result holds for abstract manifolds X with smooth

collared boundary ∂X = Z. Condition (50) implies via Theorem 3.4 the existence
of a Liapunov function in a neighborhood of Z of the form V (x) = λQ(λ, z) with Q
positive and C1.

Using Pesin’s theory, one can show, as in [3] or [57], that the converse of Theo-
rem 11.1 is “almost” true: If F is C2 and the reverse inequality holds in (50) for at
least one invariant measure µ ∈MΘ(Z) (i.e., at least one normal Liapunov exponent
is negative), then the invariant manifold Z attracts at least one orbit from Ω \ Z. If
F is only C1, then a weaker converse result can be obtained from the ergodic closing
lemma, as in [30], [57]: There are arbitrarily small C1-perturbations of the flow, with
Z as invariant manifold, that have a periodic orbit in Z, which has negative normal
Floquet exponent and is therefore normally attracting. Other converse results can be
derived from index theory, as used in section 10.

We finally remark that Theorem 11.1 can be applied also to study dissipativity
in a suitable compactification of the state space and to investigate critical cases of
stability by analyzing homogeneous differential equations that arise as the principal
part of normal forms, such as Molchanov’s theorem [42]; for details see [21].

11.2. Consequences for replicator equations. The replicator equation (4)
on the simplex X enjoys an important averaging principle (see [35, Thm. 7.6.4], [41]),
which can be stated in terms of time averages or space averages.
Lemma 11.2. (1) Suppose that for x ∈ X, ω(x) is contained in some (relatively

open) face of the simplex. Then every limit point of the time average of this solution,

lim
T→∞

1

T

∫ T

0

Φ(t, x)dt,(51)

is an equilibrium point x̄ on this face.
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(2) Let µ ∈ ME
F be an ergodic invariant measure for (4). Then its mean x̄ =∫

xdµ(x) is an equilibrium of (4), and the external Liapunov exponents of µ coincide
with that at x̄.

A consequence of this averaging property is that in applying Theorem 4.4 for repli-
cator equations one can restrict oneself to (convex combinations of) point measures
instead of all invariant measures. Hence a finitely computable sufficient condition for
robust permanence can be established. In particular, Corollary 2.4 simplifies to the
following result from [35] and [41], but now strengthened with robustness.
Theorem 11.3. If there are pi > 0 (i = 1, . . . , n) such that for every fixed point

x̄ of (4) in Y ,

p·Ax̄ > x̄·Ax̄,

then P (x) =
∏

i x
pi
i is a GALF, and hence (4) is robustly permanent.

Consider now the discrete-time replicator dynamics

(F(x))i = xi
1 + h(Ax)i
1 + h x·Ax.(52)

Here h > 0 is such that 1+haij > 0 for all i, j. Then the map (52) is a diffeomorphism
on X [49]. Another discrete-time replicator dynamics is

(F(x))i = xi
eh(Ax)i∑
j xj e

h(Ax)j
,(53)

which is a diffeomorphism for h small and, in contrast to (52), enjoys a similar av-
eraging property to that of (4) [35, p. 79, Ex. 7.6.6]. Note that both (52) and (53)
are first order discretization operators of Kolmogorov type for (4), but none of them
is of the form of those investigated in Example 7.4 (except for zero-sum games, i.e.,
A = −AT ).

The first part of our next result is a simple consequence of Theorem 8.3, whereas
the stronger result in the second part follows from Theorem 6.3 and the averaging
property. Finding a finitely computable condition for robust permanence for (52) for
arbitrary h > 0 is an open problem.
Theorem 11.4. Let the assumption of Theorem 11.3 hold, i.e., there exists a

standard ALF P (x) =
∏

i x
pi
i for the continuous-time replicator dynamics (4). Then

for small h > 0, the discrete-time replicator equation (52) is robustly permanent.
Similarly, for all h > 0, P is also an ALF for (53), and hence (53) is robustly
permanent.

11.3. Consequences for Lotka–Volterra equations. Lotka–Volterra systems

ẋi = xi
(
ri + (Ax)i

)
, x ∈ R

n
+,(54)

enjoy a similar averaging property to that of Lemma 11.2 for replicator equations.
This goes essentially back to Volterra; see [35], [41], [57, Lem. 7.1]. Hence for Lotka–
Volterra equations (54) it is sufficient to consider point measures at boundary equilib-
ria when applying our permanence results. In particular, our Theorem 4.4 shows that
the sufficient condition in Schreiber’s [57, Thm. 7.2] for robust permanence of Lotka–
Volterra equations is equivalent to the sufficient condition for permanence based on a
standard GALF due to Jansen [41] (see also [35, Ex. 13.6.3]):
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There are pi > 0 (i = 1, . . . , n) such that for every fixed point x̄ of (54) on ∂Rn
+,

p·(r +Ax̄) > 0.(55)

Now we turn to discrete-time Lotka–Volterra systems such as a higher-dimensional
version of the logistic map,

(F(x))i = xi(1 + h(ri + (Ax)i)),(56)

and an exponential version (see [33] and [50]),

(F(x))i = xie
h(ri+(Ax)i).(57)

The first part of our next result is a simple consequence of Theorem 8.3, whereas
the second part follows from Theorem 6.3 and from the averaging principle in [33].
Theorem 11.5. Suppose (56) and (57) are (robustly) dissipative and (55) holds

true; i.e., there exists a standard ALF P (x) =
∏

i x
pi
i for (54). Then for small h > 0,

(56) is (robustly) permanent. Similarly, for all h > 0, P is an ALF for (57), which is
(robustly) permanent.

Dissipativity of (57) is discussed in [33] and [50].
As a further application we rederive and strengthen a recent result of Mierczyński

and Schreiber [52] on totally permanent Lotka–Volterra systems. They established
the equivalence (L2) ⇔ (L4) with their weaker meaning of robust permanence. Note
that (L3) and (L4) are computable conditions.
Theorem 11.6. The following conditions are equivalent:

(L1) Equation (54) as well as all its subsystems are permanent.
(L2) Equation (54) as well as all its subsystems are robustly permanent.
(L3) −A is a P-matrix (i.e., all principal minors of −A are positive) and each

(relatively open k-dimensional, k = 1, 2, . . . , n) face of R
n
+ contains an equi-

librium.
(L4) Equation (54) is dissipative, each face contains a unique equilibrium, and all

its external eigenvalues are positive.
Proof. Every permanent Lotka–Volterra system has a unique interior equilibrium

and det(−A) > 0; see [35, Thms. 13.5.1 and 13.5.2]. Applying this to all subsystems
we conclude that (L1) implies (L3). The P-matrix property implies the dissipativity
of (54) and also uniqueness of saturated equilibrium; see [35, Thms. 15.2.1 and 15.4.5].
Hence no boundary equilibrium can have an external eigenvalue ≤ 0. This shows (L3)
⇒ (L4). Finally (L4) implies (L2) by Corollary 4.6, and (L2)⇒ (L1) is trivial.

11.4. Invasion of a permanent system. Consider a permanent n-species com-
munity and a further species which is able to invade that resident community. Will the
invader be able to survive, i.e., will the population move towards a new stable com-
munity consisting of the invader and a certain subset of the resident population? In
the biological literature, e.g., in [66], this question is often phrased as, Does invasion
lead to persistence?

A positive answer to this question is possible only under stringent assumptions.
For example, if in the resident system there are several attractors, and the new species
invades at one attractor, it could be driven out again by leading the population to
the other attractor. This can be avoided only if all normal Liapunov exponents on
the global interior attractor are positive.
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Even then, one could imagine that the population evolves to a state where the
invader as well as some of the resident species are eliminated. A simple example in
two dimensions is the system

ẋ = x (x(1− x)− y) ,
ẏ = y(x− y).

The density of the invading species y increases near the resident equilibrium x = 1, y =
0. But every interior solution converges to the origin: y

x increases monotonically, and
for y > x, y decreases. However, this dynamics is degenerate, since the origin is not
hyperbolic. If the resident system is robustly permanent (thanks to a GALF), this
extinction phenomenon cannot occur. This is the essence of the next theorem, which
generalizes an analogous result on Lotka–Volterra equations in [32].
Theorem 11.7. We consider a system of n resident species on X = R

n
+ and an

invader whose density we denote by y ≥ 0,

ẋi = xifi(x, y),(58)

ẏ = yg(x, y)(59)

on the augmented state space X ′ = R
n
+ × R+. We identify X with the subsystem

X × {0} of X ′ and assume that (58)–(59) give rise to a dissipative dynamical system
Θ = (Φ,Ψ) : R×X ′ → X ′ = X × R+. In addition, assume there exists a GALF for
the resident system (58) with y = 0 which is therefore robustly permanent. Finally,
assume that the global attractor A ⊂ intX of (58) is nonsaturated in the sense that∫

A
g(x, 0)dµx > 0 for each µx ∈MΘ(A).(60)

Then

lim sup
t→∞

Ψ(t, x, y) > 0 for all (x, y) ∈ intX ′.

Proof. To the contrary, suppose that Ψ(t, z, w) → 0 for some (z, w) ∈ intX ′.
Hence ∅ �= ωΘ(z, w) ⊂ X. Actually, since (A, ∂X) is an attractor–repeller decom-
position of the resident system, ωΘ(z, w) ⊂ A or ωΘ(z, w) ⊂ ∂X = Y . Combining
Theorems 5.3 and 5.2, condition (60) implies that the first inclusion is impossible.
Hence ωΘ(z, w) ⊂ Y .

Consider now the GALF P : X → R and observe for each t ∈ R that

d

dt
log(P (Φ(t, z, w))) =

n∑
i=1

pi(Φ(t, z, w))fi(Φ(t, z, w),Ψ(t, z, w)).

Integrating between 0 and T yields

1

T
log

(
P (Φ(T, z, w))

P (z)

)
=

1

T

∫ T

0

n∑
i=1

pi(Φ(t, z, w))fi(Θ(t, z, w)) dt.(61)

Since Φ(t, z, w) approaches Y , P (Φ(T, z, w)) → 0 as T → ∞. Thus each limit point
of the left-hand side of (61) is ≤ 0. On the other hand, property Ψ(T, z, w) → 0,
the GALF assumption, Lemma 4.2, and the robustness arguments in the proof of
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Theorem 2.2 imply that every limit point as T →∞ on the right-hand side is positive.
This is a contradiction.

An obvious drawback of Theorem 11.7 is that only positivity of the limsup can
be guaranteed. However, one cannot do better in general: It is easy to construct
examples with lim inft→∞Ψ(t, x, y) = 0. Consider (58)–(59) on X ′ = R

4
+ with three

resident species (1,2,3). Suppose, that the invader eliminates resident species 3 and
forms together with 1 and 2 a system with an attracting heteroclinic cycle, such as in
Example 2.6. Then lim supt→∞Ψ(t, x, y) > 0 but lim inft→∞Ψ(t, x, y) = 0. Moreover,
the invader gets arbitrarily close to 0 for arbitrarily long times. Hence, practically,
the invader is not safe from extinction. This example shows that information on the
global dynamics of the full system (58)–(59) is needed to guarantee persistence after
invasion.

11.5. Discretizations and diminishing stepsizes. Hofbauer and Schlag [34]
studied imitation dynamics for two-person (bimatrix) games. These led to recurrence
relations of the following form (k = 0, 1, . . . ):

pk+1
i = pki

(
1 + hfi

(
pk, qk

))
,

qk+1
j = qkj

(
1 + hgj

(
pk, qk

))
.

(62)

Here the state space X is a product of two simplices, X = Xn × Xm ⊆ R
n
+ × R

m
+ ,

and fi, gj : Xn ×Xm → R (1 ≤ i ≤ n, 1 ≤ j ≤ m) are appropriately chosen functions
such that (pk, qk) %→ (pk+1, qk+1) defines a map from Xn×Xn into itself. In the limit
h→ 0 these discrete-time models tend to the differential equation

ṗi = pifi(p, q),
q̇j = qjgj(p, q).

(63)

The functions fi, gj are given by

fi(p, q) = (π1(i, q)− π1(p, q))φ1(π1(p, q)),
gj(p, q) = (π2(p, j)− π2(p, q))φ2(π2(p, q)),

(64)

where π1, π2 are the payoff functions for the two players, and φi are strictly decreasing
functions with positive values.

For n = m = 2, i.e., each of the two players has two pure strategies, X is simply
the square [0, 1]2. Of particular interest are games with a cyclic structure: For these
games, the boundary of the square, Y , forms a heteroclinic cycle for the dynamics
(62) and (63). They have a unique Nash equilibrium E which lies in the interior of X
and which has been shown [34, Thm. 1] to be globally asymptotically stable for (63);
i.e., E is the dual attractor to the repeller Y . Furthermore, there exists a standard
GALF for (63), so that Y is a robust repeller.

For small enough h ∈ (0, h0) (h0 being the minimal slope of the reciprocal of φi),
the map (62) still has a standard GALF, so that Y remains a robust repeller; see [34,
Prop. 1]. The dual attractor, Ah, contains E (which is unstable for the maps [34,
Prop. 3]) as proper subset.

Combining now Theorem 8.3 and the upper semicontinuity result [20] for the
attractor–repeller pair (E, Y ) of (63) shows that for small enough h > 0, the numerical
attractor Ah arising from E attracts all of the interior of the square X, i.e., is dual
to the robust repeller Y . This confirms the conjecture in [34, p. 535, footnote 4].

On the other hand, if instead of a constant stepsize h a decreasing sequence of
stepsizes satisfying hk → 0 and

∑
hk =∞ is chosen in (62), then every orbit starting
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in the interior of the square converges to the equilibrium E. This conjecture from
[34, p. 539 and footnote 9] follows now from the permanence result in Theorem 9.3
above, Lemma 4 from [20] (or Benaim and Hirsch [6]), and the attractor–repellor
decomposition (E, Y ) for the limiting differential equation (63).
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Abstract. We prove that the uniform attractor for the Navier–Stokes equations of compressible
flow with quasi-periodic external forces has finite fractal dimension. As a byproduct of our analysis,
we also obtain the existence of finite-dimensional exponential attractors for the Navier–Stokes system.
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1. Introduction. We prove the finite dimensionality of the compact attractor
obtained in [11], as well as the existence of finite-dimensional exponential attractors,
for the Navier–Stokes equations of compressible fluid flow in one space dimension,{

ρt + (ρu)x = 0,
(ρu)t + (ρu2)x + P (ρ)x = εuxx + ρf, 0 < x < L,

(1.1)

with boundary and initial conditions
u(0, t) = u(L, t) = 0,

(ρ, u)(·, 0) = (ρ0, u0),∫ L

0

ρ0 dx =M.

(1.2)

Here ρ(x, t) and u(x, t) are the density and fluid velocity, P (ρ) = c2ρ is the isothermal
pressure, ε is a viscosity constant, and f = f(x, t) is a time-dependent external force.
The attractor, which is determined by the force f , is the smallest closed set in (ρ, u)
space which is invariant for the flow and which attracts all trajectories as time goes to
infinity. The exponential attractor is a compact, positively invariant subset of (ρ, u)
space which contains the attractor, which attracts all trajectories exponentially in
time, and which has finite fractal dimension. Precise definitions of the uniform and
exponential attractors are given in Definitions 3.1 and 3.2, and the fractal dimension
is defined, for example, in [17].

In [10] and [11] we gave a complete global existence, uniqueness, continuous depen-
dence, and regularity theory for solutions of (1.1)–(1.2), obtaining time-independent
estimates for solutions with large, discontinuous initial data and large external forces.
We found, however, that, due to the persistence of singularities in solutions, contin-
uous dependence on initial data would not hold in any reasonable topology which
dominates the sup norm of ρ. We therefore constructed the attractor in a reduced
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phase space Y × Xu, where Xu = L2 and Y is the set of positive BV densities
ρ for which the Lebesgue decomposition of the distribution ρx has a singular part
consisting of a countable sum of point masses and an absolutely continuous part
in L2. We let Uf (t, τ) be the semiprocess on the phase space Y × Xu defined by
taking Uf (t, τ)(ρ0, u0) to be the solution of (1.1)–(1.2) with force f and initial condi-
tion (ρ0, u0) imposed at time τ . Then assuming that f belongs to a compact subset
Σ of W 1,∞([0,∞); L2) ∩ L∞([0,∞);W 1,∞) and that there exists a continuous fam-
ily of translation operators T : Σ �→ Σ, we proved the continuity and asymptotic
compactness properties required for the existence of a uniform compact attractor
AΣ ⊂ Y ×Xu, and we showed that AΣ is a compact subset of H1 ×H1

0 and is con-
tained in H1 ×H2 ∩H1

0 . Finally, we proved that the attractor is characterized by a
finite number of so-called determining nodes, but the question of finite dimensionality
of the attractor was left open.

The purpose of the present paper is therefore to establish that, for quasi-periodic
external forces, the uniform attractor AΣ obtained in [11] does in fact have finite
fractal dimension. As a byproduct of our analysis, we will also obtain the existence
of finite-dimensional exponential attractors for the Navier–Stokes system.

Our specific assumptions on the external force f are as follows: Let
C1
b (R;W

1,∞([0, 1])) be the set of bounded functions with bounded first derivatives,
and assume that

f ∈ C1
b (R;W

1,∞([0, 1])), f(·, t) = f̃(·, α1t, . . . , αN t),

where α1, . . . , αN are rationally independent, and(1.3)

f̃(·, ω1, . . . , ωN ) is 2π-periodic in each argument ωi, i = 1, . . . , N.

We fix f̃ and denote by Σ the set of forces f satisfying the above conditions. This
set Σ will be fixed throughout the paper and is a particular realization of the more
general classes Σ for which global attractors were constructed in [11].

We shall show that the uniform attractor AΣ has finite fractal dimension with
respect to Hr ×Hr0 for a particular r ∈ (0, 1). This means that the balls which are
counted in coverings of AΣ are chosen in the topology of Hr ×Hr0 . We also recall a
classical result of Mañe [13], who proves that any metric space with fractal dimension
less than m0/2 can be embedded in R

m0 with a Lipschitz function whose inverse is
Hölder continuous (see [8]). Consequently, the uniform attractor AΣ for the Navier–
Stokes system (1.1)–(1.2) can be embedded in R

m0 for some m0 depending on the
size of the force and the constants appearing in the equations.

The following theorem contains the main results of this paper.
Theorem 1.1. The Navier–Stokes system (1.1)–(1.2) with external force f sat-

isfying (1.3) and with data in the phase space Y × Xu (of discontinuous functions)
has a uniform attractor AΣ which is compact in H1 ×H1

0 and which has finite frac-
tal dimension with respect to the Hr × Hr0 -topology for some r ∈ (0, 1). The fractal
dimension is bounded above by a constant depending only on N , ε, L, M , and the
size of the force. In addition, there exists a compact set MΣ in H1 × H1

0 which is
positively invariant under the family of semiprocesses Uf (t, τ), contains the attractor
AΣ, has finite fractal dimension with respect to the Hr × Hr0 -topology, and has the
property that trajectories of solutions starting at initial points in (Y ×Xu)∩(H1×H1

0 )
converge exponentially as time goes to infinity to MΣ in the topology of Hr ×Hr0 .

We now give a brief outline of the ideas in the proof of Theorem 1.1. First,
following [3], we imbed the Navier–Stokes equations (1.1)–(1.2) in a family of equations
depending on a parameter σ in the N -dimensional torus T

N , now taking f(·, t) =



1042 DAVID HOFF AND MOHAMMED ZIANE

f̃(·, ω(t)), where ω(t) = (αt + σ)(mod T
N ) and α = (α1, . . . , αN ). The set of such

forces is thus parameterized by σ, and the associated processes will now be denoted
by Uσ(t, τ). That is, Uσ(t, τ) = Uf (t, τ) for f(·, t) = f̃(·, αt + σ(modT

N )). To the
family Uσ(t, τ) of semiprocesses we associate the operator S(t) defined by

S(t) : (Y ×Xu)× T
N → (Y ×Xu)× T

N ,

(ρ, u;σ) �→ S(t)(ρ, u;σ) = (Uσ(t, 0)(ρ, u); (αt+ σ)(mod T
N )).

(1.4)

The set of operators S(t) thus forms a semigroup on Y × Xu × T
N . In [11] we

showed that this semigroup has a global attractor A (see Definition 3.4 below) which
is compact in H1 × H1

0 × T
N , and hence compact in Y × Xu × T

N . The uniform
attractor AΣ referred to in Theorem 1.1 associated with the family Uσ(t, τ) is then
obtained by projecting the global attractor A onto Y ×Xu. Thus if A has finite fractal
dimension, then so does AΣ.

One standard approach to finite dimensionality is through the Kaplan–Yorke trace
formula, which requires time-independent bounds for solutions of the system obtained
by linearizing about a trajectory in the attractor. As we pointed out in [11], however,
such bounds appear to be unavailable for these particular equations. We shall instead
prove that AΣ and A have finite fractal dimension by applying the following result of
Ladyzhenskaya [12].

Lemma 1.2. Let M be a subset of a Hilbert space H and assume that M is
invariant under a map S :M �→ H, that is, that M = S(M). Assume also that there
is a positive integer n and constants C > 0 and δ ∈ (0, 1) such that, for any two points
w1, w2 in the set M ,

||S(w1)− S(w2)||H ≤ C||w1 − w2||H ,(1.5)

||QnS(w1)−QnS(w2)||H ≤ δ||w1 − w2||H ,(1.6)

where Qn is the projector onto a subspace of H of codimension n. Then the set M
has finite fractal dimension bounded by a constant d(C, δ)n, which is proportional to
n.

We shall apply this result with H = Hr × Hr × T
N for a particular r ∈ (0, 1),

M = A, and S = S(t∗), where t∗ is large. To verify the hypotheses (1.5) and (1.6) we
apply a decomposition method introduced in [2]. Specifically, we shall show that, for
w1, w2 ∈ H, there is a decomposition S(t)w1 − S(t)w2 = W I(t) +W II(t), with W I

satisfying

|W I(t)|Hr×Hr
0×Σ ≤ K0e

−ν1t|w1 − w2|Hr×Hr
0×Σ(1.7)

for positive constants ν1 and K0 depending only on the size of the attractor, andW II

satisfying

|W II(t)|H1×H1
0×Σ ≤ K0e

ν2t|w1 − w2|Hr×Hr
0×Σ.(1.8)

We let Vn be the vector space generated by {e2kπix/L}|k|≤n and take Qn to be the
projector onto the orthogonal complement of Vn × Vn × T

n in H1 ×H1
0 × T

N . Then
by (1.8),

|QnW II(t)|Hr×Hr
0×Σ ≤ C

n1−r |W II(t)|H1×H1
0×Σ ≤

CK0

n1−r e
ν2t|w1 − w2|Hr×Hr

0×Σ(1.9)
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for a constant C. The coefficients on the right-hand sides of (1.7) and (1.9) can then
be made arbitrarily small by choosing t = t∗ sufficiently large, then n sufficiently large
depending on t∗. This proves (1.6), and (1.5) is easy to check; the finite dimensionality
of A, and hence of AΣ, then follows.

This same decomposition can also be applied to show that the semigroup S(t)
satisfies the so-called squeezing property, and that this squeezing property implies
the existence of exponential attractors, as described in the statement of Theorem 1.1.
Since the exponential attractor has finite fractal dimension and contains the uniform
attractor, its existence affords a second (though not unrelated) proof that the uniform
attractor has finite fractal dimension.

The main contribution of the present paper is therefore the construction of the
decomposition S(t)w1 − S(t)w2 = W I(t) +W II(t) and the derivation of its essential
properties. This decomposition is rather complicated, even for the relatively simple
system (1.1)–(1.2) (see the description in section 3.2), and the analysis leading to
the required bounds (1.7) and (1.8) is based on a fairly involved sequence of energy
estimates for L2 and H1 norms, together with a Riesz–Thorin interpolation argument
for the intermediate Hr norms.

This paper is organized as follows. First, in section 2 we recall the results of
[11] concerning the existence, uniqueness, and continuous dependence of solutions of
the system (1.1)–(1.2) (but only for relatively smooth initial data, which is all that
is required here), as well as results establishing the existence of the attractor AΣ.
We also derive several higher-order regularity estimates which were not given in [11]
but which will be needed here. In section 3.1 we describe the abstract framework in
which the proof of Theorem 1.1 will be given, including precise definitions of uniform
and exponential attractors and statements of known results concerning the squeezing
property and the related decomposition of the semigroup. In section 3.2 we construct
this decomposition for the particular semigroup associated with the solution operator
of (1.1)–(1.2) and then apply the abstract results of section 3.1 to complete the proof
of Theorem 1.1. The essential properties of this decomposition are stated and applied
in section 3.2, but the derivations, which are rather long and technical, are deferred
to section 4.

Existence and regularity of solutions of the Navier–Stokes equations (1.1)–(1.2) in
one space dimension have been studied by a great many authors. See the references in
[11], for example, for a representative list. The unique feature of the existence theory
of [11] is that solutions are constructed satisfying time-independent estimates, even
with large external forces and large, discontinuous initial data. This, together with
the uniqueness and continuous dependence results of [11], makes an attractor theory
both possible and interesting. A corresponding well-posedness theory for the case
of several space variables is not yet available, however, so that an attractor theory,
at least in the sense of the present paper, is not yet feasible. On the other hand,
there is a weaker notion of attractor, whose existence does not depend on uniqueness
and continuous dependence, and which has been shown to exist for the Navier–Stokes
equations in three space dimensions; see Feireisl [7].

The notion of exponential attractor was introduced in [4], and the overall approach
of the present paper has also been applied successfully in a number of other contexts.
See, for example, [6], [9], [14], and [15].

2. Preliminaries. In this section we recall the results of [10] and [11] concerning
the existence and regularity properties of solutions of (1.1)–(1.2) and the existence
of the global and uniform attractors. We also derive several additional higher-order
regularity estimates required for the analysis in sections 3 and 4.



1044 DAVID HOFF AND MOHAMMED ZIANE

First we write the Navier–Stokes equations of compressible fluid flow in one space
dimension in nondimensional form:

ρt + (ρu)x = 0,

(ρu)t + (ρu2)x +A
2ρx = uxx + ρf , 0 < x < 1,

u(0, t) = u(1, t) = 0,

(ρ, u)(·, 0) = (ρ0, u0),∫ 1

0

ρ0 dx = 1,

(2.1)

where A is the dimensionless constant A = cM/ε.
We say that (ρ, u) is a weak solution of (2.1) on [0, T ] provided that

(ρ, u) ∈ C([0, T ]; L2([0, 1])) with (ρ, u)(·, 0) = (ρ0, u0),(2.2)

u ∈ C((0, T ]; H1
0 ([0, 1])),(2.3)

ρ ∈ L∞([0, 1]× [0, T ]) and ρ > 0 a.e.;(2.4)

for test functions ϕ ∈ C1([0, 1]× [0, T ]) and for times t1, t2 ∈ [0, T ],∫ 1

0

(ρϕ)(x, ·)dx
∣∣∣t2
t1
−
∫ t2

t1

∫ 1

0

(ρϕt + ρuϕx)dxdt = 0;(2.5)

and for ψ ∈ C1([0, 1]× [0, T ]) with ψ(0, t) = ψ(1, t) = 0,∫ 1

0

(ρuψ)(x, ·)dx
∣∣∣t2
t1
−
∫ t2

t1

∫ 1

0

(ρuψt + ρu
2ψx +A

2ρψx)dxdt

=

∫ t2

t1

∫ 1

0

(−uxψx + ρfψ)dxdt .
(2.6)

We define

G(ρ) = ρ log ρ− ρ+ 1,(2.7)

and for weak solutions (ρ, u) of (2.1) with ρ in H1,

H(ρ, u) =

∫ 1

0

[
1
6 ρu

2 +A2G(ρ) + 1
16

ρ2x
ρ3

]
dx.(2.8)

(H(ρ, u) is thus a function of t.) We shall denote the usual norm in L2([0, 1]) by | · |.
The following theorem gives a version of the existence, uniqueness, and regularity

theory of [10] and [11] for the special case that the initial density is in H1.
Theorem 2.1. (a) Given positive constants C0 and CΣ, arbitrarily large, there

is a constant C = C(C0, CΣ, A) such that if f ∈W 1,∞([0,∞);L2) with

sup
t≥0

[|f(·, t)|+ |ft(·, t)|] ≤ CΣ,(2.9)

and if (ρ0, u0) satisfies ρ0 > 0 a.e., ρ0, ρ
−1
0 ∈ L∞, ∫ 1

0
ρ0 dx = 1, and

H(ρ0, u0) ≤ C0,(2.10)
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then there is a unique global weak solution of (2.1) satisfying (2.2)–(2.6), as well as

H(ρ(·, t), u(·, t)) ≤ C, t ≥ 0,(2.11)

|u(·, t)|+ (1 ∧ t)1/2|ux(·, t)|+ (1 ∧ t)|ut(·, t)| ≤ C, t > 0,(2.12)

(where 1 ∧ t ≡ min{1, t}), and∫ t+1

t

∫ 1

0

[u2
x + (1 ∧ s)u2

t + (1 ∧ s)2u2
xt]dxds ≤ C, t > 0.(2.13)

(b) There is a constant Kf , depending only on CΣ and on A, such that, given
constants C0 and τ , there is a time T = T (C0, CΣ, τ, A), so that if (ρ, u) is a weak
solution of (2.1) with force f , satisfying (2.9)–(2.13) with constants C0, CΣ, then for
t ≥ T ,

H(ρ(·, t), u(·, t)) ≤ Kf .(2.14)

(c) The solution transforms to Lagrangian coordinates: that is, if we define the
Lagrangian coordinate

h(x, t) =

∫ x

0

ρ(s, t)ds,

its inverse Φ(h, t), given by

Φ(h(x, t), t) = x,

and functions

v(h, t) = ρ(Φ(h, t), t)−1,

w(h, t) = u(Φ(h, t), t),
(2.15)

then (v, w) is a weak solution of the corresponding system
vt − wh = 0

wt + (A2v−1)h =
(wh
v

)
h
+ f ◦ Φ , 0 < h < 1,

w(0, t) = w(1, t) = 0.

(2.16)

For the sake of simplicity, in this paper we will use the Lagrangian formulation
and assume throughout that uτ and vτ are given and satisfy

uτ ∈ L2, vτ ∈ H1 with vτ > 0, vτ ∈ L∞,(2.17)

and that the force f satisfies f ∈ C1
b (R

+;L2). Furthermore, we will assume that f is
quasi-periodic in time. More precisely

f(·, t) = f̃(·, α1t, . . . , αN t),(2.18)
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where f̃(·, ω1, . . . , ωN ) is 2π-periodic in each argument ωi and the αi are rationally
independent. We now replace h by x and rewrite the Navier–Stokes equations in
Lagrangian coordinates

vt = ux,(2.19)

ut +A
2
(
v−1

)
x
=
(ux
v

)
x
+ f(Φ(x, t), t),(2.20)

with the boundary conditions

u(0, t) = u(1, t) = 0,

∫ 1

0

v(x, t) dx = 1(2.21)

and initial data, given at time t = τ ,

u(x, τ) = uτ , v(x, τ) = vτ .(2.22)

We have the following as a consequence of Theorem 2.1.
Theorem 2.2. Let C0 and CΣ be two positive constants, arbitrarily large. Then

there exist positive constants a0, b1, α, β depending on CΣ and A such that if f ∈
W 1,∞(R+, L

2) is given satisfying ‖f‖W 1,∞(R+,L2) ≤ CΣ, and if initial data (vτ , uτ ) is

given satisfying vτ > 0,
∫ 1

0
vτ (x)dx = 1, and

|uτ |+ |(vτ )x|+ |vτ−1|L∞ ≤ C0,(2.23)

then there exists a unique global weak solution (v, u) satisfying

v ∈ C([τ,∞);H1), v(·, τ) = vτ , v(·, t) > 0, t ≥ τ,(2.24)

u ∈ C([τ,∞);L2) ∩ C((τ,∞);H2 ∩H1
0 ); u(·, τ) = uτ .(2.25)

Furthermore, there exists T0 = T0(C0, CΣ, A) such that, for t− τ ≥ T0, we have

|u(·, t)|2 ≤ a20,
∫ t+1

t

|ux|2ds ≤ b21, |vx(·, t)| ≤ β, 1

α
≤ v(x, t) ≤ α.(2.26)

Thus if we define B ⊂ H1 × H1
0 to be the set of (v, u) satisfying (2.26) (so that B

is determined solely by CΣ and A), then given C0, there is a time T0 depending only
on C0, CΣ, and A such that if (v(·, t), u(·, t)) is the solution of (2.19)–(2.22) with

initial data (vτ , uτ ) satisfying the conditions vτ > 0,
∫ t
0
vτ (x)dx = 1, and (2.23), then

(v(·, t), u(·, t)) ∈ B for t ≥ T0(C0, CΣ, A).
The set B is called the absorbing ball. It is the first indication of a dissipative

mechanism for the compressible Navier–Stokes equations. Its existence, together with
the asymptotic compactness property of the solution operator, leads to the existence
of the uniform attractor; see [10] and [11] for more details. Theorem 2.2 allows us to
define a family of semiprocesses {Uf (t, τ)}t≥τ≥0 on the set X = {(v, u) ∈ H1×L2, v >
0, v−1 ∈ L∞} as follows:

Uf (t, τ) : X → X ,
(v, u) �→ Uf (t, τ)(v, u) = (v(·, t), u(·, t)),(2.27)

where (v(·, t), u(·, t)) is the solution of (2.19)–(2.22) at time t with initial data (v, u)
given at time τ .
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We also established in [10, 11], using Theorem 2.2, the existence of the uniform
attractor for the family of semiprocesses {Uf (t, τ)}. The precise statement is as fol-
lows.

Theorem 2.3. Let CΣ and A be as in Theorem 2.2. Then there is a set A which
is compact in H1 × H1

0 × Σ, which is invariant under S(t), and which attracts all
trajectories S(t)w0 for w0 ∈ X ×Σ in the topology of H1×H1

0 ×Σ. The projection of
A onto H1 ×H1

0 is compact in the topology of H1 ×H1
0 , is positively invariant under

the family of semiprocesses Uf (t, τ), and is uniformly attracting in the sense that, for
all bounded sets B ⊂ X ,

lim
t→∞ sup

f∈Σ
distX (Uf (t, τ)B,AΣ) = 0 ∀ τ ≥ 0.(2.28)

The sets A and AΣ are, respectively, the global attractor for the semigroup S(t)
and the uniform attractor for the family of semiprocesses U ; see section 3 for more
formal definitions.

The remainder of this section is devoted to obtaining uniform estimates on some
higher derivatives of the solution of (2.19)–(2.22). In deriving these estimates, we will
make use of the uniform Gronwall lemma (see [17, page 89]): if g, h, and y are three
positive locally integrable function on (t0,∞) such that dydt ≤ gy+ h for t ≥ t0, and if∫ t+1

t

g(s) ds ≤ k1,
∫ t+1

t

h(s) ds ≤ k2,
∫ t+1

t

y(s) ds ≤ k3 for t ≥ t0,

where k1, k2, k3 are positive constants, then

y(t+ 1) ≤ (k2 + k3) exp(k1) for t ≥ t0 + 1.

(i) Uniform estimates on |ux|. We multiply (2.20) by uxx and integrate with
respect to x to obtain

1

2

d

dt
|ux|2 +

∫ 1

0

uxx
2

v
dx =

∫ 1

0

uxuxxvx
v2

dx−A2

∫ 1

0

vx
v2
uxx dx−

∫ 1

0

fuxx dx,(2.29)

and thanks to (2.26), we obtain

d

dt
|ux|2 + 1

α
|uxx|2 ≤ Cα11β4|ux|2 + CA4α5β2 + CαC2

Σ,(2.30)

where C will denote here and throughout this paper a numerical constant. Therefore,
by the uniform Gronwall lemma and (2.13), we obtain

|ux(·, t)|2 ≤ a21 and

∫ t+1

t

|uxx|2ds ≤ b22 for t− τ ≥ T0 + 1,(2.31)

where

a21 =
[
b21 +A

4α5β2 + αC2
Σ

]
exp(Cα11β4),(2.32)

b22 = C(α
12β4b21 +A

4α6β2 + α2C2
Σ) + 2αa21.(2.33)

Furthermore, using (2.20), we have

|ut|2 ≤ 2A4α4|vx|2 + 2|uxx|2α2 + 2α2|ux||uxx||vx|2 + 2C2
Σ.(2.34)
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Therefore ∫ t+1

t

|ut|2 ds ≤ 2(A4α4β2 + b22 + α
2b22 + 2α4β2b1b2) + 2C2

Σ = b23.(2.35)

(ii) Estimates on |ut|. Taking the derivative with respect to time in (2.20),
multiplying by ut, and integrating over (0, 1), we obtain after a few calculations

1

2

d

dt
|ut|2 +

∫ 1

0

u2
xt

v2
dx = −A2

∫ 1

0

uxuxt
v2

dx−
∫ 1

0

u2
xuxt
v2

dx+

∫ 1

0

df

dt
ut dx

≤ A2α2a1|uxt|+ α2|ux||uxx||uxt|+
∣∣∣∣dfdt
∣∣∣∣ |uxt|.

Hence

d

dt
|ut|2 + 1

α
|uxt|2 ≤ CA4α5a21 + 2α5a21|uxx|2 + 2αC2

Σ,(2.36)

and since uxx = vut −A2 vx
v + uxvx

v − vf , we have
|uxx|2 ≤ 2α2|ut|2 + 2A4α2β2 + 2α2β2|ux||uxx|+ 2α2C2

Σ,(2.37)

and, using Young’s inequality together with (2.31), we obtain

|uxx|2 ≤ 16α2|ut|2 + 16α2(A4α2β2 + α2β4a21 + C
2
Σ).(2.38)

Hence

d

dt
|ut|2 + 1

α
|utx|2 ≤ k2

1|ut|2 + k2
2,(2.39)

where

k2
1 = Cα7a21,(2.40)

k2
2 = Cα7a21(A

4β2 + α2β4a21 + C
2
Σ) + 2A4α5a21 + 2αC2

Σ.(2.41)

Applying the uniform Gronwall lemma, we obtain

|ut(·, t)|2 ≤ (k2
2 + b

2
3) exp(k

2
1) = a2 for t− τ ≥ T0 + 1,(2.42) ∫ t+1

t

|uxt|2 ds ≤ k2
1b

2
3k

2
2 = b24 for t− τ ≥ T0 + 1,(2.43)

|uxx(·, t)|2 ≤ C(k2
2 + b

2
3) exp(k

2
1) + 16α2(A4β2 + α2β4a21 + C

2
Σ) = a

2
2.(2.44)

(iii) Uniform estimates on |uxt|. We differentiate (2.20) with respect to time
and multiply by utt to obtain

1

2

d

dt

∫ 1

0

u2
xt

v
dx+ |utt|2 = −A2

∫ 1

0

(
1

v

)
xt

utt dx− 1

2

∫ 1

0

u2
xtux
v2

dx(2.45)

+

∫ 1

0

(
u2
x

v2

)
x

utt dx+

∫ 1

0

utt
df

dt
dx.

Now note that (
1

v

)
xt

= −uxx
v2

+ 2
uxvx
v3

.
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Hence ∣∣∣∣(1

v

)
xt

∣∣∣∣2 ≤ 2α4a22 + 4α6|ux||uxx||vx| ≤ 2α4a22 + 4α6a1a2β,

∣∣∣∣∫ 1

0

u2
xtux
v2

dx

∣∣∣∣ ≤ α2|ux|L∞ |uxt|2 ≤ α2(a1a2)
1/2|uxt|2,

and ∣∣∣∣∫ 1

0

(
u2
x

v2

)
x

utt dx

∣∣∣∣ = ∣∣∣∣∫ 1

0

[
2uxuxx
v2

utt − 2u2
xvx
v3

utt

]
dx

∣∣∣∣
≤ 2α2|ux|L∞a2|utt|+ 2α3|ux|2L∞ |utt|.

Therefore

1

2

d

dt

∫ 1

0

u2
xt

v
dx+

1

2
|utt|2 ≤ C(α4a22 + α

6a1a2β)A
4 + C(a1a2)

1/2|uxt|2

+ Cα4a32a1 + Cα
6a21a

2
2 + CC

2
Σ(2.46)

≤ k2
3 + Cα

3(a1a2)
1/2

∫ 1

0

u2
xt

v
dx.

Hence

d

dt

∫ 1

0

uxt
2

v
dx+ |utt|2 ≤ k2

3 + k
2
4

∫ 1

0

u2
xt

v
dx,

where

k2
3 = C(α4a22 + α

6a1a2β)A
4 + Cα4a32a1 + Cα

6a21a
2
2 + CC

2
Σ,

k2
4 = Cα3(a1a2)

1/2.

Finally, using the uniform Gronwall lemma, we obtain

|uxt|2 ≤ α(k2
3 + b

2
4) exp(k

2
4).(2.47)

We collect the previous estimates in the following lemma.
Lemma 2.4. Let C0 and CΣ be positive constants, arbitrarily large, and let (v, u)

be the solution described in Theorem 2.2. Then there exists a positive constant M0

depending only on CΣ and A, and there exists a time T0 = T0(C0, CΣ, A) such that if
||f ||W 1,∞ ≤ CΣ and t− τ ≥ T0 + 1, then

|u(·, t)|2 + |ux(·, t)|2 + |uxx(·, t)|2 + |ut(·, t)|2 + |uxt(·, t)|2 ≤M2
0 .(2.48)

In particular, this inequality holds for any solution on the uniform attractor AΣ.
We conclude this section with the following lemma, which is a consequence of

Lemma 2.4.
Lemma 2.5. Let the hypotheses and notation of Lemma 2.4 be in force, and let g

be a smooth function. Then there exists a constant M0 = M0(CΣ, A, g), independent
of C0, such that∫ 1

0

∣∣∣∣ ∂2

∂x∂t
g(v(x, t))

∣∣∣∣2 dx+ ∫ 1

0

∣∣∣∣ ∂2

∂t2
g(v(x, t))

∣∣∣∣2 dx ≤M2
0(2.49)
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for t−τ ≥ T0+1. In particular, if (v(·, ·), u(·, ·)) and (v̄(·, ·), ū(·, ·)) are two solutions
in AΣ and if G is a smooth real-valued function, then

θ(x, t) ≡ G(v)−G(v̄)
v − v̄ =

∫ 1

0

G′(τv(x, t) + (1− τ)v̄(x, t)) dτ(2.50)

satisfies

|θxt(·, t)|2 + |θtt(·, t)|2 ≤M2
0(2.51)

for all t.
Proof. We write

(g(v))xt = (g′(v)ux)x = g′′(v)u2
x + g

′(x)uxx.(2.52)

Since, by Lemma 2.4, |uxx(·, t)|L2 , |g′′(v(·, t))|L∞ , and |u2
x(·, t)|L2 are bounded for

t− τ ≥ T0 + 1, we have that |g(v)xt(·, t)| is bounded for t− τ ≥ T . Similarly

(g(v))tt = (g′(v)ux)t = g′′(v)u2
x + g

′(v)uxt,(2.53)

and, thanks to Lemma 2.4, the proof is complete.

3. Construction of the exponential attractor: Proof of Theorem 1.1.
In this section we prove Theorem 1.1 by constructing the decomposition discussed in
section 1 for the semigroup associated with the semiprocess generated by the solution
operator for the Navier–Stokes system (1.1)–(1.2). This decomposition enables us to
apply the result of Lemma 1.2 to show that the attractor A of Theorem 2.3 has finite
fractal dimension, and therefore that its projection AΣ has finite fractal dimension
as well. The same decomposition also enables us to apply other known results to
show that the semigroup S(t) satisfies the so-called squeezing property and that, as
a consequence, it has an exponential attractor of finite fractal dimension, as does the
associated process Uσ.

We begin in section 3.1 by giving a brief description of the abstract framework
in which the proof of Theorem 1.1 will be given, including the general formulation
of the required decomposition of the semigroup and statements of standard results
concerning the implications of this decomposition for the existence of exponential
attractors. Then in section 3.2 we show how to construct the required decomposition
for the semigroup associated with the system (1.1)–(1.2) and how the abstract results
of section 3.1 can be applied to complete the proof of Theorem 1.1. The properties
of the decomposition required for the application of this abstract framework will be
seen to follow from certain a priori bounds for solutions of two systems of differential
equations derived from (1.1)–(1.2). These estimates are stated in Theorem 3.9, and
their proofs are deferred to section 4.

3.1. Exponential attractors. Let Y be a metric space and consider the equa-
tion 

du

dt
= F(αt, u), t ≥ τ, τ ∈ R,

u(τ) = uτ ∈ Y,
(3.1)

where α = (α1, . . . , αN ). We assume that the αi’s are rationally independent and
that F(ω1, . . . , ωN , ·) is 2π-periodic in each argument ωi, i = 1, . . . , N . In the spirit
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of the theory developed in [3] for nonautonomous systems, we associate with (3.1) the
following family of equations, depending on a parameter σ ∈ T

N :
du

dt
= F(αt+ σ, u), t ≥ τ, τ ∈ R,

u(τ) = uτ ∈ Y.
(3.2)

Assuming that (3.2) is well-posed for initial data in Y, we can define a family of
semiprocesses Uσ(t, τ) by taking Uσ(t, τ)uτ to be the solution of (3.2) at time t. Thus

Uσ(t, t) = Id ∀ t ∈ R, ∀ σ ∈ T
N ,(3.3)

Uσ(t, s) ◦ Uσ(s, τ) = Uσ(t, τ) ∀ t ≥ s ≥ τ, ∀ σ ∈ T
N .(3.4)

Uniform attractors and uniform exponential attractors for semiprocesses are then
defined as follows (see [16]).

Definition 3.1. A closed set AΣ ⊂ Y is called the uniform (with respect to σ)
attractor for the family of processes Uσ(t, τ) defined on Y if

(a) AΣ is a compact subset of Y;
(b) for all B ⊂ Y bounded,

lim
t→∞ sup

σ∈TN

distY(Uσ(t, τ)B,AΣ) = 0;(3.5)

(c) for all A′ ⊂ Y closed and satisfying (b), AΣ ⊂ A′.
Definition 3.2. Let H and V be Hilbert spaces with V compactly imbedded in

H, and assume that the family of semiprocesses Uσ(t, τ) is defined on a closed subset
Y of V . A closed setMΣ ⊂ Y is a uniform Y−V exponential attractor for the family
of processes Uσ(t, τ) and for initial data in V if

(a) AΣ ⊂MΣ ⊂ V , where AΣ is the uniform attractor;
(b) MΣ is compact in V and has finite fractal dimension;
(c) for all B ⊂ Y bounded in V , there exist constants c1(B) and c2(B) such that

sup
σ∈TN

distH(Uσ(t, τ)B,MΣ) ≤ c1e−c2(t−τ).(3.6)

Remark 3.3. Note that the exponential convergence in (3.6) is in a weaker norm
than that in which the set B is assumed to be bounded. For example, as we shall see
below for the Navier–Stokes system (1.1)–(1.2), the set Y will be the closed absorbing
ball (see Theorem 2.3) in the Hilbert space V = H1×H1

0 , whereas H will be the Hilbert
space Hr ×Hr0 for some r ∈ (0, 1). Thus exponential convergence to MΣ will occur
in the topology of H = Hr × Hr0 for sets B ⊂ Y which are bounded in the stronger
topology of H1 ×H1

0 .
The proof of the existence of uniform exponential attractors for nonautonomous

evolution equations follows the theory in [3]: one considers the semigroup S(t) defined
on the extended phase space Y × T

N by

S(t) : Y × T
N −→ Y × T

N ,
(u, σ) �−→ (Uσ(t, 0)u, (αt+ σ)(modT

N ))
(3.7)

and then proves that S(t) has an exponential attractorM. The uniform exponential
attractor MΣ for the semiprocess Uσ is then obtained by projecting M onto Y. We
recall the definitions of global attractor and exponential attractor for semigroups.
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Definition 3.4. A closed set A ⊂ Y × T
N is called the global attractor for the

semigroup S(t) defined on Y × T
N if

(a) A is a compact subset of Y × T
N ;

(b) A is invariant under S(t), i.e., S(t)A = A for all t;
(c) for all B ⊂ Y × T

N bounded,

lim
t→∞ distY×TN (S(t)B,A) = 0.(3.8)

Definition 3.5. Let H and V be Hilbert spaces with V compactly imbedded in
H, and assume that S(t) is a semigroup defined on Y×T

N , where Y is a closed subset
of V . A closed setM⊂ V ×T

N is a uniform Y ×T
N −V ×T

N exponential attractor
for the semigroup S(t) for initial data in V × T

N if
(a) A ⊂M ⊂ V × T

N , where A is the global attractor of S(t);
(b) M is compact in V × T

N and has finite fractal dimension;
(c) for all B ⊂ Y×T

N bounded in V ×T
N , there exist constants c1(B) and c2(B)

such that

sup distH×TN (S(t)B,M) ≤ c1e−c2(t−τ).(3.9)

As discussed earlier, an effective method for proving the existence of exponential
attractors for semigroups arising from systems which are only partially dissipative,
and therefore whose solution operators are only asymptotically compact, is based
on a decomposition of the semigroup S(t) into the sum of two operators S(t) =
S1(t) + S2(t), where S1(t) is compact in a suitable sense, S2(t) is continuous, and

sup
w∈C

|S2(t)w|Y×TN → 0 as t→∞(3.10)

for every bounded set C ⊂ Y × T
N . The existence of such a decomposition is known

to imply a certain “squeezing property,” and this in turn is known to imply the exis-
tence of an exponential attractor. This squeezing property, its relation to the above
decomposition of the semigroup, and its sufficiency for the existence of exponential
attractors are described as follows.

Definition 3.6. We say that the semigroup S(t) satisfies the squeezing property
on a positively invariant closed set X ⊂ Y × T

N if for every δ ∈ (0, 1/4) there exist
an orthogonal projector P with finite rank and a time t∗(δ) > 0 such that for all
(w1, w2) ∈ X ×X, either

|S(t∗)w1 − S(t∗)w2|Y×TN ≤ δ|w1 − w2|Y×TN(3.11)

or

|(I − P)(S(t∗)w1 − S(t∗)w2)|Y×TN ≤ |P(S(t∗)w1 − S(t∗)w2)|Y×TN .(3.12)

The following result of Eden et al. [4] guarantees the existence of exponential
attractors for semigroups satisfying the squeezing property.

Theorem 3.7. If the semigroup S(t) defined by (3.7) satisfies the squeezing
property of Definition 3.6, and if the global attractor A exists in the sense of Defini-
tion 3.4, then S(t) has a finite-dimensional exponential attractorM, and the semipro-
cess Uσ(t, τ) associated with S(t) has a finite-dimensional exponential attractorMΣ.

We shall verify that the semigroup associated with the Navier–Stokes system
(1.1)–(1.2) does indeed satisfy the squeezing property by applying the following suf-
ficient condition of Galusinski, Hind, and Miranville [9].
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Proposition 3.8. Let V and H be Hilbert spaces with V compactly imbedded in
H. Assume that Y is a closed subset of V and that for each n ∈ N there exists an
orthogonal projector Pn : H → H with finite rank such that

∀ y ∈ V, |Qny|H ≤ C(n)|y|V ,(3.13)

where Qn = I − Pn and limn→∞ C(n) = 0. Assume also that there are continuous
functions d and h on [0,∞) such that limt→∞ d(t) = 0, and that for all w1 and w2

in Y × T
N , there exist W I(t) and W II(t) such that

S(t)w1 − S(t)w2 =W
I(t) +W II(t), with(3.14)

|W I(t)|2H×TN ≤ d(t)|w1 − w2|2H×TN ,(3.15)

|W II(t)|2V×TN ≤ h(t)|w1 − w2|2H×TN .(3.16)

Then S(t) satisfies the squeezing property of Definition 3.6.
Proof. See [9].

3.2. Application to the Navier–Stokes system: Proof of Theorem 1.1.
It suffices to prove Theorem 1.1 for the Lagrangian formulation (2.19)–(2.22) of the
Navier–Stokes system (1.1)–(1.2). Following [3], we first imbed the system (2.19)–
(2.22) in a family of autonomous systems depending on a parameter σ ∈ T

N , taking
f(Φ(x, t), t) = f̃(Φ(x, t), αt+ σ):

vt = ux,(3.17)

ut + (A2v−1)x =
(ux
v

)
x
+ f̃

(∫ x

0

v(ξ, t)dξ, ω

)
,(3.18)

dω(t)

dt
= α,(3.19)

u(0, t) = u(1, t) = 0,

∫ 1

0

v(x, t)dx = 1, t ≥ 0,(3.20)

u(x, 0) = u0, v(x, 0) = v0, and ω(0) = σ.(3.21)

The existence and regularity theory of section 2 applies to the system (3.17)–(3.21),
and all the estimates of Lemmas 2.4 and 2.5 hold uniformly for σ ∈ T

N .
To construct the decomposition described in Proposition 3.8, we let (v̄, ū, ω̄) and

(v, u, ω) be solutions of (3.17)–(3.21) with respective initial values (v̄0, ū0, σ̄) and
(v0, u0, σ), and we set

ϕ = v − v̄, ψ = u− ū, η = ω − ω̄,(3.22)

Φ(x, t) =

∫ x

0

v(s, t) ds, Φ̄(x, t) =

∫ 1

0

v̄(s, t) ds, and(3.23)

R(x, t) = Φ(x, t)− Φ̄(x, t) =

∫ x

0

ϕ(ξ, t)dξ.(3.24)

Then

R(0, t) = R(1, t) = 0(3.25)
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and 

ϕt − ψx = 0,

ψt + (qϕ)x = εψxx + (ζϕ)xt + hR+ h̄η,

dη

dt
= 0,

ϕ0(x, 0) = v0(x)− v̄0(x), ψ0(x, 0) = u0(x)− ū0(x), η(0) = σ − σ̄,

(3.26)

where

∆f̃ = f̃(Φ(x, t), αt+ σ)− f̃(Φ̄(x, t), αt+ σ̄) = h(x, t)R(x, t) + h̄(x, t)η(t),(3.27)

p(v)− p(v̄) = q(x, t)ϕ(x, t), with q(x, t) = − A2

v(x, t)v̄(x, t)
,(3.28)

ux
v
− ūx
v

= εψx + (log v − εv)t − (log v̄ − εv̄)t = εψx + (ζϕ)t,

where

ζ = ζ(x, t) =
1

ṽ(x, t)
− ε for some ṽ(x, t) ∈ [v(x, t), v̄(x, t)],(3.29)

and ε is defined by ε = 1
2 inf[v(x, t)

−1], x ∈ (0, 1), t ≥ T0 + 1.
We now let λ be a large positive constant and k a large positive integer, to be

chosen later, and introduce the following decomposition of (ϕ,ψ, η):

(ϕ,ψ, η) = (ϕI , ψI , 0) + (ϕII , ψII , η),

where (ϕI , ψI) and (ϕII , ψII) are the solutions of
ϕIt − ψIx = 0,

ψIt + (qϕI)x = εψ
I
xx + (ζϕI)xt + λṽ(x, t)(Pkψ

I
xx) + hQkR

I ,

ϕI(x, 0) = ϕ0(x, 0), ψI(x, 0) = ψ0(x),

(3.30)


ϕIIt − ψIIx = 0,

ψIIt + (qϕII)x = εψ
II
xx + (ζϕII)xt − λṽ(PkψIxx) + hPkRI + hRII + h̄η,

ϕII(x, 0) = ψII(x, 0) = 0,

(3.31)

where

Pkψ =
∑
|j|≤k

ψ̂je
2πijx and Qkψ = ψ − Pkψ.(3.32)

It is readily verified that the sum of the solutions (ϕI , ψI , 0) and (ϕII , ψII , η) of the
above systems is indeed the solution (ϕ,ψ, η) of (3.17)–(3.21).

The proof that this decomposition satisfies the hypotheses of Proposition 3.8 will
depend on certain a priori estimates for solutions of the systems (3.30) and (3.31). We
state these estimates without proof below in Theorem 3.9, and we then complete the
proof of Theorem 1.1 by showing how these a priori estimates can be used to fit the
Navier–Stokes system (2.19)–(2.22) into the abstract framework of section 3.1. The
proof of Theorem 3.9 will be deferred to section 4.

Theorem 3.9. For k, λ, and k/λ sufficiently large, there exist positive constants
r ∈ (0, 1), ν, ν1, ν2, ν3, and K0, all depending only on A and CΣ (see (2.1) and
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Theorem 2.1), such that if (v0, u0) and (v̄0, ū0) are in the uniform attractor AΣ,
then

|ϕIx(·, t)|2 + |ψIx(·, t)|2 ≤ K0e
−νt[|ϕI0x|+ |ψI0x|2],(3.33)

|ϕI(·, t)|2 + |ψI(·, t)|2 ≤ K0e
ν1t
[|ϕI0|2 + |ψI0 |2],(3.34)

|ϕI(·, t)|2Hr + |ψI(·, t)|2Hr ≤ K0e
−ν2t[|ϕI0|2Hr + |ψI0 |2Hr

]
,(3.35)

|ϕIIx (·, t)|2 + |ψIIx (·, t)|2 ≤ K0e
ν3t
[|ϕI0|2Hr + |ψI0 |2Hr

]
.(3.36)

Proof of Theorem 1.1. We first show that the global attractor A of Theorem 2.3
has finite fractal dimension by applying the result of Lemma 1.2. To do this, we let
H be the Hilbert space H = Hr × Hr0 × T

N , where r is as above in Theorem 3.9,
and we take M = A, which is compact in H. To check the hypotheses (1.5) and
(1.6) we let w1 = (v0, u0, σ0) and w2 = (v̄0, ū0, σ̄0) be two points in A and write
S(t)w1 − S(t)w2 = W I(t) + W II(t), with W I(t) = (ϕI(t), ψI(t), 0) and W II(t) =
(ϕII(t), ψII(t), η(t)), where η(t) = αt + σ − σ̄, (ϕI(t), ψI(t)) is the solution of (3.30)
with initial data (v0 − v̄0, u0 − ū0), and (ϕII(t), ψII(t)) is the solution of (3.31) with
zero initial data. Then for t∗ large,

|W I(t∗)|Hr×Hr
0×TN ≤ 2−1/2δ|w1 − w2|Hr×Hr

0×TN(3.37)

with δ < 1, by (3.35). Next, if P̃n is the orthogonal projector onto the span of
{e2kπix}|k|≤n, and if Q̃n = I − P̃n, then

|Q̃ng|Hr ≤ n1−r|g|H1

for g ∈ H1([0, 1]). Letting Pn be the projector Pn = (P̃n, P̃n, Id) on L
2 × L2 × T

N

and Qn = I − Pn, we then have from (3.36) that, for a generic constant C,

|QnW II(t∗)|Hr×Hr
0×TN ≤ Cn1−r|(φII(t∗), ψII(t∗), 0)|H1×H1

0×TN(3.38)

≤ Cn1−reν3t
∗ |w1 − w2|Hr×Hr

0×TN

≤ 2−1/2δ|w1 − w2|Hr×Hr
0×TN

if n is chosen sufficiently large, depending on t∗. Taking the square root of the sum
of the squares of (3.37) and (3.38), we then obtain (1.6) for S = S(t∗). The Lipschitz
continuity (1.5) then follows immediately from (3.35) and (3.36). Since A is compact,
by Theorem 2.3, the result of Lemma 1.2 applies to show that A has finite fractal
dimension in Hr × Hr0 × T

N , and therefore that its projection AΣ has finite fractal
dimension in Hr ×Hr0 , as asserted in Theorem 1.1.

To prove the existence of a finite-dimensional exponential attractor for the semi-
group S(t), we apply the results of Theorem 3.7 and Proposition 3.8 as follows. Let H
and V be the Hilbert spaces H = Hr×Hr0 ×T

N , where r is as above in Theorem 3.9,
and V = H1 ×H1

0 × T
N , and let Y be the absorbing ball B of Theorem 2.3, which is

compact in H. Taking Pn, Qn,W
I , and W II exactly as above, we then obtain (3.15)

and (3.16) directly from the conclusions of Theorem 3.9. Proposition 3.8 and Theo-
rem 3.7 then apply to show that the semigroup S(t) satisfies the squeezing property,
and that therefore there exists an exponential attractorM of finite fractal dimension.
The uniform exponential attractor MΣ for the process Uσ is then obtained as the
projection of M onto Hr ×Hr0 . This completes the proof of Theorem 1.1.
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4. Proof of Theorem 3.9. This section is devoted to the proof of Theorem
3.9. We will concentrate on the proof of the inequalities (3.33) and (3.34) and then
obtain the inequality (3.35) (which corresponds to (3.15) in Proposition 3.8) by the
Riesz–Thorin interpolation theorem. The last inequality (3.36) (which corresponds to
the inequality (3.16) in Proposition 3.8) is straightforward and will be sketched.

We assume throughout this section that all the hypotheses and notation of The-
orem 3.9 are in force, and we begin with the following technical lemma.

Lemma 4.1. Assume that the initial data (v0, u0), (v̄0, ū0) are in the attractor
AΣ and let (v(t), u(t)), (v̄(t), ū(t)) be the corresponding solutions of the Navier–Stokes
equations, so that, as a consequence of Lemmas 2.4 and 2.5,

0 < −q(x, t) ≤M0, |ζ(·, t)|L∞ ≤M0, |ζt(·, t)|L∞ ≤M0,(4.1)

|ζx(·, t)|L2 ≤M0, |ζxt(·, t)|L∞ ≤M0,
1

M0
≤ ṽ(x, t) ≤M0,(4.2)

where M0 is a constant depending only on A and CΣ. Then there exists a numerical
constant C such that

|ψIx|2L∞ ≤ CM8
0

[
1

λ2
|ϕI |2 + |ψIx|2 +

1

k
|ψIxx|2 +

1

λ2
|ψIt |2 +

1

λ2
|ϕI ||ϕIx|

]
(4.3)

and

|ψIxx|2 ≤ CM8
0

[|ϕI |2 +M4
0 |ϕIx|2 + |ψIx|2 + |ψIt |2

]
.(4.4)

Proof. Let w =
ψI

x

ṽ + (ζt − q)ϕI + λṽPkψIx. Thanks to Lemmas 2.4 and 2.5

|w|2 ≤ 2M2
0 (|ψIx|2 + |ϕI |2 + λ2|PkψIx|2) ≤ CM2

0

[
λ2|ψIx|2 + |ϕI |2

]
,(4.5)

where C denotes a generic numerical constant. We note that equations (3.30) imply
that wx = ψ

I
t + λṽxPkψ

I
x − hQkRI . Therefore,

|wx| ≤ |ψIt |+ λ|ṽx||PkψIx|L∞ + |h|L∞ |QkRI |.(4.6)

Since |QkRI | ≤ |ϕI |, Lemmas 2.4 and 2.5 yield

|wx|2 ≤ CM2
0

(|ψIt |2 + |ϕI |2 + λ2|Pkψx|2L∞
)
.(4.7)

Now using Agmon’s inequalities

|PkψIx|2L∞ ≤ |ψIx|2L∞ +
1

k
|ψIxx|2,(4.8)

|w|2L∞ ≤ |w|2 + 2|w||wx|,(4.9)

we obtain

|w|2L∞ ≤ CM2
0

[
λ2|ψIx|2 + |ϕI |2 +

λ2

k
|ψIxx|2 +

(
λ|ψIx|+ |ϕI |

)(|ψIt |+ λ|ψIx|L∞
)]
.

(4.10)

Furthermore, from the definition of w, we can write

ψIx =

(
1

ṽ
+ λṽ

)−1

[w − (ζt − q)ϕI + λṽQkψIx],(4.11)



ATTRACTORS FOR COMPRESSIBLE NAVIER–STOKES EQUATIONS 1057

which implies that, for λ ≥ 1,

|ψIx|2L∞ ≤ CM2
0

λ2

[
|w|2L∞ + |ζt − q|2L∞ |ϕI |2L∞ + λ2|ṽ|2L∞ |QkψIx|2L∞

]
,(4.12)

and since |QkψIx|2L∞ ≤ 1
k2 |ψIxx|2, we obtain, thanks to Lemmas 2.4 and 2.5,

|ψIx|2L∞ ≤ CM4
0

[
|ψIx|2 +

1

λ2
|ϕI |2 + 1

k
|ψIxx|2 +

(
1

λ
|ψIx|+

1

λ2
|ϕI |

)(
|ψIt |+ λ|ψIx|L∞

)]
+
CM4

0

λ2
|ϕI |2L∞ +

CM4
0

k2
|ψIxx|2,(4.13)

and with the inequality

CM4
0

(
|ψIx|+

1

λ
|ϕ|
)
|ψIx|L∞ ≤ 1

2
|ψIx|2L∞ + CM8

0 |ψIx|2 +
CM8

0

λ2
|ϕI |2,(4.14)

we conclude that

|ψIx|2L∞ ≤ CM8
0

(
|ψIx|2 +

1

λ2
|ϕI |2 + 1

k
|ψIxx|2 +

1

λ2
|ψIt |2

)
+
CM4

0

λ2
|ϕI ||ϕIx|.(4.15)

This completes the proof of (4.3).
In order to prove inequality (4.4), we rewrite the equations (3.30) in the form

ψIt + qxϕ
I + qϕIx =

1

ṽ
ψIxx + ζxψ

I
x + ζtϕ

I
x + ζtxϕ

I + λṽPkψ
I
xx + hQkR

I .(4.16)

Let F be defined by

F = ψIt + qxϕ
I + qϕIx − ζxψIx − ζtϕIx − ζtxϕI − hQkRI .(4.17)

We have

1

ṽ
Pkψ

I
xx +

1

ṽ
Qkψ

I
xx + λṽPkψ

I
xx = F ,(4.18)

and, with Lemmas 2.4 and 2.5,

|F| ≤ |ψIt |+ |qx||ϕI |L∞ + |q|L∞ |ϕIx|+ |ζx||ψIx|L∞

+ |ζt|L∞ |ϕIx|+ |ζtx||ϕI |L∞ + |h|L∞ |QkRI |(4.19)

≤ CM0

[
|ψt|+ |ϕIx|+ |ϕI |+ |ψIx|L∞

]
.

We multiply (4.18) by Qkψxx

ṽ and integrate with respect to x to obtain

|ṽ−1Qkψ
I
xx|2 =

∫ 1

0

F ṽ−1Qkψ
I
xx dx

−
∫ 1

0

ṽ−2Qkψ
I
xxPkψ

I
xx dx ≤

[|F|+ |ṽ−1Pkψ
I
xx|
]|ṽ−1Qkψ

I
xx|,

so that

|ṽ−1Qkψ
I
xx|2 ≤ C|F|2 + |ṽ−1Pkψ

I
xx|2.
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Hence

|QkψIxx|2 ≤ CM2
0 [|F|2 + |PkψIxx|2](4.20)

≤ CM4
0

[
|ψt|2 + |ϕIx|2 + |ϕI |2 + |ψIx|2L∞

]
+ |PkψIxx|2.

Now we multiply (4.18) by ṽPkψ
I
xx and obtain

∫ 1

0

(1 + λṽ2)(Pkψ
I
xx)

2dx =

∫ 1

0

F ṽPkψxx dx ≤M0|F||Pkψxx| ≤ CM2
0 |F|2 +

1

2
|Pkψxx|2.

(4.21)

Therefore

|PkψIxx|2 ≤
CM4

0

λ
|F|2 ≤ CM4

0

λ

[
|ψt|2 + |ϕIx|2 + |ϕI |2 + |ψIx|2L∞

]
.(4.22)

Combining (4.20) and (4.22), we obtain

|ψIxx|2 ≤ CM4
0

[
|ψIt |2 + |ϕI |2 + |ϕIx|2 + |ψIx|2L∞

]
.(4.23)

Finally, applying Agmon’s inequality, we obtain

|ψIxx|2 ≤ CM8
0

[
|ψIt |2 + |ϕI |2 + |ϕIx|2 + |ψIx|2

]
.(4.24)

This concludes the proof of Lemma 4.1.

Proof of Theorem 3.9.

L2-estimate for ψI . We rewrite (3.30) in the form

ψIt + (qϕI)x =

(
ψIx
ṽ

+ ζtϕ
I

)
x

+ λṽPkψ
I
xx + hQkR

I(4.25)

and multiply by ψI

ṽ to obtain

1

2

d

dt

∫ 1

0

(ψI)2

ṽ
dx− 1

2

∫ 1

0

(ψI)2ζt dx =

∫ 1

0

qϕI
(
ψIx
ṽ

+ ψIζx

)
dx

−
∫ 1

0

(
ψIx
ṽ

+ ζtϕ
I

)(
ψIx
ṽ

+ ψIζx

)
dx(4.26)

− λ
∫ 1

0

(Pkψ
I
x)

2dx+

∫ 1

0

h

ṽ
ψIQkR

I dx.

Since |ψI | ≤ |ψIx|, Lemmas 2.4 and 2.5 yield

1

2

d

dt

∫ 1

0

(ψI)2

ṽ
dx+

∫ 1

0

(
(ψIx)

2

ṽ2
+ λ(Pkψ

I
x)

2

)
dx ≤ CM2

0

[|ϕI ||ψIx|+ |ψIx|2],(4.27)

and since

λ|PkψIx|2 = λ|ψIx|2 − λ|QkψIx|2 ≥ λ|ψIx|2 −
λ

k2
|ψIxx|2(4.28)
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we obtain

d

dt

∫ 1

0

(ψI)2

2ṽ
dx+ λ|ψIx|2 ≤ CM2

0 |ϕI ||ψIx|+ CM2
0 |ψIx|2 + C

λ

k2
|ψIxx|2

≤ λ

2
|ψIx|2 + C

M4
0

λ
|ϕI |2 + CM2

0 |ψIx|2(4.29)

+ C
λ

k2
M8

0

[
|ϕI |2 + |ϕIx|2 + |ψIx|2 + |ψIt |2

]
.

Now assuming that

λ ≥ 4CM2
0 and k2 ≥ 4CM8

0 ,(4.30)

we obtain

d

dt

∫ 1

0

(ψI)2

ṽ
dx+

λ

2
|ψIx|2 ≤ CM8

0

(
1

λ
+
λ

k2

)
|ϕI |2 + CM8

0

λ

k2

(|ϕIx|2 + |ψIt |2).(4.31)

H1-estimate for ψI . We multiply (4.25) by
ψI

t

ṽ and integrate to obtain∫ 1

0

(ψIt )
2

ṽ
dx+

∫ 1

0

ψIt
ṽ
(qϕI)xdx = −

∫ 1

0

(
ψIt
ṽ

)
x

(
ψIx
ṽ

+ ζtϕ
I

)
dx

− λ
2

d

dt

∫ 1

0

(Pkψ
I
x)

2dx+

∫ 1

0

h

ṽ
ψItQkR

I dx.

We note that∫ 1

0

ψIt
ṽ
(qϕI)xdx = − d

dt

∫ 1

0

q

ṽ
ψIxϕ

I dx+

∫ 1

0

(ψIx)
2 q

ṽ
dx+

∫ 1

0

qt
ṽ
ϕIψIx dx(4.32)

+

∫ 1

0

ψIxϕ
Iqζt dx−

∫ 1

0

ζxψ
I
t ṽxqϕ

I dx+

∫ 1

0

ψIt
ṽ
qϕIx dx,

which implies ∫ 1

0

ψIt
ṽ
(qϕI)xdx = − d

dt

∫ 1

0

q

ṽ
ψIxϕ

I dx+ E1,(4.33)

with

|E1| ≤ CM2
0

[|ψIx|2 + |ψIx||ϕI |+ |ψIt ||ϕI |+ |ψIt ||ϕI |] .(4.34)

Furthermore,∫ 1

0

(
ψIt
ṽ

)
x

(
ψIx
ṽ

+ ζtϕ
I

)
dx =

d

dt

∫ 1

0

(
(ψIx)

2

2ṽ2
+
ζt
ṽ
ψIxϕ

I

)
dx+

∫ 1

0

(ψIx)
2ṽt

ṽ3
dx

−
∫ 1

0

ζtt
ṽ
ψIxϕ

I dx−
∫ 1

0

ζt(ψ
I
x)

2

ṽ
dx(4.35)

+

∫ 1

0

[
ζx
ṽ
ψItψ

I
x + ζxζtψ

I
tϕ
I

]
dx.
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Hence ∫ 1

0

(
ψIt
ṽ

)
x

(
ψIx
ṽ
− ζtϕI

)
dx =

d

dt

∫ 1

0

[
(ψIx)

2

2ṽ2
+
ζtψ

I
xϕ
I

ṽ

]
dx+ E2,(4.36)

with

|E2| ≤ CM2
0

[|ψIx|2 + |ϕI |2]+ CM2
0

[|ψIt ||ψIx|+ |ψIt ||ϕI |1/2|ϕIx|1/2].(4.37)

Therefore

d

dt

∫ 1

0

[
(ψIx)

2

2ṽ2
+
ζtψ

I
xϕ
I

ṽ
− q
ṽ
ψIxϕ

I +
λ

2
(Pkψ

I
x)

2

]
dx+

∫ 1

0

(ψIt )
2

ṽ
dx

≤ CM2
0

[|ψIx|2 + |ϕI |2]+ CM2
0 |ψIt |

[|ϕI |+ |ψIx|+ |ϕIx|1/2|ϕI |1/2](4.38)

≤ CM2
0

[|ψIx|2 + |ϕI |2]+ 1

2M0
|ψIt |2 + CM5

0

[|ψIx|2 + |ϕI |2]+ CM5
0 |ϕI ||ϕIx|

and

d

dt

∫ 1

0

[
(ψIx)

2

2ṽ
+
λ

2
(Pkψ

I
x)

2 +
ζt − q
ṽ

ψIxϕ
I

]
dx+

1

2M0
|ψIt |2 ≤ CM5

0

[|ψIx|2 + |ϕI |2]
+ CM5

0 |ϕI ||ϕIx|.

(4.39)

L2-estimate for ϕI . We write (3.30) in the form

ψIt + (qϕI)x =

(
1

ṽ
ϕIt + ζtϕ

I

)
x

+ λṽPkψ
I
xx + hQkR

I ,(4.40)

and noting that

RIx = ϕ
I and RIt = ψ

I ,(4.41)

we multiply (4.40) by RI and integrate to obtain

d

dt

∫ 1

0

RIψI dx−
∫ 1

0

(ψI)2dx+

∫ 1

0

(−q)(ϕI)2 dx = −
∫ 1

0

[
1

ṽ
ϕIϕIt + ζt(ϕ

I)2
]
dx

− λ
∫ 1

0

(ṽRI)xPkψ
I
x dx+

∫ 1

0

hRIQkR
I dx.

Since

d

dt

∫ 1

0

1

ṽ
(ϕI)2dx = 2

∫ 1

0

1

ṽ
ϕIϕIt dx+

∫ 1

0

ζt(ϕ
I)2dx,(4.42)

we can write

d

dt

∫ 1

0

[
RIψI +

(ϕI)2

ṽ

]
dx+

∫ 1

0

(−q)(ϕI)2dx =
∫ 1

0

|ψI |2dx+
∫ 1

0

1

ṽ
ϕIψIx dx

− λ
∫ 1

0

(RI ṽ)xPkψ
I
x dx+

∫ 1

0

hRIQkR
I dx(4.43)

≤ C|ψI |2 +M0|ϕI ||ψIx|+ λM0|ϕI ||PkψIx|+ C
M0

k
|ϕI |2,
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and since M−1
0 ≤ −q(x, t) for x ∈ (0, 1) and t ≥ 0, and |ψI | ≤ |ψIx|, we conclude that

for k ≥ 4CM2
0 ,

d

dt

∫ 1

0

[
RIψI +

(ϕI)2

ṽ

]
dx+

1

2M0
|ϕI |2 ≤ CM3

0λ
2|ψIx|2.(4.44)

H1-estimate for ϕI . We write the equation satisfied by ψI in the form

ψIt + (qxϕ
I + qϕIx) =

(
ϕIx
ṽ

)
t

+ (ζxϕ
I)t + λṽPkϕxt + hQkR

I(4.45)

and multiply by ϕx

ṽ and integrate to obtain∫ 1

0

ϕIx
ṽ
ψIt dx+

∫ 1

0

ϕIx
ṽ
(qxϕ

I + qϕIx)dx =

∫ 1

0

ϕIx
ṽ

(
ϕIx
ṽ

)
t

dx

+

∫ 1

0

(ζxϕ)t
ϕx
ṽ
dx+ λ

∫
ϕIx
ṽ
ṽPkϕ

I
xt dx+

∫ 1

0

ϕIx
ṽ
hQkR

I dx.

(4.46)

Therefore, using Lemmas 2.4 and 2.5,

d

dt

∫ 1

0

(
(ϕIx)

2

2ṽ2
+
λ

2
(Pkϕ

I
x)

2

)
dx+

1

M2
0

|ϕIx|2dx ≤ CM0|ϕIx||ψIt |+ CM2
0 |ϕI |1/2|ϕIx|3/2

+ CM2
0 |ϕIx||ϕI |+ CM2

0 |ψx|L∞ |ϕIx|.

(4.47)

Hence, using (4.4),

(4.48)

d

dt

∫ 1

0

(
(ϕIx)

2

2ṽ2
+
λ

2
(Pkϕ

I
x)

2

)
dx+

1

2M2
0

|ϕIx|2 ≤ CM20
0

[|ψIt |2 + |ϕI |2 + |ψIx|2].
Let γ1, γ2, and γ3 be large positive numbers, to be determined below, and multiply

(4.39) by γ1, (4.44) by γ2, and (4.31) by γ3. The resulting inequalities and inequality
(4.48) are

(4.49)

d

dt

∫ 1

0

(
(ϕIx)

2

2ṽ2
+
λ

2
(Pkϕ

I
x)

2

)
dx+

1

2M2
0

|ϕIx|2 ≤ CM20
0

[|ψIt |2 + |ϕI |2 + |ψIx|2],
γ2
d

dt

∫ 1

0

[
RIψI +

(ϕI)2

ṽ

]
dx+

γ2
2M0

|ϕI |2 ≤ Cγ2λ2M3
0 |ψIx|2,(4.50)

γ1
d

dt

∫ 1

0

[
(ψIx)

2

2ṽ
+
λ

2
(Pkψ

I
x)

2 +
ζt − q
ṽ

ψIxϕ
I

]
dx+

γ1
2M0

|ψIt |2

≤ γ1CM5
0

[|ψIx|2 + |ϕI |2]+ γ1CM5
0 |ϕI ||ϕIx|(4.51)

≤ CM5
0

[|ψIx|2 + |ϕI |2]+ 1

2M2
0

|ϕx|2 + Cγ2
1M

12
0 |ϕI |2,

(4.52)

γ3
d

dt

∫ 1

0

(ψI)2

ṽ
dx+ γ3

λ

2
|ψIx|2 ≤ Cγ3M8

0

(
1

λ
+
λ

k2

)
|ϕI |2 + Cγ3M8

0

λ

k2

(|ϕIx|2 + |ψIt |2).
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We choose γ1 and γ2 to be large enough so that

γ1 ≥ 4CM21
0 , γ2 ≥ 8CM21

0 , γ1 ≤ C γ2
M6

0

, γ2
1 ≤ C

γ2
M13

0

.(4.53)

Then choose γ3 large enough so that γ3λ/2 > 2Cγ2Λ
2M3

0 , and finally choose λ and k
large enough so that

λ ≥ 4CM20
0 , λ ≥ 4CM3

0 γ2, Cγ3M
8
0

(
1

λ
+
λ

k2

)
≤ min

{
γ2
8M0

,
1

4M2
0

,
γ1
8M0

}
.

(4.54)

From now on, λ and k are fixed. Let

H(t) =

∫ 1

0

(
(ϕIx)

2

2ṽ2
+
λ

2
(Pkϕ

I
x)

2

)
dx+ γ2

∫ 1

0

[
RIψI +

(ϕI)2

ṽ

]
dx

+ γ1

∫ 1

0

[
(ψIx)

2

2ṽ
+
λ

2
(Pkψ

I
x)

2 +
ζt − q
ṽ

ψIxϕ
I

]
dx+ γ3

∫ 1

0

(ψI)2

ṽ
dx

(4.55)

and

D(t) = 1

4M2
0

|ϕIx|2 +
γ2
4M0

|ϕI |2 + γ1
4M0

|ψIt |2 +
λγ3
4
|ψIx|2.(4.56)

We have, thanks to (4.53) and (4.54),

d

dt
H(t) +D(t) ≤ 0.(4.57)

It is clear that there exists a constant ν depending only on M0 such that H ≤ 1
νD.

Therefore

d

dt
H(t) + νH(t) ≤ 0,(4.58)

and H(t) ≤ H(0)e−νt. Thus there exists a constant K0 depending only on M0 such
that

|ϕIx(·, t)|2 + |ψIx(·, t)|2 ≤ K0e
−νt(|ϕIx(·, 0)|2 + |ψIx(·, 0)|2).(4.59)

(Note that ϕI and ψI satisfy the Poincaré inequality.) Finally, since ϕI and ψI satisfy
linear equations, we can apply (3.34), which is proved below, and the Riesz–Thorin
interpolation theorem to obtain (3.35).

L2-continuous dependence for ϕI and ψI . At this point λ and k are fixed.
We multiply the equations satisfied by ψI , ϕI , and η by ψI , ϕI , and η, respectively,
and obtain using |PkψIxx| ≤ k2|ψI | that

d

dt

[|ψI |2 + |ϕI |2 + |η|2] ≤ CM2
0 [|ψI |2 + |ϕI |2] + CM2

0 k
2|ψI |2 + C|η|2,(4.60)

from which (3.34) follows immediately.

H1-estimates for ϕII and ψII . We multiply the equation satisfied by ψII by
ψII

t

ṽ , the equation satisfied by ϕII by ϕIIxx, and the equation satisfied by η by η. Then
we apply

|ψIIxx|2 ≤M2
0

∣∣∣∣(ψIIṽ
)
x

∣∣∣∣2 + CM2
0 |ψIIx |2(4.61)
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and ∣∣∣∣(ψIIṽ
)
x

∣∣∣∣ ≤ |ψIIt |+M0|ϕIIx |+ λk2|ψI |+M0|ϕI |+M0|ϕII |+M0|η|(4.62)

to obtain (3.36). The details are straightforward.
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Abstract. We deal with a system of partial differential equations describing a steady motion of
an incompressible fluid with shear-dependent viscosity and present a new global existence result for
p > 2d

d+2
. Here p is the coercivity parameter of the nonlinear elliptic operator related to the stress

tensor and d is the dimension of the space. Lipschitz test functions, a subtle splitting of the level
sets of the maximal functions for the velocity gradients, and a decomposition of the pressure are
incorporated to obtain almost everywhere convergence of the velocity gradients.

Key words. incompressible fluid, power-law fluid, shear-dependent viscosity, existence, weak
solution, Lipschitz approximation of W 1,p-functions
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1. Introduction. Let Ω be an open bounded set in R
d with boundary ∂Ω. We

study the following problem: For given f = (f1, . . . , fd) : Ω→ R
d and T : Ω×R

d×d →
R
d×d we find v = (v1, . . . , vd) : Ω→ R

d and P : Ω→ R solving

−divT(·,D(v)) + div (v⊗ v) +∇P = f in Ω,(1.1)

divv = 0 in Ω,(1.2)

v = 0 on ∂Ω,(1.3)

where D(v) denotes the symmetric part of the velocity gradient ∇v, i.e.,

D(v) ≡ 1

2
(∇v +∇vT ) with Dij(v) =

1

2
(∂iv

j + ∂jv
i).

The main aim of this paper is to present new existence results to (1.1)–(1.3).

Before specifying the main result precisely we fix our notation and give the as-
sumptions on the form of T. The formulation of the main theorem is then completed
by comments on earlier results and methods related to the problem (1.1)–(1.3). The
last part of this introductory section is devoted to a physical background of the prob-
lem and its significance. We also give examples of functions T and show that they
satisfy the assumptions of the main theorem.
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1.1. Notation. Let M denote the space of all real (d × d) matrices F = (Fij),
and let S be its subspace consisting of all symmetric (d×d) matrices. Using the usual
summation convention on repeated indices we set a · b ≡ aibi and (a ⊗ b)ij = aibj

for a, b ∈ R
d and F : H ≡ FijHij for F, H ∈ M. Also we set |a| ≡ (a · a)1/2 and

|F| ≡ (F : F)1/2.
We use the standard notation of function spaces. If 1 ≤ q ≤ +∞, then Lq(Ω) and

W k,q(Ω) (W̊ k,q(Ω)) denote the usual Lebesgue and Sobolev spaces of scalar-, vector-,
and tensor-valued functions (with zero traces at the boundary ∂Ω). The norm of
u ∈W k,q(Ω) is defined as ‖u‖qk,q;Ω ≡

∑
|α|≤k

∫
Ω
|Dαu|q dx.

By W−1,p′(Ω) we mean the dual space (W̊ 1,p(Ω))′ to W̊ 1,p(Ω) with corresponding
duality pairing 〈., .〉1,p,Ω.

As usual, C∞0 (Ω) denotes the set of all C∞-functions with compact support in Ω,
while the space C∞0,σ(Ω) consists of Φ ∈ C∞0 (Ω) such that divΦ = 0. For p, q ≥ 1 we
set

Hq ≡ C∞0,σ(Ω)
‖·‖0,q

= {v ∈ Lq(Ω) : divv = 0,v · n = 0 at ∂Ω},
Vp ≡ C∞0,σ(Ω)

‖∇·‖0,p
= {v ∈ W̊ 1,p(Ω) : divv = 0},

V
′
p ≡ dual of Vp.

The brackets 〈., .〉Vp represent the duality pairing between Vp and V
′
p .

If g,h are vector-valued functions and gihi ∈ L1(Ω), then (g,h) ≡ ∫
Ω

g · h dx.
Analogously, for tensor-valued functions η, ξ satisfying ηijξij ∈ L1(Ω) we set (η, ξ) ≡∫
Ω
η : ξ dx.
We will also use the Korn inequality (see [29] for a proof), saying that for 1 <

p < +∞ there exists a constant Kp = Kp(Ω) such that

‖∇v‖0,p ≤ Kp ‖D(v)‖0,p for all v ∈ W̊ 1,p(Ω).(1.4)

1.2. Assumptions and main theorem. We start with the formulation of the
assumptions on T = (Tij) ∈ S.

We assume that T is a Carathéodory function (i.e., for each fixed F ∈ S the
function x �→ T(x,F) is (Lebesgue-) measurable in Ω and the function F �→ T(x,F)
is continuous in S for almost every x ∈ Ω) and satisfies for some p > 1 the following
conditions:

• p-coercivity: there are c1 > 0 and ϕ1 ∈ L1(Ω) such that

T(x,η) : η ≥ c1|η|p − ϕ1(x)(1.5)

for almost all x ∈ Ω and for all η ∈ S;
• polynomial growth of order p − 1: there are c2 > 0 and ϕ2 ∈ L

p
p−1 (Ω) such

that

|T(x,η)| ≤ c2|η|p−1 + ϕ2(x)(1.6)

for almost all x ∈ Ω and for all η ∈ S;
• strict monotonicity:

(T(x,η)−T(x, ξ)) : (η − ξ) > 0(1.7)

for almost all x ∈ Ω and for all η, ξ ∈ S such that η �= ξ.
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Next, assume that f ∈ W−1,p′(Ω) and (1.5)–(1.7) hold. We say that v ∈ Vp is a
weak solution to problem (1.1)–(1.3) if∫

Ω

T(x,D(v)) : D(Φ) dx = 〈f,Φ〉1,p +
∫

Ω

(v⊗ v) : D(Φ) dx

for all Φ ∈ C∞0,σ(Ω).
(1.8)

Note that (v⊗v)ij ≡ vivj ∈ L1(Ω) for p ≥ 2d
d+2 due to Sobolev’s embedding theorem.

Now we are ready to formulate our existence theorem.
Theorem 1.1. Let p > 2d

d+2 , d ≥ 2. Let Ω ⊂ R
d be an open, bounded set with ∂Ω

of the class C1,1. Assume that f ∈W−1,p′(Ω) and (1.5)–(1.7) hold. Then there exists
v ∈ Vp, being a weak solution to (1.1)–(1.3).

The proof of Theorem 1.1 is split into three parts, each presented in a separate
section. In section 2, we introduce suitable approximations to (1.1) and study their
basic properties (energy estimates and their consequences, existence of the pressure).
Then, in section 3, we present a subtle decomposition of the pressure suitable to
our analysis. Finally, in section 4, we present the passage from the solutions of the
approximative problems to the solution of (1.1)–(1.3), thus completing the proof.

1.3. Historical comments. Let us first remark that if the convective term
div (v ⊗ v) is neglected in (1.1) and the tensor T = (Tij)

d
i,j=1 has a potential, i.e.,

Tij =
∂Φ
∂Dij

, a variational approach can be used. Then the existence of a weak solution

can be easily established for all p > 1. We refer to the recent works of Fuchs and
Seregin [14], [15], where in particular regularity questions for these kinds of problems
are discussed.

For proving existence of a weak solution to (1.1)–(1.3) two different methods
have been developed. The first one combines the arguments of the standard monotone
operator theory with the compactness for v, which turns out to be applicable to (1.1)–
(1.3) if p ≥ 3d

d+2 . It was performed by Lions [22] and Ladyzhenskaya [18], [19], [20] in
the late sixties. The second method, which we call the L∞-truncation method, yields
existence of a weak solution if p ≥ 2d

d+1 . It is based on the construction of a special
(bounded) test function, a precise characterization of the pressure, and also relies
strongly on the strict monotonicity of T. This method was successfully applied to the
steady problem in [12] and [32] (in [32] the limiting case p = 2d

d+1 is not included).
In the present paper we introduce yet another approach, which we call the Lip-

schitz truncation method, in order to prove the existence of a weak solution for p >
2d
d+2 . We construct a Lipschitz test function to show that for conveniently introduced

approximations vn we can find a subsequence {vk} ⊂ {vn} such that D(vk) converge
almost everywhere to their weak limit D(v), which is the crucial point in proving
that v is a weak solution to (1.1)–(1.3). Note that because of earlier results mentioned
above we can restrict ourselves within the proof to the case p ∈ ( 2d

d+2 ,
2d
d+1 ].

Lipschitz truncations of Sobolev functions were already successfully used in dif-
ferent contexts; see [1], [2], [8], [9], [21], [28], [39], [40], [41], and [42]. The novelty
of our application of the Lipschitz approximations of Sobolev functions consists of
discovering the mechanism of obtaining almost everywhere convergence of gradients
for weakly convergent sequences.

Finally we mention that the corresponding time-dependent system is treated in
[4], [13], [18], [19], [20], [22], [23], [24], [25], [26], and [30]. We are not going to
discuss the dependence of the known existence results on p. We wish to emphasize,
however, that we believe that a convenient, probably not straightforward, modification
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of the techniques presented in this paper can also improve the existence results for
the evolutionary model.

1.4. Continuum mechanical background. Consider isothermal steady flows
of an incompressible fluid with a constant density ρ > 0. Such flows in a fixed domain
Ω are described by the system of equations

divv = 0,(1.9)

ρvk
∂v

∂xk
= ρf + divS,(1.10)

where v = (v1, . . . , vd) is the velocity, f = (f1, . . . , fd) is the density of the volume
forces acting on the fluid, and S is the Cauchy stress.

Equation (1.9) expresses the fact that the fluid is incompressible. Note that due
to (1.9) and the fact that the density is constant, the balance of mass is fulfilled.

Equation (1.10) represents the balance of linear momentum. Setting

P ≡ −1

d
trS,(1.11)

we see that the tensor

SD ≡ S + P I(1.12)

satisfies

trSD = 0.(1.13)

Assuming that SD is a tensorial function of the velocity gradient and the fluid
is isotropic, the principle of material frame indifference then implies that it happens
only through its symmetric part D(v). Thus,

SD = T(D(v)),(1.14)

and one observes that if we put (1.12) with (1.14) into (1.10) and divide the result
by ρ, one obtains (1.1). (In fact, the form of T in (1.1) is more general, as it also
permits the dependence of T on the spatial variable.) Clearly, vk ∂v∂xk = div (v ⊗ v)

due to (1.9).
Consider a subclass of (1.14) defined through

T(D(v)) = ν(|D(v)|2)D(v),(1.15)

where ν, being a function of the second invariant1 of the tensor D(v), is called the
generalized viscosity. Materials with the constitutive equation (1.15) are called fluids
with shear-dependent viscosity. Note that models (1.14)–(1.15) satisfy the requirement
(1.13) thanks to (1.9).

Fluids with shear-dependent viscosity represent an important subclass of non-
Newtonian fluids, consisting of fluids that have the ability to shear thin (the general-
ized viscosity decreases as the shear rate in a simple flow increases) or shear thicken
(the viscosity increases with the increasing shear rate). In [31], the interested reader

1The second invariant II of D(v) is defined through II = 1/2[(trD(v))2 − trD2(v)]. Since in
our case divv = trD(v) = 0 we conclude that II = −1/2trD2(v) = −1/2|D(v)|2.
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can find a detailed description of these phenomena that were experimentally observed
in various areas of engineering such as blood and food rheology, glaciology, geology,
and koloid mechanics. We refer to [26] (see also [25]), where a representative list of
references to experimental works confirming the presence of nonconstant viscosities
in fluids is provided. The power-law fluids, which enjoy significant attention among
engineers and physicists, fall into this category; their constitutive equation takes the
form (1.15) with

ν(|D(v)|2) = ν0|D(v)|p−2,(1.16)

where p > 1 is the so-called power-law exponent and ν0 > 0. Note that if p = 2 in
(1.16), then the (generalized) viscosity is constant, the dependence of T on D(v) in
(1.15) is then linear (i.e., the fluid is by definition Newtonian), and the system (1.9)–
(1.10) with S given by (1.12) reduces to the well-known Navier–Stokes equations.
For 1 ≤ p < 2, the generalized viscosity in (1.16) decreases with increasing |D(v)|2
and (1.14)–(1.16) then represent shear thinning fluids, while for p > 2 (1.14)–(1.16)
represent shear thickening fluids. Typical values of the power-law exponent p used
in many areas are of the form 3

2 ,
4
3 ,

6
5 , etc. This recalls a need to have an existence

theory for p ∈ [1, 2), and this also motivates our interest in this direction.

Other examples of models that are widely used in various areas of engineering are
given by

T1(D(v)) ≡ ν0|D(v)|p−2D(v) + µ∞D(v),(1.17)

T2(D(v)) ≡ ν0(µ0 + |D(v)|2) p−2
2 D(v) + µ∞D(v),(1.18)

T3(D(v)) ≡ µ∞D(v) + µ1 arcsinh(|D(v)|) D(v)

|D(v)| ,(1.19)

where µ0, µ1, µ∞, and ν0 are (at least) nonnegative constants and p ≥ 1.

Another interesting issue consists of boundary conditions. Here we suppose that
the fluid adheres to the boundary, meaning that (no-slip) boundary conditions

v = 0 on ∂Ω(1.20)

are considered.

One could require another type of requirement on the boundary, as for example
Navier’s, slip, free, or nonhomogeneous Dirichlet boundary conditions, or consider the
problem without boundaries in the whole space or in the spatial periodic setting.

We restrict ourselves in what follows to the Dirichlet boundary condition (1.20)
for two reasons:

• If one considers another type of boundary condition, the statements of The-
orem 1.1 and its proof do not change essentially if one has at one’s disposal
the basic energy estimates. Thus, the energy estimates are more important
than the type of the chosen boundary conditions.
• Boundary conditions (1.20) seem to be reasonable in many applications.

Nevertheless, the reader might find it worthwhile to look at [11] and [17] for further
discussion and the treatment of other boundary conditions.

Let us finish this section by showing that the tensors given by formulas (1.17) and
(1.18) satisfy the hypotheses (1.5)–(1.7) of Theorem 1.1 if ν0 > 0 and µ0, µ∞ ≥ 0.
The third example (1.19) satisfies the assumption p > 2d

d+2 only if µ∞ > 0.
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Example (1.17). Consider T1(F) = ν0|F|p−2F + µ∞F with constants ν0 > 0 and
µ∞ ≥ 0 and F ∈ S (corresponding to D(v)). Obviously T1 is continuous and satisfies
both the growth condition

|T(F)| ≤ ν0|F|p−1 + µ∞|F|

and the coercivity condition

T(F) : F = ν0|F|p + µ∞|F|2 ≥ ν0|F|p.

For monotonicity we consider two cases.

Case 1. p ≥ 2. Then we have

(T1(F1)−T1(F2)) : (F1 − F2) ≥ ν0γ0(p, d)|F1 − F2|p + µ∞|F1 − F2|2,

where we use Lemma 4.4 of [7, p. 13]. This inequality shows not only that T1 is
strictly monotone but also that T1 is uniformly monotone (see [37, p. 500ff., Def.
25.2]).

Case 2. 1 < p < 2. We are going to verify that

(T1(F1)−T1(F2)) : (F1 − F2) ≥ ν0γ1(p, d)
|F1 − F2|2

(|F1|+ |F2|)2−p + µ∞|F1 − F2|2.

To prove it, it is enough to show that

(|a|p−2a− |b|p−2b) · (a− b) ≥ γ1(p, d)
|a− b|2

(|a|+ |b|)2−p for a,b ∈ R
k,

which is due to the computations

(|a|p−2a− |b|p−2b) · (a− b)

=

(∫ 1

0

d
ds |sa + (1− s)b|p−2(sa + (1− s)b) ds

)
· (a− b)

=

∫ 1

0

|sa + (1− s)b|p−2|a− b|2 ds

+

∫ 1

0

(p− 2)|sa + (1− s)b|p−2

(
(a− b) · sa + (1− s)b

|sa + (1− s)b|
)2

ds

≥ (1 + min(0, p− 2))

∫ 1

0

|sa + (1− s)b|p−2 ds |a− b|2

≥ (p− 1)
|a− b|2

(|a|+ |b|)2−p ,

where we use the fact that 1 < p < 2 and |sa + (1 − s)b| ≤ |a| + |b| for all s ∈
[0, 1]. Thus, we conclude that T1 is strictly monotone but in general not uniformly
monotone.

Example (1.18). Consider T2(F) = ν0(µ0 + |F|2)
p−2
2 F + µ∞F with constants

ν0 > 0 and µ0, µ∞ ≥ 0. Computations similar to the previous example show that all
hypotheses of Theorem 1.1 are satisfied (see [25, Chap. 5, pp. 193–196, 198ff., Lem.
1.19]).
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2. Approximations and their properties. We define approximations to our
problem in the following way: For m = 1, 2, 3, . . . , p > 1 and q ≥ 2p

p−1 = 2p′ we look

for (vm, Pm) solving in Ω

−divT(·,D(vm)) + div (vm ⊗ vm) +
1

m
|vm|q−2vm = f−∇Pm,

divvm = 0,
(2.1)

complemented by the boundary conditions

vm = 0 on ∂Ω.(2.2)

The following lemma can be proved by standard arguments of the monotone operator
theory and via the compact embedding W̊ 1,p(Ω) ↪→↪→ L2(Ω) valid for p > 2d

d+2 .

Lemma 2.1. Let p > 2d
d+2 and q ≥ 2p

p−1 = 2p′. Suppose f ∈ W−1,p′(Ω). Then
there exists vm ∈ Vp ∩Hq satisfying∫

Ω

T(·,D(vm)) : D(Φ) dx+
1

m

∫
Ω

|vm|q−2vm ·Φ dx = 〈f,Φ〉1,p

+

∫
Ω

(vm ⊗ vm) : D(Φ) dx for all Φ ∈ C∞0,σ(Ω).
(2.3)

Moreover, all vm satisfy the uniform estimate

‖D(vm)‖p0,p + ‖∇vm‖p0,p +
1

m
‖vm‖q0,q ≤ K(2.4)

and consequently, due to the growth condition (1.6) and Sobolev’s embedding theorem
(considered in the interesting case p < d),

‖T(·,D(vm))‖0,p′ ≤ K,(2.5)

‖vm‖0, dp
d−p
≤ K,(2.6)

‖vm ⊗ vm‖0, dp
2(d−p)

≤ K.(2.7)

Let us emphasize that due to earlier existence results mentioned in the introduc-
tion, it is enough to deal with the case

p ∈
( 2d

d+ 2
,

2d

d+ 1

]
.

Next, we introduce the (approximative) pressures Pm, observing that in (2.3) we

can use test functions Φ from Vp∩Vr = Vr, where
1
r = 1+ 2

d − 2
p = (d+2)p−2d

dp because

of Vp ↪→ L
dp

d−p . Let us note that for all s ∈ [1,∞), Vr ↪→↪→ Ls for 2d
d+2 < p ≤ 2d

d+1 .
Defining the functional Fm as

〈Fm,Φ〉1,r,Ω ≡
∫

Ω

T(·,D(vm)) : D(Φ) dx+
1

m

∫
Ω

|vm|q−2vm ·Φ dx

−
∫

Ω

(vm ⊗ vm) : D(Φ) dx− 〈f,Φ〉1,p,Ω
(2.8)



STEADY FLOWS OF FLUIDS WITH SHEAR-DEPENDENT VISCOSITY 1071

we see that 〈Fm,Φ〉1,r,Ω = 0 for all Φ ∈ C∞0,σ(Ω) due to (2.3). Moreover Fm ∈
W−1,r′(Ω) and

‖Fm‖−1,r′ ≤ K with r′ =
r

r − 1
=

dp

dp− (d+ 2)p+ 2d
=

dp

2(d− p)
.

By a version of De Rham’s theorem (see, for example, [3, Thm. 2.8, p. 116ff.]) there
exists Pm ∈ Lr

′
(Ω) with zero mean value over each connected component of Ω such

that

〈Fm,Φ〉1,r,Ω ≡ 〈−∇Pm,Φ〉1,r,Ω =

∫
Ω

PmdivΦ dx(2.9)

and

‖Pm‖0,r′ ≤ C ‖∇Pm‖−1,r′ ≤ C ‖Fm‖−1,r′ ≤ K.(2.10)

As a consequence of these observations we obtain the equivalent weak formulation to
(2.3), ∫

Ω

T(·,D(vm)) : D(Φ) dx+
1

m

∫
Ω

|vm|q−2vm ·Φ dx

= 〈f,Φ〉1,p +
∫

Ω

(vm ⊗ vm) : D(Φ) dx+

∫
Ω

PmdivΦ dx,(2.11)

valid for all m = 1, 2, 3, . . . and all Φ ∈ W̊ 1,r(Ω) with r = dp
(d+2)p−2d . Note that if

p ∈ ( 2d
d+2 ,

2d
d+1 ], then r ≥ d.

The uniform estimates (2.4)–(2.7) and (2.10) imply the existence of a subsequence
{(vk, P k)}k∈N = {(vmk , Pmk)}k∈N of {(vm, Pm)}m∈N and (v, P ) ∈ Vp × Lr

′
(Ω) such

that (k →∞)

D(vk) ⇀ D(v) weakly in Lp(Ω),(2.12)

∇vk ⇀ ∇v weakly in Lp(Ω),(2.13)

vk → v strongly in Ls(Ω) for all s ∈ [1, 2r′),(2.14)

vk → v almost everywhere in Ω,(2.15)

T(·,D(vk)) ⇀ χ weakly in Lp
′
(Ω),(2.16)

P k ⇀ P weakly in Lr
′
(Ω).(2.17)

Now we want to pass to the limit in (2.11) as k →∞. In order to do so we first
observe that (2.4) implies for every Φ ∈ C∞0 (Ω) and k →∞∣∣∣∣1k

∫
Ω

|vk|q−2vk ·Φ dx

∣∣∣∣ ≤ 1

k1/q

(
1

k
‖vk‖qq

) q−1
q

‖Φ‖q → 0.(2.18)

The convective term is treated with help from the compact embedding W̊ 1,p ↪→↪→
L2, p > 2d

d+2 . Writing vk = v + vk − v we have for every Φ ∈ C∞0 (Ω) and k →∞∫
Ω

(vk ⊗ vk) : D(Φ) dx =

∫
Ω

[(vk − v)⊗ vk] : D(Φ) dx

+

∫
Ω

[v⊗ (vk − v)] : D(Φ) dx+

∫
Ω

(v⊗ v) : D(Φ) dx(2.19)

→
∫

Ω

(v⊗ v) : D(Φ) dx.



1072 JENS FREHSE, JOSEF MÁLEK, AND MARK STEINHAUER

Owing to (2.17) we also observe that for Φ ∈ C∞0 (Ω) and k →∞∫
Ω

P kdivΦ dx →
∫

Ω

PdivΦ dx.(2.20)

Collecting our results we find that v ∈ Vp satisfies∫
Ω

χ : D(Φ) dx = 〈f,Φ〉1,p +
∫

Ω

(v⊗ v) : D(Φ) dx+

∫
Ω

PdivΦ dx(2.21)

for all Φ ∈ C∞0 (Ω), respectively, Φ ∈ W̊ 1,r(Ω).
Our aim now is to demonstrate that χ = T(·,D(v)). For this purpose it suffices

to show that

D(vk)→ D(v) in measure on Ω

or almost everywhere convergence on compact subsets of Ω. If this were true, then
we could find a further subsequence by a diagonal procedure (for simplicity we do not
change notation) such that

D(vk)→ D(v) almost everywhere in Ω.(2.22)

Then, by Vitali’s theorem (with help from the growth condition (1.6)) we obtain∫
Ω

T(·,D(vk)) : D(Φ) dx →
∫

Ω

T(·,D(v)) : D(Φ) dx(2.23)

and we can finish the proof of Theorem 1.1.
Note also that once we have (2.22) then we easily conclude from (2.4), respectively,

(2.12), using Vitali’s theorem that

D(vk)→ D(v) strongly in Ls(Ω) for all s ∈ [1, p),

which is due to (1.4) tantamount to

vk → v strongly in W̊ 1,s(Ω) for all s ∈ [1, p).

The missing proof of (2.22) will be given in section 4, while the next section is
devoted to a decomposition of the pressure P k.

3. Decomposition of the pressure. Consider four auxiliary Stokes problems,
I = 1, 2, 3, 4,

−∆uIk +∇P Ik = HIk in Ω,

divuIk = 0 in Ω,

uIk = 0 on ∂Ω,

(3.1)

where

H1k = −divT(·,D(vk)) ∈ (W̊ 1,p(Ω))∗,

H2k = div (vk ⊗ (vk − v)) ∈ (W̊ 1,r(Ω))∗,

H3k = div ((vk − v)⊗ v) ∈ (W̊ 1,r(Ω))∗,

H4k =
1

k
|vk|q−2vk ∈ (Lq(Ω))∗.

(3.2)
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The classical theory for the Stokes system (cf. [3], for example) implies the existence
of solutions (uIk , P Ik), I = 1, 2, 3, 4, with the following estimates on the pressures
P Ik having zero mean value over each connected component of Ω:

‖P 1k‖0,p′; Ω ≤ C‖H1k‖(W̊ 1,p(Ω))∗ ≤ C‖T(·,D(vk))‖0,p′; Ω,(3.3)

‖P 2k‖0,r′; Ω ≤ C‖H2k‖(W̊ 1,r(Ω))∗ ≤ C‖vk ⊗ (vk − v)‖0,r′; Ω
≤ C‖vk‖0,2r′; Ω‖vk − v‖0,2r′; Ω,(3.4)

‖P 3k‖0,r′; Ω ≤ C‖H3k‖(W̊ 1,r(Ω))∗ ≤ C‖vk − v‖0,2r′; Ω‖vk‖0,2r′; Ω,(3.5)

‖∇P 4k‖0,q′; Ω ≤ C‖H4k‖(Lq(Ω))∗ ≤ C

k
‖|vk|q−1‖0,q′; Ω

≤ C

k1/q

(
1

k1/q
‖vk‖0,q; Ω

)q−1

.(3.6)

As 2r′ = dp
d−p , it follows from (3.4), (3.5), and (2.14) that for k →∞ we have

P 2k → 0 and P 3k → 0 strongly in Ls(Ω) for all s ∈ [1, r′).(3.7)

Also, due to (2.4) we observe that for k →∞

∇P 4k → 0 strongly in Lq
′
(Ω).(3.8)

Of course, one has analogous estimates for uIk . For our purpose, it is enough to know
that

Uk ≡ u1k + u2k + u3k + u4k with divUk = 0

satisfy

‖Uk‖1,r′; Ω ≤ K.(3.9)

Next, summing up the weak forms of the problems (3.1)I over I = 1, 2, 3, 4 and using
(2.11) we obtain∫

Ω

∇Uk : ∇Φ dx−
4∑
I=1

∫
P IkdivΦ dx = 〈f,Φ〉1,p +

∫
P kdivΦ dx

+

∫
Ω

(v⊗ v) : D(Φ) dx for all Φ ∈ W̊ 1,r(Ω).

(3.10)

Taking Φ from Vr in (3.10) (i.e., divΦ = 0) we conclude that∫
Ω

∇Uk : ∇Φ dx = 〈f,Φ〉1,p +
∫

Ω

(v⊗ v) : D(Φ) dx for all Φ ∈ Vr.(3.11)

This and (3.9) then imply

Uk = U ∈ W̊ 1,r′(Ω) for all k ∈ N.(3.12)

Indeed, it follows from (3.11) that for k, * ∈ N∫
Ω

∇(Uk −U�) : ∇Φ dx = 0 for all Φ ∈ Vr.
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Choosing Φ to be the solution of

−∆Φ +∇Q =
Uk −U�

|Uk −U�| in Ω,

divΦ = 0 in Ω,

Φ = 0 on ∂Ω

leads to (3.12).
Finally, taking (2.11) into account again and replacing

∫
Ω
P kdivΦ dx with help

from (3.10) and (3.12) we obtain∫
Ω

T(·,D(vk)) : D(Φ) dx+
1

k

∫
Ω

|vk|q−2vk ·Φ dx

=

∫
Ω

(vk ⊗ vk) : D(Φ) dx−
4∑
I=1

∫
Ω

P IkdivΦ dx(3.13)

+

∫
Ω

∇U : ∇Φ dx−
∫

Ω

(v⊗ v) : D(Φ) dx for all Φ ∈ W̊ 1,r(Ω).

The advantage of this formulation stems from more precise control of the particular
pressures P 1k , P 2k , P 3k , and P 4k owing to (3.3)–(3.8).

4. Almost everywhere convergence of D(vk) to D(v). The desired con-
vergence of D(vk) to D(v) almost everywhere in Ω will certainly hold if one shows
that for a given but arbitrary η > 0 there is a subsequence {v�}�∈N ⊂ {vk}k∈N such
that (for some θ ∈ (0, 1), say, θ = 1

2 )

lim
�→∞

∫
Ω

[
(T(·,D(v�))−T(·,D(v))) : D(v� − v)

]θ
dx ≤ η.(4.1)

To reach this goal it seems natural to consider

vk − v(4.2)

as a test function in (2.3), rewrite the left-hand side of the obtained equality as in (4.1)
with θ = 1, and show that the remaining terms are small as k → ∞. Unfortunately,
this idea works only for p ≥ 3d

d+2 .
In [12], the L∞-truncation of (4.2), namely,

(vk − v)

(
1−min

( |vk − v|
L

, 1

))
with L > 0 small,(4.3)

has been successfully applied to deduce (4.1). The main difficulty is showing the
smallness of the integral∫

Ωk
L

T(·,D(vk)) : D

(
(vk − v)

(
1−min

( |vk − v|
L

, 1

)))
dx,

where ΩkL ≡ {x ∈ Ω; |vk(x) − v(x)| < L}. The L∞-truncation method works for
p ≥ 2d

d+1 ; the bound is due to the required L1-integrability of the convective term
(v · ∇)v.
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Following the goal to prove Theorem 1.1 we have observed that it is enough to
restrict ourselves to the case p ∈ ( 2d

d+2 ,
2d
d+1 ], and it is necessary to use a smoother test

function than in (4.3) in order to control the convective term; yet the test function
should not differ from (4.2) too much.

For this purpose, we test (3.13) by

(vk − v)λ with λ > 0 large enough,(4.4)

using the notation zkλ to denote such a Lipschitz (i.e., W̊ 1,∞-) truncation of zk so that
zkλ coincides with zk except for a small set Akλ.

Let us remark that the idea to approximate a W̊ 1,p-function w by a Lipschitz-
continuous function which agrees with w on a “large” set was developed earlier; see
[2], [10], [16], [21], [8], and [9], among others.

The proof of (4.1), and consequently of Theorem 1.1, is split into three steps.
First, in Proposition 4.1, we study properties of (vk − v)λ for general λ. Then we
cover the exceptional sets of noncoincidence Akλ by two sets F kλ and Gkλ and show (see
Propositions 4.1 and 4.3) by fixing λ and taking a convenient subsequence {v�}�∈N

that certain quantities are small on these sets. Finally, we prove (4.1) in Proposition
4.4.

Proposition 4.1. There is a constant C = C(Ω, d) such that whenever wm ⇀ 0
weakly in W̊ 1,p(Ω), then for all λ > 0 there is a sequence {wmλ }m∈N ⊂ W̊ 1,∞(Ω) such
that

‖wmλ ‖1,∞; Ω ≤ Cλ.(4.5)

Moreover, denoting Amλ ≡ {x ∈ Ω;wmλ (x) �= wm(x)}, we then obtain

|Amλ | ≤
C

λp
‖∇wm‖p0,p; Ω.(4.6)

Consequently,

‖∇wmλ ‖p0,p; Ω ≤ C‖∇wm‖p0,p; Ω ≤ K(4.7)

and (as m→∞)

wmλ → 0 strongly in Ls(Ω) for all s ∈ [1,∞),

wmλ ⇀ 0 weakly in W̊ 1,s(Ω) for all s ∈ [1,∞).
(4.8)

In addition, we construct sets Fmλ and Gmλ such that

|Amλ | ≤ |Fmλ |+ |Gmλ |,(4.9)

|Fmλ | ≤
C

λp
‖∇wm‖p0,p; Ω,(4.10)

|Gmλ | ≤
C

λ2p
‖∇wm‖p0,p; Ω.(4.11)

Before providing a proof of this proposition we recall Kirszbraun’s extension the-
orem (see [21, Prop. 2.1, p. 708]).

Lemma 4.2. Let M be a metric space and let K be a subset of M such that
u : K → R is Lipschitz-continuous with Lipschitz constant L. Then there exists a
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continuation û : M → R of u such that û is Lipschitz-continuous with the same
Lipschitz bound L and

sup
x∈M

|û(x)| ≤ sup
x∈K
|u(x)|.

Proof of Proposition 4.1. The proof is based on ideas from [21, Prop. 2.2, p. 709]
and [9, Lem. 4.1, pp. 21–22]. Extending wm by zero we obtain w̃m ∈ W̊ 1,p(Rd) =
W 1,p(Rd) with w̃m ⇀ 0 weakly in W 1,p = W 1,p(Rd).

Recalling the definition of the Hardy–Littlewood maximal function of ∇w̃m,

M(∇w̃m)(x) ≡ sup
r>0

1

|Br(x)|
∫
Br(x)

|∇w̃m(y)| dy,

we define for λ > 1

Rmλ ≡ Fmλ ∪Gmλ ∪
{
x ∈ R

d : x is not a Lebesgue point of ∇w̃m
}
,(4.12)

where

Fmλ ≡
{
x ∈ R

d : λ < M(∇w̃m)(x) ≤ λ2
}
,

Gmλ ≡
{
x ∈ R

d : M(∇w̃m)(x) > λ2
}
.

(4.13)

Note that the Lebesgue measure of the last set in the definition of Rmλ is zero.
Since M : Lp → Lp is a “bounded” operator (see, for example, [34, pp. 4–12] or

[38, Thm. 2.8.2, p. 84ff.]) we obtain

λ|Rmλ | ≤
∫
Rm

λ

M(∇w̃m(x)) dx ≤ ‖M(∇w̃m)‖0,p|Rmλ |1−
1
p

≤ C‖∇w̃m‖0,p|Rmλ |1−
1
p ,

which implies

|Rmλ | ≤
C

λp
‖∇w̃m‖p0,p and |Fmλ | ≤

C

λp
‖∇w̃m‖p0,p.(4.14)

Analogously, one obtains

|Gmλ | ≤
C

λ2p
‖∇w̃m‖p0,p.(4.15)

Next, from Lemma 1 in [2] it follows that there is a constant C(d) such that

|w̃m(x)− w̃m(y)| ≤ C(d)λ |x− y| on R
d \Rλm(4.16)

and

|w̃m(x)− (w̃m)x,r| ≤ C(d) r λ on R
d \Rλm,

where (w̃m)x,r is the mean value of w̃m over Br(x). Choosing x ∈ Ω \ Rλm and
r = 2dist(x,ΩC), the smoothness of the boundary2 implies the existence of A (inde-
pendent of x) such that

|Br(x) ∩ ΩC | ≥ Ard.

2In fact, it would be sufficient for this part of the proof to assume that the boundary of Ω satisfies
the cone property.
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Hence Poincaré’s inequality yields

|(w̃m)x,r| ≤ C r sup
r>0

1

|Br(x)|
∫
Br(x)

|∇w̃m(y)| dy ≤ C dist(x,ΩC)λ.

Thus

|w̃m(x)| ≤ C dist(x,ΩC)λ on R
d \Rλm.

This implies that

w̃mλ (x) ≡
{

wm(x) on Ω \ (Rλm),
0 on R

d \ Ω
is bounded and Lipschitz-continuous on its domain of definition. Thus by Lemma 4.2
there exists an extension wmλ to R

d with Lipschitz constant C(d)λ and L∞-bound
Cρλ, where ρ denotes the diameter of Ω. The assertion (4.5) is proved.

Moreover, the set Amλ = {x ∈ Ω;wmλ (x) �= wm(x)} is a subset of Rmλ and |Amλ | ≤
|Rmλ |. This together with (4.12)–(4.15) yields (4.6) and (4.9)–(4.11). Further, by
(4.14) we have

‖∇wmλ ‖0,p; Ω = ‖∇wmλ ‖0,p; Ω\Rm
λ
+ ‖∇wmλ ‖0,p;Rm

λ

≤ ‖∇wm‖0,p; Ω\Rm
λ
+ Cλ|Rmλ |1/p

≤ ‖∇wm‖0,p; Ω\Rm
λ
+ C‖∇wm‖0,p; Ω ≤ (C + 1)‖∇wm‖0,p; Ω,

which is (4.7). Since we also have (with the help of ‖wmλ ‖∞ ≤ Cρλ)

‖wmλ ‖0,p; Ω ≤ C‖wm‖0,p; Ω

and wm ⇀ 0 weakly in W̊ 1,p(Ω) we use compact embedding and interpolation to
conclude (4.8)1. From this and (4.5), equation (4.8)2 follows easily.

Next, we consider {(vk, P Ik)}I=1,2,3,4
k∈N

and (v, P ) ∈ Vp × Lr
′
(Ω) satisfying (2.4)–

(2.7), (2.10), (2.12)–(2.17), (3.3)–(3.8), and (3.13) and set

gk ≡ C
(
|D(vk)|p + |D(v)|p + |ϕ2|

p
p−1 + |P 1k | p

p−1

)
,(4.17)

where ϕ2 comes from (1.6).
Due to a priori estimates we see that gk satisfy the uniform bound∫

Ω

gk dx ≤ K.(4.18)

Proposition 4.3. For a given ε > 0 there are a subsequence {v�}�∈N ⊂ {vk}k∈N

and λ ≥ 1
ε independent of * such that∫

F �
λ

g� dx ≤ ε,(4.19)

where

F �λ ≡ {x ∈ Ω;λ < M(∇(v� − v))(x) ≤ λ2}.(4.20)
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Proof of Proposition 4.3. For a given ε ∈ (0, 1) we find N ∈ N such that

Nε > K (K from (4.18))(4.21)

and set

λ0 =
1

ε
.(4.22)

For each k ∈ N we introduce sets F ki , i = 0, 1, . . . , N − 1,

F ki ≡ {x ∈ Ω;λ2i

0 < M(∇(vk − v))(x) ≤ λ2i+1

0 },

which are for fixed k mutually disjoint. Thus, due to (4.18),

N−1∑
i=0

∫
Fk

i

gk dx ≤ K.

Due to (4.21), however, for each k there is an index i(k) such that

∫
Fk

i(k)

gk dx ≤ ε.

As i(k)’s take values from the finite set {0, 1, . . . , N − 1} there exists certainly a
subsequence {v�}�∈N of {vk}k∈N and an index i0 ∈ {0, 1, . . . , N − 1} so that i(*) = i0
for all * ∈ N. Then setting λ = λ2i0

0 and defining F �λ as in (4.20) we observe that
Proposition 4.3 is proved.

Proposition 4.4. Let θ ∈ (0, 1) be chosen and η > 0 be arbitrary. Then the
sequence {v�}�∈N determined in Proposition 4.3 satisfies (4.1).

Proof of Proposition 4.4. We fix p ∈ ( 2d
d+2 ,

2d
d+1 ] and recall that 1

r = (d+2)p−2d
dp .

Then we take ε > 0 so small that condition (4.32) specified at the end of the proof
is fulfilled. To this ε, find {v�}�∈N ⊂ {vk}k∈N and λ ≥ 1

ε such that Proposition 4.3
holds. Now, we apply Proposition 4.1 to (v� − v) and use the Lipschitz truncation
(v�−v)λ as a test function in (3.13). We also subtract from both sides of the obtained
equality the term

∫
Ω

T(·,D(v)) : D((v� − v)λ) dx.

Then we use the facts that v� − v = (v� − v)λ on Ω \ A�λ. Thus, div (v� − v)λ = 0
almost everywhere on Ω \A�λ.
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As a result of this consideration we obtain

J� ≡
∫

Ω\A�
λ

[
T(·,D(v�))−T(·,D(v))

]
: D(v� − v) dx

=

∫
A�

λ

[
T(·,D(v))−T(·,D(v�))

]
: D((v� − v)λ) dx

−
∫
A�

λ

P 1�div ((v� − v)λ) dx

−
∫
A�

λ

(P 2� + P 3�)div ((v� − v)λ) dx

+

∫
Ω

(
v� ⊗ (v� − v) + (v� − v)⊗ v

)
: D((v� − v)λ) dx

+

∫
Ω

(
∇P 4� − 1

*
|v�|q−2v�

)
· (v� − v)λ dx

+

∫
Ω

(∇U−T(·,D(v))) : ∇(v� − v)λ dx

≡ I�1 + I�2 + I�3 + I�4 + I�5 + I�6.

(4.23)

We evaluate terms on the right-hand side of (4.23) one after another. Note that λ is
fixed and

‖∇(v� − v)λ‖0,∞; Ω ≤ Cλ.(4.24)

We are interested in showing that all terms I�k, k = 1, 2, 3, 4, 5, 6, are small for *→∞.
First, using the compactness (2.14) and (3.7) together with (4.24) we observe that

lim
�→∞

I�3 + I�4 = 0.(4.25)

But the same is true for I�5 due to (3.8), (2.18), and (4.24). Thus

lim
�→∞

I�5 = 0.(4.26)

When dealing with I�1 and I�2 we use Propositions 4.1 and 4.3 and the Hölder inequality

|I�1 + I�2| =
∣∣∣ ∫
F �

λ∪G�
λ

[
T(·,D(v))−T(·,D(v�))− P 1�I

]
: ∇(v� − v)λ dx

∣∣∣
≤
∫
F �

λ

| . . . . . . | dx+

∫
G�

λ

| . . . . . . | dx

≤
(∫

F �
λ

g� dx
) p−1

p ‖∇(v� − v)λ‖0,p,F �
λ
+ Cλ

(∫
G�

λ

g� dx
) p−1

p |G�λ|
1
p

≤ K

(
ε1− 1

p +
C

λ

)
≤ K C(ε1− 1

p + ε).

(4.27)

Further, from (4.8) applied to (v� − v)λ we know particularly that

(v� − v)λ ⇀ 0 weakly in W̊ 1,r(Ω).(4.28)
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Since ∇U ∈ Lr
′
(Ω) and T(·,D(v)) ∈ Lp

′
(Ω) we have

lim
�→∞

I�6 = 0.(4.29)

To summarize, we have observed that

lim
�→∞

J� = KC(ε1− 1
p + ε).(4.30)

Finally, fix θ ∈ (0, 1) and denote the integral in (4.1) by Y �. Then we have

Y � ≤
∫

Ω\A�
λ

[
(T(·,D(v�))−T(·,D(v))) : D(v� − v)

]θ
dx

+

∫
A�

λ

[
(T(·,D(v�))−T(·,D(v))) : D(v� − v)

]θ
dx.

(4.31)

With help from the Hölder inequality and a priori estimates we obtain

Y � ≤ (J�)θ|Ω \A�λ|1−θ +K|A�λ|1−θ.

Using (4.31) and (4.9)–(4.11) we finally conclude

lim
�→∞

Y � ≤ |Ω|1−θ(K C)θ(ε1− 1
p + ε)θ +K

( C

λp

)1−θ

≤ |Ω|1−θ(K C)θ(ε1− 1
p + ε)θ +K (K C)1−θεp(1−θ).

If ε is so small that

|Ω|1−θ(K C)θ(ε1− 1
p + ε)θ +K (K C)1−θεp(1−θ) < η,(4.32)

then Proposition 4.4 and consequently Theorem 1.1 are proved.

5. Final remarks. (1) The proof of Theorem 1.1 offers also another argument
for the existence result in the case p = 2d

d+1 . This limiting case (for this p the convective

term is “a priori” only in L1) was included in our previous existence result in [12]
where we used the fact that the convective term (v ·∇)v belongs locally to the Hardy
space H1 (due to divv = 0) and the duality of H1 and BMO (= the John–Nirenberg
space of functions with bounded mean oscillation). The above given proof of Theorem
1.1 also works (of course) in this case, and therefore we do not need to use the above-
mentioned facts (in this case).

(2) On the other hand one can give an alternative proof of Theorem 1.1 by using
the following compensated integrability result: For 1

r = 2
p − 1

d = 2d−p
dp and w ∈ Vp it

holds that

(w · ∇)w ∈ hr(Ω),

where hr(Ω) denotes the local Hardy space. Observe that d
d+1 < r < 1 is equivalent

to 2d
d+2 < p < 2d

d+1 (see [5], [27]).
Taking [35, section 2.11.3, pp. 180–182; section 2.5.7, pp. 89–91; and section

2.5.12, pp. 109–114] into account we can dispose of

hr(Ω) ≡ F 0
r,2(Ω) ≡ Triebel–Lizorkin space for 0 < r ≤ 1
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and

(hr(Ω))′ ≡ (F 0
r,2(Ω))

′ ≡ B
d( 1

r−1)
∞,∞ (Ω) ≡ B

2d−(d+1)p
p∞,∞ (Ω) ≡ C0,α(Ω),

where α = 2d−(d+1)p
p ∈ (0, 1) if and only if 2d

d+2 < p < 2d
d+1 . Noticing that our

test function Φkλ = (vk − v)λ belongs to W̊ 1,β(Ω) for all finite β we certainly have
Φkλ ∈ C0,α(Ω). The only difference to the above given proof appears now in dealing
with the convective term: Instead of integrating by parts we keep it in the form∫

Ω

(vk · ∇)vk ·Φkλ dx ≡ 〈(vk · ∇)vk,Φkλ〉,

where the brackets now denote the duality between hr and C0,α, use the uniform
boundedness of (vk · ∇)vk in hr, and have to ensure that it converges to zero for
k →∞. This can be achieved by observing that

Φkλ → 0 strongly in C0,α for some α ∈ (0, 1).

This follows, however, from (4.8)1 and the interpolation inequalities

‖Φkλ‖C0,α ≤ C ‖Φkλ‖θ∞ ‖Φkλ‖1−θC0,β

≤ C‖Φkλ‖
θ
2

0,2d‖Φkλ‖
θ
2

1,2d ‖Φkλ‖1−θC0,β ≤ C‖Φkλ‖
θ
2

0,2d‖Φkλ‖
1− θ

2
1,s ,

valid for 0 < α < β < 1, θ = 1− α
β , 1− θ = α

β , and s ≥ 2d so that W 1,s ↪→ C0,β .
The rest of the proof coincides with the original proof.
(3) Using the method of proof of our main theorem we can also generalize the

result of Dal Maso and Murat [6] to include “some” nonlinear terms on the right-hand
side satisfying “suitable” growth conditions, but we will not follow these possibilities
here.

(4) Another possible use of our scheme of proof developed here would be in the
theory of electrorheological fluids with shear-dependent viscosities (steady flows), but
this will be a future project. The interested reader is referred to [33].

(5) The C1,1-regularity of boundary is required in Theorem 1.1 and its proof
due to the applications of the Lq-theory for the Stokes system in various places.
However, the result of Theorem 1.1 holds for the Lipschitz domains. (C0,1-regularity
of the boundary seems to be needed to have the global estimates on the pressure.)
Considering Lipschitz domains within the proof would certainly reduce the readability
of the paper. This is why we finally prefer to deal with domains of the C1,1-class.

(6) It follows from the proof that the pressure P corresponding to the weak
solution v ∈ Vp belongs to Lr

′
where r′ = dp

2(d−p) .
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[24] J. Málek, J. Nečas, and M. Růžička, On weak solutions to a class of non–Newtonian incom-
pressible fluids in bounded three-dimensional domains. The case p ≥ 2, Adv. Differential
Equations, 6 (2001), pp. 257–302.
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Abstract. Motivated by the problem of edge preserving regularization in image restoration, in
this paper we investigate the relations between weighted p energy based and total variation based
minimization problems and their associated flows. We prove that the weighted total variation based
minimization and its associated flow in a weakened formulation can be approximated by the weighted
p energy based minimization and its associated flows, respectively.

Moreover, we show that the flow of the weighted total variation based minimization converges
weakly in BV and strongly in L2 to the minimizer as t→ ∞.
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1. Introduction. In this paper, we investigate the relation of two variational
models and their associated flows applied in image recovery. One of them is weighted
total variation based minimization, and the other one is based on minimizing the
weighted Lp-norm of image gradients.

The image recovery problem we consider here is a problem of recovering an un-
known data u from an observed noisy data I, which is related to u by I = u+ noise.
The challenging aspect of solving this problem is to selectively filter the noise without
losing significant features. Standard regularization methods, for instance, Gaussian fil-
ters corresponding to minimizing L2-norm of image gradients, cannot solve this prob-
lem since they are isotropical smoothing and do not allow discontinuous solutions. One
approach for solving this problem is to use total variation based regularization—that
is, to minimize the total variation norm of u subject to the constraint ‖u− I‖2L2 = σ2

(see [15], [16]), or to solve the related unconstrained minimization problem

min
u

∫
Ω

|∇u|+ λ

2
|u− I|2

(see [1], [4], [24], and the references therein). To smooth images more selectively,
spatially adaptive total variation models were proposed (see, e.g., [17], [18], [19], [3]),
where the adaptivity is realized by using a weighted total variation norm. These
models can be represented in the following framework:

min
u

E(u) =: min
u

∫
Ω

α(x)|∇u|+
∫

Ω

1

2
|u− I|2dx,

where α(x) is chosen to be inversely proportional to the likelihood of the presence of
an edge. Certain choices of α(x) based on image features or noise levels or both were
given in [17], [18], and [19]. Their numerical results showed the effectiveness of the
model in removing noise and sharpening image features.
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On the other hand, minimizing Lp-norms (1 < p < 2) of the gradient has been
employed as one of the approximation methods for image denoising and has been
considered as an alternate way between a total variation based approach and one
which minimizes the L2-norm of the gradient depending on the needs of a particular
image [2]. More applications of minimizing Lp-norms (1 < p < 2) of the gradient in
image processing can be found in [23].

Motivated by these works, we are interested in the mathematical theories on
the relations of the solutions to the following two minimization problems and their
associated flows:

min
v

E(v) =: min
v∈BVg∩L2

∫
Ω

α(x)|∇v|+ 1
2

∫
Ω

|v − I|2dx(1.1)

and

min
v

Ep(v) =: min
v∈W 1,p

g ∩L2

1

p

∫
Ω

α(x)|∇v|p + 1
2
|v − I|2dx,(1.2)

where

BVg = {v ∈ BV (Ω)|v = g on ∂Ω}, W 1,p
g = {v ∈W 1,p(Ω)|v = g on ∂Ω}.

Here the boundary conditions are in the sense of trace. The purpose of this paper
is to investigate if the solution of (1.1) and its associated flow can be approximated
by a sequence of solutions to (1.2) and their associated flows. This study is of more
than theoretical interest because it will provide an alternate approximation scheme
for solving total variation based minimization problems and their associated flows
that have many applications.

The existence of a Lipschitz continuous solution to the problem minu∈BVg

∫
Ω
|∇u|

has been obtained under certain conditions on Ω and g (see [12], [13], [14], [20], [21],
and [26]). However, it seems difficult to apply their arguments to the problem (1.1)
due to the presence of α(x) and the term |v − I|2 in E(v).

Although much attention to the existence and regularity for the solutions to the
problem min

∫
Ω
|∇u|pdx with fixed boundary data has been given (see [7], [8], [9], and

references therein), we found, after careful checking, that the Lipschitz continuous
solutions obtained in pioneering works have their Lipschitz constants depending on p
and tending to infinity as p→ 1.

The existence and uniqueness for the solution of (1.1) in bounded variation (BV -)
space for constant α has been proved in [1] and [4]. Results for more general cases
were obtained by Vese in [25] for the functional

F (u) =

∫
Ω

(Ku− u0)
2dx+ α

∫
Ω

φ(|∇u|)

and its associated flow. Here α ≥ 0 is constant, φ : R → R+ is a convex, even
function nondecreasing in R+ with linear growth, and K : Lp(Ω)→ L2(Ω) is a linear,
continuous, and injective operator. The existence result for the flow associated with
this minimization problem is only in dimensions one and two because the methods
employed there use general results on maximal monotone operators and evolution
operators in Hilbert spaces.

The existence, uniqueness, and large time asymptotic behavior for the flow asso-
ciated with the minimization problem

min
u∈BVg

∫
Ω

φ(Du),
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i.e.,

∂u

∂t
= divx(φp(∇u)) in Ω×R+,

u = g on ∂Ω×R+,

u = u0 on Ω× {0},
has been proved in [10], provided that φ is a convex linear-growth function. A typical
example of φ is

φ(q) =: 1/2|q|2 if |q| ≤ 1, and φ(q) =: |q| − 1/2 if |q| ≥ 1;
the same results have been shown in [26]. The key idea of their work is to approximate
the solution to the equation ∂u∂t = divx(φp(∇u)) by the solutions to the equations ∂u∂t =
divx(φ

ε
p(∇u)) with the same initial and boundary conditions, where φε(q) = ηε ∗ φ(q)

and ηε is the standard molifier.
In this paper, we will use the so-called relaxed energy (see [10], [22], and [26]) to

define a pseudosolution u of (1.1) as a solution to the problem

min
v∈BV (Ω)∩L2

Eg(v),

where

Eg(v) =:

∫
Ω

α(x)|∇v|+ 1
2
|v − I|2dx+

∫
∂Ω

α(x)|v − g|dHn−1.

We will show that the pseudosolution of (1.1) can be approximated weakly as p ↓
1 either by the solutions to (1.2) or by a sequence of functions that minimize the
functional

Egp(v) =:
1

p

∫
Ω

α(x)|∇v|p + 1
2
|v − I|2dx+

∫
∂Ω

α(x)|v − g|dHn−1

over v ∈W 1,p(Ω) ∩ L2.
Moreover, we will show the existence and uniqueness of a pseudosolution u(x, t)

to the flow associated with (1.1):

∂tu− div(α(x)∇u/|∇u|) + (u− I) = 0, x ∈ Ω, t > 0,(1.3)

u(x, 0) = I(x), x ∈ Ω,(1.4)

u(x, t) = g(x), x ∈ ∂Ω, t ≥ 0.(1.5)

This will be done by proving that the weak solutions to the flow associated with (1.2)
converge weakly in BV ∩ L2 as p→ 1 to a pseudosolution of (1.3)–(1.5).

Finally, we prove that as t → ∞ the solution u(·, t) of (1.3)–(1.5) converges
strongly in L2 and weakly in BV to the solution of the relaxed problem associated
with (1.1).

We would like to point out that all the proofs presented in this paper can easily be
carried over to the problem of minimizing the energy function in (1.1) over BV (Ω)∩L2

and the flow (1.3)–(1.4) with a free Neumann boundary condition by just dropping
the boundary term.
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2. Preliminaries. From now on we always assume the following:
(H.1) Ω is a bounded open subset of Rn with Lipschitz boundary.
(H.2) α(x) is a positive valued continuous function on Rn.
In practical image restoration problems, α(x) may be chosen as

α(x) =
α1

1 + k|∇Gσ ∗ I|2 ,(2.1)

where Gσ(x) =
1
σ exp(−|x|2/4σ2) and α1 > 0, k > 0, and σ > 0 are parameters. With

this choice, α(x) satisfies assumption (H.2) and takes much smaller values near likely
edges than on homogeneous regions so that edges are much less smoothed and, hence,
preserved. Moreover, if I ∈ L∞(Ω), then

0 < α0 ≤ α(x) ≤ α1, x ∈ Ω,(2.2)

with α0 = α1/(1 + C(k, σ)|I|L∞(Ω)).
Now we define the weighted total variation norm with weight function α satisfying

(H.2).
Definition 2.1. A function f ∈ L1(Ω) has bounded α-total variation in Ω if

sup
φ∈Φ(α,Ω)

∫
Ω

fdivφdx <∞,

where

Φ(α,Ω) =: {φ ∈ C1
0 (Ω, R

n)| |φ| ≤ α}.(2.3)

We can see that if f ∈ L1(Ω) has bounded α-total variation in Ω, there is a Radon
vector measure ∇f on Ω such that∫

Ω

α|∇f | =: sup
φ∈Φα

∫
Ω

fdivφdx.(2.4)

Under assumption (H.2), f ∈ L1(Ω) having bounded α-total variation in Ω implies
that f ∈ BV (Ω).

We further assume the following:
(H.3) I ∈ L2(Ω), and g is the trace of a function G ∈ H1(Ω).
Under assumptions (H.1)–(H.3), for v ∈ BV (Ω) ∩ L2, we define

Eg(v) =:

∫
Ω

α(x)|∇v|+ 1
2
|v − I|2dx+

∫
∂Ω

α(x)|v − g|dHn−1,(2.5)

and, for v ∈W 1,p(Ω) ∩ L2, we define

Egp(v) =:
1

p

∫
Ω

α(x)|∇v|p + 1
2
|v − I|2dx+

∫
∂Ω

α(x)|v − g|dHn−1.(2.6)

Proposition 2.2. Let (H.1)–(H.2) hold. Assume that f1 ∈ BV (Ω) and f2 ∈
BV (Rn − Ω̄). Define

f̄ =

{
f1 if x ∈ Ω,
f2 if x ∈ Rn − Ω̄.
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Then f̄ ∈ BV (Rn), and∫
Rn

α(x)|∇f̄ | =
∫

Ω

α(x)|∇f1|+
∫
Rn−Ω̄

α(x)|∇f2|+
∫
∂Ω

α(x)|Tf1−Tf2|dHn−1,(2.7)

where Tf denotes the trace of f ∈ BV (Ω) on ∂Ω.
Proof. For each φ ∈ C1

0 (R
n;Rn), |φ(x)| ≤ α(x) on Ω, denoting µ to be the unit

outward normal to Ω, we have∫
Rn

f̄divφdx =

∫
Ω

f1divφdx+

∫
Rn−Ω̄

f2divφdx

= −
∫

Ω

φ · ∇f1 −
∫
Rn−Ω̄

φ · ∇f2 +

∫
∂Ω

(Tf1 − Tf2)(φ · µ)dHn−1

≤
∫

Ω

α|∇f1|+
∫
Rn−Ω̄

α|∇f2|+
∫
∂Ω

α|Tf1 − Tf2|dHn−1.

Therefore,
∫
Rn α|∇f̄ | <∞, and then f̄ ∈ BV (Rn). Moreover, for each φ ∈ C1

0 (R
n;Rn),∫

Rn

φ · ∇f̄ =
∫

Ω

φ · ∇f1 +

∫
Rn−Ω̄

φ · ∇f2 −
∫
∂Ω

(Tf1 − Tf2)(φ · µ)dHn−1.

Therefore,

∇f̄ =
{ ∇f1 on Ω,
∇f2 on Rn − Ω̄.

This implies

−
∫
∂Ω

φ · ∇f̄ =
∫
∂Ω

(Tf1 − Tf2)(φ · µ)dHn−1.

Then ∫
∂Ω

α|∇f̄ | =
∫
∂Ω

α|Tf1 − Tf2|dHn−1.(2.8)

Now (2.7) follows from (2.8).
Theorem 2.3. Let (H.1)–(H.3) hold. Assume that {fk}∞k=1 ⊂ BV (Ω) and fk →

f in L1(Ω). Then f ∈ BV (Ω), and∫
Ω

α|∇f |+
∫
∂Ω

α|f − g|dHn−1 ≤ lim inf
k→∞

{∫
Ω

α|∇fk|+
∫
∂Ω

α|fk − g|dHn−1

}
.(2.9)

Proof. Let EG be the extension of G such that EG ∈ H1(Rn),

EG = G on Ω, T (EG) = TG = g on ∂Ω, and ‖EG‖H1(Rn) ≤ C‖G‖H1(Ω).

Define

f̄k =

{
fk on Ω,
EG on Rn − Ω̄
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and

f̄ =

{
f on Ω,
EG on Rn − Ω̄.

Then f̄k → f̄ in L1(Rn), and, for each φ ∈ Φ(α,Rn) (see (2.3)),∫
Rn

f̄divφ = lim
k→∞

∫
Rn

f̄kdivφ ≤ lim inf
k→∞

∫
Rn

α|∇f̄k|.

Taking the supremum with respect to φ over Φ(α,Rn) yields that∫
Rn

α|∇f̄ | ≤ lim inf
k→∞

∫
Rn

α|∇f̄k|.(2.10)

Moreover, by Proposition 2.2, f̄k ∈ BV (Rn) (k = 1, 2, . . .), and f̄ ∈ BV (Rn), we get∫
Rn

α|∇f̄k| =
∫

Ω

α|∇fk|+
∫
Rn−Ω̄

α|∇G|+
∫
∂Ω

α|fk − g|dHn−1,(2.11)

∫
Rn

α|∇f̄ | =
∫

Ω

α|∇f |+
∫
Rn−Ω̄

α|∇G|+
∫
∂Ω

α|f − g|dHn−1.(2.12)

Passing to the limit k →∞ in (2.11) and using (2.10) and (2.12), we get (2.9).
Theorem 2.4. Let (H.1)–(H.3) hold and u ∈ BV (Ω)∩L2. Then, for each ε > 0,

there exists a function uε ∈ C∞(Ω̄) such that

Eg(uε) ≤ Eg(u) + ε.(2.13)

Proof. (1) By a minor modification of the proof of Theorem 1.17 and Remark
1.18 in [11], we can find a sequence uj ∈ C∞(Ω) ∩W 1,1 ∩ L2 such that

Truj = Tru in L1(∂Ω),(2.14)

and, as j →∞,
‖uj − u‖L2(Ω) → 0,(2.15)

and ∫
Ω

|∇uj | →
∫

Ω

|∇u|.(2.16)

Moreover, from (2.16) we have∫
Ω

α|∇uj | →
∫

Ω

α|∇u|.(2.17)

The combination of (2.14), (2.15), and (2.17) leads to

lim
j→∞

Eg(uj) = Eg(u).(2.18)

Therefore, for each given ε > 0, there exists a function vε ∈ C∞(Ω) ∩W 1,1 ∩ L2 such
that

Eg(vε) ≤ Eg(u) + ε/2.(2.19)
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(2) Since C∞(Ω̄) is dense in W 1,1(Ω) ∩ L2, for vε obtained above, there is a
function uε ∈ C∞(Ω̄) such that

‖vε − uε‖W 1,1(Ω) + ‖vε − uε‖2L2(Ω)

+‖Trvε − Truε‖L1(∂Ω) ≤ ε

4maxΩ̄ α(x)
;(2.20)

here we have used the trace theorem for the third term in (2.20). By using (H.2), we
get from (2.20) that

Eg(uε) ≤ Eg(vε) + ε/2.(2.21)

Now (2.13) follows from (2.19) and (2.21).
Theorem 2.5. Let (H.1)–(H.3) hold. Assume that u ∈ BV (Ω)∩L2, with Tru = g

on ∂Ω, where g is the trace of a function G ∈ H1(Ω) (see (A.3)). Then, for each
ε > 0, there exists a function uε ∈ H1(Ω) such that

uε = g on ∂Ω in the sense of trace,(2.22)

‖uε − u‖L2(Ω) ≤ ε,(2.23)

∫
Ω

α|∇uε| ≤
∫

Ω

α|∇u|+ ε.(2.24)

Proof. To see this, we need only to modify the second part of the proof of the
above theorem. Let vε be the function obtained in the proof of the first step. Then vε
verifies (2.14)–(2.16), and vε −G ∈ W 1,1

0 (Ω) ∩ L2. Therefore, there exists a function
hε ∈ C∞0 (Ω) such that∫

Ω

α|∇(vε −G− hε)|+ ‖vε −G− hε‖L2(Ω) ≤ ε.

Let uε = G+ hε. Then uε ∈ H1(Ω) satisfies (2.22)–(2.24).

3. Minimization problems (1.1) and (1.2). In this section, we shall show
the existence of the solution to the relaxed problem associated with (1.1) and the
convergence of the solutions to the problem (1.2) or to the problem (3.2) below to the
pseudosolution of (1.1), as p→ 1.

Note that the weak limit in BV (Ω) of a minimizing sequence of (1.1) may fail to
have the same boundary data g; hence it may not be in BVg. As in [10], [22], and [26],
we will incorporate the boundary condition into the functional by using the so-called
relaxed energy and define a pseudosolution of (1.1) as follows.

Definition 3.1. A function u ∈ BV (Ω)∩L2 is a pseudosolution of (1.1) if it is
a solution to the minimization problem

min
v∈BV (Ω)∩L2

Eg(v),(3.1)

where Eg(v) is as defined in (2.5).
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In the appendix, we shall show (see Theorem A.3)

inf
v∈BV (Ω)∩L2

Eg(v) = inf
v∈BVg∩L2

E(v).

This is why the solution of (3.1) is called a pseudosolution of (1.1).
Now we prove the existence and uniqueness results for (3.1).
Theorem 3.2 (existence for (3.1)). Let (H.1)–(H.3) hold. Then there is a unique

solution to the problem (3.1).
Proof. Let un ⊂ BV (Ω) ∩ L2 be a minimizing sequence for Eg; i.e.,

Eg(un)→ inf
v∈BV (Ω)∩L2

Eg(v).

By (H.2), α has a lower bound α0 > 0; hence the u′ns are bounded in BV (Ω) and
L2(Ω). By the compactness result (see [11] or [5]), there exist a subsequence unj of
un and a function u ∈ BV (Ω) ∩ L2 such that, as j →∞,

unj → u strongly in L1(Ω), weakly in L2(Ω).

By Theorem 2.3 and the weak lower semicontinuity of the L2-norm, we get

Eg(u) ≤ lim inf
j→∞

Eg(unj
) = inf

v∈BV (Ω)∩L2
Eg(v).

The uniqueness of the minimizer follows from the strict convexity of Eg.
Similarly, we can prove the following theorem.
Theorem 3.3. Let (H.1)–(H.3) hold. Then there is a unique solution to the

problem

min
v∈W 1,p∩L2

Egp(v),(3.2)

where Egp(v) is as defined in (2.6).
We also have the following theorem.
Theorem 3.4 (existence for (1.2)). Let (H.1)–(H.3) hold. Then there is a unique

solution to the problem (1.2).
Proof. Let un ⊂ W 1,p

g ∩ L2 be a minimizing sequence for Ep. Then the u
′
ns are

bounded in W 1,p(Ω) and L2(Ω) since α is bounded below. Therefore, there exist a
subsequence unj of un and a function u ∈W 1,p(Ω) ∩ L2 such that, as j →∞,

unj → u weakly in W 1,p(Ω) and L2(Ω),(3.3)

and

Tunj → Tu weakly in Lp(∂Ω).

Since Tunj
= g for all j, Tu = g on ∂Ω. Hence u ∈ W 1,p

g ∩ L2. From (3.3) and the
weak lower semicontinuity of the norms, we get

Ep(u) ≤ lim inf
j→∞

Ep(unj ) = inf
v∈W 1,p

g ∩L2

Ep(v).

This shows that u is a solution of (1.2). The uniqueness of the minimizer follows from
the strict convexity of Ep.
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Next we shall show that the solution of (3.1) can be approximated by both the
solutions of (3.2) and (1.2), respectively.

Theorem 3.5. Let (H.1)–(H.3) hold. Assume u is a solution of (3.1) and up
are the solutions of (3.2) for 1 < p < 2. Then there exists a sequence upj from up
such that, as pj → 1,

upj → u weakly in BV (Ω) and L2(Ω),

and

Egpj (upj )→ Eg(u).(3.4)

Proof. Since up are solutions of (3.2) for 1 < p < 2 and α is bounded below by
a positive constant, the up are bounded in W 1,1(Ω) ∩ L2. Therefore, there exist a
sequence upj from up and a function u1 ∈ BV (Ω) ∩ L2 such that, as pj → 1,

upj → u1 strongly in L1(Ω) and weakly in L2(Ω),(3.5)

and ∇upj converges to ∇u1 in the sense of measure. By Theorem 2.4, for u1, any
ε > 0, and any fixed p > 1, there is a function uε ∈W 1,p(Ω) ∩ L2 such that

Eg(uε) ≤ Eg(u1) + ε.(3.6)

Note that

Egpj (upj ) = min
v∈W 1,pj∩L2

Egpj (v).

From (3.6), we have that

lim inf
pj→1

Egpj (upj ) ≤ lim
pj→1

Egpj (uε) = Eg(uε) ≤ Eg(u1) + ε.

Letting ε→ 0 in the above inequality yields that

lim
pj→1

Egpj (upj ) ≤ Eg(u1).(3.7)

On the other hand, by Theorem 2.3 and (3.5),

Eg(u1) ≤ lim inf
pj→1

Eg(upj ) ≤ lim
pj→1

{(∫
Ω

α|∇upj |pjdx
) 1

pj
(∫

Ω

αdx

)1− 1
pj

+1/2

∫
Ω

|upj − I|2dx+
∫
∂Ω

α|upj − g|dHn−1

}
= lim inf

pj→1
Egpj (upj ).(3.8)

The combination of (3.7) and (3.8) leads to

Eg(u1) = lim
pj→1

Egpj (upj ).(3.9)

Next we shall show that u1 solves (3.1), and hence u1 = u. To see this, let
v ∈ BV (Ω) ∩ L2, and apply Theorem 2.4 to v. Then, for each ε > 0, we have a
function vε ∈W 1,p(Ω) ∩ L2 such that

Eg(vε) ≤ Eg(v) + ε.(3.10)
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On the other hand, by (3.9) and (3.6),

Eg(u1) = lim
pj→1

Egpj (upj ) ≤ lim
pj→1

Egpj (vε) = Eg(vε).

Then, from (3.10), we get

Eg(u1) ≤ Eg(v) + ε.(3.11)

Letting ε→ 0 in (3.11), we get

Eg(u1) ≤ Eg(v)

for any v ∈ BV (Ω) ∩ L2. Thus u1 solves (3.1). By the uniqueness of the solution to
(3.1), u = u1, and then, from (3.9),

Eg(u) = lim
pj→1

Egpj (upj ).

Theorem 3.6. Let (H.1)–(H.3) hold. Assume u is a solution of (3.1) and up
are the solutions of (1.2) for 1 < p < 2. Then there exists a sequence upj from up
such that, as pj → 1,

upj → u weakly in BV (Ω) and L2(Ω),

and

Epj (upj )→ Eg(u).(3.12)

Proof. Since up are solutions of (1.2) for 1 < p < 2 and α is bounded below by
a positive constant, the up are bounded in W 1,1(Ω) ∩ L2. Therefore, there exist a
sequence upj from up and a function u1 ∈ BV (Ω) ∩ L2 such that, as pj → 1,

upj → u1 strongly in L1(Ω) and weakly in L2(Ω).

Using Theorem 2.3 and noticing the fact that upj = g a.e. on ∂Ω, we have

Eg(u1) ≤ lim inf
pj→1

Egpj (upj ) = lim infpj→1
Epj (upj ).(3.13)

Since upj is the solution of (1.2) with p = pj , E
g
pj (upj ) = minv∈W 1,pj

g ∩L2
Egpj (v). By

Proposition A.2 and Theorem A.3, we get

lim inf
pj→1

Epj (upj ) = inf
v∈BVg∩L2

E(v)

= inf
v∈BV (Ω)∩L2

Eg(v) = Eg(u).(3.14)

The combination of (3.13)–(3.14) shows that

Eg(u1) ≤ Eg(u).

Therefore, u1 = u, and (3.12) follows from (3.14).
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4. Evolution problems. In this section, we shall show that the flow associated
with the minimization problem (1.1), i.e., (1.3)–(1.5), in a weakened formulation can
be approximated by a sequence of the solutions to the flows associated with the
minimization problem (1.2). We shall also discuss the large time behavior of the
solution to (1.3)–(1.5) by an approach different from the subdifferential theory used
in both [10] and [25].

Denote ΩT = Ω× [0, T ) and ∂ΩT = ∂Ω× [0, T ), 0 < T ≤ ∞.
4.1. Definition of a pseudosolution to (1.3)–(1.5). As mentioned in the

previous section, the weak limit (as p→ 1) in BV (Ω) of a sequence in W
1,pj
g may fail

to have the same boundary data g. Hence we consider a weakened formulation for
the solution to (1.3)–(1.5).

Assume that the solution u(x, t) of (1.3)–(1.5) is sufficiently smooth to justify
the following calculations. For arbitrary v ∈ L2(0, T ;H1(Ω)), we multiply (1.3) by
v−u. After integrating by parts and using the convexity of the functions p→ |p| and
u→ |u− I|2 and the inequality ∇u|∇u| ·µ ≤ 1, where µ denotes the exterior unit normal
vector to Ω, we get that, for any t ∈ [0, T ],∫

Ω

(∂tu)(v − u)dx+ Eg(v) ≥ Eg(u).(4.1)

Then we integrate with respect to t to get that, for any s ∈ [0, T ],∫ s

0

∫
Ω

(∂tu)(v − u)dxdt+

∫ s

0

Eg(v)dt ≥
∫ s

0

Eg(u).(4.2)

Conversely, choosing v = vε = u+ εw, where w ∈ C∞0 (Ω), in (4.2), and noticing that
the left-hand side (LHS) of (4.2) has a minimum at ε = 0, we can show that u is a
solution of (1.3) in the sense of distribution by computing d

dε

∫
Ω
(∂t(uεw))dx+Eg(u+

εw) at ε = 0.
Prompted by these facts, we give the following definition for a pseudosolution of

(1.3)–(1.5).
Definition 4.1. A function u ∈ L2(0, T ;BV (Ω) ∩ L2) (0 < T ≤ ∞) is called a

pseudosolution of (1.3)–(1.5) if ∂tu ∈ L2(ΩT ), u(x, 0) = u0(x) on Ω, and u satisfies
(4.2) for every v ∈ L2([0, T ];BV (Ω) ∩ L2), and s ∈ [0, T ].

Let (H.1)–(H.3) hold. Assume g ∈ L∞(∂Ω) and I ∈ BV (Ω) ∩ L∞ with I|∂Ω = g.
We first consider the approximating problem

∂up,δ
∂t
− div(α|∇up,δ|p−2∇up,δ + (up,δ − Iδ)) = 0 in Ω×R+,(4.3)

up,δ = g on ∂Ω×R+,(4.4)

up,δ(x, 0) = Iδ on Ω,(4.5)

where 1 < p ≤ 2 and Iδ ∈ H1(Ω) such that, as δ → 0,

Iδ → I in L2(Ω),

∫
Ω

α|∇Iδ| →
∫

Ω

α|∇I|,(4.6)

and

‖Iδ‖L∞(Ω) ≤ ‖I‖L∞(Ω), Iδ|∂Ω = I|∂Ω = g.(4.7)
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The existence of Iδ is concluded from Theorem 2.5.
We have the following existence and uniqueness result for the problem (4.3)–(4.5).
Lemma 4.2. The problem (4.3)–(4.5) admits a unique pseudosolution up,δ ∈

L∞(0,∞;W 1,p(Ω) ∩ L2), with ∂tup,δ ∈ L2(0,∞;L2(Ω)) and, for any T > 0,∫ T

0

∫
Ω

|∂tup,δ|2dxdt+ sup
t∈[0,T ]

{
1

p

∫
Ω

α|∇up,δ|pdx+1
2

∫
Ω

|up,δ−Iδ|2dx
}
≤ 1

p

∫
Ω

α|∇Iδ|pdx.
(4.8)

This result can be obtained by using the fact that the p-Laplacian operator is a
maximal monotone operator.

We can also have the following L∞(Ω) bound for the solution to (4.3)–(4.5).
Lemma 4.3. Suppose I ∈ BV (Ω)∩L∞, g ∈ L∞(∂Ω), and up,δ is a weak solution

to (4.3)–(4.5). Then we have, for any T > 0,

‖up,δ‖L∞(ΩT ) ≤ max(‖I‖L∞(Ω), ‖g‖L∞(∂Ω)).(4.9)

Proof. Denote M = max(‖Iδ‖L∞(Ω), ‖g‖L∞(∂Ω)). From (4.7),

M ≤ max(‖I‖L∞(Ω), ‖g‖L∞(∂Ω)).(4.10)

Multiply both sides of (4.3) by (up,δ − M)+, where (up,δ − M)+ = up,δ − M if
up,δ −M ≥ 0 and, otherwise, (up,δ −M)+ = 0. Then integrate over Ω to get∫

Ω

∂tup,δ(up,δ −M)+dx+

∫
{up,δ≥M}

α|∇up,δ|pdx

+

∫
Ω

(up,δ −M)+(up,δ − Iδ)dx = 0.

Since the last two integrals are nonnegative, we have∫
Ω

∂tup,δ(up,δ −M)+dx ≤ 0.(4.11)

Let

I(t) =
1

2

∫
Ω

|(up,δ −M)+|2dx.

Then I(0) = 0, and from (4.11)

I ′(t) =
∫

Ω

(up,δ −M)+(∂tup,δ)dx ≤ 0.

Hence I(t) ≤ 0 for all t ≥ 0, which implies
up,δ(t) ≤M, L a.e. on Ω, and ∀t > 0.

We obtain up,δ(t) ≤ M . Similarly, multiplying (4.3) by (−M − up,δ)+, we can have
up,δ(t) ≥ −M . Thus ‖up,δ‖L∞(ΩT ) ≤ M for any T ≥ 0. Then (4.9) follows from
(4.10).

Next we shall prove the main theorem regarding the existence, uniqueness, and
large time behavior for the solution to (1.3)–(1.5).
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Theorem 4.4. Let (H.1)–(H.3) hold. Assume g ∈ L∞(∂Ω) and I ∈ BV (Ω)∩L∞
with I|∂Ω = g. Then there exists a unique pseudosolution u ∈ L∞(0,∞;BV (Ω)∩L∞)
to (1.3)–(1.5). Moreover, as t → ∞, the functions u(·, t) converge strongly in L2(Ω)
to a function ũ, which minimizes Eg; i.e., ũ is a pseudosolution of (1.1).

Proof. Let up,δ be the weak solution of (4.3)–(4.5). From (4.8)–(4.9), we know
that, for fixed δ > 0,

up,δ is uniformly bounded in L∞(0,∞;W 1,p(Ω) ∩ L∞),(4.12)

∂tup,δ is uniformly bounded in L2(Ω∞).(4.12′)

Now we claim that there exist a sequence of functions upj ,δ and a function uδ ∈
L∞(0,∞;BV (Ω) ∩ L∞) such that, as j →∞, pj → 1,

∂tupj ,δ → ∂tuδ weakly in L2(Ω∞),(4.13)

upj ,δ → uδ weakly
∗ in L∞(Ω∞),(4.14)

and

upj ,δ → uδ in L2(Ω) uniformly in t.(4.15)

In fact, from (4.12)–(4.12′), there is a sequence upj ,δ and a function uδ ∈ L∞(Ω∞)
with ∂tuδ ∈ L2(Ω∞) such that (4.13) and (4.14) hold. To see (4.15), note that, for
any f ∈ L2(Ω), as j →∞,∫

Ω

(upj ,δ(x, t)− Iδ(x))f(x)dx =

∫
Ω∞

∂supj ,δ(x, s)1[0,t](s)f(x)dxds

→
∫

Ω∞
∂suδ(x, s)1[0,t](s)f(x)dxds =

∫
Ω

(uδ(x, t)− Iδ(x))f(x)dx,

where 1[0,t] is the characteristic function of the set [0, t] ⊂ [0,∞). This shows that,
for each t,

upj ,δ → uδ weakly in L2(Ω).(4.15′)

By (4.8), for each t ∈ [0,∞), upj ,δ(·, t) is a bounded sequence in W 1,1(Ω). Hence
there is a subsequence of upj ,δ(·, t) converging a.e. in Ω and strongly in L1(Ω) to uδ
(here we used (4.15′)). Since every convergent subsequence of upj ,δ(·, t) converges to
the same limit, we get that, for each t as pj → 1,

upj ,δ(·, t)→ uδ(·, t) in L1(Ω).(4.15′′)

Combining this with (4.9), we get for each t

upj ,δ(·, t)→ uδ(·, t) in L2(Ω).

Furthermore, t→ upj ,δ(·, t) ∈ L2(Ω) is equicontinuous since

‖upj ,δ(·, t)− upj ,δ(·, t′)‖2L2(Ω) ≤ |t− t′|
∫

Ω∞
(∂tupj ,δ)

2dxdt.
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Then, by a standard argument, we can have the convergence of upj ,δ(·, t) to uδ(·, t) in
L2(Ω) uniform in t; this is (4.15). The claim is proved.

Now from (4.8) and (4.15′′) we have that

{uδ(·, t), t ∈ [0,∞), 1 < p ≤ 2} is a bounded set in BV (Ω).

Moreover, from (4.14),

uδ ∈ L∞(0,∞;BV (Ω) ∩ L∞).

Next we show that, for all v ∈ L∞(0,∞;H1(Ω)) and each s ∈ [0,∞),∫ s

0

∫
Ω

∂tuδ(v−uδ)dxdt+
∫ s

0

∫
Ω

α|∇v|dt+1/2
∫ s

0

∫
Ω

|v−Iδ|2dxdt+
∫ s

0

∫
∂Ω

α|v−g|dHn−1dt

≥
∫ s

0

∫
Ω

α|∇uδ|dt+ 1/2
∫ s

0

∫
Ω

|uδ − Iδ|2dxdt+
∫ s

0

∫
∂Ω

|uδ − g|dHn−1dt.(4.16)

To show this, we first assume further that v = g on ∂Ω∞. Multiply (4.3) by
v − upj ,δ, and integrate over Ω

s:∫ s

0

∫
Ω

∂tup,δ(v − up,δ)dxdt+

∫ s

0

∫
Ω

α|∇up,δ|p−2∇up,δ · ∇(v − up,δ)dxdt

+

∫ s

0

∫
Ω

(up,δ − Iδ)(v − up,δ)dxdt = 0.(4.17)

Write v − up,δ = (v − Iδ) − (up,δ − Iδ), and use the convexity of | · |p (p ≥ 1) to get
from (4.17)∫ s

0

∫
Ω

∂tup,δ(v − up,δ)dxdt+ 1/p

∫ s

0

∫
Ω

α|∇v|pdxdt+ 1/2
∫ s

0

∫
Ω

|v − Iδ|2dxdt

+

∫ s

0

∫
∂Ω

|v− g|dHn−1dt ≥ 1/p
∫ s

0

∫
Ω

α|∇up,δ|pdxdt+1/2
∫ s

0

∫
Ω

|up,δ− Iδ|2dxdt.
(4.18)
Notice that, using Theorem 2.3, we have∫

Ω

α|∇uδ|+
∫
∂Ω

α|uδ − g|dHn−1 ≤ lim inf
j→∞

∫
Ω

α|∇up,δ|+
∫
∂Ω

α|up,δ − g|dHn−1

≤ lim inf
j→∞

(∫
Ω

α|∇up,δ|p
)1/p(∫

Ω

α

)1− 1
p

+

∫
∂Ω

α|up,δ − g|dHn−1

= lim inf
j→∞

1

p

(∫
Ω

α|∇up,δ|p
)1/p

+

∫
∂Ω

α|up,δ − g|dHn−1.(4.19)

Letting p tend to 1 along pj in (4.18), using (4.13), (4.15), and (4.19), we get (4.16)
for v ∈ L∞(0,∞;H1(Ω)) with v = g on ∂Ω∞.
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To get (4.16) for all v ∈ L∞(0,∞;H1(Ω)) (i.e., the condition that v = g on ∂Ω∞

is not necessarily satisfied), we let for β > 0

dβ(x) = min(d(x)/β, 1),

where d(x) is the distance of the point x to the boundary of Ω. Since |d(x)− d(y)| ≤
|x− y|, d ∈W 1,∞, with |∇d| = 1. It follows that

|∇dβ | = 1/β if d(x) < β, and |∇dβ | = 0 if d(x) ≥ β.

Let

vβ = dβv + (1− dβ)G for (x, t) ∈ ΩT .
Then

vβ ∈ L∞(0,∞;H1(Ω)), and vβ = g on ∂Ω∞.(4.20)

Therefore, (4.16) holds with v replaced by vβ . It is clear that

vβ → v in L2(Ω∞).(4.21)

Moreover,

∇vβ = ∇vβ(v −G) + dβ∇v + (1− dβ)∇G.

By using Theorem A.1 in the appendix and the fact that dβ → 1 as β → 0, we get

lim
β→0

∫
Ω

α|∇vβ | =
∫

Ω

α|∇v|+
∫
∂Ω

α|v − g|dHn−1.(4.22)

Replacing v by vβ in (4.16), letting β → 0, and using (4.20)–(4.22) we get that (4.16)
holds for all v ∈ L∞(0,∞;H1(Ω)) and each s ∈ [0, T ]. Furthermore, by Theorem 2.4,
(4.16) also holds for all v ∈ L2(0,∞;BV (Ω) ∩ L2).

Moreover, replacing up by upj in (4.8), letting j →∞ (pj → 1), and using (4.13),
(4.15), (4.19), (4.4), and (4.6), we get∫ ∞

0

∫
Ω

|∂tuδ|2dxdt+ sup
t∈[0,∞)

{∫
Ω

α|∇uδ|+
∫
∂Ω

α|uδ − g|dHn−1 +
1

2

∫
Ω

|uδ − Iδ|2dx
}

≤
∫

Ω

α|∇I|.(4.23)

Next we shall pass to the limit as δ → 0. Recall from (4.9) and (4.23) that

uδ is uniformly bounded in L∞(0,∞;BV (Ω) ∩ L∞),(4.24)

∂tuδ is uniformly bounded in L2(Ω∞).(4.25)

Then, by an argument similar to the one for getting (4.13)–(4.15), we can find a
sequence of functions uδj and a function u ∈ L∞(0,∞;BV (Ω) ∩ L∞) such that, as
j →∞, δj → 0,

∂tuδj → ∂tu weakly in L2(Ω∞),(4.26)

uδj → u weakly∗ in L∞(Ω∞),(4.27)
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and

uδj → u in L2(Ω) uniformly in t ∈ [0,∞).(4.28)

Replacing uδ by uδj , letting j →∞ in (4.16), and using Theorem 2.3, we can have from
(4.6), (4.26), and (4.28) that, for all v ∈ L2(0,∞;BV (Ω) ∩ L2) and each s ∈ [0,∞),∫ s

0

∫
Ω

∂tu(v−u)dxdt+
∫ s

0

∫
Ω

α|∇v|dt+1/2
∫ s

0

∫
Ω

|v−I|2dxdt+
∫ s

0

∫
∂Ω

α|v−g|dHn−1dt

≥
∫ s

0

∫
Ω

α|∇u|dt+ 1/2
∫ s

0

∫
Ω

|u− I|2dxdt+
∫ s

0

∫
∂Ω

|u− g|dHn−1dt.(4.29)

We proved the existence of a pseudosolution of (1.3)–(1.5) (see Definition 4.1).
Furthermore, replacing uδ by uδj and letting j → ∞ in (4.23), we get by us-

ing (4.26), (4.28), and Theorem 2.3 that the solution u obtained above satisfies the
following estimate:∫ ∞

0

∫
Ω

|∂tu|2dxdt+ sup
t∈[0,∞)

{∫
Ω

α|∇u|+
∫
∂Ω

α|u− g|dHn−1 +
1

2

∫
Ω

|u− I|2dx
}

≤
∫

Ω

α|∇I|.(4.30)

The uniqueness result for (1.3)–(1.5) follows as in [10] and [26]: If u1 and u2

are two solutions, one writes the definition of the pseudosolution using each as the
function v in (4.2). Adding the resulting inequalities, one finds∫ s

0

∫
Ω

∂t(u1 − u2)
2 ≤ 0

for all s > 0.
At last, we shall show the asymptotic limit of the solution u(·, t) as t→∞.
Take a function v ∈ BV (Ω) ∩ L2 in (4.29):∫

Ω

(u(x, s)− u(x, 0))v(x)dx− 1/2
∫

Ω

(u2(x, s)− u2(x, 0))dx+ s

∫
Ω

α|∇v|

+s/2

∫
Ω

|v−I|2dx+ s

∫
∂Ω

α|v−g|dHn−1 ≥
∫ s

0

∫
Ω

α|∇u|dxdt+1/2
∫ s

0

∫
Ω

|u−I|2dxdt

+

∫ s

0

∫
∂Ω

|u− g|dHn−1dt.(4.31)

Let

w(x, s) =
1

s

∫ s

0

u(x, t)dt.

Then, from (4.27) and (4.30), for each s, w(·, s) ∈ BV (Ω) ∩ L∞ with uniformly
bounded BV and L∞-norms. Thus there is a sequence w(·, si) converging strongly in
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L1(Ω) and weakly in BV (Ω) and L∞(Ω) to a function ŵ ∈ BV (Ω) ∩ L∞ as si →∞.
In fact, since w(·, si) have uniformly bounded L∞-norms, the convergence of w(·, si)
to ŵ is strong in L2(Ω).

By dividing s in (4.31) and then taking the limit along si →∞, we get that, for
any v ∈ BV (Ω) ∩ L2,∫

Ω

α|∇v|+ 1/2
∫

Ω

|v − I|2dx+
∫
∂Ω

α|v − g|dHn−1

≥
∫

Ω

α|∇ŵ|+ 1/2
∫

Ω

|ŵ − I|2dx+
∫
∂Ω

α|ŵ − g|dHn−1.

This shows that ŵ is the pseudosolution of (1.1).

Appendix. For β > 0, let

dβ(x) = min(d(x)/β, 1),

where d(x) is the distance of the point x to the boundary of Ω.
Theorem A.1. For each v ∈ BV (Ω) ∩ L∞, the vector measures v∇dβ converge

weakly to −vγdHn−1 as β → 0, where γ is the outward normal to ∂Ω, and

lim
β→0

∫
Ω

|v||∇dβ | =
∫
∂Ω

|v|dHn−1.(A.1)

Proof. Without loss of generality, assume ‖v‖L∞ ≤ 1. By Theorem 3.2.39 in [6],
we see that ∫

Ω

|v||∇dβ | ≤
∫

Ω

|∇dβ |

is bounded, and as β → 0,
∫
Ω
|∇dβ | tends to Hn−1(∂Ω). Therefore, the family of the

vector measures v∇dβ is uniformly bounded in β as β → 0. Let

wβ = (1− dβ)v.

Then wβ ∈ BV (Ω), and, for each φ ∈ C1(Rn, Rn), by the divergence theorem,∫
Ω

wβdivφ = −
∫

Ω

φ∇wβ +
∫
∂Ω

(φ · γ)vdHn−1.(A.2)

Since |wβ | ≤ |v| and wβ → 0 as β → 0, the LHS of (A.2) tends to zero as β → 0.
Therefore, from (A.2),

lim
β→0

∫
Ω

φ∇wβ =
∫
∂Ω

(φ · γ)vdHn−1.(A.3)

Furthermore,

∇wβ = −v∇dβ + (1− dβ)∇v.
Since (1−dβ)|∇v| tends to zero as β → 0, and the vector measures v∇dβ are uniformly
bounded in β, we conclude from (A.3) that v∇dβ converges weakly to −vγdHn−1 as
β → 0.
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Using the weak lower semicontinuity of total variation, we get

lim inf

∫
Ω

|v||∇dβ | ≥
∫
∂Ω

|v|dHn−1.(A.4)

Using (A.4) with 1− |v| replacing |v|, we get∫
∂Ω

dHn−1 =

∫
∂Ω

|v|dHn−1 +

∫
∂Ω

(1− |v|)dHn−1

≤ lim inf
{∫

Ω

|v||∇dβ |+
∫

Ω

(1− |v|)|∇dβ |
}

≤ lim inf
∫

Ω

|∇dβ | =
∫
∂Ω

dHn−1.(A.5)

Therefore, each inequality in (A.5) should be an equality. Furthermore, noticing that∫
∂Ω
|v|dHn−1 ≤ lim inf ∫

Ω
|v||∇dβ | and

∫
∂Ω
(1− |v|)dHn−1 ≤ lim inf ∫

Ω
(1− |v|)|∇dβ |,

we obtain (A.1).
Let

ap = inf
v∈W 1,p(Ω)∩L2

Egp(v) for p > 1, and a1 = inf
v∈BV (Ω)∩L2

Eg(v),

Ap = inf
v∈W 1,p

g ∩L2

Ep(v) for p > 1, and A1 = inf
v∈BVg∩L2

E(v),

where E(v), Eg(v), Ep(v), and Egp(v) are as defined in (1.1)–(1.2) and (2.5)–(2.6),
respectively. If p > 1, both infima ap and Ap are attained. For p = 1, a1 is attained.
We will show below that a1 = A1. This will justify the definition of the pseudosolution
for (1.1). We will use the following simple inequality:

For b > 0 and 1 ≤ q ≤ p <∞,
bq

q
≤ bp

p
+

p− q

pq
.(A.6)

This can be proved by using the Hölder inequality

bq ≤ qbp

p
+

p− q

pq
.

Proposition A.2. For p ≥ 1, both ap and Ap are right continuous in p. We
also have for 1 ≤ q ≤ p <∞

aq ≤ p− q

pq
|Ω|+ ap,(A.7)

Aq ≤ p− q

pq
|Ω|+Ap,(A.7′)

Proof. (1) Let 1 ≤ q ≤ p < ∞ and vp ∈ W 1,p(Ω) ∩ L2 if p > 1, and vp ∈ v ∈
BV (Ω) ∩ L2 if p = 1. Then, using (A.6),

aq ≤ Egq (vp) = 1/q

∫
Ω

α|∇vp|q + 1/2
∫

Ω

|vp − I|2dx+
∫
∂Ω

α|vp − g|dHn−1

≤ p− q

pq
|Ω|+ Egp(vp).
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Since this is valid for all vp ∈ W 1,p(Ω) ∩ L2 if p > 1 and vp ∈ BV (Ω) ∩ L2 if p = 1,
we get (A.7). (A.7′) can be proved by the same argument.

(2) Now we prove the right continuity of ap, i.e.,

lim
p↓q

ap = aq, q ≥ 1.

For ε > 0, assume u ∈W 1,∞(Ω) ∩ L2 such that

Egq (u) ≤ aq + ε.

Then

lim sup
p↓q

ap ≤ lim sup
p↓q

Egp(u) = Egq (u) ≤ aq + ε.

Let ε→ 0, and we get

lim sup
p↓q

ap ≤ aq.(A.8)

On the other hand, by taking liminf as p ↓ q on both sides of (A.7),
aq ≤ lim inf

p↓q
ap.

Combining this with (A.8) proves the right continuity of ap for p ≥ 1.
(3) To prove the right continuity of Ap, we need some modification for the argu-

ment applied above for ap since the inequality similar to (A.9) is not valid for q = 1
due to the fact that W 1,∞

g is not dense in BVg, while W
1,∞ is weakly dense in BV .

However, in this case, we can use Theorem 2.5 to get a similar result as follows: Let
ε > 0, and assume that u ∈ BVg ∩ L2 such that

E(u) ≤ A1 + ε.(A.9)

By using (A.9) and Theorem 2.5, there is v ∈W 1,2
g ∩ L2 such that

E(v) ≤ E(u) + ε ≤ A1 + 2ε.(A.10)

For q > 1, it is clear that there is a function v ∈W 1,∞
g ∩ L2 such that

Eq(v) ≤ aq + ε.(A.11)

Now repeating the argument in the second step and using (A.10)–(A.11) give the right
continuity of Ap for p ≥ 1.

Theorem A.3. Let (H.1)–(H.3) hold. Then

inf
v∈BV (Ω)∩L2

Eg(v) = inf
v∈BVg∩L2

E(v).(A.12)

Proof. Since BVg ⊂ BV (Ω),

inf
v∈BV (Ω)∩L2

Eg(v) ≤ inf
v∈BVg∩L2

E(v).

Next we shall prove

inf
v∈BV (Ω)∩L2

Eg(v) ≥ inf
v∈BVg∩L2

E(v).(A.13)
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to get (A.12).
From Theorem 3.2, we know that there exists a unique u ∈ BV (Ω)∩L2 such that

Eg(u) = infv∈BV (Ω)∩L2 Eg(v). Let dβ(x) be the function defined in (4.20). Define

uβ = dβu+ (1− dβ)G.

Then uβ ∈ BVg so that

inf
v∈BVg∩L2

E(v) ≤ E(uβ).(A.14)

Furthermore, noticing that uβ = u on {d(x) ≥ β}, we have

E(uβ) ≤
∫

Ω∩{d(x)≥β}
α|∇u|+

∫
Ω∩{d(x)<β}

α|u−G||∇dβ |

+

∫
Ω∩{d(x)<β}

α|∇(u−G)||dβ |+
∫

Ω∩{d(x)<β}
α|∇G|+

∫
Ω

|uβ − I|2.(A.15)

As β → 0, uβ → u in L2(Ω), and |{Ω∩{d(x) ≤ β}}| → 0. Using these facts and (A.1)
with v = u−G, we get from (A.15) that

lim
β→0

E(uβ) ≤
∫

Ω

α|∇u|+
∫
∂Ω

α|u− g|dHn−1 +

∫
Ω

|u− I|2.

The combination of this with (A.14) leads to (A.13) and hence to (A.12).
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Abstract. In the theory of p-wave superconductivity, the Ginzburg–Landau energy functionals
with multicomponent order parameters were employed. Here we find a minimizer of a reduced form
of the p-wave Ginzburg–Landau free energy with two-component order parameters. The minimizer
has distinct degree-one (or minus one) vortices in each component. We also derive a system of
ordinary differential equations as the motion equations of vortices in the approximated gradient flow
for p-wave superconductivity.

Key words. vortices, dynamics, p-wave superconductivity, Ginzburg–Landau
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1. Introduction. It is well known that many of the heavy-fermion superconduc-
tors are thought to represent a novel form of superconductivity. Remarkable evidence
in support of an unconventional superconducting state in the heavy-fermion supercon-
ductors has accumulated from specific heat, upper critical field, and various transport
measurements, all of which show anomalous properties compared with those of con-
ventional superconductors (cf. [2], [7], [22], [23], [25]). Conventional superconductors
refer to those with the pairing symmetry of the s-wave and the spin singlet. However,
it is widely accepted that an anisotropic p-wave spin-triplet pairing may be realized
in heavy-fermion superconductors.

The possibility of the p-wave spin-triplet pairing has been investigated since the
1970’s for superfluid 3He, a heavy-fermion system UPt3, or, most recently, an oxide
Sr2RuO4 (cf. [12], [19], [28], [29]). The strongest evidence for unconventional super-
conductivity comes from the multiple superconducting phases of UPt3. There are two
superconducting phases in the zero field (cf. [7]).

To describe p-wave superconductors, we consider a simple situation with two-
component order parameters ηi, i = 1, 2. In the absence of a magnetic field, the
Ginzburg–Landau free energy is given by

F (η1, η2) =

∫
R2

K1(|∂x η1|2 + |∂y η2|2) +K2(|∂x η2|2 + |∂y η1|2) + fpot(η1, η2)

+K3 (∂x η
∗
1∂y η2 + c.c.) +K4 (∂x η

∗
2∂y η1 + c.c.) dx dy,

(1.1)

for η1 and η2 are complex-valued order parameters, where Kj , j = 1, . . . , 4, are ma-
terial constants and the asterisk denotes the complex conjugate. Hereafter,

fpot(η1, η2) = −α0 (|η1|2 + |η2|2) + α1 (|η1|2 + |η2|2)2 + α2 (η∗1η2 − η1η∗2)2,(1.2)
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where αj , j = 0, 1, 2, are constants. Zhu et al. [30] derived (1.1) from reasonable
microscopic models describing Sr2RuO4. The expression of the Ginzburg–Landau
free energy (1.1) agrees quite well with that constructed from the group-theoretical
argument (cf. [24]) for the Γ−5 superconducting state in the tetragonal D4h (except
one coefficient) and hexagonal symmetry D6h.

In this paper, we assume that K1 = K2 = K > 0 and K3 = K4 = 0 to avoid var-
ious complications which come from additional derivative terms. Then (1.1) becomes

F (η1, η2) =

∫
R2

K(|∇ η1|2 + |∇ η2|2) + fpot(η1, η2) dx dy.(1.3)

Moreover, it is easy to check that

fpot(η1, η2) = −α0 (|η1|2 + |η2|2) + β1 (|η1|2 + |η2|2)2 + β2 |η2
1 + η2

2 |2,(1.4)

where β1 = α1−α2, β2 = α2. From [11], we use the following convenient parametriza-
tion of the order parameter:

(η1, η2)(x, y) = f(x, y) (N cosφ+ iM sinφ),(1.5)

where f = f(x, y), φ = φ(x, y) are real-valued functions and N = N (x, y) = (N1,N2),
M = M (x, y) = (M1,M2) are S1-valued functions. Then (1.4) becomes

fpot = −α0 f
2 + β1 f

4 + β2 f
4 [cos2 2φ+ (M ·N )2 sin2 2φ],(1.6)

which can be easily minimized to give the two phases as follows:
(i) Phase I. As β2 > 0, (η1, η2) = f N+iM√

2
,N⊥M , φ = π/4.

(ii) Phase II. As β2 < 0, (η1, η2) = f ei φN ,N = M .
In phase I, we set M = ±(−N2,N1) and ψ = f (N1 + iN2). Then (1.3) becomes

F (ψ) =

∫
R2

K |∇ψ|2 − α0 |ψ|2 + β1 |ψ|4 dx dy,(1.7)

for ψ is a complex-valued function, where K,α0, and β1 are positive constants. We
may rescale ψ and spatial variables suitably and then transform (1.7) into (up to some
constants) the s-wave Ginzburg–Landau free energy (cf. [8]) given by∫

R2

1

2
|∇ψ|2 +

1

4
(1− |ψ|2)2 .

Moreover, we may approximate the s-wave Ginzburg–Landau free energy by∫
1
ε Ω

1

2
|∇ψ|2 +

1

4
(1− |ψ|2)2 ,

where 0 < ε � 1 is a small parameter and Ω is a bounded smooth domain in R
2.

Then we rescale the spatial variables by ε and obtain the energy functional as follows:

Eε(ψ) =

∫
Ω

1

2
|∇ψ|2 +

1

4 ε2
(1− |ψ|2)2.(1.8)

The Euler–Lagrange equation and the gradient flow of (1.8) with the Dirichlet bound-
ary condition have been investigated as the fundamental equations for understanding
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s-wave superconductors; see Bethuel, Brezis, and Helein [1], Struwe [26], [27], Lin [14],
Lin and Lin [17], Pacard and Riviére [20], and many others.

In phase II, we set ψ = f ei φ. Then (1.3) becomes

F (ψ,N ) =

∫
R2

K (|∇ψ|2 + |ψ|2 |∇N |2)− α0 |ψ|2 + (β1 + β2) |ψ|4 dx dy,(1.9)

for ψ is a complex-valued function and N is an S1-valued function. Hereafter, we as-
sume that β1+β2 > 0 in order to ensure the stability of the phase II superconductivity.
As for (1.8), we may, after proper normalization, put (1.9) in the form

Gε(ψ,N ) =

∫
Ω

1

2
(|∇ψ|2 + |ψ|2 |∇N |2) +

1

4 ε2
(1− |ψ|2)2 dx dy.(1.10)

Note that when ψ is real-valued, (1.10) can be regarded as a model of nematic liquid
crystals (cf. [6]). Let u = |ψ|Z ∈ C, where Z = (N1 + iN2) ∈ S1 in C and N =
(N1,N2) ∈ S1 in R

2. Then we may rewrite (1.10) as

Eε(ψ, u) =

∫
Ω

1

2
(|∇ψ|2 + |∇u|2 − |∇ |ψ||2) +

1

4 ε2
(1− |ψ|2)2 ,(1.11)

for ψ and u are complex-valued functions satisfying |ψ| = |u|.
Vortex configurations and vortex dynamics in superconductivity are physically

meaningful problems. One way to create vortices of the energy minimizers and the
solutions of gradient flows without external fields is to impose the Dirichlet boundary
condition of ψ and u; see also [15] for the Neumann boundary condition. In this
paper, we study the asymptotic behavior of the energy minimizer of (1.11) with a
given Dirichlet boundary condition as ε→ 0+. Using the idea introduced by the first
author in studying the dynamics of Ginzburg–Landau vortices (see, e.g., [14]), we also
derive the corresponding dynamical law of vortices for p-wave superconductivity with
two-component order parameters.

Let (ψε, uε) be the energy minimizer of (1.11) for ψ ∈ H1
η (Ω; C), u ∈ H1

g (Ω; C),
and |ψ| = |u| in Ω. Hereafter, H1

η (Ω; C) = {v ∈ H1(Ω; C) : v = η on ∂Ω}, and
H1
g (Ω; C) = {w ∈ H1(Ω; C) : w = g on ∂Ω}, where η and g are given smooth maps

from ∂Ω into S1 with degrees d1 and d2, respectively. We shall assume, by simply
taking the complex conjugate if it is needed, that d1, d2 ≥ 0. The case in which
either d1 or d2 vanishes will be seen to be very easy. Essentially, all the statements
in this case follow from earlier works (cf. [1], [14]). In the case that both d1 and
d2 are positive, the general picture will be as follows: ψε has d1 degree-one vortices
and uε has d2 degree-one vortices in Ω. We shall denote essential zeros (see Proposi-
tion 2.2) as degree-one vortices. Moreover, there is an integer 0 ≤ N0 ≤ min(d1, d2),
N0 distinct points a1, . . . , aN0 ∈ Ω, d1 − N0 distinct points b1, . . . , bd1−N0 ∈ Ω, and
d2−N0 distinct points c1, . . . , cd2−N0 ∈ Ω such that the essential zeros of ψε converge
(as ε → 0+) to a1, . . . , aN0 , b1, . . . , bd1−N0 , and the essential zeros of uε converges
(as ε → 0+) to a1, . . . , aN0 , c1, . . . , cd2−N0 . Due to the constraint |ψε| = |uε|, ψε
has nonessential (i.e., degree-zero) zeros near c1, . . . , cd2−N0 , and uε has nonessen-
tial zeros near b1, . . . , bd1−N0

. The number N0 may depend on the domain Ω and
the boundary conditions η and g. The reader may find various situations in which
the number N0 may be zero or may be equal to d1 or d2. Some such cases may
be found in Remark 3.1. The dynamical law that governs motions of vortices will
be a system of ordinary differential equations for those corresponding point vor-
tices a1(t), . . . , aN0(t), b1(t), . . . , bd1−N0(t), c1(t), . . . , cd2−N0(t) for time t > 0. In our
forthcoming paper, we shall address the multicomponent p-wave superconductivity.
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2. Basic energy estimates. We start with the following proposition (see [16]).
Proposition 2.1. Suppose vε ∈ H1

z (Ω; C) ≡ {v ∈ H1(Ω; C) : v = z on ∂Ω} such
that

Eε(vε) ≤ π d log
1

ε
+ C0 as ε→ 0+,(2.1)

where C0 is a positive constant independent of ε and z : ∂Ω → S1 is a smooth map
with degree d > 0. Here

Eε(vε) =

∫
Ω

eε(vε) ,

eε(vε) =
1

2

[
|∇vε|2 +

1

2 ε2
(1− |vε|2)2

]
.

Then there are exactly d distinct points aεj ∈ Ω, j = 1, . . . , d, of vε such that aεj →
aj ∈ Ω (up to a subsequence) as ε→ 0+,

εαj

∫
∂Bj

eε(vε) ≤ C1 and deg

(
vε
|vε| , ∂Bj

)
= 1,(2.2)

where Bj = Bεαj (aεj) for j = 1, . . . , d, 0 < αj < 1, and C1 > 0 is a universal constant.
Furthermore,

min{|ai − aj |, dist(ai, ∂Ω) : i, j = 1, . . . , d, i �= j} ≥ δ0(z,Ω, C0) > 0,

and vε converges (up to a subsequence) to a map of the form

d∏
j=1

x− aj
|x− aj | e

i h(x)

strongly in L2(Ω) and weakly in H1
loc(Ω̄\{a1, . . . , ad}) as ε→ 0+. Moreover,

‖h‖H1(Ω) ≤ C(C0, z,Ω).

We shall call these aεj ’s essential zeros of vε. It is obvious that these essential
zeros are well defined (up to a possible error of ε to a fixed positive power; see [14]).

To study (1.11), we may decompose it as

Eε(ψ, u) = Ẽε(ψ) + Ẽε(u) +
1

6

∫
Ω

|∇ |u||2,(2.3)

where

Ẽε(u) =

∫
Ω

1

2

(
|∇u|2 − 2

3
|∇ |u||2

)
+

1

8 ε2
(1− |u|2)2,(2.4)

for ψ and u are complex-valued functions with |ψ| = |u|.
The following lower bound for Ẽε is crucial as in [1].
Proposition 2.2. Suppose vε is a minimizer of Ẽε over H1

z (Ω; C) ≡ {v ∈
H1(Ω; C) : v = z on ∂Ω}, where z : ∂Ω → S1 is a smooth map with degree d > 0.
Then vε has exactly d essential zeros aεj , j = 1, . . . , d, in Ω; i.e., there are exactly
d balls, say, Bj = Bεαj (aεj), αj ∈ (0, 1) , j = 1, . . . , d, such that deg( vε|vε| , ∂Bj) = 1
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and εαj
∫
∂Bj

ẽε (vε) ≤ Kj for j = 1, . . . , d, where Kj = Kj(αj) > 0 are constants.

Hereafter, ẽε is the energy density of Ẽε defined by

ẽε(u) =
1

2

(
|∇u|2 − 2

3
|∇|u||2

)
+

1

8 ε2
(1− |u|2)2 .(2.5)

Moreover,

Ẽε(vε) = π d log
1

ε
+O(1) as ε→ 0+ ,(2.6)

where O(1) is independent of ε.
From (2.3), Proposition 2.2, and Lecture 1 of [14], we have the following corollary.
Corollary 2.3. Let ψε ∈ H1

η (Ω; C) and uε ∈ H1
g (Ω; C). Then

Eε(ψε, uε) ≤ π (d1 + d2) log
1

ε
+O(1)(2.7)

if and only if

Eε(ψε) ≤ π d1 log
1

ε
+O(1), Eε(uε) ≤ π d2 log

1

ε
+O(1).

By Proposition 2.2, (2.3), and (2.7), it is also easy to check that∫
Ω

|∇ |ψε||2 =

∫
Ω

|∇ |uε||2 ≤M5,(2.8)

where M5 is a positive constant independent of ε. Moreover, by (2.7), (2.8), and
Lecture 1 of [14], we can write

Eε(ψε) ≤ π d1 log
1

ε
+M6 , Eε(uε) ≤ π d2 log

1

ε
+M6,(2.9)

where M6 is a positive constant independent of ε.
The proof of Proposition 2.2 is based on Lemma 2.2 of [16], Theorem 3.1, and the

structure theorem of [14]. One may find another proof using techniques of Theorems 2
and 3 in [21]. For the sake of completeness, we give the proof of Proposition 2.2.

Proof of Proposition 2.2. From [13], Ẽε has a minimizer vε over the space
H1
z (Ω; C). Moreover, vε is Lipschitz continuous on Ω. Let Uε be the minimizer of

Eε (defined in (1.8)) over H1
z (Ω; C). Then it is well known (see [1]) that Eε(Uε) ≤

π d log 1
ε +M0, where M0 is a positive constant. Hence it is obvious that

Ẽε(vε) ≤ Ẽε(Uε) ≤ Eε(Uε) ≤ π d log
1

ε
+M0.(2.10)

By the energy comparison, it is easy to show that

|vε| ≤ 1 in Ω.(2.11)

To obtain d essential zeros of vε, we need the following lemma.
Lemma 2.4. Suppose |vε(a1)| < 1

2 , where a1 ∈ Ω. Then there exists α1 ∈ (0, 1)
independent of ε ≤ εo for some small but fixed positive εo such that deg( vε|vε| , ∂B1) �= 0

and εα1
∫
∂B1

ẽε (vε) ≤ K1, where B1 = Bεα1 (a1) and K1 = K1(α1) > 0 is a universal
constant.
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Assume Lemma 2.4 for the moment; we continue the proof of Proposition 2.2 as
follows. By (2.10), (2.11), Lemma 2.4, and the proof of the structure theorem in [14],
vε has only d essential zeros aεj ’s in Ω, and deg( vε|vε| , ∂Bj) = 1 for j = 1, . . . , d, where

Bj = Bεαj (aεj) and αj ∈ (0, 1). Moreover, by the same argument of Lemma 2.2 in
[16], we obtain

∫
Ω\∪d

j=1
Bj

ẽε(vε) ≥ π
d∑
j=1

αj log
1

ε
−M1,(2.12)

and hence ∫
Bj

ẽε(vε) ≤ π (1− αj) log
1

ε
+M1 for j = 1, . . . , d,(2.13)

where M1 is a positive constant independent of ε.
Now we claim that∫

Bj

ẽε(vε) ≥ π (1− αj) log
1

ε
−K for j = 1, . . . , d,(2.14)

where K is a positive constant independent of ε. Without loss of generality, we may
assume that Bj = Bθ0(0), θ0 = εαj . Then (2.13) implies that∫

Bθ0
(0)

ẽε(vε) ≤ π log
θ0
ε

+M1.(2.15)

Moreover, we may rescale the spatial variable and rewrite (2.13) as∫
B1(0)

ẽε1(vε) ≤ π (1− αj) log
1

ε
+M1,(2.16)

where ε1 = ε1−αj . By (2.16) and the Fubini theorem (cf. [15]), there exists θ1 ∈
(ε2αj , εαj ) such that

θ0θ1

∫
∂Bθ0θ1

(0)

ẽε (vε) ≤ C(αj ,M1)

and that

deg

(
vε
|vε| , ∂Bθ0θ1(0)

)
= 1.

Hence, by the same argument of Lemma 2.2 in [16], we have∫
Bθ0

(0)\Bθ0 θ1
(0)

ẽε(vε) ≥ π log
1

θ1
−M2(2.17)

and ∫
Bθ0 θ1

(0)

ẽε(vε) ≤ π log
θ0 θ1
ε

+M1 +M2,(2.18)
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where M2 is a positive constant satisfying M2 ≤ C0 θ0. Here C0 is a positive constant
independent of ε. Thus, by induction, we may obtain θ1, . . . , θm ∈ (ε2αj , εαj ) such
that ε = θ0θ1 · · · θm and∫

Bθ0···θk−1
(0)\Bθ0···θk (0)

ẽε(vε) ≥ π log
1

θk
−Mk+1(2.19)

and ∫
Bθ0···θk (0)

ẽε(vε) ≤ π log
θ0 · · · θk
ε

+
k+1∑
j=1

Mj(2.20)

for k = 1, . . . ,m, where the Mj ’s are positive constants satisfying Mk+1 ≤ C0 θ
k
0

for k ≥ 0. Note that
∑k+1
j=1 Mj ≤ M1 + C0

∑∞
j=1 θ

j
0 ≤ C1, where C1 is a positive

constant independent of ε and k. Therefore, by (2.19), we may obtain (2.14), and we
complete the proof of Proposition 2.2.

2.1. Proof of Lemma 2.4. By the Fubini theorem, there exists a constant
α1 ∈ (0, 1) such that

εα1

∫
∂B1

ẽε (vε) ≤ K1,(2.21)

whereK1 = K1(α1) > 0 is a universal constant andB1 = Bεα1 (a1). Then deg( vε|vε| , ∂B1)

is well defined. We claim that deg( vε|vε| , ∂B1) �= 0. By contradiction, suppose that

deg( vε|vε| , ∂B1) = 0. We introduce the notation Ẽε(u;B) as follows:

Ẽε(u;B) =

∫
B

ẽε (u)(2.22)

for B a bounded smooth domain in Ω and for u ∈ H1(B; C). Let ṽε(x) = vε(ε
α1 x+a1)

for x ∈ B̃1, where B̃1 is the unit disk in R
2 with its center at the origin. Then

deg( ṽε|ṽε| , ∂B̃1) = 0, and ṽε is a minimizer of Ẽε̃(v; B̃1) for v ∈ H1(B̃1; C) and v = ṽε

on ∂B̃1, where ε̃ = ε1−α1 . Hence, by Theorem 1 of [14],

Ẽε̃(ṽε; B̃1) ≤ M3,(2.23)

where M3 is a positive constant independent of ε. Moreover, by (2.23), we obtain

ṽε → nh weakly in H1(B̃1; C),(2.24)

where nh ∈ H1(B̃1;S1) with zero degree and finite energy.
Now we want to prove that

|∇ṽε(x)| ≤ M4

ε̃
for |x| ≤ ε̃,(2.25)

where M4 is a positive constant independent of ε. From (2.23), we have∫
Bε̃

ẽε̃ (ṽε) ≤ M3,(2.26)
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where Bε̃ is a disk in R
2 with radius ε̃ and center at the origin. Let v̂ε(x) = ṽε(ε̃ x)

for x ∈ B̃1. Then (2.26) implies that∫
B̃1

ẽ1 (v̂ε) ≤ M3.(2.27)

Moreover, v̂ε is a minimizer of Ẽ1(w; B̃1) for w ∈ H1(B̃1; C) and w = v̂ε on ∂B̃1.
Hence, by [13], we obtain

|∇v̂ε(x)| ≤ M4 for x ∈ B̃1,(2.28)

where M4 is a positive constant independent of ε. Thus, by (2.28), we have (2.25).
Since |vε(a1)| ≤ 1

2 ,

|ṽε(0)| ≤ 1

2
.(2.29)

Hence, by (2.25) and (2.29), we have∫
B̃1

1

ε̃2
(1− |ṽε|2)2 ≥ c0,(2.30)

where c0 is a positive constant independent of ε. By (2.24), (2.30), and Fatou’s lemma,
we obtain

lim inf
ε̃→0+

Ẽε̃(ṽε; B̃1) ≥ E(nh) + c0,(2.31)

where E(nh) =
∫
B̃1

1
2 |∇nh|2 and nh is of unit length. On the other hand, since ṽε

is a minimizer of Ẽε̃(v; B̃1) among all v ∈ H1(B̃1; C) and v = ṽε on ∂B̃1, a simple
comparison yields

Ẽε̃(ṽε; B̃1) ≤ Ẽε̃(nh; B̃1) + oε(1)
= E(nh) + oε(1),

(2.32)

as ε→ 0+, where oε(1) is a small quantity which tends to zero as ε→ 0+. Therefore,
by (2.31) and (2.32), we obtain a contradiction and complete the proof of Lemma 2.4.

3. Minimization of (1.11). In this section, we prove the following result.
Theorem 3.1. Assume (ψε, uε) is a minimizer of (1.11) for ψ ∈ H1

η (Ω; C),
u ∈ H1

g (Ω; C), and |ψ| = |u| in Ω. Then there exist an integer 0 ≤ N0 ≤ min(d1, d2),
N0 distinct points a1, . . . , aN0 , d1 − N0 distinct points b1, . . . , bd1−N0

, and d2 − N0

distinct points c1, . . . , cd2−N0 in Ω such that

ψε → Ψa,b weakly in H1
loc(Ω̄\{a1, . . . , aN0

, b1, . . . , bd1−N0
})

and

uε → Ua,c weakly in H1
loc(Ω̄\{a1, . . . , aN0 , c1, . . . , cd2−N0}),

where

Ψa,b(x) =

N0∏
j=1

x− aj
|x− aj |

d1−N0∏
k=1

x− bk
|x− bk| e

i ha,b(x),

Ua,c(x) =

N0∏
j=1

x− aj
|x− aj |

d2−N0∏
k=1

x− ck
|x− ck| e

i ha,c(x),
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and ha,b and ha,c are harmonic functions on Ω such that the value of ha,b and ha,c
on ∂Ω is uniquely determined (mod·2π) by the requirements Ψa,b = η and Ua,c = g
on ∂Ω, respectively. Note that aj’s, bk’s, and cl’s are all distinct. Moreover,

Eε(ψε, uε) = π (d1 + d2) log 1
ε +Wη(a1, . . . , aN0

, b1, . . . , bd1−N0
)

+Wg(a1, . . . , aN0
, c1, . . . , cd2−N0

) + (d1 + d2) γ − 2N0 γ̃ + oε(1),

(3.1)

where Wη and Wg are renormalized energies (cf. [1]), and γ and γ̃ are two universal
constants.

Proof of Theorem 3.1. To study the energy minimization and the dynamics of vor-
tices, we consider the cone C0 ≡ {(s, ψ, u) ∈ R

4,1 : |s| = |ψ| = |u|} in the Minkowski-
space R

4,1. Note that C is identified with R
2. Here R

4,1 � R
5 is endowed with the

Minkowski metric dx2
1 + · · ·+ dx2

4 − ds2 for (s, x) ∈ R
4,1. We shall denote the upper

half cone {(s, x) ∈ C0 : s ≥ 0} by C
+
0 . The metric h on C0 which is induced from the

metric of R
4,1 is Riemannian. In fact, one may view C

+
0 as a graph over R

4. Then h
in the coordinate system x ∈ R

4 can be expressed as

h = hi j(x) dxi ⊗ dxj ,
hi j(x) = δij − 1

2

xi xj
|x|2 for i, j ∈ {1, 2} or {3, 4},

hi j(x) = 0 otherwise.

(3.2)

We introduce the notation ‖∇ (s, ψ, u)‖2 = |∇ψ|2 + |∇u|2− |∇ s|2 and ‖(s, ψ, u)‖2 =
|ψ|2 + |u|2 − |s|2. Then (1.11) is equivalent to∫

Ω

1

2
‖∇ (s, ψ, u)‖2 +

1

4 ε2
(1− s2)2.(3.3)

Let H1
∗ (Ω; C0) be the set of all maps (s, ψ, u) : Ω→ C0 such that

∫
Ω
‖∇ (s, ψ, u)‖2

< ∞ and ψ = η, u = g on ∂Ω, where η, g : ∂Ω → S1 are smooth maps with degrees
d1, d2, respectively. It is then easy to check that (s, ψ, u) ∈ H1

∗ (Ω; C0) if and only if
(s, ψ, u) : Ω → C0, ψ ∈ H1

η (Ω; C), u ∈ H1
g (Ω; C), |s| = |ψ| = |u| in Ω, and

∫
Ω
|∇s|2 +

|∇ψ|2 + |∇u|2 <∞. That is, H1
∗ (Ω; C0) coincides with the usual H1-maps from Ω to

C0 when we view C0 as embedded in R
5. Since the energy functional

∫
Ω
‖∇ (s, ψ, u)‖2

is a lower semicontinuous functional, by the direct method of calculus of variations,
(3.3) has a minimizer over H1

∗ (Ω; C0). Therefore, there is a minimizer (ψε, uε) of
(1.11) such that ψε ∈ H1

η (Ω; C), uε ∈ H1
g (Ω; C), and |ψε| = |uε| in Ω.

Now we want to show the energy estimate (3.1). To describe more precisely our
results, we let Ω be a bounded smooth domain in R

2 and let η : ∂Ω→ S1, g : ∂Ω→ S1

be smooth maps of degrees d1, d2, respectively. Note that d1, d2 are positive integers.
From [1] and [14], it is easy to obtain a pair of maps wε ∈ H1

η (Ω,C) and ŵε ∈ H1
g (Ω,C)

such that |wε| = |ŵε| in Ω and

Eε(wε, ŵε) ≤ π (d1 + d2) log
1

ε
+K,

where K is a positive constant independent of ε. Then we have

Eε(ψε, uε) ≤ Eε(wε, ŵε) ≤ π (d1 + d2) log
1

ε
+K.(3.4)

Hence, by (3.4), Corollary 2.3, and Proposition 2.1, there exist a nonnegative integer
0 ≤ N0 ≤ min(d1, d2), N0 distinct points aj , j = 1, . . . , N0, d1 − N0 distinct points
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bk, k = 1, . . . , d1 − N0, and d2 − N0 distinct points cl, l = 1, . . . , d2 − N0, such that
bk �= cl ∀k, l,

ψε → Ψa,b weakly in H1
loc(Ω̄\{a1, . . . , aN0 , b1, . . . , bd1−N0

}) ,(3.5)

and

uε → Ua,c weakly in H1
loc(Ω̄\{a1, . . . , aN0

, c1, . . . , cd2−N0
}),(3.6)

where Ψa,b and Ua,c are defined by

Ψa,b(x) =

N0∏
j=1

x− aj
|x− aj |

d1−N0∏
k=1

x− bk
|x− bk| e

i ha,b(x)(3.7)

and

Ua,c(x) =

N0∏
j=1

x− aj
|x− aj |

d2−N0∏
k=1

x− ck
|x− ck| e

i ha,c(x).(3.8)

Here ha,b and ha,c are H1-functions on Ω such that the value of ha,b and ha,c on
∂Ω is uniquely determined (mod·2π) by the requirements Ψa,b = η and Ua,c = g on
∂Ω, respectively. Note that aj ’s, bk’s, and cl’s are all distinct. Moreover, ψε has
d1 essential zeros, and uε has d2 essential zeros. By the Euler–Lagrange equation of
(ψε, uε) and the same argument of Proposition 3.3 in [26], we obtain that ha,b and
ha,c are harmonic functions on Ω.

A simple computation shows that

1
2

∫
Ω\[∪N0

j=1
Bρ(aj)∪d1−N0

k=1
Bρ(bk)]

|∇Ψa,b|2(x) dx

= π d1 log
1

ρ
+Wη(a1, . . . , aN0 , b1, . . . , bd1−N0) +O(ρ)

(3.9)

and

1
2

∫
Ω\[∪N0

j=1
Bρ(aj)∪d2−N0

k=1
Bρ(ck)]

|∇Ua,c|2(x) dx

= π d2 log
1

ρ
+Wg(a1, . . . , aN0 , c1, . . . , cd2−N0) +O(ρ) ,

(3.10)

as ρ→ 0+, where Wη andWg are called the renormalized energies associated with the
boundary conditions η and g, respectively (cf. [1]). Hereafter, we set 0 < ε� ρ� 1.

Next we want to give a more precise upper bound of Eε(ψε, uε), where Eε is
defined in (1.11) and (ψε, uε) is the associated minimizer. We will construct a pair of
comparison maps ψεa,b ∈ H1

η (Ω; C), uεa,c ∈ H1
g (Ω; C), and |ψεa,b| = |uεa,c| in Ω such that

Eε(ψ
ε
a,b, u

ε
a,c) = π (d1 + d2) log

1

ε
+Wη(a1, . . . , aN0

, b1, . . . , bd1−N0
)

+ Wg(a1, . . . , aN0 , c1, . . . , cd2−N0) + (d1 + d2) γ

− 2N0 γ̃ +O(ρ) + oε(1),(3.11)

where γ, γ̃ > 0 are universal constants, O(ρ) → 0 as ρ → 0, and oε(1) is a small
quantity which tends to zero as ε→ 0. We may choose ρ sufficiently small such that
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Bρ(aj)’s, Bρ(bk)’s, and Bρ(cl)’s are disjoint disks in R
2. The map ψεa,b can be chosen

so that

ψεa,b(x) =


Ψa,b(x) for |x− aj |, |x− bk|, |x− cl| ≥ ρ ,
ψ0(x− aj) for |x− aj | ≤ ρ/2 ,
v0(x− bk) for |x− bk| ≤ ρ/2 ,
|v0(x− cl)|Ψa,b(x) for |x− cl| ≤ ρ/2 ,
ωa,b(x) elsewhere,

(3.12)

and uεa,c can be chosen by

uεa,c(x) =


Ua,c(x) for |x− aj |, |x− bk|, |x− cl| ≥ ρ ,
u0(x− aj) for |x− aj | ≤ ρ/2 ,
|v0(x− bk)|Ua,c(x) for |x− bk| ≤ ρ/2 ,
v0(x− cl) for |x− cl| ≤ ρ/2 ,
ωa,c(x) elsewhere,

(3.13)

where v0 is the minimizer of
∫
Bρ/2(0)

eε(u) with the boundary condition x
|x| on ∂Bρ/2(0),

ωa,b and ωa,c are the canonical harmonic maps with admissible boundary conditions
(cf. [1]), and (ψ0, u0) is the minimizer of

∫
Bρ/2(0)

eε(ψ, u) for |ψ| = |u| in Bρ/2(0)

and ψ = u = x
|x| on ∂Bρ/2(0). Hereafter, eε(u) ≡ 1

2 |∇u|2 + 1
4 ε2 (1 − |u|2)2 and

eε(ψ, u) ≡ 1
2 (|∇ψ|2 + |∇u|2 − |∇ |ψ||2) + 1

4 ε2 (1− |ψ|2)2. By Lemma IX.1 in [1],∫
Bρ/2(0)

eε(v0) = π log
ρ

2 ε
+ γ + oε(1),(3.14)

where γ is a positive universal constant defined by

γ = lim
t→0+

I(t) + π log t.(3.15)

Here I(t) is defined by

I(ε, R) = min
v∈V

∫
BR(0)

eε(v), and I(t) = I(t, 1) for ε, R, t > 0,(3.16)

where

V =

{
v : v ∈ H1(BR(0)) , v =

x

|x| on ∂BR(0)

}
.

Now we want to prove∫
Bρ/2(0)

eε(ψ0, u0) = 2π log
ρ

2 ε
+ 2(γ − γ̃) + oε(1),(3.17)

where γ and γ̃ are positive universal constants. By the energy comparison, Corol-
lary 2.3, and Proposition 2.1, it is easy to obtain∫

Bρ/2(0)

eε(ψ0, u0) = 2π log
ρ

2 ε
+O(1).(3.18)
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To get the delicate estimate of O(1) in (3.18), we define

J(ε, R) = min
(ψ ,u)∈W

∫
BR(0)

eε(ψ, u) and J(t) = J(t, 1) for ε, R, t > 0 ,(3.19)

where

W =

{
(ψ, u) : ψ , u ∈ H1(BR(0)) , |ψ| = |u| in BR(0) , ψ = u =

x

|x| on ∂BR(0)

}
.

By scaling, it is obvious that

J(ε, R) = J(ε/R) = J(1, R/ε) .(3.20)

As for the proof of Lemma III.1 in [1], we have

J(t1) ≤ J(t2) + 2π log(t2/t1) ∀t1 ≤ t2;(3.21)

i.e., the function J(t) + 2π log t is nondecreasing. Let γ1 = limt→0+ J(t) + 2π log t .
Then it is easy to check that γ1 < 2γ, and we may set γ1 = 2(γ − γ̃), where γ̃ is a
positive universal constant. Here we have used the fact that∫

Bρ/2(0)

eε(ψ0, u0) ≤
∫
Bρ/2(0)

eε(v0, v0)

= 2

∫
Bρ/2(0)

eε(v0)−
∫
Bρ/2(0)

1

2
|∇ |v0||2 +

1

4 ε2
(1− |v0|2)2 dx

= 2π log
ρ

2 ε
+ 2(γ − γ2) + oε(1),

where

γ2 = lim
ε→0

1

2

∫
Bρ/2(0)

1

2
|∇ |v0||2 +

1

4 ε2
(1− |v0|2)2 dx.

By Theorem 11.1 of [20], v0 = fε(r) e
i θ is the radial solution of the Ginzburg–Landau

equation, where fε satisfies an ordinary differential equation. The quantitative prop-
erties of fε can be found in [3], [9], and [10]. Hence γ2 is a universal positive constant,
and we may complete the proof of (3.17).

By (3.12) and (3.13), we have∫
Bρ/2(aj)

eε(ψ
ε
a,b, u

ε
a,c) =

∫
Bρ/2(0)

eε(ψ0, u0),(3.22)

∫
Bρ/2(bk)

eε(ψ
ε
a,b, u

ε
a,c) =

∫
Bρ/2(0)

eε(v0) +

∫
Bρ/2(0)

|v0|2 |∇Ua,c(x+ bk)|2 ,(3.23)

and ∫
Bρ/2(cl)

eε(ψ
ε
a,b, u

ε
a,c) =

∫
Bρ/2(0)

eε(v0) +

∫
Bρ/2(0)

|v0|2 |∇Ψa,b(x+ cl)|2 .(3.24)
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Hence by (3.9), (3.10), (3.14), (3.17), (3.22)–(3.24), and the results of [1], we may
obtain (3.11) and

Eε(ψε, uε) ≤ π (d1 + d2) log
1

ε
+Wη(a1, . . . , aN0

, b1, . . . , bd1−N0
)

+ Wg(a1, . . . , aN0
, c1, . . . , cd2−N0

) + (d1 + d2) γ − 2N0 γ̃ +O(ρ)

+ oε(1).(3.25)

By (3.5), (3.6), (3.9), (3.10), (3.14), (3.17), and Fatou’s lemma, we can derive that

Eε(ψε, uε) ≥ π (d1 + d2) log
1

ε
+Wη(a1, . . . , aN0

, b1, . . . , bd1−N0
)

+ Wg(a1, . . . , aN0 , c1, . . . , cd2−N0) + (d1 + d2) γ − 2N0 γ̃ +O(ρ)

+ oε(1).(3.26)

Therefore, by (3.25), (3.26), and suitable choice of ρ, we obtain (3.1), and we complete
the proof of Theorem 3.1.

Remark 3.1. From (3.1), N0, ak’s, bj ’s, and cl’s are determined by the minimiza-
tion of

Wη(a1, . . . , aN0
, b1, . . . , bd1−N0

)+Wg(a1, . . . , aN0
, c1, . . . , cd2−N0

)+(d1+d2) γ−2N0 γ̃

for N0 ≥ 0, and a1, . . . , aN0
, b1, . . . , bd1−N0

, c1, . . . , cd2−N0
are distinct points in Ω.

Hence they may depend on η, g, and Ω. Now we divide our discussion of N0 into two
cases as follows.

Case (a). Suppose η = g and d1 = d2. Then it is obvious that N0 = d1 = d2 and
(a1, . . . , aN0) is the global minimal point of Wη.

Case (b). Suppose η is quite different from g. Then N0 may become zero. We may
give an example for the case that N0 = 0 < min{d1, d2}. Assume d1 = d2 = 1 and Ω
is a smooth dumbbell-shaped domain defined by Ω = B1((−ξ, 0)) ∪ B1((ξ, 0)) ∪Dr0 ,
where ξ ≥ 3 is a constant, Dr0 ⊂ [−ξ + 1

2 , ξ + 1
2 ]× [−r0, r0] is the neck region joining

B1((−ξ, 0)) and B1((ξ, 0)), and r0 is a positive constant. Let

g(x) =

{
ei arg(x−(−ξ,0)) for x ∈ ∂B1((−ξ, 0))\∂Dr0 ,
ei g̃(x) for x ∈ ∂[B1((ξ, 0)) ∪Dr0 ]\∂B1((−ξ, 0)) ,

and

η(x) =

{
ei arg(x−(ξ,0)) for x ∈ ∂B1((ξ, 0))\∂Dr0 ,
ei η̃(x) for x ∈ ∂[B1((−ξ, 0)) ∪Dr0 ]\∂B1((ξ, 0)) ,

where both g̃ and η̃ are smooth and monotone functions such that deg(g, ∂Ω) =
deg(η, ∂Ω) = 1, respectively. From the definition of the renormalized energy (see [1]),
it is easy to check that, as 0 < r0 � 1,

Wg(a) +Wη(b)� min
c∈Ω

Wg(c) +Wη(c),

for a is close to (−ξ, 0) and b is close to (ξ, 0). Hence N0 must be zero.
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4. Vortex dynamics in p-wave superconductivity. In this section, we con-
sider the dynamics of vortices in the gradient flow of (1.11). There are basically two
methods for deriving these dynamical laws. The first one that applies to our prob-
lem is somewhat restrictive in the range of parameters for regularization, though it is
less restrictive on the initial data. This first method was used by the first author in
the heat flow of Ginzburg–Landau vortices (see Lecture 3 in [14] and the references
therein). The second method was used by Colliander–Jerrard [4] and by Lin and Xin
[18] in the study of dynamics of Ginzburg–Landau–Schrödinger vortices; see also [16].
We shall first sketch a proof of Theorem 4.1 by using the first method and then give
a more detailed proof by using the second method.

The gradient flow of (1.11) is given by

 ∂t w = − grad Ẽε(w), w(x, t) = (s, ψ, u)(x, t) ∈ C
+
0 for x ∈ Ω, t > 0 ,

s = 1 , ψ = η , u = g for x ∈ ∂Ω , t > 0 ,
s = |ψ0| , ψ = ψ0 , u = u0 for x ∈ Ω , t = 0 ,

(4.1)

where Ẽε(w) ≡ ∫
Ω

1
2‖∇w‖2 + 1

4 ε2 (1 − s2)2. Note that Ẽε is equivalent to (1.11) for

w is a C
+
0 -valued map. Hereafter, ψ0 and u0 are smooth maps from Ω to C, ψ0 has

d1 essential zeros (degree ±1 vortices) in Ω, and u0 has d2 essential zeros (degree ±1
vortices) in Ω such that |ψ0| = |u0| in Ω, and

Eε(ψ0, u0) ≤ π (d1 + d2) log
1

ε
+ χ1,

∫
Ω

|∇|u0||2 dx ≤ χ1,(4.2)

where χ1 is a positive constant independent of ε. It is not obvious that (4.1) has
a unique weak solution. The main difficulties are that the target manifold C

+
0 may

have positive intrinsic curvature somewhere and the metric h on C
+
0 is singular at the

vertex (0, 0). To overcome this, we approximate C
+
0 by a family of smooth graphs

{Cδ} over R
4 in R

4,1. Due to the smoothness of Cδ, we obtain the regular solution
of the gradient flow (4.1) on the target manifold Cδ. Such a regular solution can be
regarded as an approximated solution of the gradient flow (4.1) on the target manifold
C

+
0 . Hereafter, Cδ is one of the sheets of s2 = |ψ|2 + 1

2 δ
2 = |u|2 + 1

2 δ
2 which lies in

{s > 0}, where δ > 0 is a small parameter. The induced metric on Cδ in R
4,1 is given

by

hδ = diag (h1
δ , h

2
δ),

h1
δ =

(
1− 1

2

r2

r2 + δ2

)
dr2 + r2 dθ21,

h2
δ =

(
1− 1

2

r2

r2 + δ2

)
dr2 + r2 dθ22,

(4.3)

where (r, θ1) is the polar coordinate of ψ ∈ R
2 and (r, θ2) is the polar coordinate of

u ∈ R
2.

In our first approach, we shall set δ = ε and use Cε to approximate C0. Then
we consider the gradient flow (4.1) on the target manifold Cε as the approximated
gradient flow given by

 ∂t w = − grad Ẽε(w), w(x, t) = (s, ψ, u)(x, t) ∈ Cε for x ∈ Ω, t > 0,
s = 1 + 1

2ε
2, ψ = η , u = g forx ∈ ∂Ω, t > 0,

s = s0, ψ = ψ0, u = u0 for x ∈ Ω, t = 0,

(4.4)
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where s0 = (|ψ0|2 + 1
2ε

2)
1
2 . Note that (s0, ψ0, u0)(x) ∈ Cε for x ∈ Ω. To study the

dynamics of vortices in (4.4), we may rescale the time variable by λε = log(1/ε). Then
(4.4) becomes

 λ−1
ε ∂t w = − grad Ẽε(w), w(x, t) = (s, ψ, u)(x, t) ∈ Cε for x ∈ Ω, t > 0,
s = 1 + 1

2ε
2 , ψ = η , u = g for x ∈ ∂Ω , t > 0,

s = s0 , ψ = ψ0 , u = u0 for x ∈ Ω , t = 0.

(4.5)

From [5], (4.5) has a regular solution wε with ‖∇wε(·, t)‖L∞ ≤ C/ε for almost all
t > 0, where C is a positive constant.

By (4.5), it is easy to check that

d

d t
Ẽε(wε) = −

(
log

1

ε

)−1 ∫
Ω

‖∂t wε‖2 dx(4.6)

for t > 0, where ‖ · ‖ is the norm of R
4,1 defined in section 3. Then by (4.2), (4.6),

and |ψ0| = |u0| in Ω, we have

Ẽε(wε)(t) ≤ Ẽε(s0, ψ0, u0) ≤ π (d1 + d2) log
1

ε
+ 2χ1(4.7)

for t > 0. Hence we have

Eε(ψε, uε)(t) ≤ (d1 + d2) log
1

ε
+ 3χ1(4.8)

for t > 0. Note that we have used the fact that

‖∇wε‖2 ≥ ‖∇ (|uε|, ψε, uε)‖2 , 1

ε2
(1− s2ε)2 ≥

1

ε2
(1− |uε|2)2 − 1,(4.9)

where wε = (sε, ψε, uε), |ψε| = |uε|, and sε = (|uε|2 + 1
2ε

2)
1
2 . Thus, by (4.8) and

Corollary 2.3,

Eε(ψε)(t) ≤ π d1 log
1

ε
+O(1) , Eε(uε)(t) ≤ π d2 log

1

ε
+O(1)(4.10)

for t > 0, where O(1) is a bounded quantity depending only on χ1. Therefore, by
Proposition 2.1 and arguments in Lecture 3 of [14], there exist an integer N0, 0 ≤
N0 ≤ min(d1, d2), N0 distinct points aj(t), j = 1, . . . , N0, d1 − N0 distinct points
bk(t), k = 1, . . . , d1 −N0, and d2 −N0 distinct points cl(t), l = 1, . . . , d2 −N0, such
that, for a subsequence of ε → 0, the essential zeros of ψε tend to aj ’s and bk’s; the
essential zeros of uε tend to aj ’s and cl’s. Moreover, for this subsequence of ε → 0,
one has

ψε(·, t)→ Ψa,b(·, t) weakly in H1
loc(Ω̄\{a1, . . . , aN0 , b1, . . . , bd1−N0}),

uε(·, t)→ Ua,c(·, t) weakly in H1
loc(Ω̄\{a1, . . . , aN0

, c1, . . . , cd2−N0
})(4.11)

for 0 ≤ t ≤ T , where T > 0 is chosen so that all aj ’s, bk’s, and cl’s stay inside Ω and
for 0 ≤ t ≤ T , no collision occurs on aj ’s, bk’s, and cl’s. Here

Ψa,b(x, t) ≡
N0∏
j=1

x− aj(t)
|x− aj(t)|

d1−N0∏
k=1

x− bk(t)
|x− bk(t)| e

i ha,b(x,t)
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and

Ua,c(x, t) ≡
N0∏
j=1

x− aj(t)
|x− aj(t)|

d2−N0∏
l=1

x− cl(t)
|x− cl(t)| e

i ha,c(x,t),

where ha,b and ha,c are H1-functions with bounded H1-norms independent of ε and
t.

We remark that the existence of a subsequence of ε→ 0 so that (4.11) is valid for
all 0 ≤ t ≤ T (not just for one t that will be an easy consequence of Proposition 2.1)
is probably the key point in this step. It follows in a manner identical to that in
Lecture 3 of [14]. Note, however, that N0 may depend on t in this stage. Indeed, we
let µε be a Radon measure defined by

µε(t) =

(
log

1

ε

)−1 [
1

2
‖∇wε‖2 +

1

4 ε2
(1− s2ε)2

]
dx.(4.12)

For φ ∈ C1
0 (R2), we obtain

d

d t

∫
Ω

φ2(x)µε(t) = −
(

log
1

ε

)−2 ∫
Ω

φ2 ‖∂twε‖2 −
(

log
1

ε

)−1 ∫
Ω

2φ∇φ∇wε · ∂twε

≤
∫

Ω

φ2 · µε(t) +

(
log

1

ε

)−1

C(φ)

∫
Ω

‖∂twε‖2

≤ C(φ) [‖µε(0)‖+K ′ε(t)],

(4.13)

where C(φ) is a positive constant depending on the C1-norm of φ,

Kε(t) =

(
log

1

ε

)−1 ∫ t

0

∫
Ω

‖∂twε‖2,

and ‖µε(0)‖ denotes the total measures of µε(0). Here we have used (4.5), (4.6),
and integration by parts. Hence by Lecture 3 of [14] or the argument of [15] (Proof
of Theorem 2.1(iii)), we may obtain such a subsequence so that (4.11) is valid and
aj(t)’s, bk(t)’s, and cl(t)’s are continuous in t.

For the dynamics of vortices, we have the equations of aj ’s, bk’s, and cl’s as
follows.

Theorem 4.1. Assume aj’s, bk’s, and cl’s are as above. Then they satisfy a
system of ordinary differential equations given by


−2 ȧj = ∇aj Wη(a1, . . . , aN0 , b1, . . . , bd1−N0) +∇aj Wg(a1, . . . , aN0 , c1, . . . , cd2−N0),

−ḃk = ∇bk Wη(a1, . . . , aN0
, b1, . . . , bd1−N0

),
−ċl = ∇cl Wg(a1, . . . , aN0

, c1, . . . , cd2−N0
)

(4.14)

for j = 1, . . . , N0, k = 1, . . . , d1 −N0, and l = 1, . . . , d2 −N0, where Wη and Wg are
the renormalized energies (cf. [1]). Here ∇aj ,∇bk , and ∇cl are to take the gradient
only on aj , bk, and cl, respectively.

Hereafter, we regard N0 as a fixed constant with respect to time t, 0 ≤ t ≤ T .
Actually, such an assumption is reasonable. For instance, suppose the energy of the
initial data (s0, ψ0, u0) satisfies that Ẽε(s0, ψ0, u0) is equal to the right side of (3.1).
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Since the energy is dissipative with time t, then it is impossible to decrease N0 as
time t increases. Moreover, we may claim that N0 may not increase with time t,
generically. From (4.14) and the standard theorem of ordinary differential equations,
the map from

Γ(0) ≡ (a1(0), . . . , aN0
(0), b1(0), . . . , bd1−N0

(0), c1(0), . . . , cd2−N0
(0)) ∈ R

2(d1+d2)

to

Γ(t) ≡ (a1(t), . . . , aN0(t), b1(t), . . . , bd1−N0(t), c1(t), . . . , cd2−N0
(t)) ∈ R

2(d1+d2)

is a diffeomorphism for t > 0. Hence the collision manifold Λj,k(t) ≡ {Γ(0) : bj(t) =
ck(t)} has codimension two for t > 0. Thus ∪j,k,t>0 Λj,k(t) has measure zero in
R

2(d1+d2). Therefore, the trajectories of bj ’s and ck’s may not come together, and N0

may not increase with time t, generically.
Proof of Theorem 4.1 (sketch).
By (4.2), (4.6), (4.9), and Theorem 3.1, we have(

log
1

ε

)−1 ∫ T

0

∫
Ω

‖∂twε‖2 = −
∫ T

0

d

d t
Ẽε(wε) dt

= Ẽε(s0, ψ0, u0)− Ẽε(wε)
≤ C(η, g, χ1,Ω).

(4.15)

Since aj ’s, bk’s, and cl’s are distinct, we may choose a small constant δ∗ > 0 such
that BR(aj)’s, BR(bk)’s, and BR(cl)’s are disjoint for R ∈ [δ∗/2, δ∗]. We multiply
(4.5) by ∇wε and then integrate on BR(β), where β is one of aj ’s, bk’s, and cl’s.
Using integration by parts, we have

−1

log 1
ε

∫
BR(β)

〈∂twε ,∇wε〉

=
1

4 ε2

∫
∂BR(β)

(1− s2ε)2 ν +
1

2

∫
∂BR(β)

‖∇wε‖2 ν −
∫
∂BR(β)

〈
∂wε
∂ν

,∇wε
〉
,

(4.16)

where 〈·, ·〉 is the standard inner product in the hyperbolic space R
4,1. On the other

hand, we calculate with eε ≡ 1
2 ‖∇wε‖2 + 1

4 ε2 (1− s2ε)2 that

1

log 1
ε

d

d t

∫
BR(β)

x · eε(wε) dx

= − 1

(log 1
ε )

2

∫
BR(β)

x ‖∂twε‖2 dx− 1

log 1
ε

∫
BR(β)

〈∂twε ,∇wε〉 dx

+
1

log 1
ε

∫
∂BR(β)

x

〈
∂wε
∂ν

, ∂twε

〉
.

(4.17)

For (4.16) and (4.17), we may consider the isometric embedding from Cε to R
k, where

k is a positive integer, and we transform (4.5) into a standard nonlinear parabolic
system. Then using such a nonlinear parabolic system and integration by parts, we
may obtain (4.16) and (4.17), respectively.

In order to derive dynamical equations for vortices from (4.17), we have to es-
tablish the strong convergence in H1 of maps away from vortices. For the strong
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convergence theorems in section 5 of [15], it is crucial to get Pohozaev’s identity for
the steady state equation of (4.5) given by

− grad Ẽε(w) = 0 for x ∈ Ω ,(4.18)

with boundary conditions s = 1 + 1
2ε

2, ψ = η, u = g on ∂Ω. By the isometric embed-
ding from Cε into R

k, where k is a positive integer, we may transform (4.18) into a
semilinear elliptic system. Hence it is easy to obtain the associated Pohozaev identity
given by ∫

Br(0)

1

4 ε2
(1− s2ε)2 +

r

2

∫
∂Br(0)

����∂wε∂ν
����2

=
r

4 ε2

∫
∂Br(0)

(1− s2ε)2 +
r

2

∫
∂Br(0)

����∂wε∂τ
����2

(4.19)

for 0 < r < 1, where ∂
∂ν and ∂

∂τ denote normal and tangential gradients, respectively.
Hence by the same argument of Lemma 5.4 in [15], we may have the associated strong
convergence theorems for (4.5). Therefore, by (4.15)–(4.17) and the associated strong
convergence theorems for (4.5), we follow the argument of Theorem 2.1(iii) in [15],
and we may complete the proof of Theorem 4.1.

Next we shall give an alternate approach to the vortex dynamics. We set δ = δ(ε)
such that 0 < δ � ε � 1, and we use Cδ to approximate C0. This is more accurate
than using Cε to approximate C0. Then we consider the gradient flow (4.1) on the
target manifold Cδ as the approximated gradient flow given by

 ∂t w = − grad Ẽε(w), w(x, t) = (s, ψ, u)(x, t) ∈ Cδ for x ∈ Ω, t > 0 ,
s = 1 + 1

2δ
2 , ψ = η , u = g for x ∈ ∂Ω , t > 0 ,

s = s0 , ψ = ψ0 , u = u0 for x ∈ Ω , t = 0 ,

(4.20)

where s0 = (|ψ0|2 + 1
2δ

2)
1
2 . Hereafter, ψ0 and u0 are smooth maps from Ω to C, ψ0

has d1 essential zeros (vortices) at a0j ’s and b0k’s in Ω, and u0 has d2 essential zeros

(vortices) at a0j ’s and c0l ’s in Ω for j = 1, . . . , N0, k = 1, . . . , d1−N0, l = 1, . . . , d2−N0,
such that |ψ0| = |u0| in Ω, and

Ẽε(s0, ψ0, u0) = π (d1 + d2) log
1

ε
+Wη(a

0
1, . . . , a

0
N0
, b01, . . . , b

0
d1−N0

)(4.21)

+Wg(a
0
1, . . . , a

0
N0
, c01, . . . , c

0
d2−N0

) + (d1 + d2) γ − 2N0 γ̃ + oε(1),

where γ and γ̃ are two universal constants defined in Theorem 3.1. Note that
(s0, ψ0, u0)(x) ∈ Cδ for x ∈ Ω. To study the dynamics of vortices in (4.20), we
may rescale the time variable by λε = log(1/ε). Then (4.20) becomes

 λ−1
ε ∂t w = − grad Ẽε(w), w(x, t) = (s, ψ, u)(x, t) ∈ Cδ for x ∈ Ω, t > 0 ,
s = 1 + 1

2δ
2 , ψ = η , u = g for x ∈ ∂Ω , t > 0 ,

s = s0 , ψ = ψ0 , u = u0 for x ∈ Ω , t = 0 .

(4.22)

From [5], (4.22) has a regular solution wε,δ satisfying

‖∇wε,δ(·, t)‖L∞ ≤ C/δ.(4.23)
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Since 0 < δ = δ(ε)� ε� 1, the inequality (4.23) cannot ensure ‖∇wε(·, t)‖L∞ ≤ C/ε
for all t > 0, where C is a positive constant. Hereafter, we denote wε,δ as wε for
notation convenience. Hence the strong convergence theorem may not be true for
(4.22), and we cannot follow the argument of Theorem 4.1 to derive the dynamics of
vortices. To overcome such a difficulty, we may follow the idea of energy concentration
(cf. [15] and [16]) and obtain (4.24). Then we use the energy comparison and the
Gronwall inequality (cf. [16, pp. 746–754]) to prove Theorem 4.2. Such an idea can
also be found in [4] and [18].

Theorem 4.2. Suppose the initial condition (s0, ψ0, u0) satisfies (4.21) and
(s0, ψ0, u0)(x) ∈ Cδ for x ∈ Ω. Moreover, a0j ’s and b0k’s are distinct essential ze-

ros of ψ0, and a0j ’s and c0l ’s are distinct essential zeros of u0, respectively. Let
wε = (sε, ψε, uε) be the solution of (4.22). Then (4.11) holds for ψε and uε, and
(4.14) is also valid.

The target manifold of Theorem 4.1 is Cε, and the target manifold of Theorem 4.2
is Cδ , 0 < δ � ε . This is the main difference between Theorems 4.1 and 4.2. Moreover,
the target manifold Cδ of Theorem 4.2 is closer to C0 than the target manifold Cε

of Theorem 4.1. However, the dynamics of vortices in Theorem 4.1 is same as the
dynamics of vortices in Theorem 4.2. Thus it is reasonable to say that (4.14) is the
motion equation of vortices in the gradient flow (4.1) on the target manifold C0.

Proof of Theorem 4.2. As for the proof of Theorem 4.1, we may obtain (4.11)
for the solution wε of (4.22). In addition, ψε(·, t) has distinct essential zeros near
aj(t)’s and bk(t)’s, and uε(·, t) has distinct essential zeros near aj(t)’s and cl(t)’s for
j = 1, . . . , N0 , k = 1, . . . , d1 − N0 , l = 1, . . . , d2 − N0. Furthermore, (4.15)–(4.17)
also hold for the solution wε of (4.22). We want to derive the system of ordinary
differential equations for aj(t)’s, bk(t)’s, and cl(t)’s. For notation convenience, we set

Ha = (a1, . . . , aN0 , b1, . . . , bd1−N0
, c1, . . . , cd2−N0

) ,

W (Ha) = Wη(a1, . . . , aN0 , b1, . . . , bd1−N0
) +Wg(a1, . . . , aN0 , c1, . . . , cd2−N0

).

Let a(t) be any one component of Ha(t). For any t0 ≥ 0, we let R > 0 be a suitable
constant so that, for t close to t0, a(t) ∈ BR/2(a(t0)) by the continuity of a(t) in t.
From [15] and [16], we have∫

BR(a(t0))

1

log 1
ε

x · eε(wε) dx→ ξ(a) a(t) as ε = εn → 0+ ,(4.24)

where

ξ(a) =

{
2 if a ∈ {a1, . . . , aN0} ,
1 if a ∈ {b1, . . . , bd1−N0

, c1, . . . , cd2−N0
} .

As for [16, pp. 747], we may use a family of approximation of the identity to
convolute both sides of (4.17). Then, by (4.11), (4.15), (4.16), and (4.24), ȧ(t) is
bounded in t. Moreover, by (2.28) of [16], we may obtain

ξ(a)2 |ȧ(t)|2 =

∣∣∣∣∣ 1

π log 1
ε

∫
BR(a(t0))

〈∂twε ,∇wε〉
∣∣∣∣∣
2

+ oε(1)

≤ 1

π log 1
ε

∫
BR(a(t0))

‖∂t wε‖2 + oε(1) .(4.25)
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Hence, by (4.15) and (4.25), we have

∫ T

0

N0∑
j=1

2|ȧj |2 +

d1−N0∑
k=1

|ḃk|2 +

d2−N0∑
l=1

|ċl|2 ≤
(

log
1

ε

)−1 ∫ T

0

∫
Ω

‖∂twε‖2 + oε(1)

= Ẽε(s0, ψ0, u0)− Ẽε(wε)(T )

(4.26)

for T > 0 . By (4.11) and [15, pp. 427–437], we may obtain

Ẽε(wε)(T ) = π (d1 + d2) log
1

ε
+W (Ha(T )) + (d1 + d2) γ − 2N0 γ̃ + ρ(T )(4.27)

for T > 0, where ρ(T ) comes from the weak convergence in H1 of wε(·, T ). Note that
ρ(T ) = 0 if wε(·, T ) has strong convergence. By (4.21), we have

Ẽε(wε)(0) = π (d1 + d2) log
1

ε
+W (Ha(0)) + (d1 + d2) γ − 2N0 γ̃ + oε(1) .(4.28)

Hereafter, Ha(0) = (a01, . . . , a
0
N0
, b01, . . . , b

0
d1−N0

, c01, . . . , c
0
d2−N0

) . Thus by (4.26)–(4.28),
we obtain

ρ(T ) ≤W (Ha(0))−W (Ha(T ))−
∫ T

0

N0∑
j=1

2|ȧj |2 +

d1−N0∑
k=1

|ḃk|2 +

d2−N0∑
l=1

|ċl|2 .(4.29)

Since we do not know the strong convergence theorem for wε, the argument of
Theorem 2.1(iii) in [15] can only ensure Ha(t) satisfying

M0
d

d t
Ha(t) = −∇W (Ha(t)) + ζ(t) ,(4.30)

where ζ is from the defect measure of weak convergence and M0 = diag (M i
0|i =

1, . . . , d1 + d2) is a diagonal matrix such that M i
0 = 2 if i = 1, . . . , N0 and M i

0 = 1
otherwise. By a simple energy comparison (cf. [16]), it is easy to check that

|ζ(T )| ≤ C ρ(T ) for T > 0 ,(4.31)

where C is a positive constant independent of ε and T . Now we want to claim ζ ≡ 0
and (4.14) is valid. Let Hb(t) be the solution of

M0
d

d t
Hb(t) = −∇W (Hb(t)) ,(4.32)

with initial data Hb(0) = Ha(0) . Then it is obvious that

W (Ha(0)) = W (Hb(T )) +

∫ T

0

d

d t
Hb(t) ·

(
M0

d

d t
Hb(t)

)
dt .(4.33)

Hence, by (4.29) and (4.33), we have

ρ(T ) ≤ C0 |Ha(T )−Hb(T )|+ C1

∫ T

0

∣∣∣∣ dd t (Ha−Hb)
∣∣∣∣ (t) dt(4.34)
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for T > 0 . Hereafter we set Cj ’s as positive constants independent of ε and T . From
(4.30) and (4.32), ∣∣∣∣ dd t (Ha−Hb)

∣∣∣∣ (T ) ≤ C2|Ha−Hb|(T ) + |ζ(T )| .(4.35)

Thus, by (4.31), (4.34), and (4.35), we obtain∣∣∣∣ dd t (Ha−Hb)
∣∣∣∣ (T ) ≤ C3|Ha−Hb|(T ) + C4

∫ T

0

∣∣∣∣ dd t (Ha−Hb)
∣∣∣∣ (t) dt(4.36)

for T > 0 . Therefore, by the Gronwall’s inequality, we obtain Ha ≡ Hb; i.e., ζ ≡ 0, and
we complete the proof of Theorem 4.2.

Final remark. For the approximated gradient flow with the Neumann boundary
condition, we may consider

 ∂t w = − grad Ẽε(w), w(x, t) = (s, ψ, u)(x, t) ∈ Cδ for x ∈ Ω, t > 0,
∂
∂ ν (s, ψ, u)(x, t) = 0 for x ∈ ∂Ω , t > 0,
s = s0 , ψ = ψ0 , u = u0 for x ∈ Ω , t = 0,

(4.37)

where s0 = (|ψ0|2+ 1
2δ

2)
1
2 and ∂

∂ ν is the normal derivative on ∂Ω. Here (s0, ψ0, u0)(x) ∈
Cδ for x ∈ Ω and

Ẽε(s0, ψ0, u0) = π (d1 + d2) log
1

ε
+W1(a01, . . . , a

0
N0
, b01, . . . , b

0
d1−N0

)(4.38)

+W2(a01, . . . , a
0
N0
, c01, . . . , c

0
d2−N0

) + (d1 + d2) γ − 2N0 γ̃ + oε(1),

where a0j ’s and b0k’s are distinct essential zeros of ψ0, and a0j ’s and c0l ’s are distinct
essential zeros of u0, respectively. Hereafter, Wi’s are defined by

W1(a1, . . . , aN0
, b1, . . . , bd1−N0

)

= lim
r→0+

{
1

2

∫
Ω\[∪N0

j=1Br(aj) ∪d1−N0

k=1 Br(bk)]
|∇Ψa,b|2 dx− π d1 log

1

r

}
,

W2(a1, . . . , aN0 , c1, . . . , cd2−N0
)

= lim
r→0+

{
1

2

∫
Ω\[∪N0

j=1Br(aj) ∪d2−N0

k=1 Br(cl)]
|∇Ua,c|2 dx− π d2 log

1

r

}
,

where

Ψa,b(x) =

N0∏
j=1

x− aj
|x− aj |

d1−N0∏
k=1

x− bk
|x− bk| e

i ha,b(x) ,

Ua,c(x) =

N0∏
j=1

x− aj
|x− aj |

d2−N0∏
k=1

x− ck
|x− ck| e

i ha,c(x) ,

and ha,b and ha,c are harmonic functions on Ω such that the value of ha,b and ha,c
on ∂Ω is determined by the requirement ∂

∂ ν Ψa,b = ∂
∂ ν Ua,c = 0 on ∂Ω. Then, by the
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argument of Theorem 2.1 in [15] and the proof of Theorem 4.2, we may derive the
dynamics of vortices as follows:
−2 ȧj = ∇aj W1(a1, . . . , aN0

, b1, . . . , bd1−N0
) +∇aj W2(a1, . . . , aN0

, c1, . . . , cd2−N0
),

−ḃk = ∇bk W1(a1, . . . , aN0
, b1, . . . , bd1−N0

),
−ċl = ∇cl W2(a1, . . . , aN0 , c1, . . . , cd2−N0).

for j = 1, . . . , N0, k = 1, . . . , d1 −N0, and l = 1, . . . , d2 −N0.

Acknowledgment. The second author wishes to express his sincere thanks to
B. Rosenstein for helpful discussions.
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STUDY OF THE BUCKLING OF A TAPERED ROD
WITH THE GENUS OF A SET∗

GRÉGORY VUILLAUME†

SIAM J. MATH. ANAL. c© 2003 Society for Industrial and Applied Mathematics
Vol. 34, No. 5, pp. 1128–1151

Abstract. This paper, which can be considered a continuation of the papers [C. A. Stuart, J.
Math. Pures Appl., 80 (2001), pp. 281–337] and [C. A. Stuart, Proc. Roy. Soc. Edinburgh Sect. A,
132 (2002), pp. 729–764], is concerned with the study of the buckling of a tapered rod. This physical
phenomenon leads to the nonlinear eigenvalue problem

{A(s)u′(s)}′ + µ sinu(s) = 0 for all s ∈ (0, 1),
u(1) = lim

s→0
A(s)u′(s) = 0,∫ 1

0
A(s)u′(s)2ds <∞,

where A(s) ∈ C([0, 1]) is such that A(s) > 0 for all s > 0 and lims→0 A(s)/sp = L for some constants
p ≥ 0 and L ∈ (0,∞). We study the set of all solutions of the problem and, in particular, find the
points µ ∈ R+ such that bifurcation occurs at (µ, 0).

As was shown by Stuart in [J. Math. Pures Appl., 80 (2001), pp. 281–337], there is a number
Λ(A) ≥ 0 such that, for µ ≤ Λ(A), u ≡ 0 is the only solution of the problem, and it minimizes
the energy in the space of all admissible configurations. For µ > Λ(A), the energy is minimized
by a nontrivial solution. For 0 ≤ p < 2, bifurcation occurs at a discrete set of eigenvalues µi,
i ∈ N∗ = {1, 2, . . . }, which satisfy µ1 = Λ(A), µi < µi+1 for all i ∈ N∗ and limi→∞ µi = ∞. At
p = 2, changes occur. For 0 ≤ p ≤ 2, Λ(A) > 0, whereas Λ(A) = 0 for p > 2. For p = 2, there is
a number Λe(A) ∈ [Λ(A),∞) such that bifurcation occurs at every value µ ∈ [Λe(A),∞). In this
paper, we show the following points:

• For p = 2, if Λ(A) < Λe(A), bifurcation from the solution u ≡ 0 also occurs at a finite or
countable set of eigenvalues µi ∈ I ⊂ N∗, where µ1 = Λ(A) and µi < Λe(A) for all i ∈ I.

• For 2 < p < 3, bifurcation occurs at every value µ ≥ 0.

Key words. nonlinear eigenvalue problem, bifurcation, genus of a set

AMS subject classification. 47J10

PII. S0036141002404322

1. Introduction. We begin by recalling the definition of the problem we con-
sider in this paper. For this, the following definition is crucial.

Definition 1.1. A profile for a column with tapering of order p ≥ 0 is a function
A ∈ C([0, 1]) such that A(s) > 0 for 0 < s ≤ 1, and there exists L ∈ (0,∞) such that

lims→0
A(s)
sp = L.

For such a profile there exist constants K1 ≥ K2 > 0 such that

K2s
p ≤ A(s) ≤ K1s

p for all s ∈ [0, 1].(1)

We now give the formal statement of the mathematical problem to be considered.
We recall that this problem represents one of the simplest models for the planar
buckling of a tapered column. For more details, see [8]. Consider a profile A with
tapering of order p ≥ 0 and a constant µ ≥ 0.

∗Received by the editors March 22, 2002; accepted for publication (in revised form) November 9,
2002; published electronically April 15, 2003.
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Switzerland (gregory.vuillaume@epfl.ch).

1128



BUCKLING OF A ROD 1129

Definition 1.2. A solution of problem P is a function u ∈ C1((0, 1]) such that
Au′ ∈ C1((0, 1]),

{A(s)u′(s)}′ + µ sinu(s) = 0 for all s ∈ (0, 1],(2)

u(1) = lim
s→0

A(s)u′(s) = 0,(3)

∫ 1

0

A(s)u′(s)2ds <∞.(4)

In fact, for a given profile, we would like to find the parameters µ where bifurcation
from the trivial solution u ≡ 0 occurs. Clearly problem P is a nonlinear eigenvalue
problem of Sturm–Liouville type, but it becomes increasingly singular at s = 0 as the
order of tapering p gets bigger. For the cases p ≥ 2, which we deal with here, the
singularity is so severe that the problem cannot be treated by standard tools from
bifurcation theory such as the Crandall–Rabinowitz theorem. Indeed, for p > 2, the
problem does not have a rigorous linearization about the trivial solution u ≡ 0.

Stuart (see [8], [9]) showed that in several respects (the shape of the buckled
configurations, the nature of the bifurcation diagrams) tapering of order 2 plays a
critical role, in the sense that the situation when p < 2 is very different from what
happens when p ≥ 2. He proved that there is a number Λ(A) ≥ 0 such that, for
µ ≤ Λ(A), u ≡ 0 is the only solution of the problem, and it minimizes the energy in
the space of all admissible configurations that will be denoted by HA. For µ > Λ(A),
the energy is minimized by a nontrivial solution. For 0 ≤ p < 2, bifurcation occurs at a
discrete set of eigenvalues µi, i ∈ N

∗ = {1, 2, . . . }, which satisfy µ1 = Λ(A), µi < µi+1

for all i ∈ N
∗, and limi→∞ µi =∞. At p = 2, changes occur. For 0 ≤ p ≤ 2, Λ(A) > 0,

whereas Λ(A) = 0 for p > 2. For p = 2, there is a number Λe(A) ∈ [Λ(A),∞) such
that bifurcation occurs at every value µ ∈ [Λe(A),∞). In this paper, we show the
following points:

• For p = 2, if Λ(A) < Λe(A), bifurcation from the solution u ≡ 0 occurs also
at a finite or countable set of eigenvalues µi ∈ I ⊂ N

∗, where µ1 = Λ(A) and
µi < Λe(A) for all i ∈ I.

• For 2 < p < 3, bifurcation occurs at every value µ ≥ 0.
Now we introduce the Hilbert space of all admissible configurations.

1.1. The energy space HA. Consider p ∈ [0,∞). If an element u ∈ L1
loc((0, 1])

admits a generalized derivative u′ on (0, 1) such that
∫ 1

0
spu′(s)2ds < ∞, it follows

that u ∈ W 1,1((ε, 1)) for all ε ∈ (0, 1) and hence, from Theorem VIII.2 of [1], that
(after a modification on a set of measure zero) u ∈ C((0, 1]). For p ≥ 0, let

Hp =

{
u ∈ L1

loc((0, 1]) :

∫ 1

0

spu′(s)2ds <∞ and u(1) = 0

}
.

The next proposition recalls some important properties concerning the space Hp

(for the proof; see [8]).
Proposition 1.3.
1. For p ∈ [0,∞), Hp with the scalar product

〈u, v〉p =

∫ 1

0

spu′(s)v′(s)ds

is a Hilbert space.
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2. For any bounded sequence {un} in Hp there exist a function u ∈ C((0, 1]) and
a subsequence {unk

} such that unk
→ u uniformly on [ε, 1] for every ε ∈ (0, 1).

3. Hp ∩ L∞(0, 1) is dense in Hp.
4. If u ∈ Hp, then so does |u|, and |u|′(s)2 = u′(s)2 almost everywhere (a.e.) on

(0, 1).
Remark. If A is a profile for a column with tapering of order p, then

〈u, v〉A =

∫ 1

0

A(s)u′(s)v′(s)ds

is a scalar product on HA = Hp whose norm is equivalent to ‖.‖p. Indeed, we have√
K2‖u‖p ≤ ‖u‖A ≤

√
K1‖u‖p for all u ∈ HA,(5)

with the constants given in (1). The Hilbert space (HA, 〈., .〉A) will be referred to as
the energy space for the profile A. If the sequence {un} converges weakly to u in HA,
then un → u uniformly on [ε, 1] for every ε ∈ (0, 1).

Now we are able to state our first main result.
Theorem 1.4. Let A be a profile with tapering of order 2 < p < 3 and consider

µ > 0. For this value of µ, there are infinitely many solutions {uk} of problem P with
the property that |uk(s)| < π for all s ∈ (0, 1]. Furthermore, ‖uk‖A → 0 as k → 0 and
the number of zeros of uk tends to infinity as k →∞.

A proof of this result is given in section 4, after we give some preliminaries in the
rest of this section and in sections 2 and 3.

1.2. The linearized problem. To understand our next main results, we need
to introduce the “linearization” of problem P.

Definition 1.5. A solution of problem PL is a function u ∈ C1((0, 1]) such that
Au′ ∈ C1((0, 1]),

{A(s)u′(s)}′ + µu(s) = 0 for all s ∈ (0, 1],(6)

and (3) and (4) are satisfied. If u �= 0, it is called an eigenfunction associated with
the eigenvalue µ.

Now we consider profiles with tapering of order p ∈ [0, 2] and summarize the
results obtained by Stuart in [9] concerning problem PL. We first introduce a bounded
linear operator T : HA → HA associated with this problem. All proofs of these results
can be found in [9].

Proposition 1.6. Let A be a profile with tapering of order p ∈ [0, 2]. There is a
unique bounded linear operator T : HA → HA such that

〈Tu, v〉A =

∫ 1

0

u(s)v(s)ds for all u, v ∈ HA.(7)

Furthermore T is a positive self-adjoint operator in HA and 0 is not an eigenvalue
of T . For p < 2, T : HA → HA is also compact.

The spectrum of T , the discrete spectrum of T , and the essential spectrum of T
are the sets defined, respectively, by

σ(T ) =
{
λ ∈ R : T − λI : HA → HA is not an isomorphism

}
,

σd(T ) =
{
λ ∈ σ(T ) : T − λI : HA → HA is a Fredholm operator

}
,

σe(T ) = σ(T ) \ σd(T ).
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Note that σd(T ) is formed by the isolated eigenvalues of T which have finite
multiplicity (see Theorem 1.6 in Chapter IX of [3]). Since T is positive and self-
adjoint, we know that σ(T ) ⊂ [0,∞) and

‖T‖ = maxσ(T ) = sup
{
〈Tu, u〉A : u ∈ HA with ‖u‖A = 1

}
= sup

{ 〈Tu, u〉A
〈u, u〉A : u ∈ HA \ {0}

}
.

We can express this by defining the Rayleigh quotient,

QA(u) =

∫ 1

0
A(s)u′(s)2ds∫ 1

0
u(s)2ds

(8)

(we set QA(u) = 0 if
∫ 1

0
u(s)2ds =∞) and its infimum

Λ(A) = inf
{
QA(u) : u ∈ HA \ {0}

}
.(9)

For p > 2, using the functions uα defined below in (16) with (1−p)/2 < α < −1/2,
we have that

0 <

∫ 1

0

A(s)u′α(s)
2ds <∞ and

∫ 1

0

uα(s)
2ds =∞.

This implies that

Λ(A) = 0 if p > 2.(10)

Now if p ∈ [0, 2], it follows from Lemma 2.1 and (5) that

Λ(A) ≥ K2

4
> 0.(11)

In this case, we have

‖T‖ = maxσ(T ) = 1/Λ(A),(12)

and Λ(A) is the infimum of the spectrum of problem PL since the eigenfunctions of
problem PL are precisely the eigenfunctions of the operator T , as is shown by the
next proposition.

Proposition 1.7. Let A be a profile with tapering of order p ∈ [0, 2]. Then
u is an eigenfunction of problem PL if and only if u ∈ HA \ {0} and u = µTu.
Furthermore, all eigenvalues of T are simple.

Theorem 1.8. Let A be a profile with tapering of order 0 ≤ p < 2. Then

σd(T ) =
{
λi : i ∈ N

∗} and σe(T ) = {0},
where λi+1 < λi, λ1 = Λ(A)−1, limi→∞ λi = 0, and each λi is a simple eigenvalue of
T .

The preceding theorem shows that in the case 0 ≤ p < 2 problem PL behaves
like a regular Sturm–Liouville problem, in particular σe(T ) = {0}. For p = 2, the
situation changes. We always have maxσe(T ) > 0, and we may have σd(T ) = ∅. That
is what proves the following results.
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Theorem 1.9. Let A be a profile with tapering of order p = 2. Then maxσe(T ) =
4/L, where L = lims→0A(s)/s2 and T : HA → HA is not compact.

Note that σ(A) =
{
µ = 1/λ : λ ∈ σ(T ) \ {0}}, so Λ(A) = inf σ(A) is the infimum

of the spectrum of problem PL. We introduce the following notation for the infimum
of the essential spectrum of problem PL:

Λe(A) = inf σe(A),

where σe(A) =
{
µ = 1/λ : λ ∈ σe(T ) \ {0}}.

Theorem 1.10. Let A be a profile with tapering of order p = 2. Then

0 <
K2

4
≤ Λ(A) ≤ L

4
= Λe(A),

where L = lims→0A(s)/s2 and K2 = inf0<s≤1A(s)/s2.
In particular, Λ(A) = Λe(A) = L/4, provided that

A(s) ≥ Ls2 for all s ∈ (0, 1].

Remark 1.1. To show that Λ(A) < Λe(A) it is sufficient to find one function
u ∈ H2 such that QA(u) < L/4. As is shown in [9], this can be done, provided that

π2 maxs∈I A(s)

|I|{2δ + |I|} < L

for some interval I = [δ, γ] ⊂ (0, 1].
Remark 1.2. In some cases, there may be no eigenfunctions at all. For example, if

A(s) = Ls2 for all s ∈ [0, 1], then T has no eigenvalues and u ≡ 0 is the only solution
of problem PL.

Remark 1.3. We have been able to prove that for each N ∈ N
∗, there exists a

profile A(s) with tapering of order 2 such that T : HA → HA has at least N simple
characteristic values λ1 = Λ(A) < λ2 < · · · < λN < Λe(A).

We now are able to express our next main results. We make the following as-
sumption: 

A(s) is a profile with tapering of order 2 such that

Λ(A) < Λe(A).
(H)

Notation. Under the assumption (H), the operator T : HA → HA defined by
(7) has at least one simple eigenvalue Λ(A)−1. In fact, T has a finite or countable
number of simple eigenvalues {µ−1

i : i ∈ I ⊂ N
∗} such that µ−1

i > µ−1
i+1 > maxσe(T )

for all i ∈ I and σd(T )∩ (Λe(A)−1,Λ(A)−1] = {µ−1
i : i ∈ I}. We have µ1 = Λ(A) and

µi < Λe(A) for each i ∈ I. For i ∈ I, we note ϕi ∈ HA, the eigenvector associated to
µi such that ‖ϕi‖A = 1. We then have ϕi = µiTϕi for all i ∈ I.

For each i ∈ I, we note µ+
i for min{µ ∈ σ(A) : µ > µi}. In our context, we have

that µ+
i = µi+1 if T has at least (i+1) eigenvalues above maxσe(T ) and µ+

i = Λe(A)
if T has exactly i eigenvalues above maxσe(T ).

Theorem 1.11. Under assumption (H), and with the corresponding notation,
choose i ∈ I. Consider µ > µi. For this value µ, problem P has at least i nontrivial
solutions {uk}, k = 1, . . . , i, with the property that |uk(s)| < π and u′k(1) < 0 for all
s ∈ (0, 1] and for all k = 1, . . . , i.
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Remark. In fact, in the context of Theorem 1.11, we could show that problem P
admits at least 2i solutions, since if u is a solution, then −u is another solution.

Moreover, we have the following bifurcation result.
Theorem 1.12. Under assumption (H), and with the corresponding notation,

choose i ∈ I. Then bifurcation from the trivial solution u ≡ 0 occurs at (µi, 0) ∈
R × HA in the sense that there exists a sequence {(µn, un)}n≥1 ∈ R × HA \ {0}
such that (µn, un) is a solution of problem P for all n ≥ 1, limn→∞ µn = µi, and
limn→∞ ‖un‖A = 0.

To have a better comprehension of the way we prove these results, we now give
some explanations of the tools used by Stuart to prove his results in [8]. After that,
we will explain the main differences between this work and that of Stuart.

For a profile with tapering of any order p ≥ 0 and a constant µ > 0, Stuart
defined in [8] the following energy functional:

Jµ(u) =
1

2
‖u‖2A − µ

∫ 1

0

{1− cosu(s)}ds.(13)

For p > 2, Jµ may not be Fréchet differentiable. However, for all p ≥ 0 and
u ∈ HA, we have that

d

dt
Jµ(u+ tv)|t=0 =

∫ 1

0

A(s)u′(s)v′(s)ds− µ
∫ 1

0

v(s) sinu(s)ds

for all v ∈ HA∩L1(0, 1). We recall from Proposition 1.3 that HA∩L∞(0, 1) is dense in
HA. Thus Jµ has directional derivatives at u for all directions in a dense subspace of
HA. The solutions of problem P are related to stationary points of Jµ in the following
way (a proof of all these facts can be found in [8]).

Theorem 1.13. Let A be a profile with tapering of order p ≥ 0.
(i) A function u is a solution of problem P if and only if u ∈ HA and∫ 1

0

A(s)u′(s)v′(s)ds = µ

∫ 1

0

v(s) sinu(s)ds

for all v ∈ HA ∩ L1(0, 1).
(ii) For p ∈ [0, 2], Jµ ∈ C1(HA) and a function u is a solution of problem P

if and only if u ∈ HA and J ′µ(u) = 0. Moreover, there exists a completely
continuous function GA : HA → HA such that

J ′µ(u)v = 〈u− µGA(u), v〉A for all u, v ∈ HA.

If A is a profile with tapering of order p ∈ [0, 2] and if F : R × HA → HA is
defined by

F (µ, u) = u− µGA(u),

we have by Theorem 1.13 that (µ, u) is a solution of problem P if and only if u ∈ HA

and F (µ, u) = 0.
In the case 0 ≤ p < 2, F is continuously Fréchet differentiable with DF (µ, 0) =

I−µT , where I denotes the identity mapping in HA and T is the positive self-adjoint
and compact operator on HA defined by (7). In this case, Theorem 1.8 tells us
that σ(T ) = σd(T ) ∪ σe(T ), where σe(T ) = {0} and σd(T ) = {µ−1

i : i ∈ N
∗} with

µ−1
i+1 < µ−1

i , µ−1
1 = Λ(A)−1, limi→∞ µ−1

i = 0 and each µ−1
i is a simple eigenvalue of
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T . Using standard results like the theorem of Crandall and Rabinowitz concerning
bifurcation from simple eigenvalues or the theorem of Rabinowitz concerning global
bifurcation (it is possible to use these results since F is Fréchet differentiable), it is
proved in [8] that global bifurcation from the trivial solution u ≡ 0 occurs at the
discrete set of characteristic values {µi : i ∈ N

∗} of T .
For p = 2, the situation is different. The function F is not Fréchet differentiable

at (µ, 0) anymore, but only Gâteaux differentiable, and the Gâteaux derivative of F at
(µ, 0) is still of the form I−µT , but now T is self-adjoint and not compact. Moreover,
maxσe(T ) = Λe(A)−1 > 0 (see Theorems 1.9 and 1.10). In this case, the results in
[8] show that bifurcation occurs at µ = Λ(A) and also at every µ ∈ [Λe(A),∞). For
p = 2, the operator T may or may not have eigenvalues depending on the form of the
profile A (see Remarks 1.1, 1.2, 1.3 following Theorem 1.10).

Remark. To see that F is not Fréchet differentiable at (µ, 0) for p = 2, we only
have to show that GA is not Fréchet differentiable at u = 0. To see this, suppose
that GA is Fréchet differentiable at u = 0. Since T is the Gâteaux derivative of GA

at 0, we have that G′A(0) = T . But then T would be compact by Lemma 4.1 of [5,
p. 135] and part (ii) of Theorem 1.13, which implies that GA is compact. But this is
a contradiction of Theorem 1.9.

In the present work, we suppose that A is a profile with tapering of order 2 ≤ p <
3. Since F is not Fréchet differentiable for p = 2 and is not even defined for 2 < p < 3,
we cannot use standard results like the ones mentioned above for the case 0 ≤ p < 2.
However, for a profile A with tapering of order p = 2, introducing a modified version
of the energy functional Jµ : HA → R, denoted by jµ : HA → R, Stuart was able to
show the following points (see [8] for the proofs):

(1) jµ ∈ C1(HA) for all µ > 0.
(2) If ∇jµ(u) = 0 for some µ > 0 and u ∈ HA, then u is a solution of problem P

and |u(s)| < π for all s ∈ (0, 1].
(3) jµ satisfies the hypotheses of Theorem 2.5.
Then, applying Theorem 2.5 to the functional jµ with µ > Λe(A), he obtained,

for this value of µ, that there are infinitely many solutions {uk} of problem P and
that ‖uk‖A → ∞ as k → ∞. Then every µ ∈ [Λe(A),∞) is a bifurcation point (see
Theorem 5.8 of [8]).

We first consider profiles with tapering of order 2 < p < 3. For such a profile,
the functional jµ can also be defined, and we are able to show that jµ satisfies the
hypotheses of Theorem 2.5 for all µ > 0 (recall that in this case we have Λ(A) = 0).
This is done in section 3, after some preliminaries are given in section 2. Section 4 is
devoted to proving Theorem 1.4. Section 4 begins with the crucial Lemma 4.1 that
will allow us to estimate the quantities bk(jµ) given in Theorem 2.5. For p = 2, Stuart
obtained such estimates by using properties of the operator T . In our case, T is not
defined and the main idea to prove Lemma 4.1 is to transform our profile A with
tapering of order 2 < p < 3 to a profile Aδ with tapering of order 2. Then, using
Lemma 4.1, Theorem 1.4 can be proved in a similar way to Theorem 5.8 of [8].

In section 5, the approach is similar (that is, we apply Theorem 2.5 to the func-
tional jµ), but the situation and the conclusion are rather different. Here we consider
a profile with tapering of order 2 satisfying assumption (H) with the corresponding
notation. Stuart proved that for every µ > Λe(A), there are infinitely many solutions
of problem P. Now, if we suppose that µ ∈ (Λ(A),Λe(A)) and that µi < µ, then jµ
has at least i critical points, for in this case we are not able to prove that bk(jµ) < 0
for infinitely many k, as it was the case for µ > Λe(A), or for µ > 0 in the case of a



BUCKLING OF A ROD 1135

profile A with tapering of order 2 < p < 3. In this case, we are able to prove only that
bk(jµ) < 0 for k = 1, . . . , i (see the proof of Theorem 1.11). To prove that bifurcation
occurs at µi (that is, to prove Theorem 1.12), we need the important Proposition 5.7,
which states that limµ→µi bi(jµ) = 0. See section 5.

After proving these results, a natural question arises. In the case of a profile
with tapering of order 2 satisfying assumption (H), we have by Theorem 1.12 that
bifurcation from the trivial solution occurs at each (µ, 0) ∈ R × HA, where µ is
any characteristic value of T such that µ ∈ (Λ(A),Λe(A)). Moreover, we know by
Theorem 5.8 of [8] that bifurcation occurs at each µ ∈ [Λe(A),∞). The question is,
Do we have all bifurcation points, or is it possible that bifurcation occurs at a point
µ ∈ (Λ(A),Λe(A)) such that µ−1 does not belong to σ(T ) (recall that for µ < Λ(A),
there is no nontrivial solution)? In fact, this is not a standard result because our
problem, which can be written under the form u = µGA(u), is such that GA is not
Fréchet differentiable in 0. So we cannot conclude that every bifurcation value belongs
to the spectrum of T−1 using standard results.

At first sight, this conclusion seems rather routine for a nonlinear eigenvalue like
problem P. But we point out that we have an example of the following situation. H
is a real Hilbert space and G : H → H is a Lipschitz continuous function such that
G(0) = 0. Furthermore, G is Gâteaux differentiable at zero and G′(0) : H → H is a
bounded self-adjoint operator. Nonetheless, the equation u = µG(u) has bifurcation
points (µ, 0) such that µ−1 /∈ σ(G′(0)). Of course G is not Fréchet differentiable at 0
since it is well known that µ−1 ∈ σ(G′(0)) for all bifurcation points (µ, 0) in that case.
Nevertheless, in our case, despite the lack of Fréchet differentiability, and making an
additional assumption on the profile A, we have been able to prove that bifurcation
cannot occur at a point µ ∈ (Λ(A),Λe(A)) that is not a characteristic value of T .
This is the subject of a forthcoming paper.

2. Preliminaries. In this part, we introduce the tools that we will need to prove
our main results.

2.1. Some properties on HA. We begin by recalling some properties of the
Hilbert space HA obtained by Stuart [8]. By Proposition 1.3, we have that

‖u‖p =

{∫ 1

0

spu′(s)2ds

}1/2

is a norm on the linear space Hp and we have the following estimation: For u ∈ Hp

and s ∈ (0, 1],

|u(s)| ≤ ‖u‖p
{

1− s1−p
1− p

}1/2

if p �= 1,(14)

whereas

|u(s)| ≤ ‖u‖p
{

ln
1

s

}1/2

if p = 1.(15)

Remark. Setting

uα(s) = sα(1− s) for 0 < s ≤ 1,(16)
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we see that uα ∈ Hp ⇔ α > (1− p)/2. The following result shows that Hp ⊂ L2(0, 1)
for 0 ≤ p ≤ 2. For p > 2 and α ∈ ((1 − p)/2,−1/2], the function uα defined by (16)
belongs to Hp but not to L2(0, 1).

Notation. In this work, the norm on Lp(0, 1) for 1 ≤ p ≤ ∞ will be denoted by
‖.‖Lp and the usual scalar product on L2(0, 1) will be denoted by 〈., .〉L2 .

Lemma 2.1. Let 0 ≤ p ≤ 2. Then Hp ⊂ L2(0, 1) and{∫ 1

0

u(s)2ds

}1/2

≤ 2‖u‖p for all u ∈ Hp.(17)

Now, in particular, consider a profile A with tapering of order 2 < p < 3. We
recall that Λ(A) = 0. Using estimate (14) and inequality (5), we have that∫ 1

0

|u(s)|ds ≤ ‖u‖p
∫ 1

0

{
s1−p − 1

p− 1

}1/2

ds

≤ ‖u‖A√
K2(p− 1)

∫ 1

0

s(1−p)/2ds <∞ for all u ∈ HA,

since s(1−p)/2 is integrable on (0, 1). Thus there exists a constant C1 > 0 such that

‖u‖L1 ≤ C1‖u‖A for all u ∈ HA.(18)

This implies that HA ⊂ L1(0, 1). In fact, we have a little bit more. That is what
the next lemma shows.

Lemma 2.2. Let A be a profile with tapering of order 2 < p < 3. Then there exist
a number α(p) ∈ (1, 2) and a constant C > 0 such that

‖u‖Lα(p) ≤ C‖u‖A for all u ∈ HA.

In particular, HA ⊂ Lα(p)(0, 1).
Recall that in the case of profiles with tapering of order p ≤ 2, we have that

HA ⊂ L2(0, 1).
Proof. For 2 < p < 3, we use estimates (14) and (5). For all u ∈ Hp and for all

s ∈ (0, 1], we have

|u(s)| ≤ ‖u‖p
{

1− s1−p
1− p

}1/2

≤ 1√
K2

‖u‖A
{
s1−p

p− 1

}1/2

.

For all u ∈ HA, for all α > 1, and if (1− p)α2 > −1, we have∫ 1

0

|u(s)|αds ≤ ‖u‖αA
(K2(p− 1))α/2

∫ 1

0

s(1−p)α/2ds

=
‖u‖αA

(K2(p− 1))α/2
· s1+(1−p)α

2

1 + (1− p)α2

∣∣∣∣∣
1

0

= C̃‖u‖αA <∞.
Now 1 + (1 − p)α2 > 0 ⇐⇒ α < 2

p−1 . But since p < 3, 2
p−1 > 1 and there exists

α(p) ∈ (1, 2
p−1 ). With this α(p) we have

‖u‖Lα(p) =

{∫ 1

0

|u(s)|α(p)ds

}1/α(p)

≤ C̃1/α(p)‖u‖A = C‖u‖A.
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Note that p > 2 implies that α(p) < 2
p−1 < 2.

Later on, we will need the following lemma, which is not difficult to check.
Lemma 2.3. For all θ ∈ R and for all α ∈ [1, 2], we have

|1− cos θ| ≤ 2|θ|α,
|θ − sin θ| ≤ 2|θ|α.

2.2. Genus of a set. In this part, we recall a result due to Clark [2] concerning
the existence of a finite or infinite number of critical points of a C1-functional on a
real Hilbert space (H, 〈., .〉). (See also [4] and [7].) It is based on the notion of the
genus of a set. Let M > 0 and let

Σ =
{
Ω ⊂ H : Ω is closed and Ω = −Ω

}
,

ΣM =
{
Ω ∈ Σ : ‖u‖ ≤M for all u ∈ Ω

}
,

and define the genus g : Σ→ N ∪ {0,∞} as follows:
• g(∅) = 0,
• g(Ω) = k if there is an odd mapping h ∈ C(Ω,Rk \ {0}) and k is the smallest

integer with this property, and
• g(Ω) =∞ if there is no integer k with the above property.

Set

Gk =
{
Ω ∈ Σ : g(Ω) ≥ k

}
.

We recall that if there is an odd homeomorphism from Ω onto the unit sphere on
R
k, we have g(Ω) = k. Then we have that Gk �= ∅ for all k ∈ N when dim H = ∞.

We will need the following result.
Lemma 2.4. Let (H, 〈., .〉) be a real Hilbert space and let Ω ∈ Gi+1 for some

i ∈ N
∗. If P : H → H1 is a continuous linear projection onto an i-dimensional

subspace H1 of H, then Ω ∩ (I − P )(H) �= ∅.
Proof. See Corollary 44.12 of [10].
Now we recall the definition of the condition of Palais and Smale (PS). A func-

tional f ∈ C1(H,R) is said to satisfy the condition (PS) on H provided that every
sequence {wn} ⊂ H which has the properties

(i) {f(wn)} is a bounded sequence,
(ii) ‖∇f(wn)‖ → 0

has a convergent subsequence in H.
We now define the following quantities. For k ≤ dim H and for f ∈ C1(H,R), let

bk(f) = inf
Ω∈Gk

sup
x∈Ω

f(x).(19)

Clearly −∞ ≤ b1(f) ≤ b2(f) ≤ · · · ≤ bk(f) ≤ · · · .
The result of Clark is then the following.
Theorem 2.5. Let f ∈ C1(H,R) be an even functional with f(0) = 0, which is

bounded below and satisfies the condition (PS). Suppose that dim H = ∞ and that
−∞ < bk(f) < 0 for some k ∈ N

∗. Setting Kb = {w ∈ H : f(w) = b and ∇f(w) = 0},
we have that Kbk(f) is nonempty and compact. Moreover, if −∞ < bk(f) = bk+1(f) =
· · · = bk+j−1(f) < 0, then g(Kbk(f)) ≥ j.

In particular, if −∞ < bk(f) < 0 for all k ∈ N
∗, we have that Kbk(f) �= ∅

for all k ∈ N
∗ and that f has an infinite number of critical points. Furthermore,

limk→∞ bk(f) = 0.
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This theorem is due to Clark [2], except for the conclusion that bk(f) → 0 if
k →∞, which is due to Heinz [4].

As was done by Stuart in [8], we are going to introduce a functional jµ : HA → R.
This functional will satisfy the hypotheses of Theorem 2.5. Applying this theorem to
this functional, we obtain critical points which are solutions of problem P and satisfy
the additional condition that |u(s)| < π for all s ∈ (0, 1]. Stuart introduced this
functional in the case of a profile with tapering of order p = 2, but it is possible to
extend this to the case 2 < p < 3. We do that in the next part.

3. A useful functional. In this part, we introduce a functional in order to
apply Theorem 2.5, as was done by Stuart [8] to show that bifurcation from the
solution u ≡ 0 occurs at every µ ≥ Λe(A) in the case of profiles with tapering of order
p = 2. Our goal is to extend this result to the case of profiles with tapering of order
2 < p < 3 by showing that every µ ≥ 0 is a bifurcation value (recall that we are
in the case Λ(A) = 0; see (10)). All the results of this part, which we prove in the
case of profiles with tapering of order 2 < p < 3, are also true in the case of order
p = 2. For this order, the reader can find the proofs in [8, Lemmas 5.4 and 5.6 and
Corollary 5.5], so we omit them in this case.

Let A be a profile with tapering of order 2 ≤ p < 3. Set

h(θ) =

{
sin θ for θ ∈ [−π, π],
0 for θ /∈ [−π, π]

and let

H(θ) =

∫ θ

0

h(σ)dσ for all θ ∈ R.

Clearly h is Lipschitz continuous on R with Lipschitz constant 1, and H(θ) =
1 − cos θ for θ ∈ [−π, π] and H(θ) = 2 for θ /∈ [−π, π], implying that H ∈ C1(R) is
even. We define the functionals ϕ and jµ(u) : HA → R by

ϕ(u) =

∫ 1

0

H(u(s))ds and jµ(u) =
1

2
‖u‖2A − µϕ(u).

For u, v ∈ HA, ∣∣∣∣ ∫ 1

0

v(s)h(u(s))ds

∣∣∣∣ ≤ ∫ 1

0

|v(s)|ds ≤ C1‖v‖A,

where C1 is the constant defined in (18), and so, by the Riesz representation theorem,
there is a unique element DA(u) ∈ HA such that

〈DA(u), v〉A =

∫ 1

0

v(s)h(u(s))ds

for all v ∈ HA.
Lemma 3.1. Let A be a profile with tapering of order 2 ≤ p < 3. The functional

ϕ : HA → R has the following properties:
(i) 0 ≤ ϕ(u) = ϕ(−u) ≤ 2 for all u ∈ HA.
(ii) ϕ ∈ C1(HA) and ∇ϕ = DA.
(iii) ϕ : HA → R is weakly sequentially continuous and DA : HA → HA is com-

pletely continuous.
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Proof. (i) The proof of (i) is clear.
(ii) For all θ, η ∈ R, we have

H(θ + η)−H(θ)− h(θ)η =

∫ 1

0

d

dt
H(θ + tη)dt− h(θ)η

=

∫ 1

0

{h(θ + tη)− h(θ)}ηdt.

On one hand, since h is Lipschitz continuous with constant 1, we have

|h(θ + tη)− h(θ)| ≤ |θ + tη − θ| ≤ t|η|,

which implies

|H(θ + η)−H(θ)− h(θ)η| ≤
∫ 1

0

tη2dt =
η2

2
for all θ, η ∈ R.

On the other hand, we have

|h(θ + tη)− h(θ)| ≤ 2,

which implies

|H(θ + η)−H(θ)− h(θ)η| ≤ 2

∫ 1

0

|η|dt = 2|η| for all θ, η ∈ R.

Combining these two inequalities, we have, for all α ∈ [1, 2],

|H(θ + η)−H(θ)− h(θ)η| ≤ 2|η|α for all θ, η ∈ R.

Now for all u, v ∈ HA, and using α(p) given by Lemma 2.2, we have

|ϕ(u+ v)− ϕ(u)− 〈DA(u), v〉A|

=

∣∣∣∣ ∫ 1

0

H(u(s) + v(s))−H(u(s))− h(u(s))v(s)ds
∣∣∣∣

≤
∫ 1

0

|H(u(s) + v(s))−H(u(s))− h(u(s))v(s)|ds

≤ 2

∫ 1

0

|v(s)|α(p)ds

≤ 2Cα(p)‖v‖α(p)
A ,

where C is the constant given by Lemma 2.2 and then

lim
‖v‖A→0

|ϕ(u+ v)− ϕ(u)− 〈DA(u), v〉A|
‖v‖A ≤ lim

‖v‖A→0
2Cα(p)‖v‖α(p)−1

A = 0,

showing that ϕ is Fréchet differentiable at u and ϕ′(u)v = 〈DA(u), v〉A for all u, v ∈
HA.

Now we shall show that DA : HA → HA is completely continuous, which implies
that ϕ′ is continuous. Consider a sequence {un} such that un converges weakly to
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u in HA. We must show that {DA(un)} converges strongly to DA(u) in HA. For
v ∈ HA and for ε ∈ (0, 1), we have

|〈DA(un)−DA(u), v〉A| =
∣∣∣∣ ∫ 1

0

v(s){h(un(s))− h(u(s))}ds
∣∣∣∣

≤ 2

∫ ε

0

|v(s)|ds+

∫ 1

ε

|v(s)| · |un(s)− u(s)|ds

≤ 2‖v‖p
∫ ε

0

{
s1−p − 1

p− 1

}1/2

ds+

∫ 1

ε

|v(s)| · |un(s)− u(s)|ds

≤ 2
‖v‖A√
K2

S(ε) +

∫ 1

ε

|v(s)| · |un(s)− u(s)|ds,

where we used estimates (14) and (5) and we set

S(ε) =

∫ ε

0

{
s1−p − 1

p− 1

}1/2

ds.

Now since un → u uniformly on [ε, 1], for η > 0, there exists N(η) ∈ N such that
n ≥ N(η) implies |un(s) − u(s)| < η for all s ∈ [ε, 1]. Thus, for n ≥ N(η), |un − u|
belongs to Lβ(0, 1) for every β ≥ 1. Choose β such that 1/β + 1/α(p) = 1, where
α(p) is given by Lemma 2.2. We then have, for n ≥ N(η),∫ 1

ε

|v(s)| · |un(s)− u(s)|ds

≤
{∫ 1

ε

|v(s)|α(p)ds

}1/α(p){∫ 1

ε

|un(s)− u(s)|βds
}1/β

≤ C‖v‖A · η,
where we have used the constant C given by Lemma 2.2. Thus we have

lim sup
n→∞

‖DA(un)−DA(u)‖A ≤ 2√
K2

S(ε) for all ε ∈ (0, 1).

Furthermore, we have

0 ≤ lim
ε→0

S(ε) ≤ 1√
p− 1

lim
ε→0

∫ ε

0

s
1−p
2 ds = 0

since we are in the case 2 < p < 3. Then limε→0 S(ε) = 0 and DA is completely
continuous.

(iii) We only have to prove that ϕ is weakly sequentially continuous. Consider a
sequence {un} which is weakly convergent to u ∈ HA. For any ε ∈ (0, 1), we have

|ϕ(un)− ϕ(u)| =
∣∣∣∣ ∫ 1

0

H(un(s))−H(u(s))ds

∣∣∣∣
≤ 4ε+

∫ 1

ε

|H(un(s))−H(u(s))|ds.

Since un converges uniformly to u on [ε, 1], it follows that

lim sup
n→∞

|ϕ(un)− ϕ(u)| ≤ 4ε for all ε ∈ (0, 1).
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Then ϕ(un) converges to ϕ(u) and ϕ is weakly sequentially continuous.
Corollary 3.2. Let A be a profile with tapering of order 2 ≤ p < 3. For all

µ > 0, the functional jµ : HA → R has the following properties:
(i) jµ ∈ C1(HA) and ∇jµ = I − µDA.
(ii) jµ is bounded below and satisfies the condition (PS).
Proof. By Lemma 3.1, jµ ∈ C1(HA) and ∇jµ(u) = I − µDA. Moreover, jµ(u) ≥

−2µ for all u ∈ HA. Consider a sequence {wn} ⊂ HA such that
(i) {jµ(wn)} is bounded,
(ii) ‖∇jµ(wn)‖A → 0 as n→∞.
Since jµ(u) = 1

2‖u‖A − µϕ(u) and 0 ≤ ϕ(u) ≤ 2 for all u ∈ HA, it follows imme-
diately from (i) that {wn} is a bounded sequence in HA. Passing to a subsequence
we can suppose that wn ⇀ w weakly in HA, and hence ‖DA(wn)−DA(w)‖A → 0 by
Lemma 3.1(iii). But then

wn = ∇jµ(wn) + µDA(wn)→ µDA(w),

proving that the condition (PS) is satisfied.
Lemma 3.3. Let A be a profile with tapering of order 2 ≤ p < 3, and suppose

that ∇jµ(u) = 0 for some µ > 0 and u ∈ HA. Then u is a solution of problem P and
|u(s)| < π for all s ∈ (0, 1].

Proof. Suppose that u ∈ HA and ∇jµ(u) = 0. Thus we have u = µDA(u), and
then 〈u, v〉A = µ〈DA(u), v〉A for all v ∈ HA. Then∫ 1

0

A(s)u′(s)v′(s)ds = µ

∫ 1

0

v(s)h(u(s))ds for all v ∈ HA.

It follows that A(s)u′(s) admits a generalized derivative on (0, 1) and that

{A(s)u′(s)}′ = −µh(u(s)) a.e. on (0, 1).

However, since u ∈ HA, we know that u ∈ C((0, 1]) and hence Au′ ∈ C1((0, 1]).
From the properties of A, this implies that u ∈ C1((0, 1]). Moreover, u ∈ HA implies
u(1) = 0. Let v ∈ C1([0, 1]) be such that v(1) = 0 and v(s) = 1 for all s ≤ 1/2.
Clearly v ∈ HA ∩ L1(0, 1) and, for any ε ∈ (0, 1/2),

A(ε)u′(ε) = −
∫ 1

ε

A(s)u′(s)v′(s)ds−
∫ 1

ε

{A(s)u′(s)}′v(s)ds

= −
∫ 1

0

A(s)u′(s)v′(s)ds+ µ

∫ 1

ε

v(s)h(u(s))ds

= −µ
∫ ε

0

h(u(s))ds

since v′ ≡ 0 on (0, 1/2) and {A(s)u′(s)}′ = −µh(u(s)) on (0, 1). Then

|A(ε)u′(ε)| ≤ µε for ε ∈ (0, 1/2)

and, in particular,

lim
s→0

A(s)u′(s) = 0.

We have shown that u ∈ C1((0, 1]), Au′ ∈ C1((0, 1]), and

{A(s)u′(s)}′ + µh(u(s)) = 0 for all s ∈ (0, 1](20)

with lims→0A(s)u′(s) = 0 and u(1) = 0.
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Let us now show that |u(s)| < π for all s ∈ (0, 1]. Then we will have that
h(u(s)) = sinu(s) for all s ∈ (0, 1] and u will be a solution of problem P.

Suppose that there is a point s0 ∈ (0, 1) such that u(s0) > π and let (a, b) be a
maximal interval on which u > π. Then h(u(s)) = 0 on (a, b) and so there is a constant
c such that A(s)u′(s) = c on (a, b). Since u(1) = 0 we must have c < 0. Indeed, if
c ≥ 0 and since A(s) ≥ 0 for all s ∈ [0, 1], we would have that u is increasing on (a, b).
We would then have b = 1 and u(1) ≥ π, which is in contradiction to u(1) = 0. But
c < 0 implies that u is strictly decreasing on (a, b) and hence that a = 0.

But then lims→0A(s)u′(s) = c �= 0, which contradicts an earlier assertion. Hence
u ≤ π on (0, 1]. Now if there is a point s ∈ (0, 1) such that u(s) = π, u′(s) = 0 and,
consequently, u ≡ π on (0, 1] by the uniqueness of the Cauchy problem for (20). This
is in contradiction to u(1) = 0, so we can conclude u(s) < π on (0, 1]. Replacing u by
−u, we see that |u(s)| < π for all s ∈ (0, 1]. This concludes the proof.

4. Bifurcation for profiles A with tapering of order 2 < p < 3. In this
section we consider profiles A with tapering of order 2 < p < 3. We want to prove
Theorem 1.4. To do that we use arguments similar to those used by Stuart [8] to
show that for a profile with tapering of order p = 2, every µ ≥ Λe(A) is a bifurcation
value.

In order to apply Theorem 2.5 to our problem we still need to estimate quantities
bk(jµ) for the functional jµ introduced in section 3, and for this the following result
is crucial.

Lemma 4.1. Let A be a profile with tapering of order 2 < p < 3. Given any
k ∈ N

∗ and any ε > 0, there is a subspace E of HA ∩ L∞(0, 1) such that dim E = k
and ∫ 1

0

A(s)u′(s)2ds ≤ ε
∫ 1

0

u(s)2ds

for all u ∈ E.
Proof. Let k ∈ N

∗ and ε > 0. First of all, we note that the space H2 ⊂ Hp for all
p ≥ 2. Now consider 0 < δ < 1 and set

Aδ(s) =

{
A(s) if δ ≤ s ≤ 1,
A(δ)s2

δ2 if 0 ≤ s < δ.

It is clear that Aδ ∈ C([0, 1]) and there exists Lδ ∈ (0,∞) such that

lim
s→0

Aδ(s)

s2
=
A(δ)

δ2
= Lδ.

Then Aδ is a profile with tapering of order 2. By Proposition 1.6, there exists
Tδ : H2 → H2 such that

〈Tδu, v〉Aδ
= 〈u, v〉L2 for all u, v ∈ H2.

Furthermore, by Theorems 1.9 and 1.10, we have

maxσe(Tδ) =
4

Lδ
=

1

Λe(Aδ)
.

Now, since

lim
δ→0

Lδ = lim
δ→0

A(δ)

δ2
= lim

δ→0

A(δ)

δp
· δ

p

δ2
= 0,
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we have limδ→0 maxσe(Tδ) = +∞ and limδ→0 Λe(Aδ) = 0.
Then there exists δ0 > 0 such that 0 < δ < δ0 implies

Λe(Aδ) <
K2ε

2K1
,

where the constants K1 and K2 are defined in (1). Choose 0 < δ < δ0. Applying
Lemma 5.7 of [8], we know that there is a subspace E of H2 ∩L∞(0, 1) such that dim
E = k and∫ 1

0

Aδ(s)u
′(s)2ds ≤

{
Λe(Aδ) +

K2ε

2K1

}∫ 1

0

u(s)2ds

≤
{K2ε

2K1
+
K2ε

2K1

}∫ 1

0

u(s)2ds =
K2

K1
ε

∫ 1

0

u(s)2ds

for all u ∈ E ⊂ H2 ∩L∞(0, 1). Now since H2 ⊂ Hp, we have that E ⊂ Hp ∩L∞(0, 1).
Then we only need to verify that∫ 1

0

A(s)u′(s)2ds ≤ ε
∫ 1

0

u(s)2ds for all u ∈ E.

On one hand, for 0 ≤ s < δ, we have

A(s) ≤ K1s
p

= K1

(s
δ

)p−2

· s
2

δ2
δp ≤ K1

s2

δ2
δp

≤ K1A(δ)s2

K2δ2
=
K1

K2
Aδ(s).

On the other hand, for δ ≤ s ≤ 1, since K1/K2 ≥ 1 we have

A(s) = Aδ(s) ≤ K1

K2
Aδ(s).

Finally we have shown that

A(s) ≤ K1

K2
Aδ(s) for all s ∈ [0, 1].

Then, for all u ∈ E, we have∫ 1

0

A(s)u′(s)2ds ≤ K1

K2

∫ 1

0

Aδ(s)u
′(s)2ds

≤ K1

K2
· K2

K1
ε

∫ 1

0

u(s)2ds

= ε

∫ 1

0

u(s)2ds.

Lemma 4.2. Let A be a profile with tapering of order 2 < p < 3 and consider
ξ > 0. Let v ∈ C1((0, 1]) such that Av′ ∈ C1((0, 1]). Suppose that v is any nontrivial
solution of the linearized equation{

A(s)v′(s)
}′

+ ξv(s) = 0 on (0, 1).(21)
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For any n ∈ N, there exists δ > 0 such that v has at least n + 1 zeros in the
interval (δ, 1].

Proof. Choose ε > 0 such that ξ/ε > 1/4. Since there exists L ∈ (0,∞) such that
lims→0A(s)/sp = L, we have

lim
s→0

A(s)

s2
= lim

s→0

A(s)

sp
· s

p

s2
= 0.

Then there exists η > 0 such that s ∈ (0, η) implies |A(s)/s2| < ε, that is,
A(s) < εs2. Consider w �= 0 a solution of the equation{

εs2w′(s)
}′

+ ξw(s) = 0 on (0, 1).

Since ξ/ε > 1/4, as was shown by Stuart (see the proof of Corollary 5.2 of [9]), w
has a sequence of zeros converging to 0. Now, by the Sturm comparison theorem (see
Theorem 3.1 in Chapter II of [6]), every solution of (21) has at least one zero between
successive zeros of w in (0, η). Then there exists 0 < δ < η such that v has at least
n+ 1 zeros on (δ, η) and hence on (δ, 1].

We now are able to prove Theorem 1.4.
Proof of Theorem 1.4. Consider µ > 0. We apply Theorem 2.5 to the functional

jµ : HA → R. By Corollary 3.2 and Lemma 3.3, it is sufficient to show that bk(jµ) < 0
for each k ∈ N

∗. To do that, consider k ∈ N
∗ and ε > 0 such that ε < µ. Let E be

the subspace given by Lemma 4.1 and, for t > 0, consider

Ωt =
{
u ∈ E : ‖u‖L∞ = t

}
.

Then the genus of Ωt is equal to k = dim E, and since ‖.‖L∞ and ‖.‖A are
equivalent on E, there exists C > 0 such that ‖u‖A ≥ Ct for all u ∈ Ωt. Fix
δ ∈ (0, 1− ε/µ) and fix t ∈ (0, π) such that

1− cos θ ≥ 1− δ
2

θ2 for all |θ| ≤ t.

Using this and Lemma 4.1, we have that for u ∈ Ωt,

jµ(u) =
1

2
‖u‖2A − µ

∫ 1

0

{1− cosu(s)}ds

≤ 1

2

{
‖u‖2A − µ(1− δ)

∫ 1

0

u(s)2ds

}
≤ 1

2
‖u‖2A

{
1− µ(1− δ)1

ε

}
≤ (Ct)2

2

{
1− (1− δ)µ

ε

}
< 0

and thus

0 > sup
u∈Ωt

jµ(u) ≥ inf
Ω∈Gk

sup
u∈Ω

jµ(u) = bk(jµ).

The existence of a sequence {uk} of solutions of problem P with jµ(uk) = bk(jµ)
now follows from Theorem 2.5 and Lemma 3.3. Furthermore, since limk→∞ bk(jµ) = 0,



BUCKLING OF A ROD 1145

we have jµ(uk) → 0 and ∇jµ(uk) = 0, so the condition (PS) implies that {uk}
has a subsequence {uki} which converges to an element u in HA. Then jµ(u) = 0,
∇jµ(u) = 0, and |u(s)| ≤ π for all s ∈ (0, 1] since {uki} converges to u uniformly
on compact subsets of (0, 1]. By Lemma 3.3 we can conclude that |u(s)| < π for all
s ∈ (0, 1]. However,

0 = 2jµ(u)− 〈∇jµ(u), u〉A
= ‖u‖2A − µ

∫ 1

0

{2− 2 cosu(s)}ds− {〈u− µDA(u), u〉A}

= µ

∫ 1

0

{u(s) sinu(s)− 2 + 2 cosu(s)}ds

and θ sin θ− 2{1− cos θ} < 0 for 0 < |θ| < π. This implies that u ≡ 0 on (0, 1]. Since
this argument applies to every subsequence of {uk}, we can conclude that the whole
sequence {uk} converges to 0 in HA. Indeed, if {uk} does not converge in HA, there
exists a constant η > 0 and a subsequence {uki} such that ‖uki‖A ≥ η for all i. But
this subsequence satisfies jµ(uki)→ 0 if i→∞ and ∇jµ(uki) = 0 for all i. Thus, by
the condition (PS) and repeating the argument used above, {uki} has a convergent
subsequence to 0 in HA. Now this is a contradiction.

Now fix n ∈ N. We show that there exists K ∈ N such that uk has at least n
zeros in (0, 1] for all k ≥ K. First choose ξ ∈ (0, µ) and any nontrivial solution v of
the linearized equation {

A(s)v′(s)
}′

+ ξv(s) = 0 on (0, 1).

By Lemma 4.2, there exists δ > 0 such that v has at least n + 1 zeros in the
interval (δ, 1]. Since the sequence {uk} tends to 0 in HA, it converges to 0 uniformly
on [δ, 1], and so there is a constant K ∈ N such that

qk(s) = µ
sinuk(s)

uk(s)
> ξ for all s ∈ [δ, 1] and all k ≥ K.

But {uk} satisfies the linear equation{
A(s)v′(s)

}′
+ qk(s)v(s) = 0 on (0, 1)

and so, by the Sturm comparison theorem (see Theorem 3.1 in Chapter II of [6]), uk
vanishes at least once between successive zeros of v in (δ, 1]. Hence uk has at least n
zeros in (δ, 1] for all k ≥ K.

5. Profile of order p = 2: Bifurcation at simple eigenvalues. The goal of
this part is to prove Theorems 1.11 and 1.12. We use arguments similar to those of
the previous section. We first need some lemmas.

Lemma 5.1. Let (X, ‖.‖) be a normed space. If {v1, . . . , vk} are linearly indepen-
dent, there is an ε > 0 with the following property: If {w1, . . . , wk} ⊂ X is such that
‖vi − wi‖ ≤ ε for all i = 1, . . . , k, then {w1, . . . , wk} is linearly independent.

Proof. Suppose that there is no such ε > 0. Then, for each n ∈ N
∗, there exists

a set {un1 , . . . , unk} which is linearly dependent and such that ‖uni − vi‖ ≤ 1/n for all
i = 1, . . . , k. Then we can find λn1 , . . . , λ

n
k such that

k∑
i=1

λni u
n
i = 0
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and

λn =

{
k∑
i=1

(λni )
2

}1/2

> 0.

Then we have

k∑
i=1

λni
λn
uni = 0.

Now, for i = 1, . . . , k and since |λni |/λn ≤ 1 for all n ∈ N
∗, passing to a subse-

quence, there exists γi such that λni /λ
n → γi as n→∞. We then have

k∑
i=1

γivi = 0.

Since {v1, . . . , vk} is linearly independent, we have γi = 0 for all i = 1, . . . , k.
But, since for all n ∈ N

∗,

k∑
i=1

{
λni
λn

}2

=

∑k
i=1(λ

n
i )

2

(λn)2
= 1,

and since

lim
n→∞

k∑
i=1

{
λni
λn

}2

=

k∑
i=1

γ2
i ,

we have
∑k

i=1 γ
2
i = 1. Now this is a contradiction.

Lemma 5.2. Let H be a Hilbert space and let S : D(S)→ H, with D(S) ⊂ H, be
self-adjoint and bounded below. We suppose that all eigenvalues of S are simple. We
set λe := inf{λ : λ ∈ σe(S)}, where σe(S) denotes the essential spectrum of S, and
let λ1 < λ2 < · · · < λk < λe be eigenvalues of S arranged in increasing order with
corresponding orthonormal eigenvectors e1, e2, . . . , ek. Then we have

inf
{
(Sψ, ψ) : ‖ψ‖ = 1, ψ ∈ D(S) ∩ [e1, . . . , ek]

⊥}
= inf

{
λ : λ ∈ σ(S) \ {λ1, . . . , λk}

}
,

where σ(S) denotes the spectrum of S.
Proof. See Lemma 1.1 in Chapter XI of [3].
As a consequence of this lemma, we have the following.
Lemma 5.3. Under assumption (H), and with the corresponding notation, choose

i ∈ I. Then we have

‖ψ‖2A − µ+
i ‖ψ‖2L2 ≥ 0 for all ψ ∈ [ϕ1, . . . , ϕi]

⊥.

Proof. We apply Lemma 5.2 to the operator S = −T : HA → HA. Since T is
self-adjoint, it is clear that S is self-adjoint. Moreover, using Lemma 2.1 and (5),

〈Tu, u〉A = ‖u‖2L2 ≤ 4

K2
‖u‖2A for all u ∈ HA.
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Then

〈Su, u〉A = −〈Tu, u〉A ≥ − 4

K2
‖u‖2A for all u ∈ HA,

implying that S is bounded below. The spectrum of S is given by σ(S) = −σ(T ).
Applying Lemma 5.2, we have

inf
{
(Sψ, ψ) : ‖ψ‖ = 1, ψ ∈ HA ∩ [ϕ1, . . . , ϕi]

⊥}
= inf

{
λ : λ ∈ σ(S) \ {−µ−1

1 , . . . ,−µ−1
i }
}

= − 1

µ+
i

.

We then have〈
− T

( ψ

‖ψ‖A
)
,

ψ

‖ψ‖A

〉
A

≥ − 1

µ+
i

for all ψ ∈ [ϕ1, . . . , ϕi]
⊥ \ {0}

⇒ −〈Tψ, ψ〉A ≥ − 1

µ+
i

‖ψ‖2A for all ψ ∈ [ϕ1, . . . , ϕi]
⊥,

which implies

‖ψ‖2A − µ+
i ‖ψ‖2L2 ≥ 0 for all ψ ∈ [ϕ1, . . . , ϕi]

⊥.

Lemma 5.4. Under assumption (H), and with the corresponding notation, choose
i ∈ I. Given any ε > 0, there is a subspace E of HA ∩ L∞(0, 1) such that dim E = i
and ∫ 1

0

A(s)u′(s)2ds ≤ (µi + ε)

∫ 1

0

u(s)2ds

for all u ∈ E.
Proof. Let ε > 0. Set F = span{ϕ1, . . . , ϕi}. Then for j = 1, . . . , i, we have∫ 1

0

A(s)ϕ′j(s)
2ds = 〈ϕj , ϕj〉A = µj〈Tϕj , ϕj〉A

= µj

∫ 1

0

ϕj(s)
2ds ≤ µi

∫ 1

0

ϕj(s)
2ds.

Then, for all u =
∑i

j=1 αjϕj ∈ F , we have

∫ 1

0

A(s)

(
i∑

j=1

αjϕj

)′
(s)2ds =

〈
i∑

j=1

αjϕj ,

i∑
j=1

αjϕj

〉
A

=

i∑
j=1

〈αjϕj , αjϕj〉A =

i∑
j=1

µj〈Tαjϕj , αjϕj〉A

≤ µi
i∑

j=1

〈Tαjϕj , αjϕj〉A = µi

〈
T

(
i∑

j=1

αjϕj

)
,

i∑
j=1

αjϕj

〉
A

= µi

∫ 1

0

u(s)2ds.
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We then have ∫ 1

0

A(s)u′(s)2ds ≤ µi
∫ 1

0

u(s)2ds for all u ∈ F.

Now, since HA∩L∞(0, 1) is dense in HA and T is continuous, there exist v1, . . . , vi
∈ HA ∩ L∞(0, 1) (which are linearly independent by Lemma 5.1) such that if E =
span{v1, . . . , vi}, then E ⊂ HA ∩ L∞(0, 1), dim E = i, and∫ 1

0

A(s)v′(s)2ds ≤ (µi + ε)

∫ 1

0

v(s)2ds for all v ∈ E.

Now we are able to give the proof of Theorem 1.11.
Proof of Theorem 1.11. We apply Theorem 2.5 to the functional jµ : HA → R.

In light of Corollary 3.2 and Lemma 3.3, we only need to show that bi(jµ) < 0 (recall
that bk(jµ) ≤ bi(jµ) for k = 1, . . . , i). To this end choose ε > 0 such that µi + ε < µ.
Let E be the subspace given by Lemma 5.4 and, for t > 0, let

Ωt =
{
u ∈ E : ‖u‖L∞ = t

}
.

Then the genus of Ωt is equal to i = dim E, and since ‖.‖L∞ and ‖.‖A are
equivalent on E, there exists C > 0 such that ‖u‖A ≥ Ct for all u ∈ Ωt. Fix
δ ∈ (0, 1− (µi + ε)/µ) and fix t ∈ (0, π) such that

1− cos θ ≥ 1− δ
2

θ2 for all |θ| ≤ t.

Using this and Lemma 5.4, we have that for u ∈ Ωt,

jµ(u) =
1

2
‖u‖2A − µ

∫ 1

0

{1− cosu(s)}ds

≤ 1

2

{
‖u‖2A − µ(1− δ)

∫ 1

0

u(s)2ds

}
≤ 1

2
‖u‖2A

{
1− µ(1− δ) 1

µi + ε

}
≤ (Ct)2

2

{
1− (1− δ)µ

µi + ε

}
< 0

and thus

0 > sup
u∈Ωt

jµ(u) ≥ inf
Ω∈Gi

sup
u∈Ω

jµ(u) = bi(jµ).

The existence of a set {uk}, k = 1, . . . , i, of solutions of problem P with jµ(uk) =
bi(jµ) now follows from Theorem 2.5 and Lemma 3.3.

Using the notation of section 2.2, we have the following.
Lemma 5.5. Under assumption (H), and with the corresponding notation, choose

i ∈ I. Let µi < µ < µ+
i and consider bi(jµ). Then there exists M =

√
2 + 4Λe(A) > 0

(independent of µ) with the following property: For each 0 < ε ≤ 1, there exists
Ωε ∈ ΣM such that

(i) g(Ωε) ≥ i,
(ii) bi(jµ) ≤ supu∈Ωε

jµ(u) < bi(jµ) + ε.
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Remark. Lemma 5.5 means that to construct bi(jµ) for µ ∈ (µi, µ
+
i ), it is sufficient

to consider the sets Ω ∈ Gi such that Ω ∈ ΣM , instead of all sets Ω ∈ Gi such that
Ω ∈ Σ.

Proof. Let 0 < ε ≤ 1. By definition of the infimum, there is Ω ∈ Gi such that

bi(jµ) ≤ sup
u∈Ω

jµ(u) < bi(jµ) + ε.

Then, for each u ∈ Ω,

1

2
‖u‖2A − µϕ(u) < bi(jµ) + ε,

which implies, since 0 ≤ ϕ(u) ≤ 2 for all u ∈ HA,

‖u‖2A < 2(bi(jµ) + 1) + 4µ < 2 + 4Λe(A),

where we used the fact proved by Theorem 1.11 that bi(jµ) < 0. Setting M =√
2 + 4Λe(A), we have that Ω ∈ ΣM .
Lemma 5.6. Under assumption (H), and with the corresponding notation, choose

i ∈ I. Let µi < µ < µ+
i . Then we have bi+1(jµ) ≥ 0.

Proof. For each ε > 0, there is Ω ∈ Gi+1 such that

bi+1(jµ) ≤ sup
u∈Ω

jµ(u) < bi+1(jµ) + ε.

By Lemma 2.4, there exists ψ ∈ Ω ∩ [ϕ1, . . . , ϕi]
⊥. By Lemma 5.3, we have

‖ψ‖2A − µ+
i ‖ψ‖2L2 ≥ 0.

We then have

jµ(ψ) =
1

2
‖ψ‖2A − µϕ(ψ)

≥ 1

2
‖ψ‖2A − µ

1

2

∫ 1

0

ψ(s)2ds

≥ 1

2
{‖ψ‖2A − µ+

i ‖ψ‖2L2} ≥ 0.

Then supu∈Ω jµ(u) ≥ 0 and bi+1(jµ) ≥ 0.
Proposition 5.7. Under assumption (H), and with the corresponding notation,

choose i ∈ I. We have

lim
µ→µi+

bi(jµ) = 0.

Proof. By definition, and using Lemma 5.5, we have

bi(jµ) = inf
Ω∈Gi

sup
u∈Ω

jµ(u) = inf
Ω∈Gi∩ΣM

sup
u∈Ω

jµ(u).

Let Ω ∈ Gi ∩ ΣM , and let u ∈ Ω. Then

jµ(u) =
1

2
‖u‖2A − µϕ(u)

≥ 1

2
{‖u‖2A − µ‖u‖2L2}

=
1

2
{‖u‖2A − µi‖u‖2L2 + (µi − µ)‖u‖2L2}.
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Since g(Ω) ≥ i, by Lemma 2.4, there exists ψ ∈ Ω ∩ [ϕ1, . . . , ϕi−1]
⊥. By

Lemma 5.3, we have

‖ψ‖2A − µi‖ψ‖2L2 ≥ 0.

Using Lemma 2.1 and (5), we then have (recalling that ψ ∈ ΣM ),

jµ(ψ) ≥ 1

2
(µi − µ)‖ψ‖2L2 ≥ 2

K2
M2(µi − µ).

Thus we have shown that for each Ω ∈ Gi ∩ ΣM , there is a ψ ∈ Ω such that

jµ(ψ) ≥ 2

K2
M2(µi − µ).

Then, for all µ ∈ (µi, µ
+
i ), we have

0 > bi(jµ) ≥ 2

K2
M2(µi − µ)→ 0 if µ→ µi+.

Then limµ→µi+ bi(jµ) = 0.
Lemma 5.8. Let there be a sequence {µk} ⊂ R+ which converges to µ ∈ R.

Consider a sequence {uk} ⊂ HA such that
(i) {jµk

(uk)} is bounded;
(ii) ‖∇jµk

(uk)‖A → 0 if k →∞.
Then {uk} has a convergent subsequence.
Proof. Since jµ(u) = 1

2‖u‖2A − µϕ(u) with 0 ≤ ϕ(u) ≤ 2, and since {jµk
(µk)} is

bounded, we have that {uk} is a bounded sequence inHA. Then there is a subsequence
{uki}, and u ∈ HA such that uki converges weakly to u in HA. But since DA is
completely continuous, we have ‖DA(uki)−DA(u)‖A → 0 if i→∞.

Now, since ∇jµ = I − µDA, we have

uki = ∇jµki
(uki) + µkiDA(uki)→ 0 + µDA(u) if i→∞.

Finally {uki} converges in HA.
We now prove our second bifurcation result.
Proof of Theorem 1.12. For µ > µi, by Theorem 1.11 there is uµ ∈ HA \ {0} such

that uµ is a solution of problem P, |uµ(s)| < π for all s ∈ (0, 1], ∇jµ(uµ) = 0, and
jµ(uµ) = bi(jµ). Now choose a sequence {αk} such that αk > µi for all k ≥ 1 and
such that αk → µi as k →∞. Then, for each k ≥ 1, there exists uk ∈ HA \ {0} such
that jαk

(uk) = bi(jαk
) and uk is a solution of problem P. Furthermore, ∇jαk

(uk) = 0
for all k ≥ 1. Now Proposition 5.7 implies

lim
k→∞

jαk
(uk) = lim

k→∞
bi(jαk

) = 0.

Thus {jαk
(uk)} is bounded. By Lemma 5.8, there is a subsequence {uki} which

converges to u ∈ HA. We then have jµi(u) = 0, ∇jµi(u) = 0, and |u(s)| ≤ π for
all s ∈ (0, 1] since {uki} converges to u uniformly on compact subsets of (0, 1]. By
Lemma 3.3, we have |u(s)| < π for all s ∈ (0, 1]. But we have

0 = 2jµi(u)− 〈∇jµi(u), u〉A
= 2jµi

(u)− 〈u− µiDA(u), u〉A
= ‖u‖2A − µi

∫ 1

0

{2− 2 cosu(s)}ds− 〈u, u〉A + µi〈DA(u), u〉A

= µi

∫ 1

0

{u(s) sinu(s)− 2 + 2 cosu(s)}ds
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and θ sin θ − 2{1 − cos θ} < 0 for all 0 < |θ| < π. This implies that u ≡ 0 on (0, 1].
Since this argument applies to every subsequence of {uk}, we can conclude that the
whole sequence {uk} converges to 0 in HA.

Acknowledgment. I would like to thank Professor C. A. Stuart for his precious
advice that helped me to do this work.
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Abstract. We derive high-order terms in the asymptotic expansions of the steady-state voltage
potentials in the presence of a finite number of diametrically small inhomogeneities with conduc-
tivities different from the background conductivity. Our derivation is rigorous and based on layer
potential techniques. The asymptotic expansions in this paper are valid for inhomogeneities with
Lipschitz boundaries and those with extreme conductivities.

Key words. small conductivity inhomogeneities, asymptotic expansions, generalized polariza-
tion tensors
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1. Introduction. Let Ω be a bounded domain in R
d, d ≥ 2, with a connected

Lipschitz boundary ∂Ω. Let ν denote the unit outward normal to ∂Ω. Suppose
that Ω contains a finite number m of small inhomogeneities (Dl)

m
l=1, each of the form

Dl = zl+εBl, where Bl, l = 1, . . . ,m, is a bounded Lipschitz domain in R
d containing

the origin. We assume that the domains (Dl)
m
l=1 are separated from each other and

from the boundary. More precisely, we assume that there exists a constant c0 > 0
such that

|zl − zl′ | ≥ 2c0 > 0 ∀ l �= l′ and dist(zl, ∂Ω) ≥ 2c0 > 0 ∀ l,(1.1)

that ε, the common order of magnitude of the diameters of the inhomogeneities, is
sufficiently small, that these inhomogeneities are disjoint, and that their distance to
R
d \Ω is larger than c0. We also assume that the “background” is homogeneous with
conductivity 1 and the inhomogeneities Dl have conductivities kl, kl �= 1, 1 ≤ l ≤ m.

Let uε denote the steady-state voltage potential in the presence of the conductivity
inhomogeneities, i.e., the solution to

∇ ·
(
χ

(
Ω \

m⋃
l=1

Dl

)
+

m∑
l=1

klχ(Dl)

)
∇uε = 0 in Ω,

∂uε
∂ν

∣∣
∂Ω
= g.

(1.2)
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Let U denote the “background” potential, that is, the solution to
∆U = 0 in Ω,

∂U

∂ν

∣∣
∂Ω
= g.

(1.3)

The function g represents the applied boundary current; it belongs to L2
0(∂Ω) = {g ∈

L2(∂Ω),
∫
∂Ω

g = 0}. The potentials, uε and U , are normalized by
∫
∂Ω

uε =
∫
∂Ω

U = 0.
The main achievement of this paper is a rigorous derivation, based on layer po-

tential techniques, of high-order terms in the asymptotic expansion of uε|∂Ω as ε→ 0.
The leading order term in this asymptotic formula has been derived by Cedio-Fengya,
Moskow, and Vogelius [7]; see also the prior work of Friedman and Vogelius [14] for
the case of perfectly conducting or insulating inhomogeneities. The main result of this
paper is the following full asymptotic expansion of the solution for the case m = 1.

Theorem 1.1. Suppose that the inhomogeneity consists of a single component
and let uε be the solution of (1.2). The following pointwise asymptotic expansion on
∂Ω holds for d = 2, 3:

uε(x) = U(x)− εd−2
n∑
|i|=1

n−|i|+1∑
|j|=1

1

j!
ε|i|+|j|

×
[((

I +

n+2−|i|−|j|−d∑
p=1

εd+p−1Qp
)
(∂lU(z))

)
i

Mij∂
j
zN(x, z)

]
+O(εd+n),

(1.4)

where the remainder O(εd+n) is dominated by Cεd+n‖g‖L2(∂Ω) for some C independent
of x ∈ ∂Ω. Here N(x, z) is the Neumann function, that is, the solution to (2.12)–
(2.13), Mij, i, j ∈ N

d, are the generalized polarization tensors defined in (3.2), and
the matrix Qp is defined in (4.12).

We have a similar expansion for the solutions of the Dirichlet problem (Theorem
4.2).

The derivation of the asymptotic expansions for any fixed number m of well-
separated inhomogeneities (these are a fixed distance apart) follows by iteration of
the arguments that we will present for the case m = 1. In other words, we may
develop asymptotic formulas involving the difference between the fields uε and U on
∂Ω with l inhomogeneities and those with l − 1 inhomogeneities, l = m, . . . , 1, and
then at the end essentially form the sum of these m formulas (the reference fields
change, but that may easily be remedied). The derivation of each of the m formulas
is virtually identical.

We also note that the asymptotic expansion (1.4) is valid for inhomogeneities
with zero or infinity conductivity (cavity or perfect conductor). Precise definitions
of generalized polarization tensors (GPTs) associated with the domains Bl and the
conductivities kl will be given at the end of section 3. These GPTs seem to be natural
generalizations of the tensors that have been introduced by Schiffer and Szegö [23]
and thoroughly studied by many other authors [22], [18], [14], [7]. (See section 3.)

The higher-order terms are essential when ∇U(zl) = 0, for then the leading
order term in the asymptotic expansion of uε|∂Ω, given in [7], vanishes. We remind
the reader that, for general current inputs g, ∇U vanishes at some “critical points”
inside Ω.
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The proof of our asymptotic expansion is radically different from the ones in [14],
[7], and [26]. It is based on layer potential techniques and a decomposition formula
of the steady-state voltage potential into a harmonic part and a refraction part. This
formula is due to Kang and Seo [15]. What makes our proof particularly original and
elegant is that the rigorous derivation of high-order terms follows almost immediately.
The extension of the techniques used in [14], [7], and [26] to construct higher-order
terms in the expansion of uε|∂Ω as ε → 0 seems to be laborious. Furthermore, the
general approach developed in this paper could be carried out to obtain more precise
asymptotic formulas for the full Maxwell equations and for the equations of linear
elasticity than those derived in [3] and [1]. The method of this paper also enables us
to extend the asymptotic expansions to the cases of inhomogeneities with Lipschitz
boundaries. Previously, the leading order term was derived under the assumption
that inhomogeneities are C1,α smooth [14], [7]. We note that our method works as
well even when the inhomogeneities have extreme conductivities (k = 0 or k =∞).

Let us now explain what makes this asymptotic formula interesting in electrical
impedance tomography (EIT). It is well known that the ultimate objective of EIT
is to recover, most efficiently and accurately, the conductivity distribution inside a
body from measurements of current flows and voltages on the body’s surface. The
vast and growing literature reflects the many possible applications of EIT, e.g., for
medical diagnosis or nondestructive evaluation of materials [6]. In its most general
form EIT is severely ill-posed and nonlinear. Taking advantage of the smallness of
the inhomogeneities, Cedio-Fengya, Moskow, and Vogelius [7] used the leading order
term in the asymptotic expansion of uε|∂Ω to find the locations zl, l = 1, . . . ,m, of the
inhomogeneities and certain properties of the domains Bl, l = 1, . . . ,m (relative size,
orientation). The algorithm proposed in [7] is based on a least-squares algorithm.
Ammari, Moskow, and Vogelius [2] also utilized this leading order term to design
a variationally based direct reconstruction method. The new idea in [2] is to form
the integral of the “measured boundary data” against harmonic test functions and
choose the input current g so as to obtain an expression involving the inverse Fourier
transform of distributions supported at the locations zl, l = 1, . . . ,m. Applying a
direct Fourier transform to this data then pins down the locations. This approach is
similar to the ideas used by Calderón [5] in his proof of uniqueness of the linearized
conductivity problem and later by Sylvester and Uhlmann in their important work
[24] on uniqueness of the three-dimensional inverse conductivity problem. Another
algorithm that makes use of an asymptotic expansion of the voltage potentials was
derived by Brühl, Hanke, and Vogelius [4]. This algorithm is in the spirit of the linear
sampling method of Colton and Kirsch [9].

In all of these algorithms, the locations zl, l = 1, . . . ,m, of the inhomogeneities
are found with an error O(ε), and little about the domains Bl can be reconstructed.
Making use of higher-order terms in the asymptotic expansion of uε|∂Ω, we certainly
would be able to reconstruct the small inhomogeneities with higher resolution from
boundary information about specific solutions to (1.2). Perhaps, more importantly,
this would allow us to identify quite general conductivity inhomogeneities without
restrictions on their sizes.

The use of higher-order terms in the asymptotic expansion of uε|∂Ω may also be
decisive in dramatically improving the algorithm of Kwon, Seo, and Yoon [19], which
is based on the observation of the pattern of a simple weighted combination of an
input current g of the form g = a ·ν for some constant vector a and the corresponding
output voltage. We also believe that the use of such higher-order terms would improve
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the algorithm of Mast, Nachman, and Waag [20], which uses eigenfunctions of the
scattering operator.

This paper is organized as follows. In section 2, we collect some notation and
preliminary results regarding layer potentials. In section 3, we introduce the GPTs
associated with the domains Dl and the conductivities kl. In section 4, we provide
a rigorous derivation of high-order terms in the asymptotic expansion of the output
voltage potentials. For reasons of brevity we restrict a significant part of this deriva-
tion to the case of a single inhomogeneity (m = 1). The proof in the case of multiple
well-separated inhomogeneities may be derived by a fairly straightforward iteration
of the arguments we present; however, we leave the details to the reader.

2. Layer potentials for the Laplacian. Let us first review some well-known
properties of the layer potentials for the Laplacian and prove some useful identities.

The theory of layer potentials has been developed in relation to the boundary
value problems. Let D be a bounded domain in R

d, d ≥ 2. We assume that ∂D is
Lipschitz. Let Γ(x) be the fundamental solution of the Laplacian ∆,

Γ(x) =


1

2π
ln |x|, d = 2,

1

(2− d)ωd
|x|2−d, d ≥ 3,

(2.1)

where ωd is the area of (d− 1)-dimensional unit sphere. The single and double layer
potentials of the density function φ on D are defined by

SDφ(x) :=
∫
∂D

Γ(x− y)φ(y)dσ(y), x ∈ R
d,(2.2)

DDφ(x) :=
∫
∂D

∂

∂νy
Γ(x− y)φ(y)dσ(y), x ∈ R

d \ ∂D.(2.3)

For a function u defined on R
d \ ∂D, we denote

∂

∂ν±
u(x) := lim

t→0+
〈∇u(x± tνx), νx〉, x ∈ ∂D,

if the limit exists. Here νx is the outward unit normal to ∂D at x.
The proof of the following trace formula can be found in [11], [13], [21] (for

Lipschitz domains, see [25]):

∂

∂ν±
SDφ(x) =

(
±1
2
I +K∗D

)
φ(x),(2.4)

(DDφ)|± =
(
∓1
2
I +KD

)
φ(x), x ∈ ∂D,(2.5)

where

KDφ(x) = 1

ωd
p.v.

∫
∂D

〈x− y, νy〉
|x− y|d φ(y)dσ(y)

and K∗D is the L2-adjoint of KD. When ∂D is Lipschitz, KD is a singular integral
operator and known to be bounded on L2(∂Ω) [8]. Let L2

0(∂D) := {f ∈ L2(∂D) :
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∂D

fdσ = 0}. The following results are due to Verchota [25] and Escauriaza, Fabes,
and Verchota [10].

Theorem 2.1 (see [10], [25]). λI −K∗D is invertible on L2
0(∂D) if |λ| ≥ 1

2 , and
for λ ∈ (−∞,− 1

2 ] ∪ ( 12 ,∞), λI −K∗D is invertible on L2(∂D).
For proofs when ∂D is smooth, see [11], [13].
The following theorem was proved in [15], [16], [17].
Theorem 2.2. Suppose that D is a domain compactly contained in Ω with a

connected Lipschitz boundary and conductivity k. Then the solution u of the problem
∇ · ((1 + (k − 1)χ(D))∇u) = 0 in Ω,

∂u

∂ν

∣∣
∂Ω
= g

(2.6)

is represented as

u(x) = H(x) + SDφ(x), x ∈ Ω,(2.7)

where the harmonic function H is given by

H(x) = −SΩ(g)(x) +DΩ(f)(x), x ∈ Ω, f := u|∂Ω,(2.8)

and φ ∈ L2
0(∂D) satisfies the integral equation(

k + 1

2(k − 1)I −K
∗
D

)
φ =

∂H

∂ν

∣∣∣∣
∂D

on ∂D.(2.9)

Moreover, ∀ n ∈ N, there exists a constant Cn = C(n,Ω, dist(D, ∂Ω)) independent of
|D| and k such that

‖H‖Cn(D) ≤ Cn‖g‖L2(∂Ω).(2.10)

Proof. The representation formula (2.7) was proved in [15], [17]. Equation (2.10)
was proved in [16] for d = 2, and it is easily seen that the same proof works for d = 3.
We only need to check carefully whether the constant Cn in the estimate (2.10) is
independent of |D|. Before doing this, let us point out that the harmonic function H
can be computed explicitly from the boundary measurements (∂u∂ν

∣∣
∂Ω

, u
∣∣
∂Ω
), and the

density φ is uniquely and explicitly determined by the domain D and the harmonic
function H. The decomposition of the function u into a harmonic part H and a
refraction part SDφ is unique [15], [17]. The representation formula (2.7) seems to
inherit geometric properties of D.

Suppose that dist(D, ∂Ω) > 2c0 for some constant c0 > 0. From the definition of
H in (2.8) it is easy to see that

‖H‖Cn(D) ≤ Cn

(
‖g‖L2(∂Ω) + ‖u|∂Ω‖L2(∂Ω)

)
,(2.11)

where Cn depends only on n, ∂Ω, and c0. Let 'α be a vector field supported in the set
dist(x, ∂Ω) < 2c0 such that 'α · ν(x) ≥ δ for some δ > 0 ∀ x ∈ ∂Ω. Using the Rellich
identity with this 'α, we can show that∥∥∥∥ ∂u∂T

∥∥∥∥
L2(∂Ω)

≤ C
(
‖g‖L2(∂Ω) + ‖∇u‖L2(Ω\D)

)
,
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where C depends only on ∂Ω and c0 and T (x) is the tangent vector to ∂Ω at x. (See
the proof of Lemma 2.1 of [12] for details of the proof.) Observe that

‖∇u‖2
L2(Ω\D)

≤ C

∫
Ω

(1 + (k − 1)χ(D))∇u · ∇u dx

= C

∫
∂Ω

gu dσ

≤ C‖g‖L2(∂Ω)‖u|∂Ω‖L2(∂Ω).

Since
∫
∂Ω

u dσ = 0, it follows from the Poincaré inequality that

‖u|∂Ω‖L2(∂Ω) ≤ C

∥∥∥∥ ∂u∂T
∥∥∥∥
L2(∂Ω)

.

Thus we obtain

‖u|∂Ω‖2L2(∂Ω) ≤ C
(
‖g‖2L2(∂Ω) + ‖g‖L2(∂Ω)‖u|∂Ω‖L2(∂Ω)

)
,

and hence

‖u|∂Ω‖L2(∂Ω) ≤ C‖g‖L2(∂Ω).

From (2.11) we finally obtain (2.10).
Using the above representation we can derive a formula similar to (1.4) which is

potentially useful in detecting the inhomogeneities (see the remark at the end of this
paper). However, it uses the function H, which depends on D and hence on ε. Thus
in order to derive (1.4) we will transform it to representations using only background
potentials.

Let N(x, z) be the Neumann function for ∆ in Ω corresponding to a Dirac mass
at z. That is, N is the solution to

∆xN(x, z) = −δz in Ω,

∂N

∂ν

∣∣
∂Ω
= − 1

|∂Ω| .
(2.12)

In addition, we assume that∫
∂Ω

N(x, y)dσ(x) = 0 for y ∈ Ω.(2.13)

Let us fix one more notation: For D, a subset of Ω, let

NDf(x) :=

∫
∂D

N(x, y)f(y)dσ(y).

The following lemma relates the fundamental solution with the Neumann func-
tion.

Lemma 2.3. For z ∈ Ω and x ∈ ∂Ω, let Γz(x) := Γ(x− z) and Nz(x) := N(x, z).
Then (

−1
2
I +KΩ

)
(Nz)(x) = Γz(x) modulo constants, x ∈ ∂Ω,(2.14)
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or, to be more precise, for any simply connected Lipschitz domain D compactly con-
tained in Ω and for any g ∈ L2

0(∂D), we have∫
∂D

(
−1
2
I +KΩ

)
(Nz)(x)g(z)dσ(z) =

∫
∂D

Γz(x)g(z)dσ(z) ∀x ∈ ∂Ω.(2.15)

Proof. Let f ∈ L2
0(∂Ω) and define

u(z) :=

〈(
−1
2
I +KΩ

)
(Nz), f

〉
∂Ω

, z ∈ Ω.

Then

u(z) =

∫
∂Ω

N(x, z)

(
−1
2
I +K∗Ω

)
f(x)dσ(x).

Therefore, ∆u = 0 in Ω and ∂u
∂ν |∂Ω = (− 1

2I +K∗Ω)f . Thus by (2.4) we have

u(z)− SΩf(z) = constant, z ∈ Ω.

Thus if g ∈ L2
0(∂Ω), then we obtain∫

∂Ω

∫
∂D

(
−1
2
I +KΩ

)
(Nz)(x)g(z)dσ(z)f(x)dσ(x)

=

∫
∂Ω

∫
∂D

Γz(x)g(z)dσ(z)f(x)dσ(x).

Since f is arbitrary, we have equation (2.14) or, equivalently, (2.15). This completes
the proof.

Let g ∈ L2
0(∂Ω). Let U(y) :=

∫
∂Ω

N(x, y)g(x)dσ(x). Then U satisfies

∆U = 0 in Ω,

∂U

∂ν
|∂Ω = g ∈ L2

0(∂Ω),∫
∂Ω

U(x)dσ(x) = 0.

(2.16)

Theorem 2.4. The solution u of (2.6) can be represented as

u(x) = U(x)−NDφ(x), x ∈ ∂Ω,(2.17)

where φ is defined in (2.9).
Proof. By substituting (2.7) into (2.8), we obtain

H(x) = −SΩ(g)(x) +DΩ(H|∂Ω + (SDφ)|∂Ω)(x), x ∈ Ω.

It then follows from (2.5) that(
1

2
I −KΩ

)
(H|∂Ω) = −(SΩg)|∂Ω +

(
1

2
I +KΩ

)
((SDφ)|∂Ω) on ∂Ω.(2.18)
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Since by Green’s theorem U = −SΩ(g) +DΩ(U |∂Ω) in Ω, we have(
1

2
I −KΩ

)
(U |∂Ω) = −(SΩg)|∂Ω.(2.19)

Since φ ∈ L2
0(∂D), it follows from (2.14) that

−
(
1

2
I −KΩ

)
((NDφ)|∂Ω) = (SDφ)|∂Ω.(2.20)

From (2.18), (2.19), and (2.20), we conclude that(
1

2
I −KΩ

)(
H|∂Ω − U |∂Ω +

(
1

2
I +KΩ

)
((NDφ)|∂Ω)

)
= 0.

Therefore, we have

H|∂Ω − U |∂Ω +

(
1

2
I +KΩ

)
((NDφ)|∂Ω) = C (constant).(2.21)

Note that ( 12I+KΩ)((NDφ)|∂Ω) = (NDφ)|∂Ω+(SDφ)|∂Ω. Thus we get from (2.7) and
(2.21)

u|∂Ω = U |∂Ω − (NDφ)|∂Ω + C.(2.22)

Since all the functions entering (2.22) belong to L2
0(∂Ω), we conclude that C = 0, and

the theorem is proved.
We have a similar representation for solutions of the Dirichlet problem. Let

G(x, y) be the Green function for the Dirichlet problem; i.e., the function V defined
by V (x) :=

∫
∂Ω

∂G
∂ν(y) (x, y)f(y)dσ(y) is the solution of the problem ∆V = 0 in Ω and

V |∂Ω = f for any f ∈ L2(∂Ω). Then we have the following representation theorem.
Theorem 2.5.(

1

2
I +K∗Ω

)−1(
∂Γz(y)

∂ν(y)

)
(x) =

∂Gz

∂ν(x)
(x), x ∈ ∂Ω, z ∈ Ω.(2.23)

Let u be the solution of (2.6) with the Neumann condition replaced by the Dirichlet
condition u|∂Ω = f . Then u can be represented as

∂u

∂ν
(x) =

∂V

∂ν
(x)−GDφ(x), x ∈ ∂Ω,(2.24)

where φ is defined in (2.9) and GDφ(x) :=
∫
∂D

∂G
∂ν(y) (x, y)φ(y)dσ(y).

Theorem 2.5 can be proved in the same way as Theorem 2.4. In fact, it is simpler
because of the solvability of the Dirichlet problem or, equivalently, the invertibility of
( 12I +K∗Ω). So we omit the proof.

3. Generalized polarization tensors. In this section we introduce the gener-
alized polarization tensors (GPTs) associated with a domain B and a conductivity k.
These GPTs are the basic building block for the asymptotic expansions in this paper.

Let B be a Lipschitz bounded domain in R
d and let the conductivity of B be k

(k �= 1). The polarization tensor M = (mij), 1 ≤ i, j ≤ d, is defined by

mij :=

(
1− 1

k

)[
δij |B|+ (k − 1)

∫
∂B

yi
∂

∂ν+
ψj(y)dσ(y)

]
,
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where ψj is the unique solution of the following transmission problem:

∆ψj(x) = 0, x ∈ B ∪ R
d \B,

ψj |+ − ψj |− = 0 on ∂B,

∂

∂ν+
ψj − k

∂

∂ν−
ψj = νj on ∂B,

ψj(x)→ 0 as |x| → ∞.

See [23], [7], and [14]. One can easily check, using (2.4), that

(k − 1)ψj = SB(λI −K∗B)−1(νj).

Using (2.4) again, we have

(k − 1)
∫
∂B

yi
∂

∂ν+
ψj(y)dσ(y)

=

∫
∂B

yi

(
1

2
I +K∗B

)
(λI −K∗B)−1(νj)(y)dσ(y)

= −
∫
∂B

yiνjdσ(y) +

(
λ+

1

2

)∫
∂B

yi(λI −K∗B)−1(νj)(y)dσ(y)

= −δij |B|+ k

k − 1
∫
∂B

yi(λI −K∗B)−1(νj)(y)dσ(y).

Therefore we prove that the polarization tensor M associated with B and k is given
by

mij =

∫
∂B

yi(λI −K∗B)−1(νj)(y)dσ(y).(3.1)

Recall λ := k+1
2(k−1) .

For a multi-index i = (i1, . . . , id) ∈ N
d, let ∂if = ∂i11 · · · ∂idd f and xi := xi11 · · ·xidd .

For i, j ∈ N
d, we define the GPT Mij by

Mij :=

∫
∂B

yjφi(y)dσ(y),(3.2)

where φi is defined by

φi(x) := (λI −K∗B)−1

(
1

i!
νy · ∇yi

)
(x), x ∈ ∂B.

4. Derivation of the full asymptotic formula. In this section we derive our
asymptotic formula (1.4). As stated in the introduction, we restrict our derivation to
the case of a single inhomogeneity (m = 1). We only give the details when considering
the difference between the fields corresponding to one and zero inhomogeneities. In
order to further simplify notation we assume that the single inhomogeneity D has the
form D = εB+z, where z ∈ Ω and B is a bounded Lipschitz domain in R

d containing
the origin. Suppose that the conductivity of D is k. Let λ := k+1

2(k−1) . Then by (2.7)

and (2.9), the solution u of (2.6) takes the form

u(x) = U(x)−ND(λI −K∗D)−1

(
∂H

∂ν
|∂D
)
(x), x ∈ ∂Ω,
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where U is the background potential given in (2.16).
Define

Hn(x) :=

n∑
|i|=0

1

i!
(∂iH)(z)(x− z)i.

Here we use the multi-index notation i = (i1, . . . , id) ∈ N
d. Then we have from (2.10)

that ∥∥∥∥∂H∂ν − ∂Hn

∂ν

∥∥∥∥
L2(∂D)

≤ sup
x∈∂D

|∇H(x)−∇Hn(x)||∂D|1/2

≤ ‖H‖Cn+1(D)|x− z|n|∂D|1/2

≤ C‖g‖L2(∂Ω)ε
n|∂D|1/2.

Note that

if

∫
∂D

hdσ = 0, then

∫
∂D

(λI −K∗D)−1hdσ = 0.(4.1)

If
∫
∂D

hdσ = 0, then we have for x ∈ ∂Ω that

∣∣ND(λI −K∗D)−1h(x)
∣∣ = ∣∣∣∣∫

∂D

[N(x− y)−N(x− z)](λI −K∗D)−1h(y)dσ(y)

∣∣∣∣
≤ Cε|∂D|1/2 ‖h‖L2(∂D) .

It then follows that

sup
x∈∂D

∣∣∣∣ND(λI −K∗D)−1

(
∂H

∂ν
|∂D − ∂Hn

∂ν
|∂D
)
(x)

∣∣∣∣ ≤ Cε|∂D|1/2
∥∥∥∥∂H∂ν − ∂Hn

∂ν

∥∥∥∥
L2(∂D)

≤ C‖g‖L2(∂Ω)ε
d+n.

Therefore, we have

u(x) = U(x)−ND(λI −K∗D)−1

(
∂Hn

∂ν
|∂D
)
(x) +O(εd+n), x ∈ ∂Ω,(4.2)

where the O(εd+n) term is dominated by C‖g‖L2(∂Ω)ε
d+n for some C depending only

on c0. Note that

(λI −K∗D)−1

(
∂Hn

∂ν
|∂D
)
(x) =

n∑
|i|=1

(∂iH)(z)(λI −K∗D)−1

(
1

i!
νx · ∇(x− z)i

)
(x).

Since D = εB + z, one can prove by using the change of variables y = x−z
ε and the

expression of K∗D defined as the L2-adjoint of KD that

(λI −K∗D)−1

(
1

i!
νx · ∇(x− z)i

)
(x) = ε|i|−1(λI −K∗B)−1

(
1

i!
νy · ∇yi

)(
1

ε
(x− z)

)
.

Put

φi(x) := (λI −K∗B)−1

(
1

i!
νy · ∇yi

)
(x), x ∈ ∂B.(4.3)
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Then we get

ND(λI −K∗D)−1

(
∂Hn

∂ν
|∂D
)
(x)(4.4)

=
n∑
|i|=1

(∂iH)(z)ε|i|−1

∫
∂D

N(x, y)φi(ε
−1(y − z))dσ(y)

=

n∑
|i|=1

(∂iH)(z)ε|i|+d−2

∫
∂B

N(x, εy + z)φi(y)dσ(y).

We now expand N(x, εy + z) asymptotically as ε → 0. By (2.14) we have the
following relation:(

−1
2
I +KΩ

)
[N(·, εy + z)](x) = Γ(x− z − εy) modulo constants, x ∈ ∂Ω.

Using the Taylor expansion

Γ(x− εy) =
+∞∑
|j|=0

(−1)j
j!

ε|j|∂j(Γ(x))yj ,

we obtain(
−1
2
I +KΩ

)
[N(·, εy + z)](x) =

+∞∑
|j|=0

(−1)j
j!

ε|j|∂j(Γ(x− z))yj

=

+∞∑
|j|=0

(−1)j
j!

ε|j|∂jx

((
−1
2
I +KΩ

)
N(·, z)(x)

)
yj

=

+∞∑
|j|=0

1

j!
ε|j|
((
−1
2
I +KΩ

)
∂jzN(·, z)(x)

)
yj

=

(
−1
2
I +KΩ

) +∞∑
|j|=0

1

j!
ε|j|∂jzN(·, z)yj

 (x).
Since

∫
∂Ω

N(x,w)dσ(x) = 0 ∀ w ∈ Ω, we have the following asymptotic expansion of
the Neumann function, which is of independent interest.

Lemma 4.1. For x ∈ ∂Ω, z ∈ Ω, and y ∈ ∂B, and as ε→ 0,

N(x, εy + z) =
+∞∑
|j|=0

1

j!
ε|j|∂jzN(x, z)y

j .(4.5)

We now have from (4.4)

ND(λI −K∗D)−1

(
∂Hn

∂ν
|∂D
)
(x)

=

n∑
|i|=1

(∂iH)(z)ε|i|+d−2
+∞∑
|j|=0

1

j!
ε|j|∂jzN(x, z)

∫
∂B

yjφi(y)dσ(y).
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Observe that since H is a harmonic function in Ω we may compute

∑
|i|=l

1

i!
(∂iH)(z)∆(yi) = ∆y

∑
|i|=l

1

i!
(∂iH)(z)yi

 = 0,
and therefore, by Green’s theorem, it follows that∫

∂B

∑
|i|=l

1

i!
(∂iH)(z)∇(yi) · ν(y) dσ(y) = 0.

Thus, in view of (4.3), the following identity holds by using observation (4.1):∑
|i|=l

(∂iH)(z)

∫
∂B

φi(y)dσ(y) = 0 ∀ l ≥ 1.(4.6)

In fact, this follows immediately from (4.1). Recall now that

εd−2N(x, εy + z) = εd−2

n−|i|+1∑
|j|=0

1

j!
ε|j|∂jzN(x, z)y

j +O(εd+n−|i|) ∀ i, 1 ≤ |i| ≤ n,

and on the other handMij =
∫
∂B

yjφi(y)dσ(y) is the GPT associated with the domain
B and the conductivity k to obtain the following pointwise asymptotic formula: For
x ∈ ∂Ω,

u(x) = U(x)− εd−2
n∑
|i|=1

n−|i|+1∑
|j|=1

1

j!
ε|i|+|j|(∂iH)(z)Mij∂

j
zN(x, z) +O(εd+n).(4.7)

Observing that the formula (4.7) still contains ∂iH factors, we see that the re-
maining task is to convert (4.7) to a formula given solely by U and its derivatives.

As a simplest case, let us now take n = 1 to find the leading order term in the
asymptotic expansion of u|∂Ω as ε→ 0. From (2.7) and (2.17), we get

‖H − U‖L∞(∂Ω) ≤ Cε
d
2 ‖φ‖L2(∂D) ≤ Cε

d
2 ‖g‖L2(∂Ω)

for some C depending only on Ω and c0. It then follows from the maximum principle
that

‖H − U‖L∞(Ω) ≤ Cε
d
2 ‖g‖L2(∂Ω).

Then, from the mean value property of harmonic functions, we obtain

|∇H(z)−∇U(z)| ≤ Cε
d
2 ‖g‖L2(∂Ω).

It thus follows from (4.7) that

u(x) = U(x)− εd
∑

|i|=1,|j|=1

(∂iU)(z)Mij∂
jN(x, z) +O(εd+1), x ∈ ∂Ω,(4.8)

which is, in view of (3.1), exactly the formula derived in [14] and [7] when D has C1,α

boundary.
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We now return to (4.7). Recalling that by Green’s theorem U = −SΩ(g) +
DΩ(U |∂Ω) in Ω, substitution of (4.7) into (2.8) immediately yields that, for any x ∈ Ω,

H(x) = U(x)− εd−2
n∑
|i|=1

n−|i|+1∑
|j|=1

1

j!
ε|i|+|j|(∂iH)(z)MijDΩ(∂

j
zN(·, z))(x) +O(εd+n).

(4.9)

In (4.9) the remainder O(εd+n) is uniform in the Cn norm on any compact subset of
Ω for any n, and therefore

(∂lH)(z) +

n∑
|i|=1

εd−2

n−|i|+1∑
|j|=1

ε|i|+|j|(∂iH)(z)Pijl = (∂lU)(z) +O(εd+n)(4.10)

∀ l ∈ N
d with |l| ≤ n, where

Pijl =
1

j!
Mij∂

l
xDΩ(∂

j
zN(·, z))|x=z.(4.11)

Define the operator

Pε : (vl)l∈Nd,|l|≤n �→
(
vl + εd−2

n∑
|i|=1

n−|i|+1∑
|j|=1

ε|i|+|j|viPijl

)
l∈Nd,|l|≤n

.

Observe that

Pε = I + εdR1 + · · ·+ εn+d−1Rn−1.

Defining the matrices Qp, p = 1, . . . , n− 1, by

(I + εdR1 + · · ·+ εn+d−1Rn−1)
−1 = I + εdQ1 + · · ·+ εn+d−1Qn−1 +O(εn+d)

(4.12)

for small ε, we finally obtain that

((∂iH)(z))i∈Nd,|i|≤n =
(
I +

n∑
p=1

εd+p−1Qp
)
((∂iU)(z))i∈Nd,|i|≤n +O(εd+n),(4.13)

which yields the main result of this paper stated in Theorem 1.1.
We also have a complete asymptotic expansion of the solutions of the Dirichlet

problem.
Theorem 4.2. Suppose that the inhomogeneity consists of a single component,

and let u be the solution of (1.2) with the Neumann condition replaced by the Dirichlet
condition u|∂Ω = f . Let V be the solution of ∆V = 0 in Ω with V |∂Ω = f . The
following pointwise asymptotic expansion on ∂Ω holds for d = 2, 3:

∂u

∂ν
(x) =

∂V

∂ν
(x)− εd−2

n∑
|i|=1

n−|i|+1∑
|j|=1

1

j!
ε|i|+|j|

×
[((

I +

n+2−|i|−|j|−d∑
p=1

εd+p−1Qp
)
(∂lV (z))

)
i

Mij∂
j
z

∂

∂νx
G(x, z)

]
+O(εd+n),

(4.14)
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where the remainders O(εd+n) are dominated by Cεd+n‖f‖H1/2(∂Ω) for some C in-

dependent of x ∈ ∂Ω. Here G(x, z) is the Dirichlet Green function, Mij, i, j ∈ N
d,

are the GPTs, and Qp is the operator defined in (4.12), where Pijk is defined, in this
case, by

Pijl =
1

j!
Mij∂

l
xSΩ

(
∂jz

(
∂

∂νx
G

)
(·, z)

)
|x=z.(4.15)

Theorem 4.2 can be proved in the exactly same manner as Theorem 1.1. We
begin with Theorem 2.5. Then the same arguments give us

u(x) = V (x)− εd−2
n∑
|i|=1

n−|i|+1∑
|j|=1

1

j!
ε|i|+|j|(∂iH)(z)Mij∂

j
zG(x, z) +O(εd+n).

From this we can get (4.14) as before.
We conclude this paper by making a remark. The following formula is not exactly

an asymptotic formula. However, since the formula is simple and has some potential
applicability in solving the inverse conductivity problem, we make a record of it as a
theorem.

Theorem 4.3. We have

u(x) = H(x) + εd−2
n∑
|i|=1

n−|i|+1∑
|j|=1

1

j!
ε|i|+|j|∂iH(z)Mij∂

jΓ(x− z) +O(εd+n),(4.16)

where x ∈ Ω0 and the O(εd+n) term is dominated by C‖g‖L2(∂Ω)ε
d+n for some C

depending only on c0, and H is given in (2.8).
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Abstract. The one-dimensional heat equation in the domain x > wt, t > 0, is considered. Here
wt is a trajectory of Brownian motion. For almost any trajectory, it is proved that if the boundary
data are continuous, then the solution is continuous in the closure of the domain. The proof is based
on Davis’s law of square root for Brownian motion or on its weaker version, which is obtained by
using the theory of stochastic partial differential equations.
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1. Introduction and main results. Let wt, t ≥ 0, be a one-dimensional Wiener
process on a complete probability space (Ω,F , P ) and constants T, ν ∈ (0,∞). Define

Q = Q(w·) = {(t, x) : t ∈ (0, T ), x > wt}.
This is a region depending on ω. For each fixed ω we consider the following boundary
value problem:

ut(t, x) +
1

2
ν2uxx(t, x) = 0, (t, x) ∈ Q(w·),(1.1)

u(t, wt) = g(t, wt) for t ∈ [0, T ), u(T, x) = g(T, x) for x ≥ wT .(1.2)

We assume that g is a bounded continuous function, and by solution u of (1.1)–(1.2)
we mean Perron’s or probabilistic solution. One of the main goals of this article is to
prove the following result, saying that, with probability one, any point of the parabolic
boundary of Q(w·) is regular.

Theorem 1.1. There is a measurable set Ω′ ⊂ Ω such that P (Ω′) = 1 and for
each ω ∈ Ω′, any continuous bounded g, and any t0 ∈ [0, T ], we have

lim
(t,x)→(t0,wt0

)

(t,x)∈Q(w·)

u(t, x) = g(t0, wt0).(1.3)

Parabolic equations in noncylindrical domains have been considered for quite
some time, and many important results are known for them. We refer the interested
reader to [1] and the very extensive bibliography in this book. Most of the literature
treats the case of boundary which is Hölder (1/2+), and in this case it is possible to
get Hölder estimates up to the boundary if g is Hölder continuous. However, a typical
Wiener trajectory is only (1/2−) Hölder continuous. Therefore, in this article we only
deal with regularity and not with Hölder estimates up to the boundary.
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The best tractable conditions for the caloric regularity of a point on the lateral
boundary are expressed in terms of Khinchin’s law of the iterated logarithm or, more
generally, Kolmogorov–Petrovskii criteria. However, Lévy’s theorem says that (a.s.)

lim
h=t−s↓0
t,s≤T

wt − ws√
2h| lnh| = −1,

so that, in particular, wt+h−wt ≤ −
√

h| lnh| for appropriate t’s in [0, T ] and as small
h > 0 as we like. Such functions are way off the range of applicability of Kolmogorov–
Petrovskii criteria, and actually only chaotic behavior of Brownian trajectories saves
the regularity. In section 2 we give the proof of Theorem 1.1 based on Theorem 1.5,
which is a weak version of Davis’s law of square root (see [2]).

Theorem 1.2. With probability one

inf
t∈[0,T ]

lim
h↓0

wt+h − wt√
h

= −1.(1.4)

The author’s interest in Theorem 1.1 arose from the theory of stochastic partial
differential equations (SPDEs). To understand how it happened, consider the follow-
ing situation. Take a number σ ≥ 0 satisfying σ2 < 2 and a nonnegative function
ζ ∈ C∞0 (0,∞) such that ζ(x) = 1 for x ∈ [1, 2]. Let f(t, x) be a solution of

df(t, x) = fxx(t, x) dt+ σfx(t, x) dwt(1.5)

for t ∈ (0, T ) and x > 0 with zero lateral condition and with f(0, x) = ζ(x) for
x > 0. Here the lateral condition is understood in a certain generalized sense (we
say more about it in section 3). Interestingly enough, the general theory of SPDEs
developed in [11] implies that the solution f exists for any σ2 < 2, but (a.s.) it is
continuous up to the boundary, thus assuming the boundary data, only if σ2 < 1.
The author’s numerous attempts failed to use the Lp-theory of SPDEs and get any
information about the usual continuity of f up to the boundary if 1 ≤ σ2 < 2.
One may attribute this failure to the fact that in the theory of SPDEs the moments
of Hölder constants are estimated and, probably, for 1 ≤ σ2 < 2 the moments are
infinite. Anyhow, Theorem 1.1 allows us to prove in section 3 (see Theorem 3.2) the
continuity of f in [0, T ]× [0,∞) assuming that σ2 < 2 and observing that the function
u(t, x) := f(t, σ(x− wt)) satisfies the equation

ut =
1

2
ν2uxx for x > wt, t ∈ (0, T ),(1.6)

where ν2 = (2− σ2)/σ2, which is not very different from (1.1).
Due to Theorems 1.1 and 3.2 it is natural to ask with which rate the boundary

values are taken if the boundary data are smooth. We show some rather strong
restrictions on the rate in section 5, the results of which are based on Theorem 1.2
and the properties of an explicit barrier function introduced in section 4. Actually
again we need not Theorem 1.2 but only the fact that the left-hand side of (1.4) is
strictly negative. In section 5 we show that the modulus of continuity of solutions to
(1.1) even with smooth g can be as bad as we wish if ν is sufficiently small, and the
same happens to (1.5) if σ2 is below but sufficiently close to 2. In this way we get
natural restrictions showing what cannot be proved.

The properties of the barrier function from section 4 also allow us to give a proof
of the following deterministic result saying that the Hölder boundary regularity of
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solutions to ut + (1/2)ν2uxx = 0 for a ν implies the regularity for all ν. By C we
denote the set of all real-valued continuous functions x· given on [0,∞).

Theorem 1.3. Let a deterministic function w· belong to C, let ν, ν0 ∈ (0,∞),
and let v be a Perron’s or probabilistic solution of

vt(t, x) +
1

2
ν2
0vxx(t, x) = 0, (t, x) ∈ Q(w·),

v(t, wt) = g0(t, wt) for t ∈ [0, T ), u(T, x) = g0(T, x) for x ≥ wT ,

where g0 is a nonnegative bounded continuous function such that g0(T, x) > 0 for an
x > wT . Assume that for a λ ∈ (0, 1] and all t ∈ [0, T ] and x ∈ (0, 1], we have

v(t, x+ wt) ≤ xλ.(1.7)

Finally, let u be a Perron’s or probabilistic solution of (1.1)–(1.2) with a bounded
continuous function g. Then (1.3) holds for any t0 ∈ [0, T ].

Notice that if instead of (1.7) we just assume that (1.3) holds with v in place of
u for any t0 ∈ [0, T ], then the conclusion of Theorem 1.3 becomes false. This is easily
shown by referring to Khinchin’s law of the iterated logarithm.

The proof of Theorem 1.3, which we present in section 6, is based on two com-
ponents. The first one is just a standard fact (see Lemma 2.1) that the solution
of (1.1)–(1.2) is continuous at a point (t0, wt0) on the lateral boundary if there is a
parabola t ≥ t0+a2(x−wt0)

2 with the pole at this point such that the boundary has
common points with the (interior of the) parabola in any small neighborhood of the
pole. This fact is quite similar to the exterior cone condition for elliptic equations,
and, actually, it also holds in the situation when ν2 is any Borel bounded function
of (t, x) bounded away from zero. Although the proof of this generalization follows
the same lines and is not much longer than that in the case of constant ν2, we chose
not to give it for the sake of brevity and because of the particular applications of
our results to SPDEs. The referee of this paper kindly communicated to us how the
continuity of solutions on the boundary for constant ν2 can also be derived from the
general necessary and sufficient condition of regularity proved in [4].

The second component is provided by the following result.
Theorem 1.4. Under the assumptions of Theorem 1.3 there exists a constant

c0 ∈ (0,∞) depending only on ν0 and λ (see Remark 6.1) such that for all t ∈ [0, T ),

lim
h↓0

wt+h − wt√
h

≥ −c0.(1.8)

We prove this theorem in section 6. Observe that if the left-hand side of (1.8)
were too big negative at a point t0 ∈ [0, T ), then there would exist a parabola t ≥
t0 + a2(x− wt0)

2 with large a such that its sufficiently small piece near the pole was
inside of Q. Then the barrier from section 4 would imply that an opposite inequality
holds in (1.7) for small x > 0 with λ > 0 tending to zero as a→∞.

Also in section 6, general existence and embedding theorems from the theory of
SPDEs and the above discussed relation between (1.5) and (1.6) allow us to get Hölder
continuity for solutions of the latter equation, which after combining with Theorem
1.4 allows us to give a proof of a relaxed version of the law of square root (of course,
without using this law). This proof does a poor job in what concerns specifying the
constant c0, but the fact that c0 <∞ is explained qualitatively without computations.
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By the “relaxed version” we mean the following fact in which w· is the one-dimensional
Wiener process from the beginning of the article.

Theorem 1.5. (i) There exists a constant c0 < ∞ such that for any constant
T ∈ (0,∞), we have (a.s.)

sup
t∈(0,T ]

lim
h↓0

wt − wt−h√
h

≤ c0.(1.9)

(ii) One can take c0 = 2
√
π. (Theorem 1.2 says that one can take c0 = 1 and

replace ≤ with = in (1.9).)

2. Proof of Theorem 1.1. We start with the standard result we alluded to
before Theorem 1.4.

Lemma 2.1. Take a deterministic function w· ∈ C and assume that for any
t ∈ [0, T ),

lim
h↓0

wt+h − wt√
h

=: −c(t) > −∞.(2.1)

Let g be a bounded continuous function. Then the probabilistic solution u of (1.1)–
(1.2) satisfies (1.1) and assumes the boundary data (1.2). In particular, for any
t0 ∈ [0, T ], (1.3) holds.

Proof. Let Bt be a one-dimensional Wiener process (remember that here w· is a
fixed element of C). For t, x ∈ R also define

τ(t, x) = inf{s > 0 : (t+ s, x+ νBs) �∈ Q},

u(t, x) = Eg(t+ τ(t, x), x+ νBτ(t,x)),

so that u is the probabilistic solution of (1.1)–(1.2).
Since Bt is a strong Markov process, for any box P := (a, b) × (c, d) ⊂ Q and

(t, x) ∈ P , we have

u(t, x) = Eu(t+ γ(t, x), x+ νBγ(t,x)),

where γ(t, x) = inf{s > 0 : (t + s, x + νBs) �∈ P}. Therefore, it follows from [5] that
u is infinitely differentiable in P and satisfies (1.1) there. Since P ⊂ Q is arbitrary, u
satisfies (1.1) in Q.

Now the only issue is that of the boundary values. Of course, as t ↑ T we have
T − t ≥ τ(t, x) → 0 and u(t, x) → g(t, x) for x ≥ wT due to the continuity of g.
However, the issue of the lateral boundary values is more delicate.

Observe that obviously τ(t, x) is a decreasing function of x, in particular, τ(t, x) ≥
τ(t, wt) for x ≥ wt, and

u(t, x)→ Eg(t+ τ(t, wt+), wt + νBτ(t,wt+))

as x ↓ wt, where
τ(t, wt+) ≥ τ(t, wt).

Notice that by Blumenthal’s 0-1 law, for any (t, x), we have that P (τ(t, x) = 0)
equals 0 or 1. Furthermore, obviously, for t ∈ [0, T ), for x = wt, and for any h ∈
(0, T − t), we have

P (x+ νBh ≤ wt+h) ≤ P (τ(t, x) ≤ h).
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Owing to (2.1), we can choose h ∈ (0, T − t) as small as we like so that wt+h ≥
x− 2c(t)√h, and then

P (νBh ≤ −2c(t)
√
h) = P (x+ νBh ≤ x− 2c(t)

√
h)

≤ P (x+ νBh ≤ wt+h) ≤ P (τ(t, x) ≤ h).

Here the first expression is independent of h and is strictly positive. Hence

P (τ(t, wt) = 0) = lim
h↓0

P (τ(t, wt) ≤ h) > 0,

which implies that P (τ(t, wt) = 0) = 1 by Blumenthal’s 0-1 law.
The proof of the lemma would have stopped here if we knew a reference showing

that the well-known boundary regularity results (see, for instance, [3], [6]) were true
not only for strong Feller processes but also for processes with strong Feller resolvent.
The author could not find such a reference in the literature and this is why, to show
that for any t ∈ [0, T ), not only τ(t, wt) = 0 (a.s.) but also τ(t, wt+) = 0 (a.s.), we just
repeat a standard argument from the theory of Markov processes (see, for instance,
[3]). Define

v(t, x) = Eτ(t, x)

and notice that, for s > 0, t ∈ [0, T ), and t+ s ≤ T , by Markov property

Ev(t+ s, x+ νBs) = Eτs(t, x)− s,

where

τs(t, x) = inf{r > s : (t+ r, x+ νBr) �∈ Q}.
Hence

Eτs(t, x) = s+
1√
2πν2s

∫
R

v(t+ s, y)e−(y−x)2/(2ν2s) dy,

which shows that Eτs(t, x) is continuous in x. Furthermore, obviously τs(t, x) ↓ τ(t, x)
as s ↓ 0, and by the dominated convergence theorem (remember that τs(t, x) ≤ T − t)
we have Eτs(t, x) ↓ Eτ(t, x). Since Eτs(t, x) is continuous in x, we conclude that
Eτ(t, x) is upper semicontinuous in x for any t ∈ [0, T ). In particular,

Eτ(t, wt+) = lim
x↓wt

Eτ(t, x) ≤ Eτ(t, wt).

Here the right-hand side is zero by the above. Thus,

v(t, wt+) = Eτ(t, wt+) = 0

indeed. We assumed that t < T , but since τ(T, x) ≡ 0, our conclusion holds for all
t ∈ [0, T ]

Now, observe that by Itô’s formula, for h(t, x) = t, we have

h(t, x) = −v(t, x) + Eh(t+ τ(t, x), x+ νBτ(t,x)),

so that the argument in the beginning of the proof shows that v(t, x) is a continuous
function in Q ∪ {(0, x) : x > 0}. It is also continuous in Q ∪ {(T, x) : x ≥ wT }
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because v(t, x) ≤ T − t→ 0 as t ↑ T . Finally, the functions v(t, x+wt) are continuous
in t ∈ [0, T ] if x > 0 and for each t decrease to zero as x ↓ 0. By Dini’s theorem
v(t, x + wt) → 0 as x ↓ 0 uniformly in t ∈ [0, T ]. In particular, τ(t, x) → 0 in
probability as Q � (t, x)→ (t0, wt0). After that, (1.3) follows from the definition of u
and the continuity of g. The lemma is proved.

Remark 2.2. One can show that for each particular t0 ∈ [0, T ), (1.3) holds if
(2.1) holds only for t = t0.

Now, Theorem 1.2 says that the conditions of Lemma 2.1 hold with c(t) = 1 for
almost any trajectory w· of the Wiener process. Hence, for almost any trajectory w·,
the conclusion of this lemma holds no matter which continuous and bounded g we
take. This is exactly the assertion of Theorem 1.1.

In the same way we get Theorem 1.1 from Theorem 1.5 after noticing that since
wT − wT−t is a Wiener process on [0, T ], (1.9) is equivalent to saying that (a.s.)

inf
t∈[0,T )

lim
h↓0

wt+h − wt√
h

≥ −c0.

3. An application to SPDEs. Let σ ≥ 0 be a number such that σ2 < 2, and
let ζ be a nonnegative function satisfying ζ ∈ C∞0 (0,∞) and ζ(x) = 1 for x ∈ [1, 2].
Consider equation (1.5) for t ∈ (0, T ) and x > 0 with zero lateral condition and with
f(0, x) = ζ(x) for x > 0.

Of course, by solution f we mean an appropriately measurable and integrable
function f = f(ω, t, x) such that for any test function ψ ∈ C∞0 (0,∞),

(f(t, ·), ψ) = (ζ, ψ) +

∫ t

0

(f(s, ·), ψxx) ds− σ

∫ t

0

(f(s, ·), ψx) dws(3.1)

(a.s.) for all t ∈ [0, T ], and where (·, ·) is the scalar product in L2. This shows how
the equation and the initial condition are understood. The condition that f = 0 on
x = 0 is reflected in the requirement that f belong to an appropriate Banach space.
To be a little bit more specific, if r ≥ 2 and θ ∈ R satisfy

1− 2

(r − 1)σ2 + 2
<

θ

r
< 1,(3.2)

then by Theorem 3.3 of [11] equation (1.5) with given initial data admits a (unique)
solution belonging to the class Hγr,θ(T ) for all γ ∈ R. Here γ is the number of deriva-
tives of f in x, r is the power of summability in (ω, t, x), and θ is “responsible” for
the rate with which the derivatives of f in x are allowed to blow up near x = 0. The
precise definition of Hγr,θ(T ), which we do not need in the present article, is given in
[10] and [11]. The following fact is a direct consequence of the results in [12], [7], and
[9].

Lemma 3.1. For almost any ω, the function f(t, x) is infinitely differentiable
in x, any of its derivatives with respect to x are continuous in (t, x) in the region
t ∈ [0, T ], x > 0, and, for any x > 0, (1.5) holds for t ∈ (0, T ).

It may be worth noting that, of course, the assertions of the lemma refer to an
appropriate modification of the solution rather than to the solution itself. Here is the
main result of this section also stated for the modification.

Theorem 3.2. For almost any ω, we have

sup
t∈[0,T ]

|f(t, x)| → 0 as x ↓ 0.
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What follows below in this section is aimed at proving this theorem. On the space
C with Wiener measure W , introduce the coordinate process xt(x·) := xt, which is a
Wiener process. For t ≥ 0, x ∈ R, and x·, y· ∈ C, define

τ(t, x, x·, y·) = t ∧ inf{s ≥ 0 : x+ νxs ≤ yt−s},
where yr := 0 for r ≤ 0 and ν = σ−1

√
2− σ2. Then the probabilistic solution of (1.6)

with zero lateral condition and with initial condition η(x) := ζ(σx) is given by

u(t, x) = u(ω, t, x) := v(w·(ω), t, x),

where

v(y·, t, x) :=
∫
C

Iτ(t,x,x·,y·)=t η(x+ νxt)W (dx·).

From Theorem 1.1, upon noticing that u(T − t, x + wT ) solves (1.1)–(1.2) with
wT−t − wT in place of wt and with g = 0 on the lateral boundary, we immediately
get that u(t, x/σ + wt) → 0 as x ↓ 0 uniformly in t ∈ [0, T ]. Therefore, to prove the
present theorem it suffices to show that f = f̄ (a.s.), where

f̄(t, x) := u(t, x/σ + wt).

Observe that τ(t, x, x·, y·) is a lower semicontinuous function of νx·−yt−· for each
(t, x). Therefore by Fubini’s theorem v(y·, t, x) is a Borel function of y· and u(t, x) is
a random variable. Furthermore, v(y·, t, x) will not change if we change yr for r > t.
Therefore, v(y·, t, x) is σ(yr : r ≤ t)-measurable and u(t, x) is Fwt -adapted, where
Fwt = σ(wr : r ≤ t). In addition u satisfies (1.6) and hence is infinitely differentiable
in [0, T ] × (0,∞) and, in particular, continuous in (t, x) for any ω. Hence f̄ satisfies
the measurability properties required for solutions of (1.5). By using (1.6) and the
fact that u is infinitely differentiable in (t, x) and by using the Itô–Wentzell formula,
we get that with probability one, for all t ∈ [0, T ] and x > 0,

f̄(t, x) = ζ(x) +

∫ t

0

f̄xx(s, x) ds+ σ

∫ t

0

f̄x(s, x) dws.(3.3)

Next we want to pass from this pointwise equation to (3.1). For ε > 0 denote by
Γ(ε, w·) the two-dimensional ε-neighborhood of the graph of wt, t ∈ [0, T ]. Obviously
0 ≤ u ≤ 1 and for such solutions of the heat equation it is known that, given ε > 0,
any derivative of u with respect to (t, x) is bounded in

(t, x) �∈ Γ(ε, w·), x > wt, t ∈ [0, T ],
by a constant depending only on ε and the order of the derivative. Therefore, if
we take a ψ ∈ C∞0 (0,∞), then with probability one any derivative in x of f̄(t, x) is
bounded and continuous in (t, x) whenever x ∈ suppψ and t ∈ [0, T ]. This allows us
to use the stochastic Fubini’s theorem and obtain (3.1) for f̄ after multiplying (3.3)
by ψ(x) and integrating with respect to x.

Since f also satisfies (3.1) and there is uniqueness, to show that f = f̄ we prove
that f̄ belongs to Hγr,θ(T ).

Lemma 3.3. For r ≥ 1 and θ ∈ (r − 1, r), we have f̄ ∈ Lr,θ−r(T ), that is,

E

∫ T

0

∫ ∞
0

xθ−r−1|f̄(t, x)|r dxdt <∞.
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Proof. Fix t ∈ (0, T ) and x > 0. By Hölder’s inequality

E|f̄(t, x)|r ≤
∫

Ω

∫
C

Iγ(t,x)=t ζ
r(x+ σνxt + σwt)W (dx·)P (dω),(3.4)

where

γ(t, x) = τ(t, x/σ + wt, x·, w·)
= t ∧ inf{s ≥ 0 : x/σ + wt + νxs ≤ wt−s}
= t ∧ inf{s ≥ 0 : x+ σmt +

√
2− σ2 xs ≤ 0},

and ms := wt − wt−s is a Wiener process with respect to s ∈ [0, t]. Denote
√
2Bs = σmt +

√
2− σ2 xs

and notice that Bt is a Wiener process on Ω× C,

γ(t, x) = t ∧ inf{s ≥ 0 : x+
√
2Bs ≤ 0}.

Now, in a common abuse of notation we write E for the expectation sign on Ω × C
and rewrite (3.4) as

E|f̄(t, x)|r ≤ EIγ(t,x)=tζ
r(x+

√
2Bt) =: h(t, x).

We recognize h as the probabilistic solution of the heat equation ht = hxx, t ∈
(0, T ), x > 0, with zero boundary condition and with initial condition ζr. From
well-known estimates for solutions of such problems, we get that

|h(t, x)| ≤ Nx for x ≤ 1, |h(t, x)| ≤ Ne−x for x ≥ 1,
where the constant N is independent of t ∈ [0, T ], x > 0. The reader preferring
probabilistic proofs can get the same estimates after noticing that the event γ(t, x) = t
coincides (a.s.) with infs≤tBs > −x/√2 and the distribution of (Bt, infs≤tBs) is well
known.

The above estimate of E|f̄(t, x)|r immediately implies the assertion of the lemma.
The lemma is proved.

From [10], [11] we know what the differentiating does to functions from H
γ
r,θ(T )

and obtain the following.
Corollary 3.4. We have f̄x ∈ H

−1
r,θ(T ), f̄xx ∈ H

−2
r,θ+r(T ), so that f̄ is an

H0
r,θ(T )-solution of (1.5) if θ ∈ (r − 1, r) and r ≥ 2.
Now since the initial data is smooth, the results of [10] show that f̄ ∈ Hγr,θ(T )

for any γ if θ ∈ (r − 1, r) and r ≥ 2. Finally, uniqueness theorems (see, for instance,
Lemma 4.3 of [10]) prove that no matter to which space Hγp,τ (T ) the function f belongs,

we have f = f̄ for almost all (ω, t, x) ∈ Ω× [0, T ]× (0,∞). Since both functions are
continuous in (t, x), we conclude that (a.s.) f(t, x) = f̄(t, x) for all t ∈ [0, T ], x > 0,
and this brings the proof of Theorem 3.2 to an end.

4. A barrier function. For c ≥ 0 consider the domain
Dc = {(t, x) : t ∈ (0, 1), x > −c√1− t}

with the lateral boundary being the parabola

Γc := {(t, x) : t ∈ [0, 1], x = −c
√
1− t}.
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We will be interested in finding a nonnegative nontrivial solution of the heat equation

ut =
1

2
uxx in Dc(4.1)

which is continuous in D̄c and vanishes on Γc. If we look for u in the form u(t, x) =
f(t)φ(y), where y = x/

√
1− t, then, by noticing that

ut = f ′φ+
y

2(1− t)
fφ′, ux =

1√
1− t

fφ′, uxx =
1

1− t
fφ′′,

we find that u satisfies (4.1) if

f ′φ =
f

2(1− t)
(φ′′ − yφ′),

that is, if there is a number λ such that

f ′

f
= − λ

2(1− t)
, t ∈ (0, 1), φ′′ − yφ′ = −λφ, y > −c.

The following argument is based on the results of [14]. According to [14] the
function

ψ0(λ, x) :=

∫ ∞
0

p(x, r)r−λ−1 dr, p(x, r) := exp(−rx− r2/2),

satisfies φ′′−yφ′ = −λφ for all x ∈ R if λ < 0. By repeatedly integrating by parts, we
see that for those λ and any n = 0, 1, 2, . . . , we have ψ0(λ, x) = N(λ)ψn(λ, x), where

ψn(λ, x) :=

∫ ∞
0

rn−λ−1 ∂n

(∂r)n
p(x, r) dr,

and N(λ) �= 0. Hence ψn(λ, x) also satisfies ψ′′n − yψ′n = −λψn for all x ∈ R if λ < 0.
However, since both parts of the equation are obviously analytic in λ if �λ < n,
the equation holds whenever λ < n. (Actually, this can be checked out by directly
integrating back by parts and noticing that by Leibniz’s formula

p(n+1)
r (x, r) = −((x+ r)p(r, x))(n−1)

r = −(x+ r)p(n)
r (x, r)− np(n−1)

r (x, r). )

We will be interested in n = 1 and 0 < λ < 1 when

ψ1(λ, x) =

∫ ∞
0

r−λ
∂

∂r
[p(x, r)− 1] dr = −λφ(λ, x),

where

φ(λ, x) :=

∫ ∞
0

[1− e−xr−r
2/2]r−λ−1 dr.(4.2)

It is seen that φ(λ, x) is a strictly increasing function of x, φ(λ, x) ≥ φ(λ, 0) > 0 for
x ≥ 0, φ(λ, x) → ±∞ as x → ±∞. Hence, for any λ ∈ (0, 1), there exists a unique
point c(λ) > 0 such that φ(λ,−c(λ)) = 0. In addition,

φx(λ, x) =

∫ ∞
0

e−xr−r
2/2r−λ dr > 0,(4.3)
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and, for c = c(λ),

φλ(λ,−c) = −
∫ ∞

0

[1− ecr−r
2/2]r−λ−1 ln(r/2c) dr < 0.

(Notice that the last integrand is nonnegative. The author learned this observation
from M. Safonov.) It follows that c(λ) is continuously differentiable and strictly
decreasing for λ ∈ (0, 1). Therefore, the function λ → c(λ) is invertible. In this way
we obtain part of the results in [14] where the properties of Sturm–Liouville problems
are used. The remaining part of the following result is taken directly from [14]. At
this point it is also worth noting that similar results for equation φ′′−xφ′ = −λφ not
on half lines but on finite intervals are given in [13].

Lemma 4.1. For any c > 0 there exists a unique λ = λ(c) ∈ (0, 1) such that∫ ∞
0

[1− ecr−r
2/2]r−λ−1 dr = 0.(4.4)

The function λ(c) is differentiable and strictly decreasing on (0,∞). Finally (a ∼ b

means a/b→ 1), we have 1− λ(c) ∼ c
√
2/π as c ↓ 0 and λ(c) ∼ (2π)−1/2 ce−c

2/2 as
c→∞.

Remark 4.2. There is a very indirect argument showing that (4.4) for λ ∈ (0, 1),
c > 0 is equivalent to the equation∫ 1

0

[
1√

1− r2
ec

2r/(1+r) − 1
]
r−λ−1 dr =

1

λ
.

The author does not know any elementary proof of the equivalence.
Now we are ready to introduce a barrier function.
Lemma 4.3. Take c ∈ (0,∞), define λ ∈ (0, 1) as the unique solution of (4.4),

and let

v(t, x) :=

∫ ∞
0

[1− e−rx−(1−t)r2/2]r−λ−1 dr, (t, x) ∈ D̄c.

Then
(i) v is infinitely differentiable in Dc, vx > 0, vxx < 0, and vt < 0 in Dc, and v

satisfies (4.1);
(ii) v is continuous in D̄c, increases and is concave in x, decreases in t, v > 0 in

Dc, v = 0 on Γc;
(iii) v(1, x) = Nxλ for x ≥ 0, where N = λ−1Γ(1−λ), and v(t, 0) = N1(1− t)λ/2

for t ∈ [0, 1], where the constant N1 ∈ (0,∞).
Proof. Take the function φ(λ, x) according to (4.2). Then the substitution

r → r
√
1− t shows that (1 − t)λ/2φ(λ, x/

√
1− t) = v(t, x) if (t, x) ∈ D̄c and t �= 1.

This, together with what has been said before in this section, immediately implies
all assertions in (i), perhaps apart from the ones concerning the signs of derivatives.
However, the signs of (all) derivatives in x are obtained from (4.3), and then we get
vt = (1/2)vxx < 0.

We also see that to prove (ii) we need only prove that v is continuous at the top
of Dc. The continuity at points t = 1, x > 0 follows from the dominated convergence
theorem. To consider the point (1, 0), observe that for any α > 0,∫ ∞

0

[1− e−αr]r−λ−1 dr = αλ
∫ ∞

0

[1− e−r]r−λ−1 dr = Nαλ.(4.5)
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Then, for (t, x) ∈ D̄c, t �= 1, we find

v(t, x)− v(1, 0) = v(t, x) = v(t, x)−
∫ ∞

0

[1− ecr
√

1−t−r2(1−t)/2]r−λ−1 dr

=

∫ ∞
0

ecr
√

1−t−r2(1−t)/2[1− e−r(x+c
√

1−t)]r−λ−1 dr

≤ ec
2/2

∫ ∞
0

[1− e−r(x+c
√

1−t)]r−λ−1 dr = N(x+ c
√
1− t)λ → 0

as (t, x)→ (1, 0). This finishes the proof of (ii).
Obviously, assertion (iii) follows immediately from (4.5). The lemma is proved.
Now comes the main result of this section. It says that the modulus of continuity

of solutions to the heat equation in a domain bounded by half parabola is affected by
the slope of the parabola. Of course, we consider parabolas only with axes parallel to
the t-axis and directed down with respect to the t-axis. This, together with Lemma
4.1, shows that if we have a nonnegative solution which is, say, λ-Hölder continuous in
a domain, then the domain cannot contain parabolas that are too “wide” with poles
on the boundary and the critical “width” is determined by λ.

Lemma 4.4. Let c ∈ (0,∞), t0 ∈ (0,∞), and x0 ∈ R. Take an a ∈ (0, t0] and
denote

Gc,a(t0, x0) = {(t, x) : t0 − a < t < t0,−c
√
(t0 − t) < x− x0 < 2

√
a}.

Let u(t, x) be a bounded continuous function given in Ḡc,a(t0, x0) and satisfying

1

2
uxx − ut ≤ 0(4.6)

in Gc,a(t0, x0) in the classical sense. Assume that u ≥ 0 and u �≡ 0 in Gc,a(t0, x0).
Then there exists a constant δ > 0 such that

u(t0, x) ≥ δ(x− x0)
λ(c)

for 0 ≤ x− x0 ≤
√
a, where λ(c) is introduced in Lemma 4.1.

Proof. Notice that the function

u(a(t− 1) + t0, x
√
a+ x0)

satisfies the assumption of the lemma with t0 = a = 1 and x0 = 0. Furthermore, the
assertion of the lemma is also easily rewritten in terms of this new function. Therefore,
without losing generality we assume that t0 = a = 1 and x0 = 0, so that u satisfies
(4.6) in

Gc := Gc,1(1, 0).

By the Harnack inequality, we have u(t, 1) > 0 in a closed left neighborhood of 1.
Then simple barriers show that for any s0 ∈ (0, 1) sufficiently close to 1, there exists
an ε > 0 such that

u(s0, x) ≥ ε(x+ c
√
(1− s0))

for all x ∈ [−c√(1− s0), 1] and u(t, 1) ≥ ε for t ∈ [s0, 1]. We fix appropriate s0 ∈
[3/4, 1) and ε > 0 and take λ = λ(c) ∈ (0, 1).
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We also take the functions v from Lemma 4.3 and observe that v(s0, x) is a smooth
function vanishing at x = −c√(1− s0). Therefore, there is a constant γ > 0 such
that

γv(s0, x) ≤ ε(x+ c
√
(1− s0)) ≤ u(s0, x).

By reducing γ > 0 if necessary we can achieve the inequality γv(t, 1) ≤ u(t, 1) for all
t ∈ [s0, 1]. Then the inequality v ≤ u holds on the parabolic boundary of Gc, and
by virtue of (4.6) and the maximum principle we have γv ≤ u everywhere in Ḡc. In
particular, u(1, x) ≥ γv(1, x) for 0 ≤ x ≤ 1, which, owing to Lemma 4.3(iii), yields
our assertion. The lemma is proved.

Remark 4.5. One can get estimates for u(t0, x) from above as well. Let c ∈ (0,∞),
t0 ∈ (0,∞), a ∈ (0, t0], and x0 ∈ R. Let u(t, x) be a bounded continuous function
given in Ḡc,a(t0, x0) and satisfying

1

2
uxx − ut ≥ 0

in Gc,a(t0, x0) in the classical sense. Also assume that u ≤ 0 for x−x0 = −c
√
(t0 − t)

if t0 − a ≤ t ≤ t0. Then by using the maximum principle, one easily obtains that
there exists a constant K > 0 such that u(a(t− 1) + t0, x

√
a+ x0) ≤ Kv(t, x) in the

intersection of Ḡc with a neighborhood of (1, 0). It follows that there exists a constant
N such that u(t0, x) ≤ N(x− x0)

λ(c) for 0 ≤ x− x0 ≤
√
a, where λ(c) is introduced

in Lemma 4.1.

5. Lower estimates on the modulus of continuity of u and f on the
boundary. In view of Lemma 4.1 the following theorem shows that the Hölder ex-
ponent of solutions to (1.1)–(1.2) can be extremely small if ν is small.

Theorem 5.1. Let c > 0 be a constant, and let 0 < νc < 1. Then there exists
a measurable set Ω′ ⊂ Ω such that P (Ω′) = 1 and for each ω ∈ Ω′, there exists
an everywhere dense subset S of [0, T ] such that for any t0 ∈ S and nonnegative
continuous bounded g, satisfying g(T, x) �≡ 0 for x > wT (and, say, equal to zero
whenever x = wt and t ∈ [0, T ]), we have

lim
x↓wt0

u(t0, x)

(x− wt0)
λ(c)

=∞,(5.1)

where u is the probabilistic solution of problem (1.1)–(1.2).
Proof. Obviously, it suffices to show that (a.s.) on each dyadic subinterval [Tk2−n,

T (k + 1)2−n] of [0, T ] there is a point t0 such that (5.1) holds for any solution of
(1.1) on [Tk−n, T (k + 1)2−n) in place of [0, T ) satisfying u(T (k + 1)2−n, x) ≥ 0 and
u(T (k + 1)2−n, x) �≡ 0. Due to self similarity of the heat equation and the Wiener
process, the problem for each subinterval reduces to the one for [0, 1], and since there
are only countably many dyadic subintervals, it suffices to prove the existence of S
which is not everywhere dense but rather just nonempty.

Notice that

I := lim
n→∞ inf

t∈[0,T/2]
sup

h∈(0,1/n]

wt+h − wt√
h

= inf
n≥1

inf
t∈[0,T/2]

sup
h∈(0,1/n]

wt+h − wt√
h

= inf
t∈[0,T/2]

inf
n≥1

sup
h∈(0,1/n]

wt+h − wt√
h

= inf
t∈[0,T/2]

lim
h↓0

wt+h − wt√
h

:= J.
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Owing to (1.4), we have J = −1 (a.s.). Hence, there is a set Ω′ of full probability on
which I = −1. We take any ω ∈ Ω′ and a c′ ∈ (c, ν−1). Then there exists n ≥ 1 and
t0 ∈ [0, T/2] such that for w· = w·(ω),

sup
h∈(0,1/n]

wt0+h − wt0√
h

≤ −c′ν

or, equivalently, wt0+h ≤ x0− c′ν
√
h for h ∈ (0, 1/n), where x0 = wt0 . It follows that

the function v(t, x) = u(t/ν2, x) satisfies the equation vt + (1/2)vxx = 0 for

x > x0 − c′
√
t− t0

and 0 < t− t0 < a, where a = ν2/n. After changing variables t→ T − t we transform
the equation vt + (1/2)vxx = 0 into vt = (1/2)vxx and get the possibility to apply
Lemma 4.4, which leads to u(t0, x) ≥ δ(x− x0)

λ(c′) for small x− x0 > 0 and to

lim
x↓x0

u(t0, x)

(x− x0)λ(c)
= lim
x↓x0

u(t0, x)

(x− x0)λ(c′)

1

(x− x0)λ(c)−λ(c′) =∞,

where the last conclusion follows from the inequality λ(c) > λ(c′), which holds because
λ is a strictly decreasing function. The theorem is proved.

Remark 5.2. The results of [13] show that actually (a.s.) S has a nonzero Haus-
dorff dimension, which is independent of ω.

Our last result shows that there are some nontrivial restrictions on the modulus
of continuity on the boundary of solutions of SPDEs.

Theorem 5.3. Let f be the function introduced in section 3 as a solution of
(1.5), and let a constant c satisfy

0 < c
√
2− σ2 < σ.

Then with probability one there exists a dense subset S ∈ [0, T ], which is unrelated
with f and is such that for any t0 ∈ S, we have

lim
x↓0

f(t0, x)

xλ(c)
=∞.

Proof. Notice that as we have seen in the proof of Theorem 3.2 the function
u(t, x) := f(t, σ(x − wt)) satisfies ut = (1/2)ν2uxx for x > wt, t ∈ [0, T ], where
ν2 = (2 − σ2)/σ2. After that it only remains to either reverse time and refer to
Theorem 5.1 or just repeat the proof of this theorem again using Lemma 4.4 and
avoid any time change, since the lemma is stated for the “usual” heat equation. The
theorem is proved.

6. Proofs of Theorems 1.3, 1.4, and 1.5.
Proofs of Theorems 1.3 and 1.4. First we deal with Theorem 1.4. Take a t0 ∈

[0, T ) and observe that the function u(t, x) = v(T − t, ν0x) satisfies ut = (1/2)uxx in

R := {(t, x) : t ∈ (0, T ), x > ν−1
0 wT−t}.

Then take any c ∈ (0,∞) such that

λ(c) < λ.(6.1)
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We notice that the point (T −t0, ν
−1
0 wt0) is on the parabolic boundary of R and claim

that no matter how small a > 0 is,

Gc,a(T − t0, ν
−1
0 wt0) �⊂ R.

Indeed, otherwise there would exist a > 0 such that for any c′ ∈ (0, c), the function u
would be continuous in Ḡc′,a(T − t0, ν

−1
0 wt0) and satisfy ut = (1/2)uxx in Gc′,a(T −

t0, ν
−1
0 wt0). Then by Lemma 4.4 we would have

0 < lim
x↓0

u(T − t0, x+ ν−1
0 wt0)

xλ(c′) = lim
x↓0

v(t0, νx+ wt0)

xλ(c′) =: I.

However, if λ(c′) < λ, then I = 0 due to condition (1.7). We get a contradiction since
λ(c) < λ and, owing to the continuity of λ(c), one can indeed choose c′ ∈ (0, c) so
that λ(c′) < λ.

Our claim just proved is equivalent to saying that for any a ∈ (0, T − t0), there
exists h ∈ (0, a) such that

ν−1
0 wt0 − c

√
h ≤ ν−1

0 wt0+h.

It follows that

lim
h↓0

wt0+h − wt0√
h

≥ −cν0.(6.2)

This finishes the proof of Theorem 1.4.
Theorem 1.3 follows immediately from Theorem 1.4 and Lemma 2.1.
Remark 6.1. Equation (6.2) holds whenever c > 0 and condition (6.1) is satisfied.

The latter can be rewritten as c > c(λ), where we define c(1) = c(1−) = 0 and,
for other λ ∈ (0, 1), by c(λ) we mean the function introduced in section 4 before
Lemma 4.1.

It follows that (1.8) holds with c0 = ν0c(λ). By the way, Lemma 4.3 shows that
this value of c0 is sharp as long as all possible boundaries are allowed.

Proof of Theorem 1.5. We will be using some properties of the solution f to (1.5)
introduced in section 3 for the parameters r ≥ 2 and θ satisfying (3.2). Again the
exact definition of the spaces Hγr,θ(T ) is not at issue here. What is important for us is
that by Theorem 4.1 of [9] or by Theorem 2.7 of [12], if 2/r < η ≤ 1 and γ ∈ R, then

E sup
t≤T
||Mη−1f(t, ·)||rHγ

r,θ
<∞

and, finally, by Lemma 2.2 of [9] or by Theorem 3.1 of [7] that

E sup
t≤T

sup
x>0
|xη−1+θ/rf(t, x)|r <∞.

Due to the arbitrariness in the choice of η and θ, we get that

E sup
t≤T,x>0

(xε−β |f(t, x)|)r <∞, β =
2

(r − 1)σ2 + 2
− 2

r
,

where ε > 0 is as small as we like. Important at this moment is that there are
σ ∈ (0, 1), r > 2, and ε ∈ (0, β) such that β > 0 and the event

B(β − ε) :=

{
ω : lim

x↓0
sup
t∈[0,T ]

|f(t, x)|
xβ−ε

<∞
}
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has full probability. We fix some σ ∈ (0, 1), r > 2, and ε ∈ (0, β) such that β > 0. By
the way, if σ ≥ 1, then β < 0 for any r > 0.

Next, we remember that according to section 3, for ω ∈ Ω′ with P (Ω′) = 1, the
function u(t, x) := f(t, σ(x − wt)) satisfies ut = (1/2)ν2uxx for x > wt, t ∈ (0, T ),
where ν = σ−1

√
2− σ2. Hence, for ω ∈ Ω′, the function v(t, x) := u(T − t, x) satisfies

vt + (1/2)ν2vxx = 0 for x > wT−t, t ∈ (0, T ).
Furthermore, if ω ∈ Ω′ ∩B(β − ε), then there is a constant K = K(ω) such that

(1.7) is satisfied with v/K in place of v and β−ε in place of λ. Therefore, by Theorem
1.4 and Remark 6.1 we have

lim
h↓0

wT−(t+h) − wT−t√
h

≥ −νc(β − ε)

whenever ω ∈ Ω′ ∩ B(β − ε) and t ∈ [0, T ). This proves assertion (i) of Theorem 1.5
with c0 = νc(β − ε).

To prove assertion (ii) notice that, due to the above, one can take

c0 = c1 := inf{νc(β − ε) : σ ∈ (0, 1), r ≥ 2, β > 0, ε ∈ (0, β)}.

Since c(λ) is a continuous decreasing function, we have

c1 = inf{νc(β) : σ ∈ (0, 1), r ≥ 2, β > 0}.

Next, if 0 < σ < 1, then the largest value of β is

β0 = 2
(1− σ)2

2− σ2
,

which occurs for r = (2 − σ2)(σ − σ2)−1. Notice that in similar computations in
Remark 3.7 of [8] there is a misprint in the expression of β0, which contains 1− σ2 in
the numerator in [8] instead of (1− σ)2. Thus,

c1 = inf
σ∈(0,1)

c

(
2
(1− σ)2

2− σ2

)
σ−1

√
2− σ2.

We give an estimate for this inf by using Lemma 4.1 and letting σ ↓ 0. Then we
see that (a.s.)

c1 ≤ lim
σ↓0

c

(
2
(1− σ)2

2− σ2

)
σ−1

√
2− σ2 =

√
π lim
σ↓0

σ−1

(
1− 2 (1− σ)2

2− σ2

)
= 2
√
π.

This proves assertion (ii) and the theorem.
Remark 6.2. It turns out that taking σ = 0.31 yields a slightly better approxi-

mation of c1, but still very far from the sharp value of c0, which is 1.
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Abstract. Following an approach introduced by Lagnado and Osher [J. Comput. Finance, 1
(1) (1997), pp. 13–25], we study Tikhonov regularization applied to an inverse problem important
in mathematical finance, that of calibrating, in a generalized Black–Scholes model, a local volatility
function from observed vanilla option prices.

We first establish W 1,2
p estimates for the Black–Scholes and Dupire equations with measurable

ingredients. Applying general results available in the theory of Tikhonov regularization for ill-posed
nonlinear inverse problems, we then prove the stability of this approach, its convergence towards a
minimum norm solution of the calibration problem (which we assume to exist), and discuss conver-
gence rates issues.

Key words. options, calibration, ill-posed nonlinear inverse problem, Tikhonov regularization,
parameter estimation, W 1,2

p estimates

AMS subject classifications. 35K15, 35Q80, 35R05, 35R30
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1. Introduction. A quantity of fundamental importance to the trading of op-
tions on a stock S is the stochastic component in the evolution of the stock price,
the so-called volatility. Obtaining estimates for the volatility is a major challenge for
market finance. Unlike historical estimates of the volatility, based upon observations
of the time-series of the stock price, calibration estimates rely upon the anticipation of
the trading agents reflected in the prices of the traded option products derived from
S. We consider in this article Tikhonov regularization applied to a widely studied
inverse problem in mathematical finance, that of calibrating a local volatility function
from a given set of option prices in a generalized Black–Scholes model.

This calibration problem has received intensive study in the last ten years; see,
for instance, [19, 17, 18, 35, 1, 11, 8, 34, 2, 29, 24, 7, 14, 15, 4] and references
therein. Notable approaches include entropy regularization (Avellaneda et al. [2])
or parametrix expansion (Bouchouev and Isakov [8]). In this paper, we shall fo-
cus upon the Tikhonov regularization method, following an approach introduced by
Lagnado and Osher [29]. Jackson, Süli, and Howison [24] devised an implementation
of this method with splines. Bodurtha and Jermakyan used linearization [7]. However,
while most previous approaches adopted a numerical and empirical point of view, our
aim is to establish a rigorous theoretical ground for this inverse problem in a partial
differential equation framework.

Work corresponding to a first stage of this research has been published in my
Ph.D. thesis [14, Part IV] (in French), while a preliminary version of this article has
been published as a CMAP Internal Research Report [15]. A further article addresses
an implementation of the method in a trinomial tree (explicit finite differences) setting
and reports numerical experiments illustrating the stability of the local volatility
function thus calibrated [16].
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2. Preliminaries. In this section, we will give an informal presentation of the
calibration problem and of the Tikhonov regularization method, provide an overview
of the paper, and define the main notation and general assumptions.

2.1. Generalized Black–Scholes model. In market finance, a European call
(respectively, put) option with maturity date T and strike K, on an underlying asset
S, denotes a right to buy (respectively, sell), at price K, a unit of S at time T . Let
us then consider a theoretical financial market, with two traded assets: cash, with
constant interest rate r, and a risky stock, with diffusion price process

dSt = St(ρ(t, St)dt+ σ(t, St)dWt) , t > t0 ; St0 = S0 .

Here W means a standard Brownian motion. Moreover, the stock is assumed to yield
a continuously compounded dividend at constant rate q. Suppose finally that the
market is liquid, nonarbitrable, and perfect. These assumptions mean, respectively,
that first, there are always buyers and sellers; second, there can be no opportunity
that a riskless investment can earn more than the interest rate of the economy r;
and third, there are no restrictions of any kind on the sales and no transaction costs.
Under these assumptions the market is complete. This means that any option can be
duplicated by a portfolio of cash and stock. Moreover, a European call/put on S has

a theoretical fair price within the model, which we will denote by Π
+/−
T,K (t0, S0; r, q, a),

where a ≡ σ2/2, and

Π
+/−
T,K (t0, S0; r, q, a) = e−r(T−t0)Et0,S0

P (ST −K)+/− .(2.1)

Here P denotes the so-called risk-neutral probability, under which

dSt = St((r − q)dt+ σ(t, St)dWt) , t > t0 ; St0 = S0 .(2.2)

Alternatively to the probabilistic representation (2.1), the prices Π+/− can be given as
the solution to a differential equation. One can use either the Black–Scholes backward
parabolic equation in the variables (t0, S0), which is{ −∂tΠ− (r − q)S∂SΠ− a(t, S)S2∂2

S2Π+ rΠ = 0, t < T,
Π|T ≡ (S −K)+/− ,

(2.3)

or the Dupire forward parabolic equation, in the variables (T,K), given by{
∂TΠ− (q − r)K∂KΠ− a(T,K)K2∂2

K2Π+ qΠ = 0, T > t0,
Π|t0 ≡ (S0 −K)+/− .

(2.4)

We will show in Lemma 4.1 and Theorem 4.3 that (2.1) or (2.3)–(2.4) hold for
an arbitrary measurable, positively bounded local volatility function a. However, let
us give a less formal insight by recalling the Black–Scholes seminal analysis [6], valid
in the special case where the volatility depends on time alone. We consider a self-
financing portfolio, short one option and long ∂SΠ shares of the underlying stock.
The value V of the risky component of the portfolio then evolves as

dVt = −dΠ(t, St) + ∂SΠ(dSt + qStdt)

= −(∂tΠ− qS∂SΠ+ aS2∂2
S2Π)dt

from Itô’s lemma. Since V has a deterministic rate of return, absence of opportunity
of arbitrage implies that this rate equals the riskless interest rate r. Otherwise said,

−∂tΠ+ qS∂SΠ− aS2∂2
S2Π = r(−Π+ S∂SΠ) ,
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whence (2.3). As for (2.1), it can be viewed as the Feynman–Kac representation for
the solution of (2.3). Notice that this analysis does not rely on the specific character
of the payoff of the call or put option. However, the opposite is true for (2.4). It
is indeed, as noticed by Dupire [19], a Fokker–Planck equation integrated twice with
respect to the space variable K, using moreover the formal identity

∂2
K2(S0 −K)+/− ≡ δS0(K) ,

where δS0
denotes the Dirac mass at S0.

2.2. Direct and inverse problems. In the special case where the volatility,
a ≡ σ2/2, is a constant, or a function of time alone, explicit formulas for the prices
Π+/− are known (see Black and Scholes [6] or Merton [31]). But in the case of a
general local volatility function a(t, S), one must turn to finite differences or a Monte
Carlo procedure based upon (2.3)–(2.4) or (2.1). Moreover, observation teaches that
no constant or merely time-dependent local volatility function is consistent with most
sets of market quotes. This phenomenon is known by market practitioners as the
smile of implied volatility.
However, in practice it is not the local volatility that is known but the prices

themselves. In fact the local volatility is the only quantity in (2.1) or (2.3)–(2.4)
which cannot be obtained from the market. Indeed r and q, as well as, to some
extent, Π, can all be retrieved from market-quoted quantities. Consequently, one
usually wishes to solve the inverse problem: finding a(t, S) such that the theoretical
prices given by (2.1) or (2.3)–(2.4) match the observed option prices. We thus use
liquid quotations of actively traded options, which are usually referred to as vanilla
options, as a way to extract information about the future behavior of the underlying
asset. The calibrated local volatility function is then used by risk managers or traders
to value risk exposure, or price exotic (nonvanilla) options and calculate hedge ratios
consistently with the market.
This is the problem we will be concerned with here. In particular, there are

two cases which are commonly considered in the literature, and we will treat both in
parallel. In the first one, this matching is required to occur on the actual, hence finite,
set of pairs (T,K) with observed prices. In the second case, the matching is required
to occur over all (T,K) such that T ≥ t0, K > 0. This makes sense, for example, if
the actual set of observed prices has been interpolated. To distinguish between these
two cases, we will refer to the first as the discrete calibration problem and the second
as the continuous calibration problem.

2.3. The Tikhonov regularization method. Both the discrete and continu-
ous calibration problems are ill-posed. This is the case in the continuous calibration
problem because the solution depends upon the data in an unstable manner, and in
the discrete calibration problem because the full surface a(t, S) is simply underdeter-
mined by the discrete data. It is then necessary to introduce stabilizing procedures
in the reconstruction method for the local volatility function. One of these is known
as the Tikhonov regularization method [38, 21]. The idea is to tackle the calibration
problem as a minimization problem, where the cost criterion to be minimized is

Jα (a) ≡ d (Π (a) , π)
2
+ αρ (a, a0)

2
.

Here d (Π (a) , π) denotes a distance between the model prices Π (a) and the observed
prices π, α is the regularization parameter, and ρ is a penalty designed to keep a
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close to the so-called prior a0, which reflects a priori information about a. Following
Lagnado and Osher [29], we shall choose ρ (a, a0)

2 ≡ ‖a− a0‖2H1 , where

‖u‖2H1 ≡
∫ ∫

u2 + ‖∇u‖2,

which is the H1-(squared) norm of u with logarithmic variables t, y = ln(S).

2.4. Overview. We first study, in an appropriate functional analysis setting,
Black–Scholes and Dupire linear parabolic equations with measurable ingredients (sec-
tions 3 and 4). These are linear one-dimensional equations in nondivergence form,
with positively bounded dominant coefficients. We thus extend well-known results
when the dominant coefficient a is a regular function. Mixing the probabilistic point-
wise and Lp estimates of Krylov [26] with the analyticW

1,2
p estimates of Fabes [23] and

Stroock and Varadhan [37], we obtain W 1,2
p estimates for the equations with source

terms. Using the theory of Lp-viscosity solutions [10, 13], we then show that our
equations admit unique solutions, for which we provide a probabilistic representation
(Theorems 4.2 and 4.3).
Proposition 5.1 sums up the main properties of the pricing functional Π useful for

the study of the calibration problems, namely, compactness, twice Gâteaux differen-
tiability and stability with respect to perturbations of parameters. We can then apply
the general theory of Tikhonov regularization for ill-posed nonlinear inverse problems
[21, 22, 27, 32, 33] to both the continuous and discrete calibration problems. We thus
prove the stability of the method for arbitrary values of the regularization parame-
ter (section 5). Assuming the existence of a solution of the calibration problem, we
prove the convergence of the method towards an a0-minimum norm solution when
the regularization parameter tends to 0, and we exhibit conditions sufficient to ensure
convergence rates in O(

√
δ), where δ is the data noise (section 6).

2.5. Main notation and general assumptions. To avoid much repetition,
we define now a set of notation and related general assumptions that will be assumed
to hold throughout the paper. When stronger assumptions are required, they will be
stated explicitly in the body of the paper.

General notation.
• x ∧ y, x ∨ y: min(x, y), max(x, y).
• x+, x−: max(x, 0), max(−x, 0).
• C, C ′, . . . , C ≡ Cρ (ρ1, . . . , ρn): Constants C, C

′, . . . depending upon nothing
but the parameters ρ, ρ1, . . . , ρn.

One should be aware that these constants may vary with the context. We will also
use the notation “≡” for “denotes” or “equals identically” (that is, equality between
functions), according to the context.

Mathematical finance.
• S, y = ln(S): Lognormal underlying diffusion in financial and logarithmic
variables.

• q, r ∈ [0, R]: Dividend yield attached to S, short rate of the economy.
• a ≡ σ2/2, a0: Local volatility function, prior a0 on a.
• a, a, â: Bounds on a0 and a such that 0 < a < a, â ≡ (a+ a)/2.
• p ≡ p(a, a): A real in ]2, 3[ depending upon a and a; see Theorem 4.2.
• W : Standard Brownian motion.
• Q = ]t, T [× R: A plane strip on which a is defined, in logarithmic variables.
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• (t0, y0), (T, k): Points in Q, with t0 ≤ T .
• y0, k: Bounds on |y0|, |k|.
• Qt0 , Q

T : Q ∩ {t > t0}, Q ∩ {t < T}.
• Qt0 , Q

T
: Closures of Qt0 , Q

T .

• Π+/−
T,K (t0, S0; r, q, a), Π

+/−
T,k (t0, y0; r, q, a): The price, in a generalized Black–

Scholes model, for a European call/put option with maturity T and strikeK =
ek, at the current phase t0, S0 = ey0 , in financial and logarithmic variables.

• γt0,y0(t, y; r, q, a): Transition probability density discounted at rate r (that is,
e−r(t−t0)× the density), for the underlying diffusion in logarithmic variable
y.

• BS
+/−
QT (k; r, q, a), BS′QT (r, q, a; Γ), DUP

+/−
Qt0
(y0; r, q, a): Black–Scholes call/

put equation on QT , Black–Scholes derived equation with source term Γ,
Dupire call/put equation on Qt0 ; see section 3.2.

To alleviate notation, r, q, a will sometimes be abbreviated to a; Π
+/−
T,K (t0, S0; a) or

Π
+/−
T,k (t0, y0; a) to Π

+/−; BS
+/−
QT (k; a), BS′QT (a; Γ), DUP

+/−
Qt0
(y0; a), and γt0,y0(t, y; a)

to BS+/−, BS′, DUP+/−, and γ, respectively.
In the case of the call option, we will sometimes drop the + superscript. For

instance, by default, Π will refer to Π+.

Functional analysis.
• Ω: Regular by parts, open plane area.
• p, θ: Real p ∈ ]2,+∞[, θ ≡ 1− 2/p > 0.
• Lp(Ω), Lp,loc(Ω), H

1(Ω), H2(Ω), W 1
p (Ω), W

1,2
p (Ω), W

1,2
p,loc(Ω), C0

θ (Ω), D(Ω):
Sobolev spaces on Ω; see section 3.1.

• Γ: Element of Lp(Q).
• MQ(a, a): Set of real measurable functions on Q with bounds a and a.
• a0 +H1

Q(a, a): Set of functions in a0 +H1(Q) with bounds a and a.

• h, h′: Elements of H1(Q).
• E →: Convergence in the topology of the space E .
• ‖X‖, ‖X‖E : Euclidean norm of X, norm of X in the surrounding normed
space E .

• 〈X,Y 〉, 〈X,Y 〉E : Inner product of X and Y in the surrounding Euclidean
space, Hilbert space E .

• dΠ(a).h: Derivative in the direction h of the functional Π at the local volatility
function a.

• dΠ(a)�: Adjoint operator of h �→ dΠ(a).h; see section 6.2.
• ∇J(a): Gâteaux derivative of the cost criterion J at the local volatility func-
tion a.

For instance, if J denotes a cost criterion on a Hilbert space E , then in our
notation

〈∇J(a) , h〉E = dJ(a).h , h ∈ E .

In the same way, the general assumptions we have made above on a and a0 can
be stated as

a0, a ∈MQ(a, a) .

Finally, we will refer to the statements in Remark 3.5 and Lemma 4.1(3) as
symmetry and parity, respectively.
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3. Strong solutions of parabolic problems.

3.1. Functional spaces and Sobolev embeddings. Let us first introduce
some Hilbert and Banach spaces, which we will use as spaces of local volatility func-
tions and solutions of Black–Scholes and Dupire equations.
Given the open plane area Ω, we will denote by D(Ω) the space of traces on

Ω of regular functions with compact support in the plane. We will use the usual
Hilbert spacesH2(Ω) ⊂ H1(Ω) ⊂ L2(Ω) and the Banach spaces C0

θ (Ω), Lp(Ω),W
1
p (Ω),

W 1,2
p (Ω), where

‖u‖C0
θ
(Ω) = sup

(t,y)∈Ω

|u| + sup
(t,y) �=(t′,y′)∈Ω

|u(t, y)− u(t′, y′)|
|t− t′|θ + |y − y′|θ ;

‖u‖W 1
p (Ω) = ‖u‖Lp(Ω) + ‖∂tu‖Lp(Ω) + ‖∂yu‖Lp(Ω);

‖u‖W 1,2
p (Ω) = ‖u‖Lp(Ω) + ‖∂tu‖Lp(Ω) + ‖∂yu‖Lp(Ω) + ‖∂2

y2u‖Lp(Ω) .

Finally, we will denote by W 1,2
p,loc(Ω) the localized Fréchet space of functions which

belong to W 1,2
p (Ω

′) for every regular open bounded subset Ω′ with Ω
′ ⊂ Ω.

Now we have the following Sobolev embeddings, for which the reader is referred,
for instance, to Larrouturou and Lions [30]:

1. For Ω bounded or half-plane,

W 1
p (Ω) ↪→ C0

θ (Ω) .(3.1)

This embedding notably implies the existence of a unique continuous extension up to
the boundary for the strong solutions introduced by item 1 of Definition 3.1 below.

2. For Ω bounded,

H1(Ω) ↪→ Lp(Ω) .(3.2)

This embedding, called the Rellich–Kondrakov embedding, is compact, which means
that it maps weakly convergent sequences into strongly convergent ones.
Let us now present the definitions of a solution of a partial differential equa-

tion that we will need. For more about these definitions, the reader is referred to
Ladyzhenskaya, Solonnikov, and Ural’tseva [28], Crandall, Kocan, and Swiech [13],
Wang [39], Caffarelli et al. [10], and Crandall, Ishii, and Lions [12].

Definition 3.1. Let there be a linear parabolic equation on Ω, with measurable
ingredients and a continuous boundary condition on ∂pΩ, the parabolic boundary of
Ω.

1. We call a function a strong solution in Lp(Ω), or an Lp(Ω)-solution, if it is a
function in W 1,2

p (Ω), which satisfies the boundary condition, and solves the equation

almost everywhere. We also use this definition with W 1,2
p,loc(Ω) to define a strong

solution in Lp,loc(Ω), or an Lp,loc(Ω)-solution.
2. We call a function an Lp,loc(Ω)-viscosity solution if it is a continuous func-

tion on Ω, which satisfies the boundary condition, and solves the equation in the
viscosity meaning for test functions in W 1,2

p,loc(Ω).
The relations between these definitions of a solution are as follows (see Crandall,

Kocan, and Swiech [13]):
1. An Lp,loc(Ω)-solution is an Lp,loc(Ω)-viscosity solution.

2. Conversely, an Lp,loc(Ω)-viscosity solution that belongs to W 1,2
p,loc(Ω) is an

Lp,loc(Ω)-solution.
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The following theorem gathers the main properties of the Sobolev spaces on plane
strips that we will need.

Theorem 3.2.

1. H1(Q) is continuously embedded in Lp(Q).
2. D(Q) is dense in Lp(Q), H

1(Q), H2(Q).
3. The application

D(Q)×D(Q) � (u, v) �→ (u|∂Q, ∂nv) ∈ L2(∂Q)
2 ,

where ∂nv denotes the normal derivative, admits a unique linear continuous extension,
called trace, from H1(Q)×H2(Q) to L2(∂Q)

2.
4. The set of traces on ∂Q of functions of H1(Q)×H2(Q) forms a dense subset

of L2(∂Q)2, and we have the so-called generalized Green formula for every (u, v) ∈
H1(Q)×H2(Q):

−
∫ ∫

Q

u (∆v) =

∫ ∫
Q

〈∇u,∇v〉 −
∫
∂Q

u ∂nv .

Proof. These properties result from the analogous properties well known on open
half-planes (see, for instance, Larrouturou and P. L. Lions [30], Bensoussan and J.-L.
Lions [3]). For details, the reader is referred to Crépey [14, Theorem F.1] and the
proof given therein.

In the upcoming proofs, we will often be able to proceed by density thanks to the
following lemma.

Lemma 3.3. There exist Lipschitzian functions an ∈ MQ(a, a) (n ∈ N
�) such

that an converges to a in Lp,loc(Q) when n→ +∞.

Proof. This follows from standard mollification with compact support, applied to
a extended by zero outside Q (see, for instance, Brézis [9]).

3.2. Black–Scholes, Dupire, and derived equations. Let us now introduce
the main equations in this work.

Definition 3.4.

1. We define the Black–Scholes call/put equation, BS
+/−
QT (k; r, q, a), with back-

ward logarithmic variables (t, y) ∈ Q
T

, parameterized by (T, k), as{ −∂tΠ− (r − q − a(t, y)) ∂yΠ− a(t, y)∂2
y2Π+ rΠ = 0 on QT ,

Π|T = (ey − ek)+/− .

We also define the Black–Scholes derived equation with source term Γ, BS′QT (r, q, a; Γ),
as{ −∂t(δΠ)− (r − q − a(t, y)) ∂y(δΠ)− a(t, y)∂2

y2(δΠ) + r(δΠ) = Γ on QT ,
δΠ|T ≡ 0 .

2. We define the Dupire call/put equation, DUP
+/−
Qt0
(y0; r, q, a), with forward

logarithmic variables (T, k), at the current phase (t0, y0), as{
∂TΠT,k − (q − r − a(T, k))∂kΠT,k − a(T, k)∂2

k2ΠT,k + qΠT,k = 0 on Qt0 ,
Π|t0 ≡ (ey0 − ek)+/− .
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3. Finally, we define the diffusion underlying the previous problems, with loga-
rithmic variables, as

dyt =

(
r − q − σ(t, yt)

2

2

)
dt+ σ(t, yt) dWt , yt0 = y0 .(3.3)

Remark 3.5 (symmetry). Changing, moreover, the direction of time T , via τ ≡
T + t0 − T , φ̌(τ, k) ≡ φ(T, k) for any function φ, then DUP

+/−
Qt0
(y0; r, q, a) becomes

BS
−/+
Qt0
(y0; q, r, ǎ).

Lemma 3.6.
1. (Black–Scholes and Dupire equations.) Equations BS+/− have at most one

Lp,loc(Q
T )-solution Π such that |Π| ≤ K ∨ S.

2. (Derived equations.) For any Lp(Q
T )-solution δΠ of BS′, we have

‖δΠ‖C0
θ
(Q

T
)
≤ C ′ ‖δΠ‖W 1,2

p (QT ) ,(3.4)

where C ′ ≡ C ′p. Moreover, δΠ is also the unique Lp,loc(Q
T )-solution of BS′ which

converges to 0 when |y| → +∞, uniformly with t.
Proof. 1. Given two such solutions Π and Π′, let us define δΠ ≡ e−2y+ρt(Π−Π′),

where ρ = r + 2a. By linearity, δΠ is an Lp,loc(Q
T )-solution of{ −∂tδΠ− (r − q + 3a) ∂yδΠ− a∂2

y2δΠ+ (2q + 2a− 2a)δΠ = 0,
δΠ|T ≡ 0 .(3.5)

Moreover, let us fix ε > 0. One can choose Yε ≥ 1/ε such that for |y| ≥ Yε, we
have |δΠ(t, y)| ≤ 2e−2y+ρt(K ∨ ey) ≤ ε, uniformly with t ∈ [t, T ]. Then |δΠ| ≤ ε
on QT ∩ {|y| ≤ Yε}, by the maximum principle in Crandall, Kocan, and Swiech [13,
Proposition 2.6]. So δΠ ≡ 0 on QT by passage to the limit when ε→ 0.

2. By the same maximum principle as above, we have uniqueness in the class
of Lp,loc(Q

T )-solutions of BS′ which converge to 0 when |y| → +∞, uniformly with
t. Now, let us be given an Lp(Q

T )-solution δΠ of BS′. Since the solution δΠ is

continuous on Q
T
and vanishes at T , it may be identified with an element of W 1

p (Ω),
where Ω ≡ ]t,+∞[×R, by extension with 0 on the right of T . Estimate (3.4) then

follows from the Sobolev embedding (3.1) on the half-plane Ω. Finally, δΠ ∈ C0
θ (Q

T
)∩

Lp(Q
T ) converges to 0 when |y| → +∞, uniformly with t.

4. Existence, uniqueness, and probabilistic representation of solutions.

4.1. Diffusion. The following lemma links the price of a European call/put with
the discounted expectation of the corresponding payoff in a generalized Black–Scholes
model.

Lemma 4.1.
1. The diffusion equation (2.2) has a unique weak solution on ]t0, T [:

St = S0 e(r−q)(t−t0) exp
(∫ t

t0

σ(s, Ss)dWs − 1
2

∫ t

t0

σ2(s, Ss)ds

)
, t ∈ ]t0, T [,

where the last exponential is a martingale, under the risk-neutral probability P . In
particular,

Et0,S0

P St = S0e
(r−q)(t−t0) , t ∈ ]t0, T [ .(4.1)
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2. The price Π+/− equals the payoff expectation of the call/put at T , discounted
at rate r:

Π+/− = e−r(T−t0)Et0,S0

P (ST −K)
+/−

under the risk-neutral probability P . In particular, 0 ≤ Π ≤ S0.
3. Denoting Π+ −Π− by δΠ, we have

δΠ ≡ S0e
−q(T−t0) −Ke−r(T−t0) .

This relation, known as call/put parity, notably implies that ∂2
S2δΠ, ∂2

K2δΠ, (∂2
y2 −

∂y)δΠ, and (∂2
k2 − ∂k)δΠ all vanish identically.

Proof. 1. For the proof, see, for instance, Stroock and Varadhan [37, Exercise
7.3.3] and Karatzas and Shreve [25, Problem 5.6.15 and Corollary 3.5.13].

2. and 3. The expression for Π+/− then follows from Karatzas and Shreve [25,
section 5.8.A]. Using this expression, the bounds on Π and the call/put parity proceed
from (4.1).

4.2. Derived hedge equations with source terms. The following theorem
and the estimate (4.3) therein are the cornerstones of this article. The difficulty comes
from the lack of regularity of the local volatility function a, which is merely required
to be measurable and positively bounded. But this turns out to be sufficient in the
present one-dimensional linear framework. Recall that Γ denotes an element of Lp(Q).

Theorem 4.2. There exists p ≡ p(a, a) ∈ ]2, 3[ such that if p ∈ ]2, p[, then, when

(t, y) varies within Q
T

,

δΠ(t, y) = Et,y
P

∫ T

s=t

e−r(s−t)Γ(s, ys) ds(4.2)

is the only Lp(Q
T )-solution, or Lp,loc(Q

T )-solution converging to 0 when |y| → +∞,
uniformly with t, of BS′QT (a; Γ).

Moreover,

‖δΠ‖C0
θ
(Q

T
)
≤ C ′ ‖δΠ‖W 1,2

p (QT ) ≤ C ′C ‖Γ‖Lp(QT ) ,(4.3)

where C ′ ≡ C ′p is as in (3.4), and C ≡ Cp(t, T ;R, a, a).

Proof. For the moment, p ∈ ]2,+∞[. We first show that for ϕ ∈W 1,2
p (Q

T ),

‖ϕ‖W 0,1
p (QT ) ≤ Cp ‖ϕ‖1/2W 0,2

p (QT )
‖ϕ‖1/2

Lp(QT )
.(4.4)

Inequality (4.4) can be more readily seen on the following equivalent norms:

‖ϕ‖p
W̃ 0,j

p (QT )
≡
∑
k≤j

‖∂k
ykϕ‖pLp(QT )

, 0 ≤ j ≤ 2 .

Indeed, by integration over time of a classic Sobolev inequality (see, for instance,
Bensoussan and J.-L. Lions [3, Chapter 2, equation (5.8)]):

‖ϕ‖p
W̃ 0,1

p (QT )
=

∫ T

t=t

‖ϕ(t, ·)‖p
W̃ 1

p (R)
dt
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≤ Cp
p

∫ T

t=t

‖ϕ(t, ·)‖p/2
W̃ 2

p (R)
‖ϕ(t, ·)‖p/2Lp(R) dt

≤ Cp
p

(∫ T

t=t

‖ϕ(t, ·)‖p
W̃ 2

p (R)
dt

)1/2 (∫ T

t=t

‖ϕ(t, ·)‖pLp(R) dt

)1/2

= Cp
p ‖ϕ‖p/2W̃ 0,2

p (QT )
‖ϕ‖p/2

Lp(QT )

by the Cauchy–Schwarz inequality. This shows (4.4), which in turn implies

‖ϕ‖W 0,1
p (QT ) ≤ rCp‖ϕ‖W 0,2

p (QT ) + Cp(r)‖ϕ‖Lp(QT )(4.5)

for every fixed r > 0, provided Cp(r) ≤ Cp/4r.
On the other hand, since (3.3) admits a unique weak solution (see item 1 of

Lemma 4.1), then from Krylov [26, Theorem 2.4.5.a (proof) and Theorem 2.4.1]

Et,y
P

∫ T

t

e−r(s−t)|Γ(s, ys)| ds ≤ C ‖Γ‖Lp(QT ) ,(4.6)

where C ≡ Cp(t, T,R, a, a).
We now assume that ϕ is an Lp(Q

T )-solution of BS′QT (a; Γ). For ε > 0, let τε

denote the exit time of QT ∩{|y| ≤ 1/ε} for the y-process (3.3). It can be shown that
(4.6) implies the following probabilistic representation:

Et,y
P e−r(τε−t)ϕ(τε, yτε)− ϕ(t, y) = − Et,y

P

∫ τε

s=t

e−r(s−t)Γ(s, ys) ds .(4.7)

This has been shown by Bensoussan and J.-L. Lions [3, Chapter 2, section 8.3] in
a variational context. We do not reproduce the proof here, though it proceeds in a
similar fashion, using regularization and Itô’s classic formula.
When ε → 0, τε almost surely converges to T . Moreover, ϕ is bounded and

continuous. Estimate (4.6) then implies, through dominated convergence on the left-
and right-hand sides of (4.7),

ϕ(t, y) = Et,y
P

∫ T

s=t

e−r(s−t)Γ(s, ys) ds.(4.8)

Then, from Krylov [26, Theorem 2.4.5.a],

‖ϕ‖Lp(QT ) ≤ C ‖Γ‖Lp(QT ) ,(4.9)

where C ≡ Cp(t, T,R, a, a). The probabilistic representation (4.8), for any a priori
Lp(Q

T )-solution ϕ of BS′QT (a; Γ), also shows the consistency of such a priori solutions
across various values of p > 2.
Moreover, by linearity, such an a priori solution ϕ is the Lp(Q

T )-solution of the

equation −∂tϕ− â∂2
y2ϕ = Γ̂, where

Γ̂ = Γ− rϕ+ (r − q − a(t, y))∂yϕ+ (a− â)∂2
y2ϕ ,

with homogeneous terminal condition. Therefore, following Stroock and Varadhan
[37, Exercise 7.3.3, p. 211], we have the following estimate:

‖∂2
y2ϕ‖Lp(QT ) ≤ Cp(â)(4.10)

×
(
‖Γ‖Lp(QT ) +R‖ϕ‖Lp(QT ) + (R+ a)‖∂yϕ‖Lp(QT ) +

1

2
(a− a)‖∂2

y2ϕ‖Lp(QT )

)
,
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where Cp(â) is a log-convex, hence continuous, function of 1/p, also defined at p = 2,
such that

Cp=2(â) =
1

â
<
2

a
.

Therefore one can choose p ≡ p(a, a) ∈ ]2, 3[ such that Cp(â) ≤ 2
â if p ∈ ]2, p[.

Estimate (4.3), at least with T instead of T in C, then results from (4.10), (4.5),
(4.9), and (3.4). We will refer to the estimate (4.3) with T instead of T in C as the
temporary version of estimate (4.3).
We now show the existence of an Lp(Q

T )-solution ϕ of BS′QT (a; Γ) in the special

case where Γ ∈ D(QT
) by density using Lemma 3.3: Define p′ ≡ (2+ p)/2. Following

Fabes [23], BS′QT (an; Γ) admits an Lp(Q
T )∩Lp′(QT )-solution ϕn. By the temporary

version of estimate (4.3) and by successive extractions, one can find a subsequence ϕn′

that converges to a limit ϕ, weakly in W 1,2
p (Q

T ) or W 1,2
p′ (QT ) and locally uniformly

on Q
T
. By W 1,2

p (Q
T )-weak passage to the limit, ϕ inherits the temporary version

of estimate (4.3). Then ϕ is an Lp(Q
T )-solution of BS′QT (a; Γ) by Lemma A.1.

The general case where Γ ∈ Lp(Q
T ) follows straightaway by density using item 2 of

Theorem 3.2.
Let us now consider the Lp(Q)-solution ϕ̃ of BS′Q(a; Γ̃), where Γ̃ ≡ Γ/0 on the

left/right of T . By linearity and uniqueness of solutions of BS′, ϕ̃ vanishes on QT ,
and ϕ̃ is equal to ϕ on QT . Therefore, the estimate (4.3) for ϕ on QT results from
the temporary version of estimate (4.3) for ϕ̃ on Q.

4.3. Homogeneous valuation equations. The following theorem is formally
well known. When the local volatility function a is Hölderian (with logarithmic vari-
ables), it has indeed been justified by many authors. For instance, Dupire [19] and
Bouchouev and Isakov [8] used partial differential equation arguments involving fun-
damental solutions. Alternatively, El Karoui [20] and Crépey [14, section 4.1, Part
IV] used probabilistic arguments involving local time. We also refer the reader to
Crépey [14, section 4.1, Part IV] and Berestycki, Busca, and Florent [4] for results
in the case where a is uniformly continuous. Here, we prove the more general case
where a ∈MQ(a, a). This is indeed the case that will be relevant for the study of the
calibration problems.

Theorem 4.3. Assume p ∈ ]2, p[. Then the following hold:
1. The call price

Q
T � (t, y) �→ ΠT,k(t, y; a)

is the unique Lp,loc(Q
T )-solution between 0 and S of BSQT (k; a). Moreover, it is

convex and nondecreasing with respect to S, nondecreasing with the local volatility,
and converges to 0 when S → 0, uniformly with t.

2. The call price

Qt0 � (T, k) �→ ΠT,k(t0, y0; a)

is the unique Lp,loc(Qt0)-solution between 0 and S0 of DUPQt0
(y0; a). Moreover, it

is convex and nonincreasing with respect to K, nondecreasing with the local volatility,
and converges to 0 when K → +∞, uniformly with T . Finally, for almost every
t > t0, the y-process (3.3) admits a transition probability density between t0 and t.
Discounting this density at rate r, it becomes

γt0,y0
(t, y; a) ≡ e−y(∂2

y2 − ∂y)Πt,y(t0, y0; a) .(4.11)
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Proof. We proceed by density from the known case of a Lipschitzian function an
approximating a as in Lemma 3.3. Denoting (p+ p)/2 by p′, let Π̂, respectively, Πn,
be the strong solution in Lp,loc(Q

T ) ∩ Lp′,loc(Q
T ) between 0 and S of BSQT (k; â),

respectively, BSQT (k; an).
Since 2 < p < p′ < p < 3, it is well known that

(∂2
y2 − ∂y)Π̂ ∈ Lp(Q

T ) ∩ Lp′(QT )

(see, for instance, Crépey [14, Remark 4.1, Part IV]). Therefore, using Theorem 4.2,
there exists an Lp(Q

T )∩Lp′(QT )-solution δΠ of BS′QT (a; Γ), where Γ ≡ (a− â)(∂2
y2−

∂y)Π̂. By linearity, Π ≡ Π̂ + δΠ is then a strong solution in Lp,loc(Q
T ) ∩ Lp′,loc(Q

T )
of BSQT (k; a). Moreover,

(∂2
y2 − ∂y)Π ≡ (∂2

y2 − ∂y)Π̂ + (∂
2
y2 − ∂y)δΠ ∈ Lp(Q

T ) ∩ Lp′(QT ) .

Denote Πn − Π̂ by δnΠ. By linearity, symmetry, parity, and the results of the
theorem in the Lipschitzian case, δnΠ converges to 0 when |y| → +∞, uniformly with
t, and δnΠ is a strong solution in Lp,loc(Q

T ) ∩ Lp′,loc(Q
T ) of BS′QT (an; Γn), where

Γn ≡ (an − â)(∂2
y2 − ∂y)Π̂. Therefore, by Theorem 4.2, δnΠ is the strong solution in

Lp(Q
T )∩Lp′(QT ) of BS′QT (an; Γn). So Πn−Π = δnΠ− δΠ is the strong solution in

Lp(Q
T ) ∩ Lp′(QT ) of BS′QT (an; Γ

′
n), where

Γ′n ≡ Γn − Γ + (an − a)(∂2
y2 − ∂y)δΠ = (an − a)(∂2

y2 − ∂y)Π.

Furthermore, Γ′n converges to 0 in Lp(Q
T ) when n→ +∞. Indeed, having fixed

ε > 0, let us choose a subset Qε ≡ QT ∩{|y| ≤ Yε} such that ‖(∂2
y2−∂y)Π‖Lp(Qc

ε)
≤ ε,

where Qc
ε ≡ QT \Qε. By Hölder’s inequality, it follows, thanks to Lemma 3.3, that

‖Γ′n‖pLp(QT )
≤ (‖(∂2

y2 − ∂y)Π‖pLp′ (QT )
+ (a− a)p)εp

for n large enough.
Using estimate (4.3) applied to Πn − Π, Π then inherits the bounds on Πn. So

BS+
QT (k; a) admits an Lp,loc(Q

T )-solution Π+ ≡ Π between 0 and S. Similarly,

BS−
QT (k; a) admits an Lp,loc(Q

T )-solution Π− between 0 and K. We also have sym-

metric solutions Π
+/−
T,k for DUP

+/−
Qt0
(y0; a). Moreover, Π

+/− ≡ Π+/−
T,k by passage to

the limits in the analogous identities at fixed n. Furthermore, by item 1 of Lemma

3.6, the solutions Π+/− and Π+/−
T,k are the only ones between the required bounds.

The probabilistic representation for Π− then results from a generalized integrated
Itô formula, as in the proof of Theorem 4.2. Since Π+/− is the limit of the Π+/−

n , the

probabilistic representation for Π+ then follows from those for Π− and Π+/−
n , using

also the call/put parity at a and an.

Π+/− and Π+/−
T,k then inherit the monotonicity and convexity properties valid at

fixed n by passage to the limit locally uniform over (t, y) and (T, k), respectively. The
asymptotic results follow from those, already known, at constant volatility a or a and
from the monotonicity with respect to a.
Finally, by standard arguments developed, for instance, in Stroock and Varadhan

[37, proof of Theorem 9.1.9, p. 224], estimate (4.3), or merely (4.6), valid for all
Γ ∈ Lp(Q

T ), enforces the existence of a transition probability density between t0 and
t for the process y for almost every t > t0.
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Then, by general arguments set out, for instance, in Crépey [14, section 4.1, Part
IV], independent of the Lipschitzian assumption on a therein, the discounted density
for the process S is ∂2

S2Πt,S(t0, S0; a), whence, after a change of variables, we obtain
the expression for γ.
The following proposition gathers a few consequences of the previous results that

will be useful in the following study of the calibration problems. The proposition is
stated for Π ≡ Π+. The analogous statements for Π ≡ Π− follow by parity. We
then also have the symmetric statements in the variables (T, k). Recall that h and h′

denote elements of H1(Q).
Proposition 4.4. Assume p ∈ ]2, p[.
1. Then

‖(∂2
y2 − ∂y)Π‖Lp(QT ) ≤ Cp ,(4.12)

where Cp ≡ Cp(t, T , k;R, a, a).
2. The price Π is locally θ-Hölderian, jointly with respect to (t0, y0), (T, k), uni-

formly with q, r ∈ [0, R], a ∈MQ(a, a).
3. Further define p′ = (2 + p)/2, p′′ = (2 + p′)/2, and Γ ≡ h(∂2

y2 − ∂y)Π. Then

‖Γ‖Lp′ (QT ) ≤ C ′p′ ‖h‖H1(Q) ,

where C ′p′≡ C ′p′(t, T , k;R, a, a). Then let dΠ, or dΠT,k(·; a).h, be the Lp′(QT )-solution
of BS′QT (a; Γ). Furthermore, let Γ′ and dΠ′ be defined as Γ and dΠ with h′ instead
of h, and

dΓ ≡ h′(∂2
y2 − ∂y)dΠ + h(∂2

y2 − ∂y)dΠ
′ .

Then

‖dΓ‖Lp′′ (QT ) ≤ C ′′p′′ ‖h‖H1(Q) ‖h′‖H1(Q) ,

where C ′′p′′ ≡ C ′′p′′(t, T , k;R, a, a). We shall then denote by d2Π, or d2ΠT,k(·; a).(h, h′),
the Lp′′(QT )-solution of BS′QT (a; dΓ).

4. We have

‖dΠ‖C0
θ
(Q

T
)
≤ C ′ ‖dΠ‖W 1,2

p (QT ) ≤ C ′C ‖h‖H1(Q),

‖d2Π‖C0
θ
(Q

T
)
≤C ′ ‖d2Π‖W 1,2

p (QT ) ≤ C ′C ‖h‖H1(Q)‖h′‖H1(Q) ,

where C ′ ≡ C ′p is as in (3.4), and C ≡ Cp(t, T , k;R, a, a). Moreover, if a + h ∈
MQ(a, a), let us define, for ε ∈]0, 1[,

ε−1δεΠ ≡ ε−1[ΠT,k(·; a+ εh)−ΠT,k(·; a)],
ε−1δεdΠ ≡ ε−1[dΠT,k(·; a+ εh).h′ − dΠT,k(·; a).h′] .

When ε → 0, ε−1δεΠ and ε−1δεdΠ converge in C0
θ (Q

T
) ∩W 1,2

p (Q
T ), respectively, to

dΠ and d2Π.
5. Assume furthermore that a and, for n ∈ N

�, an, belong to a0 + H1
Q(a, a),

where an− a converges to 0 weakly in H1(Q) when n→ +∞. Then Πn ≡ ΠT,k(·; an)
converges to Π ≡ ΠT,k(·; a) in C0

θ (Q
T
) ∩W 1,2

p (Q
T ).

Notice that dΠ and d2Π in this proposition are well defined by Theorem 4.2.
Proof. The proof is deferred to Appendix B.
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5. Stability.

5.1. The ill-posed calibration problems. Let us now give a rigorous state-
ment of the calibration problems. From now on, we assume p ∈ ]2, p[, and we will
denote by

◦
W 1,2

p (Qt0) the set of functions in W 1,2
p (Qt0) that vanish at time t0. We

also fix a finite subset F ⊂ Qt0 with |F| = M ∈ N
�. Then we define the following

nonlinear pricing functional :

a0 +H1
Q(a, a) � a

Π�−→ Π(a) ∈ Π0+
◦
W

1,2
p (Qt0) ,

where Π0, respectively, Π(a), denotes the Lp,loc(Qt0)-solution between 0 and S0 of
DUPQt0

(y0; a0), respectively, DUPQt0
(y0; a). Recall that a0 ∈MQ(a, a) denotes the

prior of the calibration problem (see section 2.3).

Proposition 5.1. The pricing functional Π and the restriction Π|F are well
defined on the closed convex subset a0 +H1

Q(a, a) of a0 +H1(Q). Moreover, we have
the following:

1. (Compactness.) Π and Π|F map weakly convergent sequences into strongly
convergent ones.

2. (Differentiability.) Π and Π|F are twice Gâteaux differentiable.
3. (Perturbations of the operator.) Π|F has θ-Hölderian dependence with respect

to (t0, y0) and F .

Proof. By Theorems 4.2 and 4.3, Π and Π|F are well defined. Now, points 1, 2,
and 3, respectively, follow from the results symmetric to Proposition 4.4(5), 4.4(4),
and 4.4(2) in the variables (T, k).

Definition 5.2. By the continuous calibration problem with data

Π̃ ∈ Π0+
◦
W

1,2
p (Qt0) ,

respectively, the discrete calibration problem with data π ∈ R
M , we will mean, finding

an a ∈ a0 +H1
Q(a, a) such that

Π̃T,k = ΠT,k(t0, y0; a) , (T, k) ∈ Qt0 ,

respectively,

πT,k = ΠT,k(t0, y0; a) , (T, k) ∈ F .

Data for which this is possible will be said to be calibrateable.

Remark 5.3. To fix notation, we thus consider the calibration problems with
European call option prices. However, by symmetry and parity, all the results below
extend straightaway to the following situations:

1. (Continuous problem.) Calibration from European put option prices.
2. (Discrete problem.) Calibration from European call and put option prices.

A nonlinear inverse problem is said to be ill-posed at any data set around which the
direct operator (here, the pricing functional Π or Π|F ) is not continuously invertible.

Theorem 5.4. For every continuous function a ∈ a0 +H1
Q(a, a), the continuous

calibration problem is ill-posed at Π̃ ≡ Π(a), and the discrete calibration problem is
ill-posed at π ≡ Π|F (a).

Proof. See Appendix C for the proof.
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5.2. Stabilization by Tikhonov regularization. The best-known stabiliza-
tion method for ill-posed nonlinear inverse problems is Tikhonov regularization [38,
21], which we now consider. The properties of the nonlinear pricing functional Π,
summed up in Proposition 5.1, will allow us to apply the general theory surveyed, for
instance, in Engl, Hanke, and Neubauer [21, Chapter 10].

In practice, market prices π are defined as bid-ask spreads. Moreover, Π̃ depends
on an interpolation procedure. Therefore, the actual set of observed prices, or input
data, for the calibration, πδ or Π̃δ, is only known up to some noise δ. Moreover,
any numerical procedure used to tackle the discrete calibration problem entails some
computational burden η. Furthermore, the local volatility function is calibrated at
the current phase (t0, y0) and set F , and used later at the perturbed phase (tµ0 , yµ0 )
and set Fµ. The Tikhonov regularization method allows one to overcome such data
noise, computational burden, and perturbations of the operator.

Definition 5.5. (Continuous problem.) By an α-solution of the continuous
calibration problem with prior a0 and noisy data

Π̃δ ∈ Π0+
◦
W

1,2
p (Qt0) ,

we will mean, in a0 +H1
Q(a, a), any aδα such that for every a,

Jδ
α

(
aδα
) ≤ Jδ

α (a) ,

where

2Jδ
α (a) ≡

∥∥∥Π(t0, y0, a)− Π̃δ
∥∥∥2

W 1,2
p (Qt0 )

+ α ‖a− a0‖2H1(Q) .

(Discrete problem.) By an α-solution of the discrete calibration problem with prior
a0, noisy data πδ ∈ R

M , perturbed parameters (tµ0 , y
µ
0 ) ∈ Q, Fµ ⊂ Qtµ0

(|Fµ| = M),

and computational burden η ≥ 0, we will mean, in a0+H1
Q(a, a), any aδ,µ,ηα such that

for every a,

Jδ,µ
α

(
aδ,µ,ηα

) ≤ Jδ,µ
α (a) + η,

where

2Jδ,µ
α (a) ≡ ∥∥Π|Fµ

(tµ0 , y
µ
0 , a)− πδ

∥∥2

RM + α ‖a− a0‖2H1(Q) .

Such α-solutions do exist because of Proposition 5.1(1). We shall not address in
this paper the problem of the uniqueness of the unregularized calibration problems,
or of the regularized problems for arbitrary values of the regularization parameter
α. However, at least for the discrete problem, one has the following result when
α tends to +∞. The intuition behind this result is that when α tends to +∞, the
regularization term becomes dominant and enforces the convexity of the cost criterion
as a whole.

Theorem 5.6. There exists C ≡ (1+πδ)MCp(t, y0, T ;R, a, a) such that the cost
criterion J ≡ Jδ,µ

α is C-strongly convex on a0 +H1
Q(a, a) for every α ≥ 2C. Here, y0

and πδ denote bounds on |yµ0 | and πδ
T,k for (T, k) ∈ Fµ.

Jδ,µ
α then admits a unique minimum, which depends continuously upon (tµ0 , y

µ
0 ),

Fµ, and πδ. Otherwise said, the minimization problem of Jδ,µ
α is well-posed in the

sense of Hadamard.
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Proof. By the chain rule, we have

d2J(a).(h, h′) ≡ α〈h, h′〉H1(Q)

+
∑

(T,k)∈Fµ

dΠT,k(t
µ
0 , y

µ
0 ; a).h dΠT,k(t

µ
0 , y

µ
0 ; a).h

′

+
∑

(T,k)∈Fµ

(
ΠT,k(t

µ
0 , y

µ
0 ; a)− πδ

T,k

)
d2ΠT,k(t

µ
0 , y

µ
0 ; a).(h, h

′) .

For a, b ∈ a0 +H1
Q(a, a) and ε ∈ ]0, 1[, let us define aε ≡ (1 − ε)a + εb, Jε ≡ J(aε).

Using Proposition 5.1(2) and the bound ey
µ
0 on |Π|, it follows, denoting by ′ the

derivative with respect to ε, that

〈∇J(b)−∇J(a), b− a〉H1(Q) = J ′1 − J ′0 =
∫ 1

0

J ′′ε dε

=

∫ 1

0

d2J(aε).(b− a, b− a) ≥ (α− (1 + ey
µ
0 + πδ)MC) ‖b− a‖2H1(Q) ,

where C ≡ Cp(t, y0, T ;R, a, a).

Moreover, Tikhonov regularized solutions of the calibration problems at arbitrary
level α > 0 are stable in the following meaning.

Theorem 5.7. (Stability, continuous problem.) Assume Π̃δn → Π̃δ when n →
+∞. Then any sequence of α-solutions aδnα admits a subsequence which converges
towards an α-solution aδα.
(Stability, discrete problem.) Assume

πδn , (tµn

0 , yµn

0 ), Fµn , ηn −→ πδ, (tµ0 , y
µ
0 ), Fµ, η ≡ 0,

when n → +∞. Then any sequence of α-solutions aδn,µn,ηn
α admits a subsequence

which converges towards an α-solution aδ,µ,η≡0
α .

Notice that this convergence is strong in H1(Q).
Proof. Using Proposition 5.1(1), this results directly from Theorem 2.1 in Engl,

Kunisch, and Neubauer [22], supplemented by Remark 3.4 in Binder et al. [5], for the
continuous problem. For the discrete problem, the proof is an immediate adaptation
of the one in [22, Theorem 2.1], using items 1 and 3 of Proposition 5.1.

6. Convergence and convergence rates.

6.1. Convergence. We are going to see that the Tikhonov regularization method
behaves as an approximating scheme for the pseudoinverse of Π or Π|F . By pseudoin-

verse, we mean the operator that maps calibrateable data Π̃ or π to an element a
which minimizes ‖a− a0‖ over the set of all preimages of Π̃ or π through Π or Π|F .

Definition 6.1 (a0-MNS). Given calibrateable data, we shall call an a0-minimum
norm solution (a0-MNS) of the calibration problem any solution a that minimizes
‖a− a0‖ over the set of all solutions.
Such an a0-MNS a exists for all calibrateable data. But it may be nonunique,

since the pricing functional Π is nonlinear.
Theorem 6.2. (Convergence, continuous problem.) Given calibrateable data Π̃,

suppose that ∥∥∥Π̃− Π̃δn
∥∥∥
W 1,2

p (Qt0
)
≤ δn for n ∈ N,

αn, δ2
n/αn −→ 0 when → +∞.
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Then any sequence aδnαn
admits a subsequence which converges towards an a0-MNS a.

Moreover, aδnαn
→ a if a is the unique a0-MNS of the calibration problem at Π̃.

(Convergence, discrete problem.) Given calibrateable data π, suppose that∥∥π − πδn
∥∥

RM ≤ δn, |t0 − tµn

0 | ∨ |y0 − yµn

0 | ∨ ‖F − Fµn‖ ≤ µn for n ∈ N,

αn, δ2
n/αn, µ2θ

n /αn, ηn/αn −→ 0 when n→ +∞.

Then any sequence aδn,µn,ηn
αn

admits a subsequence which converges towards an a0-
MNS a. Moreover, aδn,µn,ηn

αn
→ a if a is the unique a0-MNS of the calibration problem

at π.
Proof. Using Proposition 5.1(1), this follows directly from Theorem 2.3 in Engl,

Kunisch, and Neubauer [22], supplemented by Remark 3.4 in Binder et al. [5], for the
continuous problem. For the discrete problem, it results, for instance, from Kunisch
and Geymayer [27, Proposition 1], using items 1 and 3 of Proposition 5.1.
Following Engl, Hanke, and Neubauer [21, Proposition 3.11 and Remark 3.12],

there can be, for the convergence of such regularized schemes towards solutions of
ill-posed inverse problems, no uniform rate over all calibrateable data. In fact, this
presents a generic character for any method of resolution, Tikhonov or otherwise. It
is therefore important to be able to specialize subsets of a0 +H1

Q(a, a) on which such
uniform rates may be exhibited.

6.2. Convergence rates. We first have the following abstract statement. Let
dΠ|F (a)� and dΠ(a)� denote the adjoints of the operators dΠ|F (a) and dΠ(a), respec-
tively. That is to say, by definition,

〈h , dΠ|F (a)�λ〉H1(Q) =
∑

(T,k)∈F
λT,kdΠT,k(a).h ; (h, λ) ∈ H1(Q)× R

M ,

respectively,

〈h , dΠ(a)�λ〉H1(Q) = 〈dΠ(a).h , λ〉W 1,2
p (Qt0 ),W 1,2

ρ (Qt0
) ; (h, λ) ∈ H1(Q)×W 1,2

ρ (Qt0),

where p−1+ ρ−1 = 1, and where the last bracket denotes the duality bracket between
λ and dΠ(a).h.

Theorem 6.3. (Convergence rates, continuous problem.) There exists Cp ≡
Cp(t, y0, T ;R, a, a) such that for every a0-MNS a of the calibration problem at Π̃ with

a− a0 = dΠ(a)�λ(6.1)

for some ‖λ‖W 1,2
ρ (Qt0 ) ≤ Cp, then

‖aδα − a‖H1(Q) = O(δ
1
2 ),

whenever ∥∥∥Π̃− Π̃δ
∥∥∥
W 1,2

p (Qt0 )
≤ δ, α ∼ δ .

(Convergence rates, discrete problem.) There exists Cp ≡ Cp(t, y0, T ;R, a, a) such
that for every a0-MNS a of the calibration problem at π with

a− a0 = dΠ|F (t0, y0; a)
�λ(6.2)
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for some ‖λ‖RM ≤ Cp/
√
M , then

‖aδ,µ,ηα − a‖H1(Q) = O(δ
1
2 + µ

θ
2 ),

whenever∥∥π − πδ
∥∥

RM ≤ δ , |t0−tµ0 |∨|y0−yµ0 |∨‖F − Fµ‖ ≤ µ , α ∼ δ ∨ µθ , η = O
(
δ2
)
.

Therefore a is the only a0-MNS satisfying condition (6.1) or (6.2).
Proof. (Continuous problem.) Using items 1 and 2 of Proposition 5.1, this follows

from Engl, Hanke, and Neubauer [21, Theorem 10.4 and Remark 10.5] by noticing
that the proof therein readily extends from their Hilbert → Hilbert to our Hilbert →
reflexive Banach setting, by reading duality brackets instead of inner products.
(Discrete problem.) Using Proposition 5.1, this follows from Kunisch and Gey-

mayer [27, Theorem 2 and Remark iv, p. 86].
Remark 6.4. Kunisch and Geymayer [27, Theorem 2] assume that a belongs to

the interior of a0 +H1
Q(a, a). However, this cannot be realized in our case. Indeed,

a0 + H1
Q(a, a) has an empty interior. But this assumption is not used as long as

discretization of the source space is not dealt with.
Except in the trivial case where a ≡ a0, conditions (6.1)–(6.2) may seem rather

abstract. Whether there is a neighborhood around a0 such that they are satisfied is
an open question. However, in the case where a is uniformly continuous with respect
to its space variable y, one can derive a more explicit formulation of (6.2). In the

following, let ∇̃ΠT,k, not to be mistaken with the Gâteaux derivative of Π in H
1(Q),

denote the following function on Q, parameterized by (t0, y0, T, k) and a:

∇̃ΠT,k(t, y) ≡ 1{t0<t<T}e−y(∂2
y2 − ∂y)Πt,y(t0, y0; a)(∂

2
y2 − ∂y)ΠT,k(t, y; a) .

Lemma 6.5. For (T, k) ∈ F ,

dΠT,k(t0, y0; a) . h =

∫ ∫
Q

∇̃ΠT,k h .

Proof. Indeed, this is just the probabilistic representation (4.2) for dΠ, given
the expression for γ in Theorem 4.3(2) and the Lp estimate on Γ in Proposition
4.4(3).

Theorem 6.6. Let a ∈ a0 +H1
Q(a, a) be uniformly continuous with respect to its

space variable y. Then the following hold:
1. ∇̃ΠT,k ∈ L2(Q) for (T, k) ∈ F .
2. Λ ≡ dΠ|F (a)�λ is the unique solution in H2(Q) of the following problem:{

Λ−∆Λ =∑(T,k)∈F λT,k∇̃ΠT,k , Q-a.e.,

∂nΛ = 0 , ∂Q-a.e.
(6.3)

3. Condition (6.2) means that (6.3) holds with Λ ≡ a− a0 for some

‖λ‖RM ≤ Cp(t, y0, T ;R, a, a)/
√
M.

Notice that by Theorem 3.2(3), the normal derivative ∂nΛ ∈ L2(∂Q) is well
defined for Λ ∈ H2(Q).
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Proof. 1. According to Proposition 4.4(3),

(∂2
y2 − ∂y)ΠT,k(t, y; a) ∈ Lp

(]
t0 + T

2
, T

[
× R

)
.

On the other hand, we have by Stroock and Varadhan [37, Theorem 9.1.9, equation
(1.35)],

e−y(∂2
y2 − ∂y)Πt,y(t0, y0; a) = γt0,y0 (t, y; a) ∈ Lq

(]
t0 + T

2
, T

[
× R

)
for every 1 ≤ q < +∞. More precisely,

‖γt0,y0(·; a)‖Lq(]
t0+T

2 ,T [×R)
≤ Cω

q (t, T ,R, a, a) ,

where ω denotes a modulus of continuity of a with respect to y. Hence ∇̃ΠT,k ∈
L2(]

t0+T
2 , T [×R) by Hölder’s inequality. By symmetry and parity, we can conclude

that ∇̃ΠT,k ∈ L2(Q).
2. Therefore, using Lemma 6.5, the adjunction relations for Λ can be written

as

〈Λ , h〉H1(Q) =
∑

(T,k)∈F
λT,k 〈∇̃ΠT,k, h〉L2(Q) , h ∈ H1(Q) .(6.4)

It is then known that the adjoint Λ ∈ H1(Q) belongs in fact to H2(Q)—see, for
instance, Bensoussan and J.-L. Lions [3, Theorem 5.10, Chapter 2, and the footnote
on p. 96]. We can then apply the generalized Green formula to identity (6.4) and
conclude in a classic way, using Theorem 3.2(4); see, for example, Larrouturou and
P. L. Lions [30, p. 150, step 6, Interpretation of the variational formulation].

3. Item 3 follows immediately from 2.
Remark 6.7.
1. The condition in Theorem 6.6(3), which ensures a convergence rate in O(δ

1
2 +

µ
θ
2 ), is very severe, since its implies that (Id − ∆).(a − a0) belongs to the ≤ M -

dimensional subspace of L2(Q) spanned by the ∇̃ΠT,k, (T, k) ∈ F for sufficiently
small coefficients λT,k.

2. This condition is both a closedness and smoothness condition of a with re-
spect to a0, which says that, as already noted elsewhere, “Tikhonov regularization
can only resolve smooth details fast” [36, p. 611]. Indeed, one then has the following
H2(Q) estimate from regularity theory for elliptic equations (method of tangential
translations; see, for instance, Brézis [9, pp. 181 and 184]):

‖a− a0‖H2(Q) ≤
√
M Cω

p (t, y0, T ;R, a, a) ‖λ‖RM ,

where ω denotes a modulus of continuity of a with respect to y.
3. At least in the Hilbert → Hilbert setting of the discrete problem, there exist

conditions stronger than (6.2) ensuring better convergence rates, typically in O(δ
2
3 );

see, for instance, [32, 33, 21]. But these conditions require that a be interior to the
domain of definition of the direct operator—see, for instance, Neubauer [32, equa-
tion (2.5)]. As already observed above, this cannot be realized in our case. Indeed,
H1

Q(a, a) has an empty interior. Nonetheless, the reader is referred to Neubauer and

Scherzer [33, section 3] for a special case in which an O(δ
2
3 ) convergence rate is proved,

although the domain of definition of the direct operator has empty interior.
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7. Conclusion. Having establishedW 1,2
p estimates for Black–Scholes and Dupire

equations with measurable ingredients, we have shown that the problem of inverting
observed vanilla option prices into a local volatility function, in a generalized Black–
Scholes model, fits into the frame of the Tikhonov regularization method. Moreover,
this holds true both when the option prices form a continuum and when they consist
of a finite set. We were then able to derive results for stability, convergence, and con-
vergence rates for this method. Discretization and effective implementation, as well as
numerical results, can be found in [16]. This work also deals with an extension of the
numerical implementation to the problem of calibration from American option prices.
With respect to this, an open problem is whether the theoretical results obtained in
the present article relating to calibration from European option prices, in a gener-
alized Black–Scholes model, may be extended to calibration from American option
prices. Another more incidental open problem is whether the continuity assumption
is necessary in Theorem 6.6.

Appendix A. A technical lemma. The following lemma justifies the passage
to the limit at the end of the proof of Theorem 4.2. Although it is an adaptation of
Theorem 3.8 in Caffarelli et al. [10], using also Theorem 2.8 in Crandall, Kocan, and
Swiech [13], we give the proof in detail for completeness. The notation is the same as
above.

Lemma A.1. Let us be given Γ ∈ D(QT
), and 2 < p′ < p. For n ∈ N, let ϕn

be an Lp′,loc(Q
T )-solution of BS′QT (an; Γ), where an is a Lipschitzian approximation

of a as in Lemma 3.3. Assume the existence of a function ϕ ∈ W 1,2
p,loc(Q

T ) such that

ϕn → ϕ when n → +∞, locally uniformly on Q
T

. Then ϕ is an Lp,loc(Q
T )-solution

of BS′QT (a; Γ).

Proof. The proof proceeds by contradiction. Assume that ϕ is, say, no Lp,loc(Q
T )-

viscosity subsolution of BS′QT (a; Γ). Therefore, there exist open nonempty bounded

intervals I and J , a rectangle Q′ = I ×J ⊆ QT centered at a point (t0, y0) ∈ QT , and
a test function ψ ∈W 1,2

p (Q
′) such that

− ∂tψ − (r − q − a(t, y)) ∂yψ − a(t, y)∂2
y2ψ + rϕ > Γ + ε on Q′,(A.1)

(ϕ− ψ)(t0, y0) = 0, ϕ− ψ < −δ on ∂pQ
′ .(A.2)

Moreover, due to the Hölderian character of ϕ and ψ through the Sobolev embedding
(3.1) on Q′, one can assume

ϕ− ψ < −δ

2
on ∂pQ

′′(A.3)

for some subrectangle Q′′ with the same properties as Q′ and Q
′′ ⊂ Q′.

We are going to construct a sequence of functions ψn (hence, ψ+ψn) ∈W 1,2
p′,loc(Q

′)
such that

ψn → 0 in L∞(Q′′) as n→∞(A.4)

and for n large enough

−∂t(ψ + ψn)− (r − q − an(t, y)) ∂y(ψ + ψn)− an(t, y)∂
2
y2(ψ + ψn) + rϕn

≥ Γ + ε on Q′′.
(A.5)

Then by (A.2), (A.3), (A.4), and the assumed local uniform convergence of ϕn to ϕ,
ϕn−(ψ+ψn) will be larger at (t0, y0) than anywhere else on ∂pQ

′′ for n large enough.
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In view of (A.5), this contradicts the assumption that ϕn is an Lp′,loc(Q
T )-viscosity

solution of BS′QT (an; Γ).

To construct ψn, notice that by (A.1), we have onQ
′, for ψn arbitrary inW

1,2
p′,loc(Q

′),

−∂t(ψ + ψn)− (r − q − an(t, y)) ∂y(ψ + ψn)− an(t, y)∂
2
y2(ψ + ψn) + rϕn − Γ

≥ ε+ (a− an)(∂
2
y2 − ∂y)ψ − r(ϕ− ϕn)

− ∂tψn − (r − q − an(t, y)) ∂yψn − an(t, y)∂
2
y2ψn

≥ ε+ Γn − ∂tψn − (R+ a) |∂yψn| − a
(
∂2
y2ψn

)+
+ a
(
∂2
y2ψn

)−
,

where

Γn ≡ (a− an)(∂
2
y2 − ∂y)ψ − r(ϕ− ϕn) → 0 in Lp′(Q′) as n→∞.

Now, choose ψn to be, by Theorem 2.8 in Crandall, Kocan, and Swiech [13], the
Lp′,loc(Q

′)-solution of the following problem:{
∂tψn + (R+ a) |∂yψn|+ a

(
∂2
y2ψn

)+ − a
(
∂2
y2ψn

)−
= Γn on Q′,

ψn = 0 on ∂pQ
′,

with estimate

‖ψn‖W 1,2

p′ (Q′′) ≤ C ‖Γn‖Lp′ (Q′),

C ≡ Cp′(R, a, a,Q′, Q′′) independent of n. Considering the Sobolev embedding (3.1)
on Q′′, this furnishes the desired sequence ψn.

Appendix B. Proof of Proposition 4.4.
1. By Theorem 4.3(1), let us consider Π, respectively, Π̂, the Lp,loc(Q

T )-solution
between 0 and S of BSQT (k; a), respectively, BSQT (k; â). Then by linearity, symme-

try, parity, and the asymptotic results in Theorem 4.3(1), δΠ ≡ Π− Π̂ converges to 0
when |y| → +∞, uniformly with t, and δΠ is an Lp,loc(Q

T )-solution of BS′QT (a; Γ),

where Γ ≡ (a− â)(∂2
y2 − ∂y)Π̂. Now, it is well known that

‖(∂2
y2 − ∂y)Π̂‖Lp(QT ) ≤ Cp(t, T , k,R, a, a)

(see, for instance, Crépey [14, Remark 4.1, Part IV]). Using also (4.3), this gives (4.12).
2. Let us be given (t0, y0), (t

′
0, y
′
0), (T, k), (T

′, k′) ∈ Q, where t0 ≤ t′0; |y0|, |y′0| ≤
y0; |k|, |k′| ≤ k; 0 < ε ≤ T − t0, T

′ − t′0. Define Π, Π̂, δΠ as above. Then using the
estimates (4.3), (4.12), and the results symmetric in the variables (T, k), and using
also well-known results related to Π̂, which is explicitly given by the Black–Scholes
formula, it follows that

|ΠT,k(t0, y0)−ΠT ′,k′(t′0, y
′
0)|

≤ |ΠT,k(t0, y0)−ΠT ′,k′(t0, y0)|+ |ΠT ′,k′(t0, y0)−ΠT ′,k′(t′0, y
′
0)|

≤ |δΠT,k(t0, y0)− δΠT ′,k′(t0, y0)|+ |Π̂T,k(t0, y0)− Π̂T ′,k′(t0, y0)|
+ |δΠT ′,k′(t0, y0)− δΠT ′,k′(t′0, y

′
0)|+ |Π̂T ′,k′(t0, y0)− Π̂T ′,k′(t′0, y

′
0)|

≤ ‖δΠ.(t0, y0)‖C0
θ
(Qt0

)

(|T − T ′|θ+ |k − k′|θ)+Cε
p(t, y0, T , k;R, a, a)(|T − T ′|+ |k − k′|)

+ ‖δΠT ′,k′(·)‖C0
θ
(Q

T ′
)

(|t0 − t′0|θ+ |y0 − y′0|θ
)
+Cε

p(t, y0, T , k;R, a, a)(|t0 − t′0|+ |y0 − y′0|)
≤ C ′p(Cp(t, y0, T ;R, a, a) ∨ Cp(t, T , k;R, a, a))

× (|T − T ′|θ + |k − k′|θ + |t0 − t′0|θ + |y0 − y′0|θ
)

+ Cε
p(t, y0, T , k;R, a, a) (|T − T ′|+ |k − k′|+ |t0 − t′0|+ |y0 − y′0|) .
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3. Using (4.12), if p′−1
= p−1 + ρ−1, by Hölder’s inequality we obtain

‖h(∂2
y2 − ∂y)Π‖Lp′ (QT ) ≤ ‖h‖Lρ(QT ) ‖(∂2

y2 − ∂y)Π‖Lp(QT )

≤ C ′p′ ‖h‖H1(Q)

through the Sobolev embedding in Theorem 3.2(1). Using estimates (4.12) for Π and
(4.3) for dΠ and dΠ′, we obtain similarly

‖dΓ‖Lp′′ (QT ) ≤ ‖h′(∂2
y2 − ∂y)dΠ‖Lp′′ (QT ) + ‖h(∂2

y2 − ∂y)dΠ
′‖Lp′′ (QT )

≤ ‖h′‖Lν(QT ) ‖(∂2
y2 − ∂y)dΠ‖Lp′ (QT )

+ ‖h‖Lν(QT ) ‖(∂2
y2 − ∂y)dΠ

′‖Lp′ (QT )

≤ C ′′p′′ ‖h‖H1(Q) ‖h′‖H1(Q) .

4. The estimates for dΠ and d2Π result from point 3 and Theorem 4.2. Let us
additionally suppose that a + h ∈ MQ(a, a). By linearity as above, ε

−1δεΠ is the

Lp(Q
T )-solution of BS′QT (a + εh; Γ), and ε−1δεΠ converges in C0

θ (Q
T
) ∩W 1,2

p (Q
T ),

when ε → 0, towards the solution dΠ of BS′QT (a; Γ). Similarly, ε
−1δεdΠ is the

Lp(Q
T )-solution of BS′QT (a+ εh; dΓε), where

dΓε ≡ h(∂2
y2 − ∂y)dΠT,k(·; a).h′
+ h′(∂2

y2 − ∂y)
[
ε−1(ΠT,k(·; a+ εh)−ΠT,k(·; a))

]
.

Moreover, dΓε converges in Lp(Q
T ) to dΓ when ε→ 0. Therefore, ε−1δεdΠ converges

in C0
θ (Q

T
) ∩W 1,2

p (Q
T ) to d2Π when ε→ 0.

5. Having fixed ε > 0, and 2 < p < p′ < p, define ρ such that p−1 = p′−1
+ρ−1. By

(4.12), we can choose a subsetQε ≡ QT∩{|y| ≤ Yε} such that ‖(∂2
y2−∂y)Π‖Lp(Qc

ε)
≤ ε,

where Qc
ε ≡ QT \ Qε. By the assumed weak convergence of an − a to 0, and by

the Sobolev compact embedding (3.2), an − a converges to 0 in Lρ(Qε). Denoting
Γ′n ≡ (an− a)(∂2

y2 − ∂y)Π, it follows, in the same manner as in the proof of Theorem

4.3, that Γ′n converges to 0 in Lp(Q
T ). The Lp(Q

T )-solution Πn − Π of BS′QT (an;

Γ′n) then converges to 0 in C0
θ (Q

T
) ∩W 1,2

p (Q
T ) when n→ +∞ by Theorem 4.2.

Appendix C. Proof of Theorem 5.4. We are going to construct, for n ∈
N
�, an ∈ a0 + H1

Q(a, a), which takes values in the vicinity of a, such that when

n → +∞, an − a converges to 0 weakly in H1(Q). Hence, by Proposition 5.1(1),
Π.(t0, y0; an)−Π.(t0, y0; a) converges to 0 in C0

θ (Qt0)∩W 1,2
p (Qt0). But no subsequence

of an − a will converge to 0 strongly in H1(Qt0). Therefore Π or Π|F cannot be
continuously invertible around Π̃ = Π(a) or π = Π|F (a).
Since a < a, and because a is continuous, there exists an open subset R ⊂ Qt0 on

which a+ ε ≤ a or a+ ε ≤ a for some well-chosen ε > 0. Let us assume, for instance,
that a+ ε ≤ a on a rectangle R = ]t1, t2[× ]0, ε[, as well as on the union T of the two
equilateral triangles adjacent to the time boundaries of R, with R∪T ⊂ Qt0 . Let us
define an − a = un to be the continuous function on Q such that the following hold:

1. On R, un is a continuous function of the space variable y alone, which van-
ishes at both sides of the space interval ]0, ε[ and oscillates between the values 0 and
1/2n. More precisely, ∂yun = −1 or +1 on ]0, ε[ according to whether E{2ny/ε} is
odd or even.
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2. On the left and right of R, un decreases to 0 at unit speed with respect to
the time variable, then vanishes identically.

3. Outside R∪ T , un vanishes identically.
Therefore, un vanishes identically outside R, except on a set of measure tending to 0
as n→∞. Moreover, for every n, we have on Q

0 ≤ un ≤ ε/2n ≤ ε , |∂tun| ≤ 1 , |∂yun| ≤ 1 .

So, by construction, un = an − a ∈ H1(Q) and

an = (an − a) + (a− a0) + a0 ∈ a0 +H1
Q(a, a) .

Moreover, for n ∈ N
�, |∂yun| ≡ 1 on R, so that no subsequence of un can converge

to 0 strongly in H1(Qt0). But un converges to 0 weakly in H1(Q). Indeed, for any

regular test function ψ(t, y), let us define φ(y) =
∫ t2
t=t1

∂yψ dt. Then∫ ∫
R
(∂yun) (∂yψ) dydt =

∫ ε

y=0

(∂yun)φ(y) dy = −
∫ ε

y=0

unφ
′(y) dy

by integration by parts. Since |un| ≤ ε/2n, this converges to 0 when n → ∞. The
rest of the verification is straightforward.
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Abstract. We give estimates for the closed ε-neighborhood Kε of the set K = ∪k
i=1λiSO(2) ⊂

M2×2 of multiple parallel elastic wells such that dist(Duj , Kε) → 0 in L1(Ω) implies, up to a
subsequence, dist(Duj , (λi0SO(2))ε) → 0 in L1(Ω) for some 1 ≤ i0 ≤ k, where Ω ⊂ R2 is an arcwise
connected domain. In other words, Kε separates gradient Young measures.
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1. Introduction. The study of weak convergent sequences of gradients ap-
proaching a compact set of matrices and their corresponding gradient Young mea-
sures [15] is the central theme for the variational approach to material microstructure
[8, 9, 21, 5]. An important mathematical question in this approach is the following
[5]: Given a compact set K ⊂ MN×n of real matrices and a bounded sequence of
vector-valued mappings uj : Ω ⊂ R

n → R
N such that the sequence of gradients (Duj)

satisfies dist(Duj , K) → 0 in L1(Ω) as j → ∞, what can we say about the possi-
ble oscillation of (Duj) (mathematically, the gradient Young measure generated by
(Duj))? In particular, in the multiwell model of material microstructure, by using
nonlinear elasticity, we see that the set K ⊂Mn×n with n = 2 or 3 consists of finitely
many copies of SO(n) in the form K = ∪ki=1SO(n)Hi, where Hi’s are positive definite
matrices. Each SO(n)Hi is called an elastic well.

In practice, one uses the algebraic properties of the set K. If there are rank-one
connections in K, one can construct microstructures by using laminates [9, 10, 21] or
laminates within laminates [5]. This construction does not give all (mathematically)
possible microstructures, as shown by an example due to Šverák [21]. For certain sets
K without rank-one connections, one seeks to show that the set prevents the forma-
tion of microstructure by using partial differential equation methods [25, 26, 19] or
the minors relations [5]. The question we address in this paper, loosely speaking, lies
between the two situations above; that is, we give conditions for certain disconnected
sets in the multiwell model in two dimensions which prevent “large” scale oscilla-
tions among different wells, while microstructures can be formed “locally” near each
individual well.

In their study of metastability and local minimizers, Ball and James [9] addressed
this problem. They established by a contradiction argument that for a disjoint set
K = K1 ∪K2 ⊂MN×n with K1 ∩K2 = ∅, which separates gradient Young measures,
there is some ε > 0 such that the closed ε-neighborhood Kε = (K1)ε ∪ (K1)ε still
separates gradient Young measures.

In this paper we give estimates of closed ε-neighborhoods Kε of the set of parallel

∗Received by the editors July 23, 2001; accepted for publication (in revised form) October 4, 2002;
published electronically April 17, 2003.

http://www.siam.org/journals/sima/34-5/39277.html
†School of Mathematical Sciences, University of Sussex, Falmer, Brighton, BN1 9QH, UK
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multielastic wells K = ∪ki=1λiSO(2) ⊂ M2×2, 0 < λ1 < · · · < λk in two dimensions.
This is a continuation of the earlier work [32] for finite sets in a subspace of MN×n

without rank-one matrices. The main feature of the present case is that the set K
has nontrivial topology, while it is the simplest model among the multielastic well
structure ∪ki=1SO(2)Hi in two dimensions [8, 28, 9, 5, 21]. We have the following
theorem.
Theorem 1. Let k ≥ 1, and let K = ∪ki=1λiSO(2) ⊂ M2×2 be given as above.

Suppose Ω ⊂ R
2 is a bounded arcwise connected Lipschitz domain. Then there is some

ε1 > 0 depending on rK = min1≤i≤k−1(λ
2
i+1 − λ2

i ), gK = min1≤i≤k−1(λi+1 − λi),
and dK = 2λk such that for every 0 < ε ≤ ε1 and every bounded sequence (uj) ⊂
W

1,1(Ω,R2) satisfying

lim
j→∞

∫
Ω

dist(Duj , Kε)dx = 0,(1.1)

there is a weak convergent subsequence ujs ⇀ u in W 1,1(Ω, R
2) and some 1 ≤ i0 ≤ k

such that

lim
s→∞

∫
Ω

dist(Dujs , [λi0SO(2)]ε)dx = 0 and Du(x) ∈ [λi0SO(2)]ε a.e. in Ω.

(1.2)

Remark 1. Theorem 1 can be stated by using gradient Young measures. Suppose
(uj) satisfies (1.1) and let {νx}x∈Ω be the family of gradient Young measures [15]
corresponding to a subsequence of (Duj). Clearly, the support of νx satisfies supp νx ⊂
Kε a.e. Then for some ε1 > 0 depending on the parameters above, we claim that
supp νx ⊂ (λi0SO(2))ε a.e. for some 1 ≤ i0 ≤ k and the weak limit Du(x) = ν̄x ∈
(λi0SO(2))ε when 0 < ε < ε1, where ν̄x =

∫
Kε

λdνx is the integral average of νx.

A disjoint compact setK = K1∪K2 ⊂MN×n withK1∩K2 = ∅ is said to separate
gradient Young measures if, for any family of Young measures {νx}x∈Ω supported in
K, either supp νx ⊂ K1 a.e. or supp νx ⊂ K2 a.e. [10]. Our contribution for the
present case is a direct estimate of the neighborhood Kε of K that still separates
gradient Young measures.

Our approach is based on Schauder’s estimates in BMO and Campanato spaces
for the Laplacian operator [14], the weak continuity of Jacobians [20, 3, 11], and a
recent approximation result due to Müller [22], improving upon an earlier result of
the author [30] for sequences of gradients approaching a compact set K ⊂MN×n.

Let E∂ and E∂̄ be the subspaces of conformal and anticonformal matrices in
M2×2. Note that E∂ and E∂̄ are orthogonal complements to each other. We denote
by PE∂

and PE∂̄
the orthogonal projections to these subspaces, respectively. Let

Qdist2(A,K) be the quasi-convex relaxation of dist2(A,K).
Since in our case we can calculate explicitly the quasi-convex relaxation

Qdist2(A,K), we are able to locate the weak limit Du of Duj by showing that
Du ∈ Kε a.e. The use of the homogeneous Young measure [15] makes it possible
for us to localize our problem first by considering sequences with fixed affine bound-
ary values. Due to the fact that our set K is contained in E∂ , the projection PE∂̄

Duj
of the gradient Duj to its orthogonal complement E∂̄ is elliptic [5] and the operator
2 divPE∂̄

Duj = ∆uj is exactly the Laplacian. The local Schauder estimate on the
approximate solutions vj obtained in [22] shows that the BMO seminorm of Dvj
is small, so we can use the special geometric and analytic features of the Jacobian,
together with a density argument, to establish Theorem 1.
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We conclude this section by examining the geometry of the quasi-convex relax-
ation of the squared distance function to K in Theorem 1. One of the implications
of our calculations is that for 0 < ε ≤ gK

√
2/2, if limj→∞

∫
Ω
dist2(Duj , Kε)dx = 0

and uj converges weakly to u in W 1,2, then Du(x) ∈ Kε a.e. We have the following
theorem.
Theorem 2. Suppose K is given as in Theorem 1. Then the quasi-convex relax-

ation Qdist2(A,K) is given by Qdist2(A,K) = CE∂
[dist2(PE∂

(A), K)+ |PE∂
(A)|2]+

[|PE∂̄
(A)|2−|PE∂

(A)|2], where CE∂
[dist2(PE∂

(A), K)+ |PE∂
(A)|2] is the convexifica-

tion of dist2(PE∂
(A), K) + |PE∂

(A)|2 in E∂ . Furthermore,
(i) the relaxation is bounded below by the function itself:

Qdist2(A, K) ≥ 1

2
dist2(A, K), A ∈M2×2;

(ii) whenever dist(A, K) ≤ gK
√
2/2 with gK given by Theorem 1, that is, A ∈

K√2gK/2,

Qdist2(A, K) = dist2(A, K);

(iii) let Fε(X) = max{Qdist2(A, K) − ε2, 0} for 0 < ε ≤ gK
√
2/2; then Fε ≥ 0

is a quasi-convex function with quadratic growth and F−1
ε (0) = Kε.

Theorem 2 shows that at least the quasi-convex relaxation Qdist2(A, K) does
not have any effect on dist2(A, K) as long as A is in the closed neighborhood
K√2gK/2. If a bounded sequence (uj) in W 1,2(Ω, R

N ) converges weakly to u and

limj→∞
∫
Ω
dist2(Duj , Kε)dx = 0, then limj→∞

∫
Ω
Fε(Duj)dx = 0, and hence by [2]∫

Ω
Fε(Du)dx = 0, which implies Du(x) ∈ Kε.
In section 2, notation and preliminaries are given that are needed for proving our

main theorem. We establish Theorem 1 in section 3 through two lemmas by assuming
Theorem 2. Finally, we prove Theorem 2 in section 4.

2. Preliminaries. Throughout this paper, Ω denotes a bounded arcwise con-
nected open subset of R

n with Lipschitz boundary. By an arcwise connected domain
Ω we mean that for any x1, x2 ∈ Ω, there is a piecewise affine curve γ : [0, 1]→ Ω such
that γ(0) = x1, γ(1) = x2 and each affine piece of γ is parallel to one of the coordinate
axes. We denote by MN×n the space of real N × n matrices (N, n ≥ 2) with inner
product A · B = tr(ATB) and norm |A| = (trATA)1/2, where AT and tr are the
transpose of A and the trace operator, respectively. We denote the Lebesgue spaces
Lp(Ω,RN ) and Sobolev spaces W 1,p(Ω, R

N ) and W 1,p
0 (Ω,RN ) for vector-valued func-

tions u : Ω→ R
N as usual [1]. The Lebesgue measure of a measurable set S in R

n is

denoted by meas(S), and we use ⇀ and
∗
⇀ to denote weak convergence and weak-∗

convergence, respectively. The integral average of a (matrix-valued) function f over
a measurable set S is written as∫

−
S

f(x) dx =
1

meas(S)

∫
S

f(x)dx := [f ]S .

We define the p-distant function from Y ∈MN×n to a set K ⊂MN×n by distp(Y,K)
:= infA∈K |Y −A|p. The subspaces of conformal and anticonformal matrices are given
by

E∂ =

{(
a b
−b a

)
, a, b ∈ R

}
, E∂̄ =

{(
a b
b −a

)
, a, b ∈ R

}
,
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respectively. Note that E∂ and E∂̄ are orthogonal to each other and

SO(2) = {A ∈M2×2, ATA = I, detA = 1} ⊂ E∂ .

A continuous function f : MN×n → R is quasi-convex (see [20, 3]) if∫
U

f(A+Dφ(x)) dx ≥ f(A)meas(U)

for every A ∈ MN×n, φ ∈ C∞0 (U ;RN ), and every open bounded subset U ⊂ R
n.

Also, f is called rank-one convex if, for any A, B ∈ MN×n with rank(A − B) = 1
and any 0 ≤ λ < 1, f(λA+ (1− λ)B) ≤ λf(A) + (1− λ)f(B). It is well known that
quasi convexity implies rank-one convexity [20, 3, 11]. However, the converse is not
true [27]. It is also well known that the Jacobian A→ det(A) is quasi-convex.

For a continuous function f : MN×n → R bounded below, the quasi-convex
relaxation Qf and rank-one convex relaxation Rf of f are defined, respectively, by
Qf = sup{g ≤ f, g quasiconvex} and Rf = sup{g ≤ f, g rank-one convex}. It is well
known that in general Qf ≤ Rf (see [11]).

There is an iterative construction of Rf for a given continuous function f due to
Kohn and Strang [16, 17, 18], namely,

R0f = f,

Rk+1f(A) = inf{λRkf(A1) + (1− λ)Rkf(A2),

λA1 + (1− λ)A2 = A, rank(A1 −A2) ≤ 1}.
(2.1)

It was proved in [16, 17, 18] that Rf = limk→∞Rkf . We call this construction
the Kohn–Strang scheme, which will be used to establish Theorem 2. Similarly, we
see that the convex envelope Cf can also be calculated by dropping the rank-one
restriction in (2.1):

C0f = f,

Ck+1f(A) = inf{λCkf(A1) + (1− λ)Rkf(A2), λA1 + (1− λ)A2 = A},
Cf = limk→∞ Ckf.

(2.2)

We use the following theorem concerning the existence and properties of Young
measures [29, 4, 15] and the homogeneous Young measures [15].
Proposition 1. Let (zj) be a bounded sequence in L1(Ω;Rs). Then there exist

a subsequence (zjk) of (z(j)) and a family (νx)x∈Ω of probability measures on R
s,

depending measurably on x ∈ Ω, such that

f(zjk) ⇀

∫
Rs

f(λ)dνx(λ) in L1(Ω) as k →∞

for every continuous function f : R
s → R such that (f(zjk)) is sequentially weakly

relatively compact in L1(Ω).
If the sequence zj is in the form zj = Duj , where Ω ⊂ R

n is open and bounded,
and (uj) is a bounded sequence in W 1,p(Ω, R

N ) for some 1 < p ≤ ∞, then the
corresponding family of Young measures (νx) is called p-gradient Young measures
(see [15, 5]). A family of (gradient) Young measures is trivial if νx is a Dirac measure
for almost every x. In this case there exists a function u such that νx is the Dirac
measure at Du(x), and, up to a subsequence, Duk → Du a.e.
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The following result on homogeneous Young measures was obtained in [15].
Proposition 2. Let {νx}x∈Ω be a family of p-gradient Young measures with∫

MN×n

λdνx(λ) = Du(x)

and supp νx ⊂ K for almost every x ∈ Ω for a compact set K ⊂ MN×n. Then for
almost every x0 ∈ Ω, there exists a bounded sequence (φk) in W 1,∞

0 (D,RN ) such
that the corresponding gradient Young measures {ν̂y} of the sequence (Du(x0)+Dφk)
satisfy ν̂y = νx0

for almost every y ∈ D, where D is the unit open cube in R
n. We

call ν := ν̂y a homogeneous Young measure.
Now we recall some definitions and results for linear elliptic systems with constant

coefficients [14]. The Campanato spaces Lp,λ(Ω) for p ≥ 1, λ ≥ 1 on a Lipschitz
domain are defined by

Lp,λ(Ω)=
{
u ∈ Lp(Ω), sup

x0∈Ω, 0<ρ≤diam(Ω)

ρ−λ
∫

Ω(x0,ρ)

|u− [u]x0,ρ|pdx = [u]pLp,λ(Ω)
<∞

}
,

where Ω(x0, ρ) = Ω ∩Bρ(x0) and [u]x0,ρ =
∫−

Ω(x0,ρ)
udx.

We also have the local version of the space BMO(Ω) as L1 functions on Ω with
seminorm

‖u‖BMO(Ω) = sup

{(∫
−

Q

|u− [u]Q|pdx
)1/p

, Q ⊂ Ω

}
< +∞,

where 1 ≤ p <∞, Q ⊂ Ω are closed cubes with edges parallel to the coordinate axes,
and [u]Q =

∫−
Q
udx. In this paper we mainly consider BMO on a cube or a ball.

It is well known [14] from John–Nirenberg’s inequality that for all 1 ≤ p < ∞,
the BMO seminorms are equivalent, and one can replace cubes Q ⊂ Ω by balls and
the resulting seminorm is still equivalent. It is also known that Lp,n(Ω) is equivalent
to BMO(Ω).
Proposition 3 (see [14, Chap. 3–4]). Let Ω ⊂ R

n be open. Suppose u ∈W 1,2
loc (Ω)

is a weak solution of the Poisson equation ∆u = div f in Ω with f ∈ L∞(Ω,Rn); then
for any x0 ∈ Ω and 0 < ρ < R such that Bρ(x0) ⊂ BR(x0) ⊂ B̄R(x0) ⊂ Ω, we have
that∫
−

Bρ(x0)

|Du− [Du]x0,ρ|2dx ≤ C

[( ρ

R

)τ ∫
−

BR(x0)

|Du− [Du]x0,R|2dx+ [f ]2L2,2(Ω)

]
,

where C > 0 and 0 < τ < 2 are constants.
Next we state the approximation result of Müller [22], which we will need later.
Proposition 4. Let Ω ⊂ R

n be an open set and let K ⊂MN×n be compact and
convex. Suppose (uj) ⊂W 1,p(Ω, R

N ), 1 ≤ p <∞, and limj→∞
∫
Ω
distp(Duj ,K)dx→

0. Then there exists a sequence (vj) of Lipschitz mappings such that

‖dist(Dvj ,K)‖L∞ → 0, meas{x ∈ Ω, uj �= vj} → 0 as j →∞.

We conclude this section by briefly recalling the notion of density for a measurable
subset V of R

n. A point x ∈ R
n is a point of density 1 of V if limr→0 meas(Br(x) ∩
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V )/meas(Br(x) = 1 and a point of density 0 of V if limr→0 meas(Br(x) ∩ V )/
meas(Br(x)) = 0 [24, 12]. It is well known [24, 12] that

lim
r→0

meas(Br(x) ∩ V )

meas(Br(x))
= 1 for almost every x ∈ V

and

lim
r→0

meas(Br(x) ∩ V )

meas(Br(x))
= 0 for almost every x ∈ R

n \ V ;

that is, almost every x ∈ V is a point of density 1 of V and almost every x /∈ V is
a point of density 0 of V . It is also known that the balls Br(x) in the definition can
be replaced by cubes Qr(x) centered at x with edges parallel to one of the coordinate
axes and with radius r > 0 [24].

3. Proof of Theorem 1. We decompose the proof of Theorem 1 into two lem-
mas. By using homogeneous gradient Young measures [15] in Lemma 1, we localize our
problem to a simpler one. We show that if a sequence of gradients Dvj corresponds to
a homogeneous Young measure ν satisfying supp ν ⊂ Kε, then supp ν ⊂ (λi0SO(2))ε
for some 1 ≤ i0 ≤ k. Then in Lemma 2 we deal with the regularity problem that
Du ∈ Kε a.e. implies that Du ∈ (λi0SO(2))ε for some i0 a.e. Let D ⊂ R

2 be the unit
closed square [0, 1]2.
Lemma 1. Let K = ∪ki=1λiSO(2) with 0 < λ1 < · · · < λk. Then there is

some ε2 > 0 depending on rK , gK , and dK in Theorem 1 such that for 0 < ε ≤ ε2,
A ∈ (λi0SO(2))ε with a fixed 1 ≤ i0 ≤ k, and φj ∈W 1,∞

0 (D,R2) satisfying φj
∗
⇀ 0 in

W 1,∞(D,R2) such that (A+Dφj) generates the homogeneous gradient Young measure
ν with supp ν ⊂ Kε; then supp ν ⊂ (λi0SO(2))ε.

The assumption that A is in one of the wells is guaranteed by Theorem 2.
Lemma 2. Let K be as in Lemma 1 and let Ω ⊂ R

n be a bounded arcwise
connected Lipschitz domain. Then there are some ε3 > 0 depending on rK , gK , and
dK as above such that u ∈ W 1,∞(Ω, R

N ), Du(x) ∈ Kε for almost every x ∈ Ω, and
0 < ε ≤ ε3 imply Du(x) ∈ (λi0SO(2))ε a.e. in Ω for some 1 ≤ i0 ≤ k.

We prove Lemma 1 first, followed by the proof of Lemma 2. Then the proof of
Theorem 1 will follow easily from them.

Before we establish Lemma 1, let me explain the main idea and steps of the proof.
By using induction, Theorem 2, and Proposition 4, we may find another sequence

vj bounded in W 1,∞ such that A + Dvj is in a small neighborhood of C(K), while
A is near λi0SO(2) for some 1 ≤ i0 ≤ k. By using BMO seminorm locally on a fixed
small square Q0, we can show that ‖Dvj‖BMO(Q0) is small.

To deal with the geometry of the set K, we consider ‖det(A + Dvj)‖BMO(Q0),
which is also small, while the values of det(A+Dvj) will be close to the ordered set
{λ2

i }, that is,

det(A+Dvj) =

k∑
i=1

λ2
iχUi

j
+ det(A+Dvj)χWj +O(ε),

with U i
j the subset in Q0, and where det(A + Dvj) is close to λ2

i , while Wj is the
transition part whose measure tends to zero as j →∞.
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Then we consider two cases, either (a) λ2
k − λ2

i0
≥ λ2

i0
− λ2

1, or (b) λ2
i0
− λ2

1 ≥
λ2
k−λ2

1. For case (a), we show that meas(Uk
j )→ 0 to finish the proof by the induction

assumption. If (b) happens, we can prove that meas(U1
j ) → 0, and again the proof

will be finished.
Under assumption (a), if we let αk

j = meas(Uk
j ∩Q)/meas(Q) for Q ⊂ Q0, we use

the smallness of the BMO seminorm of the Jacobian to show that (see (3.8))

αk
j (1− αk

j ) ≤ C

(
ε+

∫
−

Q

(λ2
k + |det(A+Dvj)|)χWj

dx

)
.

On the other hand, on Q0, we will see that αk
j < 3/4 for large j, while at each point

x ∈ Q0 of density 1 for Uk
j , we can find a small square Q ⊂ Q0 containing x such

that αk
j > 3/4. By a continuous deformation of squares, we can find a square Qx

lying between Q and Q0 over which αk
j = 3/4. The idea here is to “maximize” the

left-hand side of the above inequality.
If we substitute this square in the above inequality (i.e., (3.8) below) and assume

ε > 0 small, we can bound meas(Qx) by
∫
Qx∩Wj

(λ2
k + |det(A + Dvj)|)dx. We then

apply Besicovitch’s lemma to show that meas(Uk
j ) is bounded by

∫
Wj

(λ2
k + |det(A+

Dvj)|)dx, which goes to zero; hence meas(Uk
j )→ 0.

Proof of Lemma 1. We use induction. When k = 1, there is nothing to prove
except that the weak limit satisfies Du(x) ∈ (λi0SO(2))ε, which can be checked by
using the estimates in Theorem 2 and the weak lower semicontinuity theorem of Acerbi
and Fusco [2].

Suppose Lemma 1 is true for k − 1 ≥ 1 and that we seek to prove that it is still
true for k. Let A ∈ (λi0SO(2))ε. We apply Proposition 4 to uj = φj and the compact
set C(Kε) − A to obtain a sequence vj ∈ W 1,∞ such that Dvj(x) ∈ (C(Kε) − A)ε
and meas({x ∈ D, φj �= vj}) → 0. Thus

∫
D
|Dφj −Dvj |dx → 0 as j → ∞. Letting

hj = PE∂̄
Dvj , we have ‖hj‖L∞ ≤ 3ε and vj satisfies divPE∂̄

Dvj = div hj in the weak
sense. However, we see that 2 divPE∂̄

Dvj = ∆vj (see [6, 7]). Thus in the weak sense,
∆vj = 2div hj in Ω.

From Schauder estimates for the Laplacian operator (Proposition 3), for a fixed
x0 ∈ D, 0 < ρ < R such that Bρ(x0) ⊂ BR(x0) ⊂ B̄R(x0) ⊂ B2R(x0) ⊂ D, we have

∫
−

Bρ(x0)

|Dvj−[Dvj ]x0,ρ|2dx ≤ C

[( ρ

R

)τ ∫
−

BR(x0)

|Dvj − [Dvj ]x0,R|2dx+ [hj ]
2
L2,2(D)

]
,

where C > 0 and 0 < τ < 2 are constants. Hence we have

‖Dvj‖2BMO(Q0)
≤ C

[( ρ

2R

)τ ∫
−

B2R(x0)

|Dvj − [Dvj ]x0,2R|2dx+ [hj ]
2
L2,2(D)

]
≤ C

[( ρ

2R

)τ
4(λk + 3ε)2 + ε2

]
,

where Q0 is a cube centered at x0 with side length ρ. Here we have used the fact that
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‖Dvj‖L∞ ≤ 2λk+6ε. Now we choose ρ > 0 small enough such that ( ρ
2R )τ4(λk+3ε)2 ≤

ε2. Thus we have, for small ρ > 0, ‖Dvj‖2BMO(Q0)
≤ Cε2 for all j > 0. Now we write

A+Dvj(x) as

A+Dvj(x) =

k∑
i=1

Rj(x)(λiI + f i
j(x))χUi

j
+ (A+Dvj(x))χWj

,(3.1)

where U i
j = {x ∈ Q0, A+Dvj(x) ∈ (λiSO(2))2ε}, i = 1, . . . , k, Wj = Q0 \ (∪ki=1U

i
j),

and χUi
j
and χWj are the characteristic functions of these sets, respectively. Also

Rj : Q0 → SO(2) is a measurable mapping and f i
j a small matrix-valued mapping

for i = 1, 2, . . . , k, j = 1, 2, . . . . Note that meas(Wj) → 0 as j → ∞. Let wj =∑k
i=1 f

i
jχUi

j
; then wj is a matrix-valued function with ‖wj‖L∞ ≤ 2ε. Since A is a

constant matrix, we have ||A+Dvj‖BMO(Q0,M2×2) ≤ Cε, and for each cube Q ⊂ Q0,∫
−
Q

|A+Dvj − [A+Dvj ]Q|dx ≤ C1ε,(3.2)

where C1 > 0 is an absolute constant independent of λk. We then have, from (3.2)
and Taylor’s expansion of the Jacobian, that

∫
−
Q

|det(A+Dvj)− [det(A+Dvj)]Q|dx

=

∫
−
Q

∣∣∣∣∣
∫ 1

0

{adj(t(A+Dvj)) + (1− t)[(A+Dvj)]Q} dt((A+Dvj)− [(A+Dvj)]Q)

−
[∫ 1

0

{adj(t(A+Dvj)) + (1− t)[(A+Dvj)]Q} dt((A+Dvj)− [(A+Dvj)]Q)

]
Q

∣∣∣∣∣ dx
≤ 4(λk + 3ε)

∫
−
Q

|A+Dvj − [A+Dvj ]Q|dx ≤ 32λkC1ε ≤ C2ε,

(3.3)

where adj(A) is the adjoint of A. Note that C2 > 0 depends on the diameter 2λk of
K. Also (3.1) implies

det(A+Dvj(x)) =

k∑
i=1

(det(Rj(x)λiI + f i
j(x)))χUi

j
+ det(A+Dvj(x))χWj

=

k∑
i=1

λ2
iχUi

j
+ det(A+Dvj(x))χWj

+Hj(x),

where |Hj(x)| ≤ Cε. Now we substitute this decomposition into (3.3). For each fixed
Q ⊂ Q0, ∫

−
Q

∣∣∣∣∣∣
k∑

i=1

λ2
iχUi

j
+ det(A+Dvj(x))χWj

+Hj(x)

−
[

k∑
i=1

λ2
iχUi

j
+ det(A+Dvj)χWj

+Hj

]
Q

∣∣∣∣∣∣ dx ≤ C2ε.

(3.4)
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The left-hand side of (3.4) gives

∫
−

Q

∣∣∣∣∣
k∑

i=1

(λ2
iχUi

j
) + det(A+Dvj(x))χWj

+Hj(x)(3.5)

−
[

k∑
i=1

(λ2
iχUi

j
) + det(A+Dvj)χWj

+Hj

]
Q

∣∣∣∣∣∣ dx
≥
∫
−

Q

∣∣∣∣∣∣
k∑

i=1

((λ2
i − λ2

i0)χUi
j
)−

[
k∑

i=1

((λ2
i − λ2

i0)χUi
j
)

]
Q

∣∣∣∣∣∣ dx− 2Cε

−
∫
−

Q

∣∣∣∣det(A+Dvj(x))χWj − λ2
i0χU

i0
j

−
[
det(A+Dvj(x))χWj − λ2

i0χU
i0
j

]
Q

∣∣∣∣ dx.
Let αi

j = meas(U i
j∩Q)/meas(Q) and βj = meas(Wj∩Q)/meas(Q) so that (

∑k
i=1 α

i
j)+

βj = 1 and αi
j ≥ 0, βj ≥ 0, i = 1, . . . , k.

We may assume that either (a) λ2
k − λ2

i0
≥ λ2

i0
− λ2

1, or (b) λ
2
i0
− λ2

1 ≥ λ2
k − λ2

1.
If (a) holds, from (3.5) we have first that

∫
−

Q

∣∣∣∣∣∣
k∑

i=1

((λ2
i − λ2

i0)χUi
j
)−

[
k∑

i=1

((λ2
i − λ2

i0)χUi
j
)

]
Q

∣∣∣∣∣∣ dx
=

∫
−

Q

k∑
i=1

∣∣∣∣∣∣(λ2
i − λ2

i0)−
[

k∑
i=1

((λ2
i − λ2

i0)χUi
j
)

]
Q

∣∣∣∣∣∣χUi
j
dx

≥
∫
−

Q

∣∣∣∣∣∣(λ2
k − λ2

i0)−
[

k∑
i=1

((λ2
i − λ2

i0)χUi
j
)

]
Q

∣∣∣∣∣∣χUk
j
dx

≥
∫
−

Q

∣∣∣∣∣λ2
k −

k∑
i=1

λ2
iα

i
j

∣∣∣∣∣χUk
j
dx− βjλ

2
i0

≥
∫
−

Q

∣∣∣∣∣λ2
k −

k∑
i=1

λ2
iα

i
j

∣∣∣∣∣χUk
j
dx− ε

for large j as βj → 0. Thus,

1

meas(Q)

∫
Uk

j

∣∣∣∣∣λ2
k −

k∑
i=1

λ2
iα

i
j

∣∣∣∣∣ dx = αk
j

(∣∣∣∣∣λ2
k −

k∑
i=1

λ2
iα

i
j

∣∣∣∣∣
)

≤ C3ε+ 2

∫
−

Q

(λ2
k + |det(A+Dvj(x))|)χWjdx

≤ C3ε+ 2

∫
−

Q

(λ2
k + |det(A+Dvj(x))|)χWjdx.

(3.6)
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On the other hand, we have from (3.6) that

αk
j

(∣∣∣∣∣λ2
k −

k∑
i=1

λ2
iα

i
j

∣∣∣∣∣
)

= αk
j

((
k∑

i=1

(λ2
k − λ2

i )α
i
j

)
+ βjλ

2
k

)

≥ αk
j

(
k−1∑
i=1

(λ2
k − λ2

k−1)α
i
j

)
+ αk

jβjλ
2
k = αk

j

[
(λ2

k − λ2
k−1)(1− αk

j − βj) + βjλ
2
k

]
= (λ2

k − λ2
k−1)α

k
j (1− αk

j ) + αk
jβjλ

2
k−1 ≥ (λ2

k − λ2
k−1)α

k
j (1− αk

j ) ≥ rKαk
j (1− αk

j ).

(3.7)

Combining (3.6) and (3.7) we obtain

meas(Uk
j ∩Q)

meas(Q)

(
1− meas(Uk

j ∩Q)

meas(Q)

)
≤ C4ε+

2

rK

∫
−

Q

(λ2
k + |det(A+Dvj(x))|)χWjdx.

(3.8)

Here C4 > 0 depends on λ2
k and rK .

We also have A = R0(λi0I + A0) with A0 a symmetric matrix, |A0| ≤ ε, and
R0 ∈ SO(2); hence

|det(A)− λ2
i0 | ≤ C(λkε+ ε2),

where C > 0 is an absolute constant. Now since det(A + Dvj) ⇀ det(A) in Lp(Ω),
1 ≤ p <∞, we have for large j that∣∣∣∣∫−

Q0

(det(A+Dvj)− det(A))dx

∣∣∣∣ ≤ ε,

so that ∣∣∣∣∫−
Q0

(det(A+Dvj)− det(A) + (λ2
i0 − λ2

1)dx

∣∣∣∣ ≤ ε+ (λ2
i0 − λ2

1).(3.9)

Therefore ∣∣∣∣∣
∫
−

Q0

(
k∑

i=1

(λ2
i − λ2

i0)χUi
j
+ (λ2

i0 − λ2
1)

)
dx

∣∣∣∣∣
≤ C2(ε+ ε2) + (λ2

i0 − λ2
1) + 2

∫
−

Q0

(λ2
k + |det(A+Dvj)|)χWjdx,

(3.10)

while ∣∣∣∣∣
∫
−

Q0

(
k∑

i=1

(λ2
i − λ2

i0)χUi
j
+ (λ2

i0 − λ2
1)

)
dx

∣∣∣∣∣
=

∣∣∣∣∣
∫
−

Q0

(
k∑

i=1

(λ2
i − λ2

1)χUi
j

)
+ (λ2

i0 − λ2
1)χWj

dx

∣∣∣∣∣
≥ (λ2

k − λ2
1)

∫
−

Q0

χUk
j
dx = (λ2

k − λ2
1)
meas(Uk

j ∩Q0)

meas(Q0)
.

(3.11)
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Consequently,

meas(Uk
j ∩Q0)

meas(Q0)
≤ C5ε+

λ2
i0
− λ2

1

λ2
k − λ2

1

+
2

λ2
k − λ2

1

∫
−

Q0

(λ2
k + |det(A+Dvj)|)χWjdx

≤ C5ε+
1

2
+

2

λ2
k − λ2

1

∫
−

Q0

(λ2
k + |det(A+Dvj)|)χWj

dx,

where C5 > 0 is a constant depending on rK and dK . Here we have used assumption
(a), which gives (λ2

i0
−λ2

1)/(λ
2
k−λ2

1) ≤ 1/2. Since
∫−
Q0

(λ2
k+|det(A+Dvj)|)χWjdx→ 0

as j →∞, we have

meas(Uk
j ∩Q0)

meas(Q0)
<

3

4
if we require C5ε <

1

4
(3.12)

for large j > 0.
If (b) holds, we may obtain estimates similar to those above by replacing λ2

i0
−λ2

1

by λ2
i0
− λ2

k in (3.10).

Now for any x ∈ Uk
j with density 1, it is easy to see that x is an interior point of

Q0. We define a function on squares Qx containing x with Qx ⊂ Q0 (by a square we
always mean an open square in R

2 with its edges parallel to the coordinate axes):

G(Qx) =
meas(Uk

j ∩Qx)

meas(Qx)
.

Then the function G(Qx) is continuous with respect to continuous deformations of
Qx ⊂ Q0 when meas(Qx) > 0. If we take Qx = Q0, then G(Q0) < 3/4. We can also
find some Q∗x ⊂ Q0 strictly inside Q0 such that G(Q∗x) > 3/4. Therefore, starting
from Q0 we may find a family of decreasing squares Q(t) ⊂ Q0, 0 ≤ t ≤ 1, such that
Q(t) ⊂ Q(s) if t > s, meas(Q(s) \ Q(t)) → 0 as t → s or s → t, and Q(0) = Q0,
Q(1) = Q∗x. Since G(Q(t)) is a continuous function of t, the intermediate value
theorem implies that we may find some Q(t0) := Qx containing x and inside Q0 such
that G(Qx) = 3/4. Substituting this Qx in (3.8), we obtain

G(Qx)(1−G(Qx)) ≤ C4ε+
2

rK

∫
−
Qx

(
λ2
k + |det(A+Dvj(y))|

)
χWj

dy.

Substituting G(Qx) = 3/4 in the last inequality, we obtain

3

16
≤ C4ε+

2

rK

∫
−
Qx

(
λ2
k + |det(A+Dvj(y))|

)
χWjdy,

so that (
3

16
− C4ε

)
meas(Qx) ≤ 2

rK

∫
Qx

(
λ2
k + |det(A+Dvj(y))|

)
χWjdy.(3.13)

Here we need the left-hand side of (3.13) to be positive, so we require ε < 3/(16C4).
For each x ∈ Uk

j with density 1, there is some Qx ⊂ Q0 containing x with the side-

length less than 1 because Q0 ⊂ D. Hence {Qx} covers Uk
j except for a subset of

measure zero. From Besicovitch’s covering lemma (see, for example, [12, 24, 14]),
there is a countable subcollection {Qs}∞s=1 of {Qx} which still covers the subset of Uk

j
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of points with density 1, with Qs’s overlapping at most 4 times (in two-dimensional
Euclidean spaces), or

∑∞
s χQs ≤ 4. Now we replace Qx by Qs and sum up the

inequality over all Qs’s to obtain(
3

16
− C4ε

)
meas(Uk

j ) ≤
∞∑
s=1

2

rK

∫
Qs∩Wj

(
λ2
k + |det(A+Dvj(y))|

)
dy

≤ 8
1

rK

∫
Wj

(
λ2
k + |det(A+Dvj(y))|

)
dy.

(3.14)

So there is a γ > 0 such that for large j > 0,

meas(Uk
j ) ≤ γ

∫
Wj

(
λ2
k + |det(A+Dvj(y))|

)
χWjdy.

We see that meas(Uk
j )→ 0 as j →∞ if (a) holds, because

lim
j→∞

∫
Wj

(
λ2
k + |det(A+Dvj(y))|

)
dy = 0.

Hence dist2(A + Dvj , ∪k−1
i=1 (λkSO(2))ε) → 0 in Lp(Q0) as j → ∞ for each fixed

1 ≤ p <∞. Therefore the gradient Young measure {νx}x∈D corresponding to A+Dvj
satisfies supp νx ⊂ ∪k−1

i=1 (λiSO(2))ε a.e., at least for x ∈ Q0. However, since |Dvj −
Dφj | → 0 in L2(D), A+Dvj and A+Dφj correspond to the same Young measures,
while the Young measure generated by A+Dφj is ν—a homogeneous Young measure.
Thus ν = νx for almost every x ∈ D, which implies that supp ν ⊂ ∪k−1

i=1 (λiSO(2))ε.
From the induction assumption, supp ν ⊂ (λi0SO(2))ε.

If (b) happens, we can show that meas(U1
j )→ 0 so that supp ν ⊂ ∪ki=2(λiSO(2))ε.

In either case, the proof of Lemma 1 is finished.
Next we prove Lemma 2. The idea is similar to that of Lemma 1, with a few

exceptions. We write Du(x) =
∑k

i=1 R(x)(λ1I + f i(x))χi
U (x) and assume that x0 is

a point of density 1 for some U i0 and show that there is no point of density 1 for Uk

if i0 �= k.
Let Ds(x0) be a small square on which detDu has small BMO seminorm, while

αi0 = meas(U i0 ∩Ds(x0))/meas(Ds(x0)) > 3/4, so that αk ≤ 1/4 on Ds(x0). Since
in general we can show that αk(1 − αk) ≤ Cε on small squares inside Ω (see (3.18))
due to the BMO estimate, we may separate the values of αk on small squares as either
αk ≥ 1/2 + µ0 or αk ≤ 1/2− µ0 for some small µ0 > 0. Instead of “maximizing” the
left-hand side of the above inequality (see (3.18) below), as in the proof of Lemma 1,
we claim that there is no point of density 1 for Uk in Ds(x0). Otherwise, a continuous
deformation of squares in Ds(x0) and the intermediate value theorem will lead to a
square with αk = 1/2, which contradicts the estimates for αk. Then a continuation
argument will finish the induction process.

Proof of Lemma 2. We use the notation in the proof of Lemma 1 except for the
subscript j. If k = 1, we have nothing to prove. If for k− 1 ≥ 1 the statement is true,
we consider the case k. Suppose Du(x) ∈ Kε; we also have |PE∂̄

(Du(x)| ≤ ε a.e. in
Ω. Let F (x) = PE∂̄

(Du(x)) for x ∈ Ω; then u is a weak solution of

∆u = 2div(PE∂̄
(Du(x))) = 2 divF (x).

From Proposition 3, we have, for each x0 ∈ Ω, 0 < ρ < R such that B̄ρ(x0) ⊂
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B̄R(x0) ⊂ Ω, and there is some 0 < γ < 2 such that

∫
Bρ(x0)

|Du− [Du]Bρ(x0)|2dx ≤ C1

( ρ

R

)γ+2
∫
BR(x0)

|Du− [Du]BR(x0)|2dx+ C1ε
2ρ2,

(3.15)

where C1 > 0 is a constant. If we choose R > 0 such that B̄2R(x0) ⊂ Ω, then for any
0 < ρ < R in (3.15),

∫
−
Bρ(x0)

|Du− [Du]Bρ(x0)|2dx ≤ C2

( ρ

R

)γ ∫
−
BR(x0)

|Du− [Du]BR(x0)|2dx+ C2ε
2

≤ 16C2λ
2
k

( ρ

R

)γ
+ C2ε

2.

(3.16)

Here we have used the fact that ‖Du‖L∞(Ω,M2×2) ≤ 2(λk + ε) ≤ 4λk if we re-
quire ε < λk. Thus if we choose 0 < ρ < R such that ργ < Rγε2/C2(4λk)

2, then
‖Du‖BMO(Dρ(x0)) ≤ C3ε for squares centered at x0 with side-length ρ, where C3 > 0
is a constant depending on λk. Thus for every x0 ∈ Ω, there is r = r(x0,Ω) > 0 such
that

‖Du‖BMO(Dr(x)) ≤ C3ε.(3.17)

Now since Du(x) ∈ Kε in Ω, we write

Du(x) =

k∑
i=1

R(x)(λiI + f i(x))χi
U (x),(3.18)

where χUi(x) is the characteristic function of U i = {x ∈ Ω, Du(x) ∈ (λiSO(2))ε},
while ∥∥∥∥∥

k∑
i=1

f iχUi

∥∥∥∥∥
L∞(Ω,M2×2)

≤ ε.

Since meas(Ω \ (∪ki=1(Ui)ε) = 0 and U i’s are disjoint, without loss of generality, we
may assume that x0 ∈ U i0 ⊂ Ω is a point of density 1. By definition of the density,
there is a square Ds(x0) ⊂ Dr(x0) with s = s(x0,Ω) such that

meas(U i0 ∩Ds(x0))

meas(Ds(x0))
>

3

4
; hence

meas((∪ki �=i0
U i) ∩Ds(x0))

meas(Ds(x0))
<

1

4
.(3.19)

Notice that λ1 and λk are two end points of the set {λi, 1 ≤ i ≤ k}. Now we claim
that (i) if λi0 �= λk, meas(Uk ∩Ds(x0)) = 0; (ii) if λi0 �= λ1, meas(U1 ∩Ds(x0)) = 0.
Supposing the assumption of (i) is satisfied, we use the Jacobian again as in the proof
of Lemma 1. Since (3.17) and the boundedness of Du in L∞ imply∫

−
Q

|det(Du)− [det(Du)]Q|dx ≤ Cε(3.20)

for every square Q ⊂ Dr(x0), where C > 0 depends on λk, we substitute (3.18) into
(3.20) to obtain ∫

−
Q

∣∣∣∣∣∣
k∑

i=1

λ2
iχUi −

 k∑
j=1

λ2
jχUj


Q

∣∣∣∣∣∣ dx ≤ C4ε,
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where C4 > 0 depends on λk. Letting αi = meas(Q ∩ U i)/meas(Q), i = 1, . . . , k, we

have
∑k

i=1 α
i = 1, αi ≥ 0, and∫

−
Q

∣∣∣∣∣∣
k∑

i=1

λ2
iχUi −

 k∑
j=1

λ2
jχUj


Q

∣∣∣∣∣∣ dx ≥
∫
−

Q

∣∣∣∣∣∣λ2
kχUk −

 k∑
j=1

λ2
jχUj


Q

∣∣∣∣∣∣χUkdx

= αk

∣∣∣∣∣
k∑

i=1

(λ2
k − λ2

i )α
i

∣∣∣∣∣ ≥ αk

k−1∑
i=1

(λ2
k − λ2

k−1)α
i = (λ2

k − λ2
k−1)αk(1− αk) ≥ rKαk(1− αk).

Combining the last two sets of inequalities, we have

αk(1− αk) ≤ C4ε/rK

on any square Q ⊂ Dr(x0). Note that the inequality above holds for any square
Q ⊂ Dr(y), y ∈ Ω and r = r(y,Ω). Now we require that ε < rK/(4C4). Then

meas(Uk ∩Q)

meas(Q)

(
1− meas(Uk ∩Q)

meas(Q)

)
≤ 1

4
− µ0(3.21)

for some 0 < µ0 < 1/4. Solving inequality (3.21), we have either

(a)
meas(Uk ∩Q)

meas(Q)
≤ 1

2
−√µ0, or (b)

meas(Uk ∩Q)

meas(Q)
≥ 1

2
+
√
µ0(3.22)

for all squares Q ⊂ Dr(x0). We claim that (3.22(b)) cannot happen if Q ⊂ Ds(x0). If
the claim is not true, there is some Q0 ⊂ Ds(x0) such that (3.22(b)) holds. Since on
Q = Ds(x0), (3.19) holds, and hence (3.22(a)) must hold, we may find a continuous
family of squares Q(t) ⊂ Ds(x0), 0 ≤ t ≤ 1, with Q(0) = Ds(x0) and Q(1) = Q0, and
show that there is some Q(t0) ⊂ Ds(x0), 0 < t0 < 1, such that

meas(Uk ∩Q(t0))

meas(Q(t0))
=

1

2
.

However, such a Q(t0) satisfies neither (3.22(a)) nor (3.22(b)), a contradiction.
Since (3.22(a)) holds for every nondegenerate square in Ds(x0), we may conclude

that the points of density 1 for Uk in Ds(x0) are an empty set, and hence meas(Uk ∩
Ds(x0)) = 0. Consequently, Du(x) ∈ ∪k−1

i=1 (λiSO(2))ε a.e. in Ds(x0).
Now we show that Du(x) ∈ ∪k−1

i=1 (λiSO(2))ε a.e. in Ω. Since Ω is arcwise con-
nected, for any x1 ∈ Ω, there is a piecewise affine curve γ : [0, 1] → Ω connecting x0

and x1, with each piece of affine subcurve parallel to one of the coordinate axes such
that dist(γ, ∂Ω) = R0 > 0. So we may assume that there is some 0 < r0 < R such
that (3.17) holds on Dr0(x) for every x ∈ γ and either (3.22(a)) or (3.22(b)) holds
(note that (3.22(a)) and (3.22(b)) are independent of Q0). Starting from x0 = γ(0)
for sufficiently small s > 0, we consider a family of squares Q(t) = Ds(γ(t)) and a
continuous function

fs(t) =
meas(Uk ∩Q(t))

meas(Q(t))
.

Since fs(0) = 0 as we proved earlier and either fs(t) ≤ 1/2−√µ0 or fs(t) ≥ 1/2+
√
µ0,

we see that fs(t) ≤ 1/2−√µ0 for all t ∈ [0, 1]. Hence fs(1) ≤ 1/2−√µ0. Equivalently,
we have

meas(Uk ∩Ds(x1))

meas(Ds(x1))
≤ 1

2
−√µ0
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for sufficiently small s > 0. Thus x1 and, in general, every point in Ω are not points
of density 1 for Uk; hence meas(Uk) = 0. Therefore Du(x) ∈ ∪k−1

i=1 (λiSO(2))ε a.e. in
Ω. The conclusion then follows from the induction assumption.

If the assumption of (ii) is satisfied, that is, λi0 �= λ1, a similar argument will
lead to the conclusion that meas(U1) = 0. Again by induction assumption, Du(x) ∈
(λi0SO(2))ε a.e. in Ω.

Proof of Theorem 1. Let ε > 0 satisfy the requirements of Theorem 2 and Lem-
mas 1 and 2. Since limj→0

∫
Ω
dist(Duj Kε)dx = 0, there is a subsequence ujs ⇀ u

in W 1,1(Ω, R
2) with {νx}x∈Ω the corresponding gradient Young measures. This is

because Kε is compact, and hence |Duj | is equi-integrable in Ω. Therefore,

lim
s→∞

∫
Ω

dist(Dujs Kε)dx =

∫
Ω

∫
Kε

dist(τ, Kε)dνx(τ) dx = 0,

which implies that supp νx ⊂ Kε a.e. Then for almost every x0 ∈ Ω, we see, from
Proposition 2, that there is a homogeneous Young measure µx = ν = νx0 , x ∈ D
a.e., supported in Kε with the generating sequence Du(x0)+Dφjs (up to yet another

subsequence; see Proposition 4) with φjs ∈ W 1,∞
0 (D, R

2), and φjs converges in the

weak-∗ sense to 0 in W 1,∞
0 (D, R

2), where D is the unit square in R
2. Let A = Du(x0).

Since limk→∞
∫
D
distp(A + Dφjs(x), Kε)dx = 0 for all 1 ≤ p < ∞, we may apply

Theorem 2 to the quasi-convex function Fε(·) given by Theorem 2 to conclude that
Du(x0) = A ∈ Kε, and hence Du(x0) ∈ (λi0SO(2))ε for some 1 ≤ i0 ≤ k. Lemma 1
then implies that

lim
k→∞

∫
D

distp(A+Dφjk(x), (λi0SO(2))ε)dx = 0.

Thus supp νx0 = supp ν ⊂ (λi0SO(2))ε and Du(x0) ∈ (λi0SO(2))ε. Since this is
true for almost every x0 ∈ Ω, we may claim that supp νx ⊂ (λixSO(2))ε if Du(x) ∈
(λixSO(2))ε for some 1 ≤ ix ≤ k.

Since in any case we have Du(x) ∈ Kε a.e., from Lemma 2 we see that Du(x) ∈
(λi0SO(2))ε a.e. in Ω for some fixed 1 ≤ i0 ≤ k. Combining this with the last
paragraph, we see that supp νx ⊂ (λi0SO(2))ε a.e. in Ω, that is,

lim
k→∞

∫
D

dist(Dujs(x), (λi0SO(2))ε)dx = 0.

4. Proof of Theorem 2. The quasi-convex relaxation for Qdist2(A, SO(2)H)
was obtained in [13]. We first show that

Qdist2(A,K) = CE∂
[dist2(PE∂

(A),K) + |PE∂
(A)|2] + [|PE∂̄

(A)|2 − |PE∂
(A)|2].

(4.1)

Clearly

F (A) := dist2(A,K)

= [dist2(PE∂
(A),K) + |PE∂

(A)|2] + [|PE∂̄
(A)|2 − |PE∂

(A)|2]

= V (A) +H(A)

≥ CE∂
[dist2(PE∂

(A),K) + |PE∂
(A)|2] + [|PE∂̄

(A)|2 − |PE∂
(A)|2]

= G(A) +H(A),

(4.2)
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where G(A) = CE∂
V (A), and the right-hand side of (4.2) is quasi-convex because G

is convex and 2H(A) = −detA is quasi-convex. Thus

Qdist2(A,K) ≥ G(A) +H(A).(4.3)

Next we show that R dist2(A,K) ≤ G(A) + H(A). To see this we use the Kohn–
Strang scheme (2.1). Let Λ = {a ⊗ b ∈ M2×2, a, b ∈ R

2} be the set of all rank-one
matrices in M2×2. It is easy to check that the mapping PE∂

: Λ → E∂ is an onto
map. Also H(a⊗ b) = 0 for every a⊗ b ∈ Λ. We let PE∂

(A) = X, Y1, Y2 be arbitrary
matrices in E∂ satisfying λY1 + (1 − λ)Y2 = X, and we let Z = (Y1 − Y2). Since
PE∂

: Λ→ E∂ is onto, there is a rank-one matrix B ∈ Λ such that PE∂
(B) = Z. Now

we estimateR1F (A) by lifting the matrices in E∂ toM2×2. We have Y1 = X+(1−λ)Z,
Y2 = X − λZ. We let A1 = A+ (1− λ)B, A2 = A− λB; then

λA1 + (1− λ)A2 = A, A1 −A2 = B ∈ Λ, PE∂
(A1) = Y1, PE∂

(A2) = Y2.

Thus

R1F (A) ≤ λF (A1) + (1− λ)F (A2)

= [λV (PE∂
(A1)) + (1− λ)G(PE∂

(A2))] + [λH(A1) + (1− λ)H(A2)]

= I1 + I2.

We have

I1 = λV (PE∂
(A1)) + (1− λ)V (PE∂

(A2)) = λV (Y1) + (1− λ)V (Y2),

I2 = λH(A1) + (1− λ)H(A2) = λH(A+ (1− λ)B) + (1− λ)H(A− λB).

Since for a quadratic form, we have H(A + P ) = H(A) + H(B) + DH(A)B, where
DH(A) is the gradient of H at A, which is linear in A, then

λH(A+ (1− λ)B) = λH(A) + λH((1− λ)B) + λ(1− λ)DH(A)B

= λH(A) + λ(1− λ)DH(A)B.

Here we have used the fact H(B) = 0. Similarly, we have

(1− λ)H(A− λB) = (1− λ)H(A)− (1− λ)λDH(A)B.

Hence I2 = λH(A) + λ(1− λ)DH(A)B + (1− λ)H(A)− (1− λ)λDH(A)B = H(A).
Consequently, we obtain R1F (A) ≤ [λV (Y1)+(1−λ)V (Y2)]+H(A). Taking infimum
on Y1, Y2 with λY1 + (1− λ)Y2 = X (cf. (2.2)), we obtain

R1F (A) ≤ C1V (A) +H(A).(4.4)

Repeating the previous step by using (4.4), we see that RkF (A) ≤ CkV (A) +H(A).
Passing to the limit k → ∞, we have RF (A) ≤ [CE∂

V (PE∂
(A))] + H(A). So the

reversed inequality of (4.3) is reached. Since we also have RF (A) ≥ QF (A) ≥
CE∂

V (PE∂
(A)) +H(A), the proof of Qdist2(A,K) = G(A) +H(A) is complete.

The estimates in (i) can be easily deduced from the following lemma, which was
established in [31] by taking λ = 1.
Lemma 3. Let K ⊂ R

n be a closed set with K �= R
n. Then

C[dist2(x,K) + λ|x|2] − λ|x|2 ≥ λ

1 + λ
dist2(x,K)
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for x ∈ R
n, where λ > 0 is a constant.

Notice that if K = R
n, the above inequality is trivially true.

Now we prove (ii). Note that (iii) is a direct consequence of (ii). We may view the
problem in (ii) as a problem in the Euclidean space R

2: Suppose K ⊂ R
2 consists of

finitely many circles, in our case, K = ∪ki=1S
√

2λi
⊂ R, where Sλ = {x ∈ R

2, |x| = λ}.
Let K̂ = {√2λi}ki=1. Then squared distance function can be written as dist2(x,K) =

dist2(|x|, K̂). We may view the function [dist2(|x|, K̂) + λ|x|2] as an even function of
one variable dist2(t, K̂ ∪−K̂)+λt2 := h(t), where −K̂ = {−√2λi}ki=1. We show that

when t is close to K̂ ∪ −K̂, C[h(t)] = h(t).
We give an estimate for the general case when L ⊂ R is any finite set and f(x) =

dist2(x, L) + λ|x|2 for x ∈ R. Since for a function f defined on R, we have (see [23])

Cf(x) = sup{l(x), l(y) ≤ f(y), y ∈ R, l affine}.

It suffices if we can show for y0 near L and dist(y0, L) = |y0 − x0| < ε for some ε > 0
to be determined, x0 ∈ L, that the tangent line of the graph of f at (y0, f(y0)) stays
underneath the graph of f . The tangent line at y0 is given by

l(y) = (y0 − x0)
2 + λy2

0 + 2(y − x0)(y − y0) + 2λy0(y − y0).

Let us estimate f(y). If dist(y, L) = |y−x0|, then f(y) ≥ l(y) because of the convexity
of f near x0. Let d = min{|x − y|, x �= y, x, y ∈ L} > 0. If dist(y, L) = |y − x1| <
|y − x0| for some x1 ∈ L, we have

f(y) = (y − x1)
2 + λy2 = (y − x0)

2 + λy2 + 2(y − x0)(x0 − x1) + (x0 − x1)
2

= G(y) +H(y),

where G(y) = (y − x0)
2 + λy2 and H(y) = 2(y − x0)(x0 − x1) + (x0 − x1)

2. We then
have, by Taylor’s expansion of G at y0, that G(y) = l(y)+ (1+λ)(y−y0)

2, and hence

f(y)− l(y) = (1 + λ)(y − y0)
2 +H(y)

≥ (1 + λ)(y − y0)
2 − 2|y − x0||x1 − x0|+ (x0 − x1)

2

≥ [(1 + λ)(y − y0)
2 − 2|y − y0||x1 − x0|+ (x0 − x1)

2]− 2|x0 − y0||x1 − x0|
≥ λ

1 + λ
(x0 − x1)

2 − 2|x0 − y0||x1 − x0|

≥ |x0 − x1|
(

λ

1 + λ
d− |x0 − y0|

)
≥ 0

whenever |y0−x0| ≤ λd/(1+λ). Therefore we have Cf(y0) = f(y0) when dist(y0, L) ≤
λd/(1 + λ). Hence we conclude that R dist2(A,K) = Qdist2(A,K) = dist2(A,K)
whenever dist(A,K) ≤ λd/(1 + λ). Setting λ = 1 in our case and calculating

d = min{|X − Y |, X, Y ∈ PE∂
(K), X �= Y }

=
√
2min{λi+1 − λi, i = 1, . . . , k − 1} =

√
2gK ,

thus R dist2(A,K) = Qdist2(A,K) = dist2(A,K) whenever dist2(A,K) ≤
√

2
2 gK .
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[26] V. Šverák, Quasiconvex functions with subquadratic growth, Proc. Roy. Soc. London Ser. A,

433 (1991), pp. 723–725.
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L1 STABILITY FOR SYSTEMS OF HYPERBOLIC CONSERVATION
LAWS WITH A RESONANT MOVING SOURCE∗
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Abstract. In this paper, we study the L1 stability for the system ut+f(u)x = g(x−ct, u) when
one of the characteristic fields has resonance with the moving source. The nonlinear resonance occurs
when the speed of the source can coincide with one of the characteristic speeds of the hyperbolic
conservation laws. In this situation, a wave pattern can be either stable or unstable. By employing a
nonlinear functional approach, we prove the L1 stability of a transonic shock wave under the stability
conditions introduced in [W.-C. Lien, Comm. Pure Appl. Math., 52 (1999), pp. 1075–1098; T.-P. Liu,
Comm. Math. Phys., 83 (1982), pp. 243–260].

Key words. L1 nonlinear functional, hyperbolic conservation laws, resonant source
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1. Introduction. The purpose of this paper is to study the L1 stability for
systems of hyperbolic conservation laws with a resonant moving source:{

ut + f(u)x = g(x− ct, u), (x, t) ∈ R× R+,

u(x, 0) = u0(x), x ∈ R,
(1.1)

where u ∈ N ⊂ R
n, f : N → R

n, and g : R×N → R
n denote the conserved quantities,

the C3 flux function, and the source, respectively. Here N is a small neighborhood of
some reference state u0 in R

n. This system is assumed to be strictly hyperbolic with
the ith characteristic field being resonant with the source, i.e., λi(u) ≈ c. It is well
known [13] that in general, the system (1.1) does not admit a classical solution even
for the smooth initial data because of the nonlinearity of the flux function. Therefore,
one needs to consider weak solutions.

Definition 1.1. A bounded measurable function u(x, t) is a weak solution of the
system (1.1) with given initial data u0(x) if and only if∫ ∞

0

∫ ∞
−∞

[uφt + f(u)φx + g(x− ct, u)φ](x, t)dxdt+

∫ ∞
−∞

u0(x)φ(x, 0)dx = 0

for any φ ∈ C1
c (R

2).

Hyperbolic systems of conservation laws with sources appear in many physical
situations, such as three-dimensional compressible Euler equations with symmetries
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[6], a flow through a duct of variable cross section [6, 14, 19, 18, 17, 16, 24], and a
moving magnetic field for magneto-hydrodynamics (MHD) [12]. A prototype of these
systems is a quasi-one-dimensional nozzle flow model:

∂ρ

∂t
+

∂(ρu)

∂x
= −A′(x)

A(x)
(ρu), (x, t) ∈ R× R+,

∂(ρu)

∂t
+

∂(ρu2 + P )

∂x
= −A′(x)

A(x)
(ρu2),

∂(ρE)

∂t
+

∂(ρuE + Pu)

∂x
= −A′(x)

A(x)
(ρuE + Pu),

P = P (e, ρ),

where A(x) is the cross sectional area of a nozzle, ρ is the density, u is the velocity, P

is the pressure, e is the internal energy, and E = e+ u2

2 is the total energy of a gas.

The global existence and time-asymptotic stability of (1.1) were studied in [14,
19, 18, 17, 16]. Recently in [2, 11], the L1 stability of small initial data was studied for
systems with a nonresonant moving source, i.e., in the case in which the characteristic
speeds are strictly different from that of the source. In contrast, for the system
with a resonant moving source, the global existence of weak solutions with bounded
total variation (BV) has been studied only for special initial data such as a small
perturbation of one transonic shock wave moving with speed c in [14, 18, 17], and
its time-asymptotic stability and instability were shown to be strongly dependent
on the source. Moreover, the time-asymptotic stability of a steady transonic shock
wave under the stability condition (1.3) or (1.4) was analyzed in [14, 18]. Under the
condition (1.3), a simple wave pattern consisting of one steady transonic shock wave
in a nozzle is stable time-asymptotically so that the perturbed transonic shock wave
is still observed in the nozzle. However, under the condition (1.4), the perturbed
transonic shock wave is unstable time-asymptotically so that it is not observed in a
nozzle after a finite time [9, 19, 18, 17]. Let u0 ∈ N be a fixed reference state, and
assume that the right (left) eigenvectors ri(u0), lj(u0) form dual bases such that

li(u0) · rj(u0) = δij , 1 ≤ i, j ≤ n.

And by using a moving coordinate with speed c, we may assume that c equals zero;
i.e.,

ut + f(u)x = g(x, u).(1.2)

Set

u =
∑

uiri(u0), f(u) =
∑

f i(u)ri(u0), g(x, u) =
∑

gi(x, u)ri(u0).

Then it follows from (1.2) that{
ui = li(u0) · u, f i(u) = li(u0) · f(u), gi(x, u) = li(u0) · g(x, u),
uit + f i(u)x = gi(x, u), 1 ≤ i ≤ n.

In the following, we assume that the source g(x, u) has support [0, 1] in x and define
a function G(x) as follows.
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g(x, u) = 0, x 
∈ (0, 1), G(x) ≡ sup
p∈N

{
|g(x, p)|+

∥∥∥∥∂g(x, p)∂p

∥∥∥∥} .

For the resonant ith characteristic field, the following time-asymptotic stability and
instability conditions were introduced in [14, 18]:

Gii(x, u)
.
= li(u0)

∂g(x, u)

∂u
ri(u0) < 0 (stability),(1.3)

Gii(x, u)
.
= li(u0)

∂g(x, u)

∂u
ri(u0) > 0 (instability),(1.4)

where we have used the notation Gij(x, u)
.
= li(u0)

∂g(x,u)
∂u rj(u0). In this paper, for

the sake of definiteness, we assume the first characteristic field is resonant with the
source. In the study of L1 stability for the system (1.1), in order to have a uniform
L1 stability in time, one needs to control the error caused by the source, in addition
to the analysis of the homogeneous hyperbolic conservation laws. In [2, 11], when the
source has no resonance with any of the characteristic fields, a quadratic functional
Qso(t) was introduced to control these errors in L1 analysis:

Qso(t) =

n∑
j=1

Qjso(t),

Qjso(t) ≡
{ ∫∞

−∞ |qj(x, t)|(
∫∞
x(qj)

G(x)dx) if λ(qj) > 0,∫∞
−∞ |qj(x, t)|(

∫ x(qj)
−∞ G(x)dx) if λ(qj) < 0.

As long as the characteristic speeds of the system (1.2) are strictly away from zero,
Qso(t) gives a good decay term with respect to time which is enough to control the
errors caused by the source. However, for the resonant field (λ1(u), r1(u)), since λ1(u)
has a definite sign depending on the relative location compared to the relatively strong
shock wave, we need to modify the Q1

so(t), defined as in [2, 11], so that it gives the
decay estimate:

Q1
so(t) =

∫ xf (t)

−∞
|q1(x, t)|

(∫ ∞
x(q1)

G(ξ)dξ

)
dx

+

∫ ∞
xf (t)

|q1(x, t)|
(∫ x(q1)

xf (t)

G(ξ)dξ +

∫ ∞
xf (t)

G(ξ)dξ

)
dx,

where xf (t) is the location of the relatively strong shock at time t. In Lemma 3.3, we
estimate the error of time variation of L1 distance due to the source which is in the
following form:

Γso ≡
∑
j

∑
αi∈J
{λ(q−j (αi))|q−j (αi)| − λ(q+

j (α
i))|q+

j (α
i)|}

=

n∑
j=1

O(1)
∫ ∞
−∞

G(x)|qj(x, t)|dx.
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As shown in [2, 11], the quadratic functional Qso(t),

Qso(t) ≡
n∑
j=1

Qjso(t),

Q1
so(t) =

∫ xf (t)

−∞
|q1(x, t)|

(∫ ∞
x(q1)

G(ξ)dξ

)
dx

+

∫ ∞
xf (t)

|q1(x, t)|
(∫ x(q1)

xf (t)

G(ξ)dξ +

∫ ∞
xf (t)

G(ξ)dξ

)
dx,

Qjso(t) =

∫ ∞
−∞
|qj(x, t)|

(∫ ∞
x(qj)

G(ξ)dξ

)
dx, j ≥ 2,

can compensate the Γso effectively, and a uniform L1 stability follows. The main
assumptions of this paper are as follows.

Main Assumptions.
1. The system (1.1) is strictly hyperbolic. Let λi(u), (i ∈ {1, . . . , n}) be distinct

real eigenvalues of f ′(u), and let ri(u) (li(u)) be the corresponding right (left)
eigenvectors of f ′(u); i.e.,

f ′(u)ri(u) = λi(u)ri(u), λ1(u) < · · · < λn(u),
li(u)f

′(u) = λi(u)li(u), li(u) · rj(u) = δij .

2. Each characteristic field (λj(u), rj(u)) is either genuinely nonlinear (g.n.l.) or
linearly degenerate (l.d.g.) in the sense of Lax [13]:

(λj(u), rj(u)) is g.n.l. ⇐⇒ ∇λj(u) · rj(u) 
= 0 for all u ∈ N ,

(λj(u), rj(u)) is l.d.g. ⇐⇒ ∇λj(u) · rj(u) ≡ 0.

3. The first characteristic field is g.n.l. and resonant with the source; that is,

∇λ1(u) · r1(u) 
= 0, λ1(u) ≈ 0 for u ∈ N .

4. g(x, p) is piecewise differentiable in x, is continuously differentiable in p, has
compact support in x, and is sufficiently weak in the following sense:

g(x, p) = 0 if x 
∈ [0, 1],

G(x) ≡ sup
p∈N

{
|g(x, p)|+

∥∥∥∥∂g(x, p)∂p

∥∥∥∥} , G1 ≡ ‖G(·)‖L1(R),

G0 ≡ ‖G(·)‖L∞(R), G0 +G1 � 1.

We notice that the case in which the source is not of compact support but has
the above smallness properties can be treated similarly.

Without any smallness assumption on the source, we can expect only a local L1

stability in time. That is, there exist a finite time T and constants C, c̄ > 0 such that

||u(·, t)− v(·, t)||L1(R) ≤ Cec̄t||u(·, 0)− v(·, 0)||L1(R) when 0 < t < T.

This local L1 stability was first proved in [8]. For a “diagonally dominant dissipative
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system,” L1 stability based on a nonlinear functional approach through the front
tracking algorithm was studied in [1].

The main result of this paper is as follows. Let u(x) be a stationary solution
consisting of a transonic 1-shock wave connecting to a supersonic stationary wave
u1(x) for x < x∗ and a subsonic stationary wave u2(x) for x > x∗ as follows:

u(x) =


u(−∞), x < 0,
u1(x), 0 ≤ x < x∗,
u2(x), x∗ < x ≤ 1,
u(+∞), x > 1,

and λ1(u2(x)) < 0 < λ1(u1(x)), |λ1(u(x))| ≥ λ∗ > 0, σ(u1(x∗−), u2(x∗+)) = 0. Here
λ∗ is a positive constant.

Theorem 1.2. Let v(x, t) be a weak solution obtained by the Glimm scheme
corresponding to initial data v0, which is a small perturbation of u(x) in [14, 18]. As-
sume that the condition (1.3) holds. Then the steady transonic 1-shock wave solution
is uniformly L1 stable, i.e.,

||v(·, t)− u(·)||L1(R) ≤ G||v0(·)− u(·)||L1(R),

where G is a generic constant independent of t,

Remark 1.1. Under the instability condition (1.4), it is well known [14, 18] that
there exists a perturbation which can be arbitrarily small so that the perturbed big
shock wave moves away from the nozzle and goes to infinity as time goes to infinity.
Therefore, the L1 distance between the stationary solution and the perturbed solution
grows in time and can reach any given constant in finite time. The detailed analysis
will show that the L1 distance between these two solutions grows at least linearly in
time in the general setting.

The rest of the paper is organized as follows. In section 2, we will first define a
modified Glimm-type functional which is slightly different from the one in [14]. Then
we will review the basic theory of the nonlinear functional approach for L1 stability.
In section 3, we will derive basic estimates on the shock strength and on how the
source affects the L1 distance. Finally, in section 4, by using the nonlinear functional
defined in section 2, we will prove L1 stability of a steady transonic 1-shock wave
solution under the condition (1.3).

2. Preliminaries. In this section, we are going to define a modified Glimm-
type functional, which is slightly different from the one in [14], and briefly present the
simplified wave patterns given in [3, 11, 21, 22]. And then, we will define a nonlinear
functional which is equivalent to the L1 distance of two approximate weak solutions.

We first review the basics of the theory for the system of hyperbolic conservation
laws:

ut + f(u)x = 0, (x, t) ∈ R× R+,(2.1)

u(x, 0) = u0(x), x ∈ R.

A discontinuity (u−, u+) is called an i-shock wave for (2.1) with speed σ if it satisfies
the Rankine–Hugoniot and entropy conditions
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f(u+)− f(u−) = σ(u+ − u−) (R–H condition),

λi(u+) < σ < λi(u−) (entropy condition).

The Riemann problem for (2.1) is the initial value problem with simple jump initial
data

u(x, 0) =

{
ul, x < 0,
ur, x > 0.

It is well known [13] that the Riemann solution is a function of xt and consists of n+1
constant states {ul = u0, u1, u2, . . . , un = ur}, which are connected by shock waves,
rarefaction waves, or contact discontinuities.

In the following, we define an ith rarefaction curve Ri(u0) and an ith shock curve
Hi(u0).

Ri(u0) ≡ the integral curve of a vector field ri(u) · ∇u passing through u0,
Hi(u0) ≡ {u ∈ R

n : λi(u0, u)(u− u0) = f(u)− f(u0) for some scalar λi(u0, u),
max
u

λi−1(u) < λi(u0, u) < min
u

λi+1(u)}.

For an l.d.g. characteristic field (λi(u), ri(u)), it is well known [13] that Hi(u0) =
Ri(u0). We parameterize these curves by the arc length ξ, and we divide the ith
shock curve Hi(u0) and the ith rarefaction curve Ri(u0) as follows:

H+
i (u0) ≡ {u ∈ Hi(u0) : λi(u) > λi(u0, u) > λi(u0)},

H−i (u0) ≡ {u ∈ Hi(u0) : λi(u) < λi(u0, u) < λi(u0)},
R+
i (u0) ≡ {u ∈ Ri(u0) : λi(u) ≥ λi(u0)},

R−i (u0) ≡ {u ∈ Ri(u0) : λi(u) ≤ λi(u0)}.

Moreover, we define an ith wave curve as follows:

Wi(u0) ≡
{

H−i (u0) ∪R+
i (u0) if ith characteristic field is g.n.l.,

Hi(u0) = Ri(u0) if ith characteristic field is l.d.g.

Then by the second order contact of the ith shock curve and the ith rarefaction curve
at u0, the ith wave curve Wi(u0) is a C2-curve [13].

We consider a small perturbation of a steady transonic shock wave under the
condition (1.3). In this case, the Glimm-type functional is defined as follows [10, 14].
Let r = ∆x and s = ∆t in the Glimm scheme. Let J be a space like curve in x − t
plane. We use xJ to denote the location of the big shock wave on J and xα to denote
the location of any other small wave α.

F (J) ≡ |σJ |+
∑
j>1

L̄j(J) +M1L̄1(J) +M2Q(J),

L̄j(J) ≡
∑
{|α| : α is a small j-wave which crosses J},

σJ , |βJ | ≡ the speed and strength of the strong shock crossing J , respectively,

Q(J) ≡ Q0(J) +Q1(J) +Q2(J),
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Q0(J) ≡
∑
{|αβ| : α and β are strengths of small waves which are approaching

and cross J} ,

Q1(J) ≡
∑{

|α|
λ2∗

∫ ∞
xα

G(x)dx : α is the strength of 1-wave which crosses J with

xα < xJ

}
,

+
∑{

|α|
λ2∗

∫ xα

xJ

G(x)dx+
|α|
λ2∗

∫ ∞
xJ

G(x)dx : α is the strength of 1-wave which

crosses J with xα > xJ

}
,

Q2(J) ≡
∑
i>1

∑{
|α|
λ2∗

∫ ∞
xα

G(x)dx : α is the strength of i-wave which crosses for J

for i 
= 1

}
,

where 1�M1 �M2 are positive constants which will be determined later. Here λ∗
is the lower bound on |λ1(u)| defined before Theorem 1.2.

Remark 2.1. It is noted in [14] that the linear part of the Glimm-type functional
is L(J) = |σJ |+ L̄(J). However, here we use L(J) = |σJ |+

∑
j �=1 L̄j(J) +M1L̄1(J).

The reason for this is as follows. Near the relatively strong shock, small 1-waves from
the perturbation will be combined with the relatively strong shock so that L1(J)
decreases by the amount of the total strengths of these small 1-waves up to the order
of the interaction potential. On the other hand, the interaction of the small 1-wave
α with the relatively strong shock changes the speed of the relatively strong shock by
the amount of |α|. Therefore, by choosing M1 �M2 large enough to compensate for
the contribution to the change of the speed of the relatively strong shock and the new
created waves, F (J) can be shown to be decreasing in time by the usual argument
(cf. [14]).

Next, for the convenience of the readers, we will briefly explain the simplified
wave pattern given in [11, 21, 22]. Let ε > 0 be small, and let time T > 0 be given.
Set N = 1

ε , and choose M such that

(M − 1)Ns < T ≤MNs.

Without loss of generality, we may assume that N and M are integers; then it is easy
to see that, for a fixed N ,

lim
s→0

M =∞.

Let δ be the error from the randomness of an equidistributed sequence {aj}. Then
we have

δ → 0, as M →∞, for any ε.

In the following, we define a time zone Λp, an interaction measure Q(Λp), and a
cancellation measure C(Λp). For i = 1, . . . ,M ,
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Λp ≡ {(x, t) ∈ R× R+ : (p− 1)Ns ≤ t < pNs},
Q(Λp) =

∑
∆mn∈Λp

Q(∆mn), C(Λp) =
∑

∆mn∈Λp

C(∆mn),

where a local interaction measure Q(Λmn) and a local cancellation measure C(Λmn)
are defined as follows. Let ∆mn be a diamond whose vertices are ((m − 1)r +
ajr, ns), (mr + ajr, ns), (mr, (n+ 1

2 )s), and (mr, (n− 1
2 )s).

Q(∆mn) ≡
∑

(αi,βj):opp

{|αi||βj | : αi and βj pass through ∆mn },

C(∆mn) ≡
∑

(αi,βj):opp

{ |αi|+ |βi| − |αi + βj |
2

: αi and βi pass through ∆mn

}
,

where (αi, βj) : opp denotes the approaching pair defined in section 3.1 in [11].
In Λp, we can partition all waves at time t = (p − 1)Ns into surviving waves

and cancelled waves as in [11, 21, 22]. Based on this wave partition, we can define
a simplified wave pattern which consists only of surviving nonlinear waves with fixed
speeds in each small time zone Λp. That is, in Λp all nonlinear waves are linearly
superimposed. More precisely, since ur(x, t) is of bounded variation, for a given small
number ε, we can find E such that T.V {ur(x, t) : |x| > E} < ε for (p − 1)Ns ≤
t ≤ pNs. Then we replace the ur(x, t) on x < −E or x > E by the values of
limx→−∞ u(x, t) or limx→∞ u(x, t), respectively, in Λp. Therefore, we have a finite
number of surviving waves in Λp. Let us denote surviving i-waves in Λp by v1

i , . . . , v
N
i .

For each i-wave vki , its location in the Glimm scheme is randomly chosen by the
sequence {aj}. However, in the simplified wave pattern, it is replaced by the line
connecting its locations at time t = (p − 1)Ns and t = pNs. As in the approximate
solutions of the Glimm scheme, the hyperbolic waves in the simplified wave pattern
are connected by stationary waves. Notice also that i-waves do not cross each other
in Λp.

For the secondary waves such as nonsurviving waves in ur(x, t) and generated
waves from the nonlinear interactions in Λp, we do not keep track of them in Λp but
put them back at t = pNs+. This generates an error in the L1-norm which vanishes
eventually as s → 0. Therefore, we can assume that waves in the simplified wave
pattern ūr(x, t) move in a deterministic way, but their end states evolve according to
a stationary solution. For details, please refer to [11, 21, 22].

Let u(x, t) and v(x, t) be two Glimm solutions of (1.1) such that

lim
r→0

ur(x, t) = u(x, t), lim
r→0

vr(x, t) = v(x, t) in L1
loc(R× R+),

and let ūr(x, t) and v̄r(x, t) be the corresponding simplified wave patterns, respec-
tively. For the time being, we will fix r, and, without any confusion, we denote
ūr(x, t) and v̄r(x, t) by u(x, t) and v(x, t), respectively. For given (x, t) ∈ R×R+, we
resolve a discontinuity (u(x, t), v(x, t)) by the n Hugoniot curves; i.e.,

ω0(x, t) = u(x, t), ωn(x, t) = v(x, t), ωi(x, t) ∈ Hi(ωi−1(x, t)), i = 0, 1, . . . , n.

Here, Hi(ωi−1(x, t)) is an ith Hugoniot curve passing through ωi−1(x, t) in the state
space. We define the strength qi(x, t) of (ωi−1(x, t), ωi(x, t)) as follows:

qi(x, t) ≡ li(u0) · (ωi(x, t)− ωi−1(x, t)), i = 1, . . . , n.
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The strict hyperbolicity implies

1

C1
|u(x, t)− v(x, t)| ≤

n∑
i=1

|qi(x, t)| ≤ C1|u(x, t)− v(x, t)|(2.2)

for some positive constant C1 independent of t.
In what follows, we will use the following simplified notation:

J (u), J (v) : the set of all discontinuities in u(x, t), v(x, t), respectively,

and J = J (u) ∪ J (v).

For an i-wave αi ∈ J , we define the location of αi and the virtual waves q±j (α
i)

generated by the difference of u and v at both sides of αi as follows:

x(αi) ≡ the location of an i-wave αi,

q±j (α
i) ≡ qj(x(α

i)±, t), λ±j (α
i) ≡ λj(ωj−1(x(α

i)±, t), ωj(x(αi)±, t)).

In the following, we state three lemmas which are direct consequences of the smooth-
ness of the Hugoniot curves which are proved in [5] and [22].

Lemma 2.1. Let ū ∈ N and k ∈ {1, 2, . . . , n}. Let us define the states and wave
speeds as follows:

u = Hk(ξ)(ū), u′ = Hk(ξ
′)(u), u′′ = Hk(ξ + ξ′)(ū),

λ = λk(ū, u), λ′ = λk(u, u
′), λ′′ = λk(ū, u

′′).

Then we have

|(ξ + ξ′)λ′′ − (ξλ+ ξ′λ′)| = O(1)|ξ||ξ′||ξ + ξ′|.

Lemma 2.2. Suppose that ξj , ξ
′
j, and ξ′′j satisfy

Hn(ξn) ◦ · · · ◦H1(ξ1)(u) = Hn(ξ
′
n) ◦ · · · ◦H1(ξ

′
1) ◦Hn(ξ′′n) ◦ · · · ◦H1(ξ

′′
1 )(u).

Then

n∑
i=1

|ξi − ξ′i − ξ′′i | = O(1)


n∑
j=1

|ξ′j ||ξ′′j ||ξ′j + ξ′′j |+
∑
j>i

|ξ′′j ||ξ′i|
 .

If the values ξ′i and ξ are related by

Ri(ξ)(u
∗) = Hn(ξ

′
n) ◦ · · · ◦H1(ξ

′
1)(u

∗),

then

|ξ − ξ′i|+
∑
j �=i
|ξ′j | = O(1)

|ξ||ξ′i||ξ + ξ′i|+
∑
j �=i
|ξ′j ||ξ|

 .

Suppose αi = (v−, v+) ∈ J is an i-wave in either v or u and the other solution is
continuous at x = x(αi).
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Denote

e(Λp) ≡ (Q(Λp) + C(Λp) + δ + ε+NsG0),

Γs(α
i) ≡ |αi||q−i (αi)||q+

i (α
i)|,

Γd(α
i) ≡ |αi|

∑
j>i

|q−j (αi)|+ |αi|
∑
j<i

|q+
j (α

i)|.

The following lemma gives the variation of qj(x, t) across the wave αi.
Lemma 2.3. Let αi = (v−, v+) ∈ J be an i-wave in the time zone Λp. Then we

have

q+
j (α

i) =

{
q−i (α

i) + [αi] +O(1)(Γs + Γd)(α
i) +O(1)|αi|e(Λp), j = i,

q−j (α
i) +O(1)(Γs + Γd)(α

i) +O(1)|αi|e(Λp), j 
= i,

where [αi] ≡ li(u0) · (v+ − v−).
Finally, we define a nonlinear functional H(t), which is the weighted sum of four

component functionals: First, we define a linear part L(t) by

L(t) =

n∑
j=1

Lj(t), Lj(t) ≡
∫ ∞
−∞
|qj(x, t)|dx.

Then it follows from (2.2) that L(t) is equivalent to ||u(·, t)− v(·, t)||L1(R). As shown
in [5], [22], L(t) may increase in time t. So, in order to compensate for the possible
increase of L(t), we need to consider functionals with a good decay property in time
t. They are Qd(t) measuring nonlinear couplings between waves of different charac-
teristic families, E(t) capturing the nonlinearity of the characteristic field due to the
bifurcation of a shock curve and a rarefaction curve, and Qso(t) measuring the source
effect on the L1 distance. Both Qd(t) and E(t) are used in the study of homogeneous
hyperbolic conservation laws (cf. [5, 20, 21, 22]). We now explain Qso(t) briefly. This
functional is defined to capture the effect of the source on the L1 distance. For this,
we need to consider the potential interactions between the virtual waves qi(x, t) and
stationary waves. For definiteness, we consider a virtual wave qj(x0, t), j ≥ 2, located
at x = x0. Since this wave has a positive speed, it will interact with the stationary
waves lying x ≥ x0 with the interaction potential of the order

∑
j≥2

|qj(x0, t)|
(∫ ∞

x(qj)

G(ξ)dξ

)
.

For the resonant field (r1(u), λ1(u)), the left states and right states of a relatively
strong shock are supersonic and subsonic, respectively. Next we consider the poten-
tial interactions with an imaginary wave q1(x0, t) and stationary waves. If x0 < xf (t)
(= location of the relatively strong shock at time t), then the imaginary wave q1(x0, t)
has a positive speed, so before it interacts with a relatively strong shock, it will inter-
act with stationary waves, and after it interacts with a relatively strong shock, as part
of a relatively strong wave, it will interact with the stationary wave lying on [0, 1], so
the potential interactions with q1(x0, t) and stationary waves are

|q1(x0, t)|
∫ ∞
x(q1(x0,t))

G(ξ)dξ.
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In contrast, if x0 > xf (t), then the imaginary wave q1(x0, t) has a negative speed and
will interact with stationary waves before it is combined with a relatively strong shock
wave, and after it is absorbed into a relatively strong shock wave, as part of a relatively
strong shock, it will interact with stationary waves. So potential interactions are

|q1(x0, t)|
(∫ xf (t)

x(q1(x0,t))

G(ξ)dξ +

∫ ∞
xf (t)

G(ξ)dξ

)
.

Based on this observation, we define a nonlinear functional H(t) for two simplified
wave patterns as follows:

L(t) =
n∑
j=1

Lj(t), Lj(t) ≡
∫ ∞
−∞
|qj(x, t)|dx,

Qd(t) =
∑
αi∈J

Qd(α
i(t)),

Qd(α
i(t)) ≡ |αi(t)|

∑
j>i

∫ x(αi)

−∞
|qj(x, t)|dx+

∑
j<i

∫ ∞
x(αi)

|qj(x, t)|dx
 ,

E(t) =
∑
αi∈J

E(αi(t)),

E(αi(t)) ≡ |αi(t)| ·

∫ x(αi)

−∞ qi(x, t)+dx+
∫∞
x(αi)

qi(x, t)−dx, αi ∈ J(u),∫∞
x(αi)

qi(x, t)+dx+
∫ x(αi)

−∞ qi(x, t)−dx, αi ∈ J(v),

Qso(t) =
∑
j≥1

Qjso(t),

Qjso(t) ≡
∫ ∞
−∞
|qj(x, t)|

(∫ ∞
x(qj)

G(ξ)dξ

)
dx, j ≥ 2,

Q1
so(t) ≡

∫ xf (t)

−∞
|q1(x, t)|

(∫ ∞
x(q1)

G(ξ)dξ

)
dx

+

∫ ∞
xf (t)

|q1(x, t)|
(∫ x(q1)

xf (t)

G(ξ)dξ +

∫ ∞
xf (t)

G(ξ)dξ

)
dx,

H(t) ≡ [1 +K1F ((p− 1)Ns)]L(t) +K2[Qd(t) + E(t) +Qso(t)], t ∈ [(p− 1)Ns, pNs),
1 ≤ p ≤M,

whereK1 andK2 are positive constants to be determined later and F (t) = F (u(x, t))+
F (v(x, t)) is sum of the Glimm functionals for the solutions u(x, t) and v(x, t). In
the following sections, we will study the time-evolutional property of this nonlinear
functional H(t) under the condition (1.3).

3. Basic estimates. In this section, we study some basic estimates which are
necessary for the decay analysis of the nonlinear functional H(t). First, we estimate
the time variation of a shock strength through a stationary background.

Lemma 3.1. Let αi(t) = (u−(t), u+(t)), t ∈ [(p−1)Ns, pNs) be an i-wave issued
from (hr, (p− 1)Ns) in the simplified wave pattern u(x, t). Then

d|αi(t)|
dt

= O(1)G(x(αi))|αi(t)|,

where O(1) depends only on (1.1).
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Proof. Let (x(t), t) be the locus of the shock in x-t plane. Denote the states at
both sides of the shock as follows:

u−(t) ≡ u(x(t)−, t), u+(t) ≡ u(x(t)+, t).

Since u(x, t) is a local steady state solution, we have

ux = (f ′(u))−1g(x, u) ≡ g̃(x, u).(3.1)

From this, we have

u+(t+ h) = u+(t) +

∫ x(t+h)

x(t)

g̃(ξ, u+(ξ))dξ,(3.2)

u−(t+ h) = u−(t) +
∫ x(t+h)

x(t)

g̃(ξ, u−(ξ))dξ.(3.3)

It follows from (3.2) and (3.3) that

u+(t+ h)− u−(t+ h) = u+(t)− u−(t) +O(1)
∫ x(t+h)

x(t)

G(ξ)|αi(t)|dξ,

where we have used the fact that |u+(ξ)− u−(ξ)| = O(1)|αi(t)|. Hence we have

(u−(t+ h), u+(t+ h))i = (u−(t), u+(t))i +O(1)
∫ x(t+h)

x(t)

G(ξ)|αi(t)|dξ.

This implies that

d|αi(t)|
dt

= O(1)G(x(αi))|αi(t)|,

which completes the proof.
Assume now at time t that there is no wave interaction. Let J = {αj}Nt

j=1 be the
set of all waves in u and v at this time with locations

−∞ < x(α1) < · · · < 0 ≤ x(αk) < x(αk+1) < · · · < 1 ≤ x(αl) < · · · < x(αNt
) <∞.

Without loss of generality, we may assume that x(αk(t)) = 0 and x(αl(t)) = 1. As
shown in [11], the term

IIj ≡
∑
α∈J
{λ(q−j (α))|q−j (α)| − λ(q+

j (α))|q+
j (α)|}

denotes the effect of the source on the time evolution of Lj(t). In the following lemma,
we estimate this quantity.

Lemma 3.2. For each j, k ∈ {1, . . . , n}, we have the following estimates.

f j(ωk(x, t))x − gj(x, ωk(x, t)) = O(1)G(x)max

(
k∑
i=1

|qi(x, t)|,
n∑

i=k+1

|qi(x, t)|
)

.
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Proof. For given smooth functions p(x, t) and q(x, t), we set

hj(x, p, q) ≡ ∇pf j(p)q − gj(x, p).

Then, since u(x, t) = ω0(x, t) and v(x, t) = ωn are local steady state solutions,

hj(x, ω0, ∂xω0) = hj(x, ωn, ∂xωn) = 0.(3.4)

By the mean value theorem and (3.4), we have

hj(x, ωk, ∂xωk) = hj(x, ωk, ∂xωk)− hj(x, ω0, ∂xω0)

= hj(x, ωk, ∂xωk)− hj(x, ω0, ∂xωk) + hj(x, ω0, ∂xωk)− hj(x, ω0, ∂xω0)

= ∇phj(x, θ1
k, ∂xωk) · (ωk − ω0) +∇qhj(x, ω0, θ

2
k)∂x(ωk − ω0),(3.5)

where θ1
k is a point on the line segment connecting ω0 and ωk and θ2

k is a point on the
line segment connecting ∂xω0 and ∂xωk, respectively. Next, we claim the following:

1. ∇phj(x, θ1
k, ∂xωk) = O(1)G(x).

2. ∇qhj(x, ω0, θ
2
k) = O(1), ∂x(ωk − ω0) = O(1)G(x)max(

∑k
i=1 |qi(x, t)|,∑n

i=k+1 |qi(x, t)|).
Proof of 1. Since ωk(x, t) is determined by connecting two end states u(x, t) and

v(x, t) by Hugoniot curves, we can write

ωk(x, t) = Φk(u(x, t), v(x, t)) for some C2 function Φk.

It follows from (3.1) that

∂x(ωk(x, t)) = Φkuux +Φkvvx = O(1)G(x),(3.6)

where we have used the fact that all states are not sonic, i.e., λi(u) 
= 0 for all i and
u ∈ N . On the other hand, (3.6) implies

∇phj(x, θ1
k, ∂xωk) = ∇2

pf
j(θ1

k)∂xωk −∇pgj(x, θ1
k)

= O(1)G(x).

Proof of 2. By definition of hj , it is easy to see

∇qhj(x, ω0, θ
2
k) = O(1).

Next we show

∂x(ωk − ω0) = O(1)G(x)max

(
k∑
i=1

|qi(x, t)|,
n∑

i=k+1

|qi(x, t)|
)

.

For given t, we define ω∗k(y, t) by a local steady state solution such that

f(ω∗k(x, t))x = g(x, ω∗k(x, t)), ω∗k(x, t) = ωk(x, t).

Notice that when
∑n
i=k+1 |qi(x, t)| = 0, since v(x, t) = ωk(x, t), by the local uniqueness

of the ODE solution we have

ω∗k(x, t) = v(x, t).
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In this case, the difference between ωk(x + ∆x, t) and ω∗k(x + ∆x, t) = v(x + ∆x, t)
is due to the interaction between the imaginary waves qi(x, t), i = 1, . . . , k, and sta-
tionary waves. Therefore, the difference is the order of the interaction errors between
imaginary waves qi(x, t), i = 1, . . . , k, and stationary waves, i.e.,

ωk(x+∆x, t)− ω∗k(x+∆x, t) = O(1)max

k∑
i=1

|qi(x, t)|
∫ x+∆x

x

G(η)dη.(3.7)

By the same argument as above, when
∑k
i=1 |qi(x, t)| = 0, we have

ωk(x+∆x, t)− ω∗k(x+∆x, t) = O(1)max

k∑
i=1

|qi(x, t)|
∫ x+∆x

x

G(η)dη.(3.8)

By (3.7), (3.8), and the continuity argument, we obtain

ωk(x+∆x, t)− ω∗k(x+∆x, t)

= O(1)max

(
k∑
i=1

|qi(x, t)|,
n∑

i=k+1

|qi(x, t)|
)∫ x+∆x

x

G(η)dη.(3.9)

On the other hand, we can rewrite

∂x[ωk(x, t)− ω0(x, t)] = ∂x[ωk(x, t)− ω∗k(x, t)] + ∂x[ω
∗
k(x, t)− ω0(x, t)] = Γ1 + Γ2.

Then, by the same argument as in [14], we have

Γ2 = O(1)
k∑
i=1

|qi(x, t)|G(x).

Now, we estimate Γ1 using (3.9). Since ωk(x, t)− ω∗k(x, t) = 0, we have

[ωk(x+∆x, t)− ω∗k(x+∆x, t)]− [ωk(x, t)− ω∗k(x, t)]

= O(1)max

(
k∑
i=1

|qi(x, t)|,
n∑

i=k+1

|qk(x, t)|
)∫ x+∆x

x

G(η)dη.

Now, dividing by ∆x and letting ∆x→ 0, we obtain

∂x[ωk(x, t)− ω∗k(x, t)] = O(1)max

(
k∑
i=1

|qi(x, t)|,
n∑

i=k+1

|qi(x, t)|
)

G(x).

Combining the estimates for Γ1 and Γ2, we have

∂x(ωk(x, t)− ω0(x, t)) = O(1)max

(
k∑
i=1

|qi(x, t)|,
n∑

i=k+1

|qi(x, t)|
)

G(x).

In (3.5), using the above claim, we obtain

f j(ωk(x, t))x − gj(x, ωk(x, t)) = O(1)G(x)max

(
k∑
i=1

|qi(x, t)|,
n∑

i=k+1

|qi(x, t)|
)

.
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This completes the proof.
Lemma 3.3. Suppose that G11(x, u) ≤ −λ (λ > 0). Then we have

n∑
j=1

IIj ≤ O(1)
n∑
k=1

∫ ∞
−∞

G(x)|qk(x, t)|dx− |O(1)|λ
∫ ∞
−∞

1G(x)>0|q1(x, t)|dx.

Proof. Let us set

IIj ≡
Nt−1∑
i=1

IIj(αi, αi+1), IIj(αi, αi+1) ≡ λ(q−j (αi+1))|q−j (αi+1)| − λ(q+
j (αi))|q+

j (αi)|.

We first estimate IIj(αi, αi+1). Since λ(qj(x))|qj(x)| is continuous on (x(αi), x(αi+1)),
we have

λ(q+
j (x, t))|q+

j (x, t)| = λ(q−j (x, t))|q−j (x, t)|, x ∈ (x(αi), x(αi+1)).

So, if necessary, by inserting

λ(q+
j (x, t))|q+

j (x, t)| − λ(q−j (x, t))|q−j (x, t)|, x ∈ (x(αi), x(αi+1)),

it suffices to consider only two cases, i.e., either qj(x, t) ≥ 0 or qj(x, t) < 0, on the
whole interval (x(αi), x(αi+1)).

In the following, we consider only the case in which qj(x, t) ≥ 0 on (x(αi), x(αi+1)).
The other case can be discussed similarly. By a direct calculation, we have

IIj(αi, αi+1) = f j(ωj(x(αi+1)))− f j(ωj(x(αi)))

− [f j(ωj−1(x(αi+1)))− f j(ωj−1(x(αi)))]

=

∫ x(αi+1)

x(αi)

[
f j(ωj(x, t))x − f j(ωj−1(x, t))x

]
dx.(3.10)

And now we can prove the estimates in the lemma as follows.
Case 1. j = 1. By Lemma 3.2, we have

f1(ω1(x, t))x = g1(x, ω1(x, t)) +O(1)G(x)max

(
|q1(x, t)|,

n∑
k=2

|qk(x, t)|
)

,

f1(ω0(x, t))x = g1(x, ω0(x, t)).

From (3.10), we have

II1(αi, αi+1) =

∫ x(αi+1)

x(αi)

[
g1(x, ω1(x, t))− g1(x, ω0(x, t))

]
dx

+ O(1)
∫ x(αi+1)

x(αi)

G(x)

(
n∑
k=1

|qk(x, t)|
)

dx.(3.11)

Moreover, we have

g1(x, ω1(x, t))− g1(x, ω0(x, t)) = ∇ug1(x, θ̄1(x, t)) · (ω1(x, t)− ω0(x, t))

= ∇ug1(x, θ̄1(x, t)) ·
n∑
i=1

(li(u0) · (ω1(x, t)− ω0(x, t)))ri(u0)
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=

(
l1(u0)

∂g(x, θ̄1)

∂u
r1(u0)

)
|q1(x, t)|

+ ∇ug1(x, θ̄1(x, t)) ·
n∑
i=2

[li(u0) · (ω1(x, t)− ω0(x, t))]ri(u0),

where θ̄1(x, t) is a point on the line segment connecting ω0(x, t) and ω1(x, t). On the
other hand, we assume that d (≡ the diameter of N ) is small. Since

ω1 = ω0 + q1(x, t)r1(u0) +O(1)d|q1(x, t)|,

we therefore have, for i 
= 1,

li(u0) · ((ω1(x, t)− ω0(x, t))) = q1(x, t)[li(u0) · r1(u0)] +O(1)d|q1(x, t)|
= O(1)d|q1(x, t)| � |q1(x, t)|,

where we have used that li(u0) · r1(u0) = 0, i 
= 1. Hence we have

g1(x, ω1(x, t))− g1(x, ω0(x, t)) ≤ |O(1)|
(
l1(u0)

∂g(x, θ̄1)

∂u
r1(u0)

)
|q1(x, t)|.(3.12)

Since G11(x, u) ≤ −λ for some λ > 0, it follows from (3.11) and (3.12) that

II1(αi, αi+1) ≤ O(1)
∫ x(αi+1)

x(αi)

G(x)

(
n∑
k=1

|qk(x, t)|
)

dx

− |O(1)|λ
∫ x(αi+1)

x(αi)

1G(x)>0|q1(x, t)|dx,

where 1G(x)>0 denotes the characteristic function of the set {G(x) > 0}. By summing
up all II1(αi, αi+1) over all i = 1, . . . , Nt − 1, we have

II1 ≤ O(1)
∫ ∞
−∞

G(x)

(
n∑
k=1

|qk(x, t)|
)

dx− |O(1)|λ
∫ ∞
−∞

1G(x)>0|q1(x, t)|dx.

Case 2. By Lemma 3.2, we have

n∑
j=2

IIj = O(1)
∫ ∞
−∞

G(x)

(
n∑
k=1

|qk(x, t)|
)

dx.

Combining Cases 1 and 2, we have

n∑
j=1

IIj ≤ O(1)
∫ ∞
−∞

G(x)

(
n∑
k=1

|qk(x, t)|
)

dx− |O(1)|λ
∫ ∞
−∞

1G(x)>0|q1(x, t)|dx.

This completes the proof.
Remark 3.1. In the resonant scalar case, the dissipation condition G11(x, u) ≤ −λ

gives an estimate

II1 ≤ −λ
∫ ∞
−∞

1G(x)>0|q1(x, t)|dx.
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4. Stability analysis. In this section, we study the L1 stability of a steady tran-
sonic shock wave solution under the condition (1.3). First, we study time decay rates
for each component functional. Recall that an open interval Ip = ((p−1)Ns, pNs), p ∈
{1, . . . ,M}, is the union of two disjoint sets, Ip = I1

p ∪ I2
p , where I1

p is the set of all
countable interaction times such that H(t) is simply continuous, and I2

p is the set of
all differentiable points of H(t). For notational convenience, we set

Γs ≡
∑
α∈J

Γs(α), Γd ≡
∑
α∈J

Γd(α),

Γso ≡
n∑
j=1

∫ 1

0

G(x)|qj(x, t)|dx, Γ ≡ Γs + Γd + Γso.

Let v0(x) be a small perturbation of u(x) such that

T.Vx(v0(x)− u(x))� 1.

In the following, we briefly sketch the time-evolution estimates of the Glimm func-
tional defined in section 2. For the details, we refer to [14].

Lemma 4.1 (see [14, 18]). Assume that the condition (1.3) holds. Then we have
the following estimates on the Glimm functional defined in section 2:

F (J) ≤ F (0)− 1

2
Q(ΛJ)− c0

2

kJ∑
k=1

∣∣∣∣∣
∫ xf (ks)

xf ((k−1)s)

G(x)dx

∣∣∣∣∣ ,
where c0 is a positive constant.

Proof. Let J1 and J2 be space-like curves such that J2 is an immediate successor
of J1 and ∆ ≡ ∆(J1, J2) is the diamond spanned by J1 and J2. Based on the estimates
obtained in [14], we consider the following two cases.

Case 1. ∆(J1, J2) contains the relatively strong shock. In this case, we have

|σJ2 | − |σJ1 | ≤ −|O(1)|
∣∣∣∣∣
∫ xf (J2)

xf (J1)

G(x)dx

∣∣∣∣∣+O(1)
(
Q(∆)

+
∑
{|α1| : α1 is a 1-wave passing through J1 in ∆}

)
,

L̄1(J2)− L̄1(J1) ≤ −
∑
{|α1| : α1 is a 1-wave passing through J1 in ∆}

+ O(1)Q(∆),∑
j �=1

Lj(J2)−
∑
j �=1

Lj(J1) ≤ O(1)Q(∆),

Q(J2)−Q(J2) ≤ −Q(∆) +O(1)(L̄(J1) +G1)

·
(
Q(∆) + |βJ1 |

∣∣∣∣∣
∫ xf (J2)

xf (J1)

G(x)dx

∣∣∣∣∣
)

.

By definition of F (J), we have

F (J2)− F (J1) ≤ [−|O(1)|+O(1)M2(L̄(J1) +G1)|βJ1 |]
∣∣∣∣∣
∫ xf (J2)

xf (J1)

G(x)dx

∣∣∣∣∣
+ (O(1) +M1O(1)−M2)Q(∆)
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+ (O(1)−M1)
∑
{|α1| : α1 is a 1-wave ∈ ∆ ∩ J1}.

Since 1�M1 �M2 (see section 2), we have

−|O(1)|+O(1)M2(L̄(J1) +G1)|βJ1 | ≤ −c0 for some positive constant c0,

O(1) +M1O(1)−M2 ≤ −1
2
, O(1)−M1 < 0.

Then we have

F (J2)− F (J1) ≤ −1
2
Q(∆)− c0

2

∣∣∣∣∣
∫ xf (J2)

xf (J1)

G(x)dx

∣∣∣∣∣ .
Case 2. ∆(J1, J2) does not contain the relatively strong shock. We have

|σJ2 | − |σJ1 | = 0,
L̄1(J2)− L̄1(J1) ≤ O(1)Q(∆),∑

j �=1

Lj(J2)−
∑
j �=1

Lj(J1) ≤ O(1)Q(∆),

Q(J2)−Q(J2) ≤ −Q(∆) +O(1)(L̄(J1) +G1)Q(∆).

Thus

F (J2)− F (J1) ≤ (O(1) +M1O(1)−M2)Q(∆).

Since 1�M1 �M2 in section 2, we have

O(1) +M1O(1)−M2 ≤ −1
2
,

which implies

F (J2)− F (J1) ≤ −1
2
Q(∆).

By telescoping the above estimates from every space-like curve between J and 0, we
obtain

F (J) ≤ F (0)− 1

2
Q(ΛJ)− c0

2

kJ∑
k=1

∣∣∣∣∣
∫ xf (ks)

xf ((k−1)s)

G(x)dx

∣∣∣∣∣ .
Remark 4.1. Because of the dissipation condition on G11(x, u), the speed of the

relatively strong shock is decreasing in time when the relatively strong shock only
interacts with stationary waves (see Lemma 3.1 in [14]), and this gives a good term,

−
kJ∑
k=1

∣∣∣∣∣
∫ xf (ks)

xf ((k−1)s)

G(x)dx

∣∣∣∣∣ ,
in Glimm functional F (J). This good term will be used in Lemma 4.3 in order to

control the bad term in
dQ1

so(t)
dt .

Next we estimate the time-evolution of Q1
so(t), which is different from Q1

so(t) in
[11]. But the estimates for the Qiso(t), i ≥ 2, will be the same as in [11].
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Lemma 4.2. Suppose that the main assumptions in section 1 hold. Then we have
the following estimate:

dQ1
so(t)

dt
≤ −λ∗

∫ ∞
−∞

G(x)|q1(x, t)|dx+ 2

(
d

dt

∫ ∞
xf (t)

G(ξ)dξ

)∫ ∞
xf (t)

|q1(x, t)|dx
+ O(1)G1 {Γ + (T.V +G1)e(Λp)} ,

where λ∗ is a positive constant which is a lower bound on |λ1(u)|.
Proof. For a given noninteraction time t ∈ Λp, we have three cases, depending on

the location of a relatively strong shock wave:

xf (t) < 0, 0 ≤ xf (t) ≤ 1, xf (t) > 1.

Case 1 (xf (t) < 0). In this case, Q1
so(t) becomes

Q1
so(t) = G1

∫ ∞
−∞
|q1(x, t)|dx+

∫ ∞
xf (t)

|q1(x, t)|
(∫ x(q1)

xf (t)

G(ξ)dξ

)
dx ≡ I1 + I2.

We denote the locations of waves as follows.

−∞ < x(α1) < · · · < x(αe) = xf (t) < x(αe+1) < · · · < x(αk)
= 0 < x(αk+1) < · · · < x(αl) = 1 < x(αl+1) < · · · < x(αm) <∞.

For notational convenience, let us denote x(α0) ≡ −∞ and x(αm+1) ≡ ∞.
Now, we take the derivative of Q1

so(t), and then we have

dQ1
so(t)

dt
= G1

d

dt

∫ ∞
−∞
|q1(x, t)|dx +

d

dt

∫ ∞
xf (t)

|q1(x, t)|
(∫ x(q1)

xf (t)

G(ξ)dξ

)
dx(4.1)

≡ dI1
dt

+
dI2
dt

.

By the same estimates in [14], the first term of (4.1) can be estimated as follows:

dI1
dt

= O(1)G1[Γ + (T.V +G1)e(Λp)].(4.2)

Now, we consider the second term of (4.1). Using
∫ x
xf (t)

G(ξ)dξ = 0, x ≤ 0, we have

dI2
dt

=
l∑

i=k+1

d

dt

∫ x(αi)

x(αi−1)

|q1(x, t)|
(∫ x(q1)

xf (t)

G(ξ)dξ

)
dx+G1

m+1∑
i=l+1

d

dt

∫ x(αi)

x(αi−1)

|q1(x, t)|dx.

Then, by a direct calculation, we have

dI2
dt
≤

l∑
i=k

(∫ x(αi))

xf (t)

G(ξ)dξ

)
ẋ(αi)(|q−1 (αi)| − |q+

1 (αi)|)

+ G1

m∑
i=l+1

ẋ(αi)(|q−1 (αi)| − |q+
1 (αi)|) +

∫ 1

0

|q1(x, t)|ẋ(q1)G(x)dx

≤ O(1)G1

{
m∑
i=k

(Γs + Γd)(αi) + Γso + (T.V +G1)e(Λp)

}

− λ∗
∫ 1

0

G(x)|q1(x, t)|dx,(4.3)
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where we have used the fact that

G(xf (t)) = 0, ẋ(q1) ≤ −λ∗ if x(q1) > xf (t).

Combining (4.2) and (4.3), we have

dQ1
so(t)

dt
≤ O(1)G1(Γ + (T.V +G1)e(Λp))− λ∗

∫ 1

0

G(x)|q1(x, t)|dx.(4.4)

Case 2 ( 0 ≤ xf (t) ≤ 1). We consider only the case for 0 < xf (t) < 1. The cases
for xf (t) = 0 and xf (t) = 1 can be treated similarly. We denote the locations of waves
as follows:

−∞ < x(α1) < · · · < x(αk) = 0 < x(αk+1) < · · · < x(αe) = xf (t)

< x(αe+1) < · · · < x(αl) = 1 < x(αl+1) < · · · < x(αm) <∞.

For notational convenience, let us denote x(α0) ≡ −∞ and x(αm+1) ≡ ∞.
Using

∫∞
x

G(ξ)dξ = G1, x ≤ 0, we have

dQ1
so(t)

dt
= G1

k∑
i=1

d

dt

∫ x(αi)

x(αi−1)

|q1(x, t)|dx+

e∑
i=k+1

d

dt

∫ x(αi)

x(αi−1)

|q1(x, t)|

·
(∫ ∞

x(q1)

G(ξ)dξ

)
dx

+
m+1∑
i=e+1

d

dt

∫ x(αi)

x(αi−1)

|q1(x, t)|
(∫ x(q1)

xf (t)

G(ξ)dξ +

∫ ∞
xf (t)

G(ξ)dξ

)
dx.

Then, by a direct calculation, we have

dQ1
so(t)

dt
= G1

k∑
i=1

ẋ(αi)(|q−1 (αi)| − |q+
1 (αi)|)

+

e∑
i=k+1

(∫ ∞
x(αi)

G(ξ)dξ

)
ẋ(αi)(|q−1 (αi)| − |q+

1 (αi)|)

+

m∑
i=e+1

(∫ x(αi)

xf (t)

G(ξ)dξ +

∫ ∞
xf (t)

G(ξ)dξ

)
ẋ(αi)(|q−1 (αi)| − |q+

1 (αi)|)

+

e∑
i=k+1

∫ x(αi)

x(αi−1)

|q1(x, t)|(−ẋ(q1))G(x)dx

+
m+1∑
i=e+1

∫ x(αi)

x(αi−1)

|q1(x, t)|(ẋ(q1))G(x)dx

− 2ẋf (t)G(xf (t))

(∫ ∞
xf (t)

|q1(x, t)|dx
)

≤ O(1)G1 {Γ + (T.V +G1)e(Λp)} − λ∗
∫ 1

0

G(x)|q1(x, t)|dx

+ 2

(
d

dt

∫ ∞
xf (t)

G(ξ)dξ

)∫ ∞
xf (t)

|q1(x, t)|dx,(4.5)
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where we have used the fact that

if x(q1) < xf (t), ẋ(q1) > λ∗, and if x(q1) > xf (t), ẋ(q1) < −λ∗.
Case 3 (xf (t) > 1). In this case, Q1

so(t) becomes

Q1
so(t) =

∫ xf (t)

−∞
|q1(x, t)|

(∫ ∞
x(q1)

G(ξ)dξ

)
dx.

We denote the locations of waves as follows:

−∞ = x(α0) < x(α1) < · · · < x(αk) = 0 < x(αk+1) < · · · < x(αl) = 1
< x(αl+1) < · · · < x(αe) = xf (t) < x(αe+1) < · · · < x(αm) < x(αm+1) =∞.

Using the fact that
∫∞
x

G(ξ)dξ = 0, x ≥ 1, we have

dQ1
so(t)

dt
= G1

k∑
i=1

d

dt

∫ x(αi)

x(αi−1)

|q1(x, t)|dx+

l∑
i=k+1

d

dt

∫ x(αi)

x(αi−1)

|q1(x, t)|(4.6)

·
(∫ ∞

x(q1)

G(ξ)dξ

)
dx

= G1

k∑
i=1

ẋ(αi)(|q−j (αi)| − |q+
j (αi)|)

+

l∑
i=k+1

(∫ ∞
x(αi)

G(ξ)dξ

)
ẋ(αi)(|q−1 (αi)| − |q+

1 (αi)|)

+
l∑

i=k+1

∫ x(αi)

x(αi−1)

|q1(x, t)|(−ẋ(q1))G(x)dx

≤ O(1)G1 {Γ + (T.V +G1)e(Λp)} − λ∗
∫ 1

0

G(x)|q1(x, t)|dx.(4.7)

Combining all estimates (4.4)–(4.7), we have

dQ1
so(t)

dt
≤ −λ∗

∫ ∞
−∞

G(x)|q1(x, t)|dx+ 2

(
d

dt

∫ ∞
xf (t)

G(ξ)dξ

)∫ ∞
xf (t)

|q1(x, t)|dx
+ O(1)G1 {Γ + (T.V +G1)e(Λp)} .

This completes the proof.
Using the lemmas in sections 2 and 3, we can obtain the following time-evolution

estimates of functionals defined in section 2. Since the proof of the decay rates of the
functionals in H(t) given in the following lemma was given in [11, 22], we omit this
proof here.

Lemma 4.3. Under the same assumption as in Lemma 4.1, we have the following
time-decay estimates on the component functionals. For t ∈ I2

p ,

1. dL(t)
dt ≤ O(1)Γ +O(1)(T.V +G1)e(Λp),

2. dQd(t)
dt ≤ −c̃Γd +O(1)(

∑
α∈J G(x(α))|α|)L(t) +O(1)(T.V +G1)(Γ + e(Λp)),

3. dE(t)
dt ≤ −c̃Γs +O(1)(

∑
α∈J G(x(α))|α|)L(t) +O(1)(T.V +G1)(Γ + e(Λp)),



L1 STABILITY WITH RESONANT SOURCE 1247

4. dQso(t)
dt ≤ −c̃Γso + 2( ddt

∫∞
xf (t)

G(ξ)dξ)L1(t) +O(1)G1{Γ + (T.V +G1)e(Λp)},
where e(Λp) = Q(Λp)+C(Λp)+(ε+δ+NsG0) and c̃ is a positive constant independent
of time t.

The following lemma gives the change of the nonlinear functional H(t) after time
t = Ns.

Lemma 4.4. Under the same assumption as in Lemma 4.1, we have

H(pNs+) ≤ H((p− 1)Ns+) +O(1)
(
e(Λp) +

∫ xf (pNs)

xf ((p−1)Ns)

G(ξ)dξ

)
Ns.

Proof. From the definition of H(t) and Lemma 4.1, for t ∈ I2
p , we have

dH(t)

dt
= (1 +K1F ((p− 1)Ns)

dL(t)

dt
+K2

(
dQd(t)

dt
+

dE(t)

dt
+

dQso(t)

dt

)
≤ [O(1){1 +K1F ((p− 1)Ns))}+O(1)K2(T.V +G1) +O(1)K2G1 − c̃K2]Γ

+

[
O(1)(T.V +G1)(1 +K1F ((p− 1)Ns)) +O(1)K2(T.V +G1)

+ O(1)K2

[∑
G(x(α))|α|+ d

dt

∫ ∞
xf (t)

G(ξ)dξ

]
L(t)

+ O(1)K2G1(T.V +G1)

]
e(Λp).(4.8)

Since L(t) is Lipschitz continuous on ((p− 1)Ns, pNs), we have

L(t) ≤ O(1)Ns+ L(pNs−).(4.9)

By definition of H(t), there is a jump across t = pNs, p ∈ {1, . . . ,M}. Next we
estimate the size of this jump.

H(pNs+)−H(pNs−) = [(1 +K1F (pNs+))L(pNs+) +K2(Qd(pNs+) + E(pNs+)

+ Qso(pNs+))]− [(1 +K1F ((p− 1)Ns+)))L(pNs−)

+ K2(Qd(pNs−) + E(pNs−) +Qso(pNs−))] =
5∑
i=1

Ii,

where

I1 ≡ K1(F (pNs+)− F ((p− 1)Ns+))L(pNs−),
I2 ≡ (1 +K1F (pNs+))(L(pNs+)− L(pNs−)),
I3 ≡ K2(Qd(pNs+)−Qd(pNs−)),
I4 ≡ K2(E(pNs+)− E(pNs−)),
I5 ≡ K2(Qso(pNs+)−Qso(pNs−)).

Since G11(x, u) ≤ −λ, it follows from Lemma 4.1 that

F (pNs+)− F ((p− 1)Ns+) ≤ −1
2
(Q(Λp) + C(Λp))− c0

2

pN−1∑
k=(p−1)N

∣∣∣∣∣
∫ xf ((k+1)s)

xf (ks)

G(x)dx

∣∣∣∣∣ .
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Therefore,

I1 ≤ −K1

2

Q(Λp) + C(Λp) +
c0
2

pN−1∑
k=(p−1)N

∣∣∣∣∣
∫ xf ((k+1)s)

xf (ks)

G(x)dx

∣∣∣∣∣
L(pNs−).(4.10)

On the other hand, the difference of a wave pattern at time t = pNs+ and t = pNs−
comes from interaction, cancellation, and randomness, so we have

L(pNs+)− L(pNs−) ≤ O(1)e(Λp)Ns.

Hence

I2 ≤ O(1)(1 +K1F (pNs+))e(Λp)Ns.(4.11)

By definition of Qd(t), I3 can be estimated by considering the following two terms:
one term is the product of the change of the wave strengths and the L1 norm at
t = pNs−, and the other term is the product of the change of the L1 norm times the
wave strengths. Therefore, for some C2 > 0, we have

I3 ≤ C2K2(T.V +G1)e(Λp)Ns+ C2K2(Q(Λp) + C(Λp))L(pNs−).(4.12)

Similarly, we have

I4 ≤ C2K2(T.V +G1)e(Λp)Ns+ C2K2(Q(Λp) + C(Λp))L(pNs−).(4.13)

I5 ≤ C2K2G1e(Λp)Ns.(4.14)

Summing up all Ik’s (4.10)–(4.14), we have

H(pNs+)−H(pNs−) ≤
(
2C2K2 − K1

2

)
(Q(Λp) + C(Λp))L(pNs−)

− K1c0
2

 pN−1∑
k=(p−1)N

∣∣∣∣∣
∫ xf ((k+1)s)

xf (ks)

G(x)dx

∣∣∣∣∣
L(pNs−)

+ [O(1)(1 +K1F (pNs+)) +O(1)K2(T.V +G1)

+ O(1)K2G1]e(Λp)Ns.(4.15)

If we integrate (4.8) from (p− 1)Ns to pNs, then, using (4.9), we have

H(pNs−)−H((p− 1)Ns+)

≤ [O(1)(1 +K1F ((p− 1)Ns)) +O(1)K2(T.V +G1)

+ O(1)K2G1 − c̃K2]

∫ pNs

(p−1)Ns

Γ(t)dt+O(1)K2

(∫ xf (pNs)

xf ((p−1)Ns)

G(ξ)dξ

)
Ns

+ [O(1)(T.V +G1)(1 +K1F ((p− 1)Ns)) +O(1)K2(T.V +G1)
+ O(1)K2G1(T.V +G1)]e(Λp)Ns+O(1)K2(Q1(Λp) +Q2(Λp))Ns

+ O(1)K2(Q1(Λp) +Q2(Λp))L(pNs−)

+ O(1)K2

(∫ xf (pNs)

xf ((p−1)Ns)

G(ξ)dξ

)
L(pNs−),(4.16)
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where the integral is over ((p − 1)Ns, pNs), and we have used the fact that∫ pNs
(p−1)Ns

∑
α∈J G(x(α))|α|dt = O(1)(Q1(Λp) + Q2(Λp)). From (4.15) and (4.16), we

have

H(pNs+)−H((p− 1)Ns+)

≤ [O(1)(1 +K1F ((p− 1)Ns)) +O(1)K2(T.V +G1)

+ O(1)K2G1 − c̃K2]

∫
Γ(t)dt

+ [O(1)(T.V +G1)(1 +K1F ((p− 1)Ns)) +O(1)K2(T.V +G1)
+ O(1)K2G1(T.V +G1) +O(1)(1 +K1F (pNs+))

+ O(1)K2G1 +O(1)K2]e(Λp)Ns+O(1)K2

(∫ xf (pNs)

xf ((p−1)Ns)

G(ξ)dξ

)
Ns

+

[
2C2K2 +O(1)K2 − K1

2

]
(Q(Λp) + C(Λp))L(pNs−)

+

O(1)K2

∫ xf (pNs)

xf ((p−1)Ns)

G(ξ)dξ − K1c0
2

pN−1∑
k=(p−1)N

∣∣∣∣∣
∫ xf ((k+1)s)

xf (ks)

G(x)dx

∣∣∣∣∣
L(pNs−).

Since F (t), G0, G1, and T.V are sufficiently small, we can choose positive constants
K1 and K2 so that

O(1)(1 +K1F ((p− 1)Ns)) +O(1)K2(T.V +G1) +O(1)K2G1 − c̃K2 < 0,

2C2K2 +O(1)K2 − K1

2
< 0, O(1)K2 − K1c0

2
< 0.

Then, for such K1 and K2, we have

H(pNs+) ≤ H((p− 1)Ns+) +O(1)
(
e(Λp) +O(1)

∫ xf (pNs)

xf ((p−1)Ns)

G(ξ)dξ

)
Ns.

This completes the proof.
Using Lemma 4.4 successively, we obtain the following estimates.
Lemma 4.5. Let v(x, t) be a Glimm solution corresponding to the small pertur-

bation v0(x) of u(x). Suppose the condition (1.3) holds. Then we have

H(T ) ≤ H(0) +O(1)
(
Q(ΛT ) + C(ΛT ) +

∫ xf (T )

xf (0)

G(ξ)dξ

)
Ns+O(1)(ε+ δ +NsG0)T.

Proof. Let vr(x, t) and ur(x) be the simplified wave patterns and T = MNs. By
Lemma 4.4, we have

H(MNs+) ≤ H((M − 1)Ns+) +O(1)
(
e(ΛM ) +

∫ xf (MNs)

xf ((M−1)Ns)

G(ξ)dξ

)
Ns.

If we use Lemma 4.4 successively in p, we obtain

H(T ) ≤ H(0) +O(1)
(
Q(ΛT ) + C(ΛT ) +

∫ xf (T )

xf (0)

G(ξ)dξ

)
Ns+O(1)(ε+ δ +NsG0)T.

Now we can complete the proof of Theorem 1.2 as follows.
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Proof of Theorem 1.2. Let vr(x, t) and ur(x) be two simplified wave patterns such
that

lim
r,ε,δ→0

vr(x, t) = v(x, t), lim
r,ε,δ→0

ur(x) = u(x) in L1
loc(R× R+).

Since H[v(·, t), u(·)] = limr,ε,δ→0 H[vr, ur], it follows from Lemma 4.4 that

H(t) ≤ H(0).

Since H[v(·, t), u(·)] is equivalent to ‖v(·, t)− u(·)‖L1(R), i.e.,

1

C3
‖v(·, t)− u(·)‖L1(R) ≤ H(t) ≤ C3‖v(·, t)− u(·)‖L1(R) for some positive constant C3,

we therefore have

‖v(·, t)− u(·)‖L1(R) ≤ C3H(t) ≤ C3H(0) ≤ C2
3‖v(·, 0)− u(·)‖L1(R).

This completes the proof.
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Abstract. The discrete spectrum of first order systems in the plane and localized solutions
of the Davey–Stewartson II equation are studied via the inverse scattering transform. Localized
nonsingular algebraically decaying potentials are found which correspond to a discrete spectrum
whose related eigenfunctions have, in general, multiple poles and are associated to kernels with
dimension ≥ 2. There is an associated index, or winding number, which is used to classify these
potentials. With suitable assumptions the mass of the corresponding Davey–Stewartson solution is
found to be proportional to the index.

Key words. integrable equations, spectral analysis, interacting solitons

AMS subject classifications. Primary, 35Q58; Secondary, 35Q53, 35P25

PII. S0036141001391627

1. Introduction. In this paper we study the classification and properties of the
discrete spectrum associated with the linear differential operator in the plane (the
Dirac system)

Lψ ≡ (∂x + iJ∂y −A)ψ = 0,(1)

where J is a real constant diagonal n × n matrix, J = Diag(J1, . . . , Jn), J1 �= J2 �=
· · · �= Jn, and A(x, y) is an off-diagonal n× n matrix of decaying potentials.

The above problem, often referred to as the Dirac system, has attracted significant
interest by itself. The Dirac system, along with the nonstationary Schrödinger (NS)
equation, is one of the most relevant linear operators in two space dimensions. The
importance of this problem is highlighted by noting that the solution to the Cauchy
problem, corresponding to decaying data, to some of the most interesting two space,
one time (2 + 1) dimensional integrable nonlinear equations can be obtained via the
inverse scattering transform (IST) and associated spectral analysis of the operator
(1). Foremost among them is the Davey–Stewartson II (DSII) equation

(2.1) iqt +
1

2
(qyy − qxx) + q (Ryy −Rxx) = 0,

(2.2)
(
∂2
y + ∂2

x

)
R(x, y) = −σ|q|2,

which corresponds to n = 2 and certain reductions (see formula (18) below). Here
σ2 = 1.

Equations (2.1) and (2.2) describe, upon scaling of the physical parameters, two-
dimensional quasi-monochromatic wave packets in dispersive media; here q(x, y, t) is
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the complex amplitude of the wave. Applications include both fluid dynamics [1, 2]
and plasma physics [3]. Interesting solutions of this and other integrable equations are
the lumps: localized wave configurations decaying rationally at infinity that asymp-
totically move with uniform velocities. (We call this an N -lump solution if the result
consists of N of these objects. A class of such solutions was constructed in [4].) After
these waves interact they asymptotically recover their velocity and size. This kind of
behavior is usually expected for localized solutions of integrable equations. From a
spectral perspective, the N -lump solution is associated with wave functions that have
simple poles and hence correspond to the discrete spectrum of the spectral problem
(1).

IST has been employed to solve (formally) other initial value problems for a
number of important nonlinear evolution equations appearing in physics ([5, 6]; see
also [7]). The relevant ideas in multidimensions regarding the continuous spectrum
of the operator (1) were developed in [8], where the continuous spectrum is related
to a ∂̄ (DBAR) problem, a nontrivial generalization of the Riemann problems that
appear in the one-dimensional case. We note that the IST has also been used to
obtain the Hamiltonian structure and the action angle variables of (2.1), (2.2) [9, 10].
Another major difference with regard to one dimension stems from the fact that
in multidimensions “small” norm assumptions are required, rendering the analysis
incomplete; in particular homogeneous solutions, which make up the discrete spectrum
and are intimately related to the lumps of the associated integrable equation, are
beyond the scope of the theory. In terms of the rigorous theory this situation is quite
unsatisfactory, as it fails to explain the most physically interesting solutions.

Recently, new localized solutions possessing nontrivial dynamics have been found
for several integrable equations [11, 12, 13, 14, 15]. The connection with the discrete
spectrum of the relevant spectral problem has been described in the case of the NS
operator and the Kadomtsev–Petviashvili I equation (KPI) [11, 12]. This new class
of solutions is found to correspond to wave functions that have higher order poles in
the spectral variable. As it happened with the continuous part, the description of the
discrete spectrum in multidimensions was found to involve novel features not present
in one-dimensional problems.

The present work continues the development of discrete spectral theory in multi-
dimensions, first set forth in [12] in connection with the NS operator. We find a class
of rationally decaying, regular, localized potentials of the Dirac system (1) that yield
meromorphic wave functions with simple or multiple poles in the spectral variable.
We also consider the general case when both continuous and discrete spectrums are
present. In this regard we note the following facts: (i) Different potentials exist (ap-
parently infinitely many) that correspond to the same analytic structure (i.e., simple,
double . . . poles) of the wave function; this degeneracy of the discrete spectrum is
explained in terms of a new topological number or index Q. (ii) The corresponding
DSII solution describes the interaction of lumps with nontrivial dynamics; both (i)
and (ii) hold even for eigenfunctions with simple poles and no continuous spectrum
(see section 4 below). These remarkable facts have so far not been observed for any
other integrable equation including the KPI equation. (iii) The results of [4] corre-
spond to simple poles with Q = 1. Different values of Q and/or higher order pole
multiplicities yield new DSII solutions. (iv) We obtain several different representa-
tions of the index and show that it is a winding number. (v) We prove that the mass
of the lump is proportional to the index, namely (see (33)), (4π)−1‖q‖22 = Q, and
hence it is “quantized” (can only take integer values).
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Remark. 1. Ample classes of localized solutions of integrable equations can be
derived using direct Darboux methods (see [13] in the context of DSII, and also [16, 17,
18] in connection with KPI equation). Despite the latter fact, direct methods cannot
be used to solve the corresponding initial value problem, to study the interaction
of radiation and localized solutions, or to obtain the Hamiltonian structure with
the action angle variables and constants of the motion. Neither do they provide
information regarding the associated and interesting linear problem; spectral analysis,
in contrast, does, thus giving important and much deeper insight into the study.

2. We also find remarkable differences between the Dirac operator (DO) and the
other natural spectral operator in the plane, NS. The most obvious is that the latter is
a scalar operator while the former is a matrix operator. Hence so is the index Q, with
several complications arising from this fact. Another important difference regards the
fact that at eigenvalues the dimension d of the null space of homogeneous solutions
of the DO is not restricted to be one (as happens in NS) and typically is found to
be two (at least); we note that the appearance of lumps of DSII is intimately related
with this possibility. Equally significant is the fact that even for the case of simple
pole eigenfunctions an infinite degeneracy regarding the index (independent of that of
the null space) is found, with every integer value of the index permitted; hence there
exist different localized potentials associated to wave functions having simple poles.
This extra freedom is inherited by the associated integrable equations. Corresponding
to pure simple pole eigenfunctions the NS operator requires Q = 1, and hence there
is only one such function. The corresponding lump of KPI decays as 1

r2 and has
trivial dynamics. In contrast, for the DO the degeneracy in the dimension of the
null space opens the possibility of having localized solutions with stronger decay (as
1
r3 , . . . ). Besides, the infinite degeneracy of the index implies that there exist localized
solutions of DSII that decay as |q|2 = −σ(∂2

y + ∂2
x) log(r2Q + . . . ) for any integer Q.

Generically these solutions have a nontrivial dynamics. Another remarkable fact, not
found for KPI, is the following. Given a localized solution q of DSII, the physically
related state q̃(x, y, t) ≡ q̄(x, y,−t), obtained by backwards evolution and conjugation
of phase, can correspond to a totally different spectral description and singularity
structure.

The table below summarizes the differences for the case of (only) simple poles.

Dynamics of Number
Operator Type d Q Equation associated lumps Decay of lumps

n× n Q
r2

, any Q,

Dirac matrix 1, 2 any integer DSII nontrivial or 1
r3
, . . . Q

NS scalar 1 1 KPI trivial 1
r2

1

1.1. A review of known results on the spectrum of the DO. We consider
here the spectral theory for the general DO where ψ is an n×n matrix. It is convenient
to introduce a related function µlj , µlj = ψlje

−k(iJjx−y) and find that µ satisfies

(∂x + iJl∂y + ik(Jj − Jl))µlj − (Aµ)lj = 0, l, j = 1, . . . , n.(3)

If the potential is suitably decaying as x2+y2 →∞, we can convert the above equation
normalized to µ→ I as x2 + y2 →∞ and |k| → ∞ into an integral equation

µlj(x̃, k) = δlj +

∫ ∫
Glj(x̃− x̃′, k)(Aµ)lj(x̃

′, k)dx̃′(4)
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(integration is over the plane). Here x̃ stands for the coordinate pair (x, y) and we
denote dx̃ ≡ dxdy. Green’s function is given by

Glj(x̃, k) =
sign Jl

2π(Jlx+ iy)
eiθlj ,(5)

where

θlj(k) ≡ c−lj(JlkRx+ kIy), c±lj ≡ Jl ± Jj
Jl

(6)

(c+lj will be used later). We find it convenient also to consider these equations in
columnwise form. Thus the jth column �µj , (�µj)i = µij satisfies

�µj(x̃, k) = �Ij +

∫ ∫
�Gj(x̃− x̃′, k)(A�µ)j(x̃

′, k)dx̃′.(7)

We next define the operator Gj(k) acting on column vectors by

Gj(k)�µ(x̃, k) ≡ �µ(x̃, k)−
∫ ∫

�Gj(x̃− x̃′, k)(A�µ)j(x̃
′, k)dx̃′(8)

in terms of which (7) reads Gj(k)�µj = �Ij . Note that (�Ij)i = δij and (�Gj)i = Gij .
Equation (7) implies that generically its solution �µj(x̃, k) is nowhere holomorphic

as a function of k ≡ kR + ikI . This departure from holomorphicity defines the con-
tinuous spectrum of the problem. We recall the basic results in this regard. Define
the n× n matrix Ωlj by {Ωlj}αβ = eiθljTljδlαδjβ , where

Tlj(k) =
ic−ljsignJl

4π

∫
e−iθlj (Aµ)ljdx̃(9)

are the “continuous” scattering data. Then one finds that

∂µ

∂k̄
=

n∑
j,l=1

µ

(
kR + i

Jj
Jl
kI

)
Ωlj(k).(10)

Using that µ→ I as |k| → ∞, the generalized Cauchy formula yields

µ(k) = I +
1

2πi

∫
C

∂µ
∂z

z − k
dz ∧ dz.(11)

The departure from holomorphicity (10) and (11) are the basic inverse problem equa-
tions. They define a so-called ∂̄ (DBAR) problem.

We also recall the inverse formula to reconstruct the potential:

Alj = i(Jj − Jl)ξlj , where µlj = δlj +
ξlj
k

+O(1/k2), k →∞.(12)

The study of the continuous spectrum of the integral equation (4) was carried out
formally in [8] evaluating the above DBAR derivative. Rigorous properties of solutions
to (4) were obtained in [19] (see also [20, 21, 22]). Existence and uniqueness for the
direct problem (4) are guaranteed if the potentials are in L∞∩L1 and “small” enough
(see (24) below).
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If the small norm condition is not satisfied, solutions �ω to the homogeneous equa-
tion Gj(k1)�ω = �0 may exist at some points k = k1 (the eigenvalues). The span (vector
space) of all such functions is denoted Ker Gj(k1). By the discrete spectrum of the
operator (1) we mean the set E of all eigenvalues; we say that a potential corresponds
(purely) to this part of the spectrum when there exist solutions �ω to the homogeneous
equation Gj(k1)�ω = �0 at some points k = k1 ∈ E and the continuous data (9) vanishes.
Note that in general E �= ∅ if the norms ‖q‖∞, ‖q‖1 are only bounded. The study of
the analytic properties of eigenfunctions corresponding to the latter potentials is be-
yond the theory developed in [19, 20, 21, 22] and has so far not been considered in
detail. In this case the above description of the inverse problem is not complete; one
can expect that generically µ(k) will have singularities. Indeed, suppose that the jth
column �µj(k) of µ has a pole k1 with multiplicity m and tends to Ij as k → ∞.
Around this pole �µj(k) has the Laurent expansion

�µj(k) = �µjsing.(k) + �µjreg.(k),

�µjsing.(k) ≡
m∑
r=1

�Ψr
j

(k − k1)r
, �µjreg.(k) ≡

∞∑
r=0

�νrj (k − k1)
r +

∞∑
r=1

�ζrj (k̄ − k̄1)
r,(13)

where �µj,reg(k) is regular (but in general not analytic) in the neighborhood of k1 and

tends to �Ij as k → ∞. Coefficients corresponding to r = 0 and the principal part or
residue with r = 1 deserve particular interest, and we shall use special notation for
them. Accordingly we denote

�Ψ1
j = Residue of �µj(k) at k1 ≡ �Φj ,

�ν0
j = lim

k→k1

[Regular part of �µj(k) at k1] ≡ �νj .(14)

Letting k → k1 shows that �Ψm
j satisfies Gj(k1)�Ψ

m
j = �0, which means that k1 must

be an eigenvalue and �Ψm
j ∈ Ker Gj . Thus the existence of wave functions with pole

singularities (singular eigenfunctions, for short) requires that E �= ∅, and hence they
are naturally associated with the discrete spectrum.

In general we expect that the only singularities of �µj(k) are poles of any order in
k. This can be substantiated as follows; first, we note that Lj ≡ Gj − I is a Fredholm
operator [20]. The case with compactly supported potentials is particularly easy to
understand, as polar operators (i.e., with the kernel having only weak singularities and
vanishing away a bounded set) are well known to be Fredholm. Potentials supported
on the entire plane can be viewed as having compact support on the compactified
plane; the result then follows, noting that supµ,‖µ‖∞≤1 Lj(k)�µ(x̃, k) goes to zero uni-

formly as r2 ≡ x2 + y2 → ∞ on a bounded set of functions µ. Hence Fredholm
theory (and the results of [6, 8]) indicates that generically the solutions µ(k) to (4)
are not holomorphic anywhere and that they may have a denumerable set of poles of
any order in k, k̄ as singularities in the finite plane. Note also that, in principle, pole
singularities in the variable k̄ are not allowed, as can be seen by expanding µ(k) for
large values of |k| and using (3) (we detail this in the appendix). A class of special
solutions exists, however, that are analytic everywhere except at (isolated) poles; i.e.,
they are meromorphic. This class corresponds purely to the discrete spectrum and
has localized associated potentials.
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Another critical property involving the distribution of eigenvalues is the following.
Result 0. Assume that �ωl solves the lth homogeneous equation at a point kl ≡

al+ ibl: Gl(kl)�ωl = �0. Then �πj defined as �πj = e−iθjl(kl)�ωl solves the jth homogeneous
equation at the point kjl ≡ al + i Jl

Jj
bl. Note also that θjl(kl) = −θlj(kjl).

For a proof of this remarkable fact, note that [8]

ωil(x̃) =

∫ ∫
Gil(x̃− x̃′, kl)(Aω)il(x̃

′)dx̃′,

and hence

πij(x̃) =

∫ ∫ (
e−iθjlGil

)
(x̃− x̃′, kl)(Aπ)ij(x̃

′)dx̃′.

The proof is finished by noting that the Green’s function (equation (5)) satisfies the
following symmetric relationship:

Gij(kjl) = e−iθjl(kl)Gil(kl).(15)

In particular, taking l = 1, j = 2, J1 = −J2 = 1 we obtain that if there exists a solution
�ω1 to the first homogeneous equation at a point k1 ≡ a+ ib, then �π2 ≡ e−2i(by−ax)�ω1

solves the second homogeneous equation at k̄1; i.e.,

�π2 ∈ Ker G2(k̄1) : G2(k̄1)�π2 = �0.(16)

1.2. The DSII reduction. The physical DSII problem (2.1), (2.2) is obtained
with n = 2 and

J =

(
1 0
0 −1

)
, A =

(
0 q
r 0

)
, r(x̃) = σq̄(x̃), x̃ ≡ (x, y), σ = ±1,(17)

and q̄ stands for the complex conjugate of q. This entails a number of restrictions or
symmetry relations on the wave function that we now discuss. One finds that(

µ12(k)
µ22(k)

)
=

(
σµ̄21(k̄)
µ̄11(k̄)

)
,(18)

and this implies in particular that the position, number, and multiplicities of the poles
of different columns are related. One has the following:

(i) Singular functions µ have the structure (13) and (18), where the location of
the poles of �µ2 are the complex conjugates of those of �µ1 and have the same order m.
Hence the discrete spectrum is an even-dimensional set {kj , k̄j}j=1,... ,N .

(ii) The Laurent coefficients of the first and second columns of µ,

�Ψr
1 =

(
Ψr

11

Ψr
21

)
, �Ψr

2 =

(
Ψr

12

Ψr
22

)
, r = 1, . . . ,m,

are related as follows:

Ψr
12 = σΨ̄r

21, Ψr
22 = Ψ̄r

11.(19)

We can thus drop the subscripts 1, 2 of the Laurent coefficients and simply write
�Ψr

1 ≡ �Ψr, �Ψr
2 = τ �Ψr where we define the following involution:

�Ψ ≡
(

Ψ1

Ψ2

)
⇒ τ �Ψ ≡

(
σΨ̄2

Ψ̄1

)
.(20)
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Besides, �µ2reg(k) = τ�µ1reg(k̄).
(iii) At each eigenvalue k1 ≡ a + ib, k̄1, there are two eigenfunctions, and hence

the null space is (at least) two-dimensional. One has that

{�Ψm, e2i(by−ax)τ �Ψm} ⊂ Ker G1(k1), {τ �Ψm, e−2i(by−ax)�Ψm} ⊂ Ker G2(k̄1).(21)

(We use the notation {f, g} to symbolize the vector span of the two function f, g.)

Indeed, according to the comments under equation (14) �Ψm ∈ Ker G1(k1), τ �Ψ
m ∈

Ker G2(k̄1). With ω1 ≡ �Ψm (16) yields that �π2 = e−2i(by−ax)�Ψm ∈ Ker G2(k̄1),

whereby one has that {τ �Ψm, e−2i(by−ax)�Ψm} ⊂ Ker G2(k̄1). Likewise we obtain (l =

2, j = 1, ω2 ≡ τ �Ψm) that π1 ≡ e2i(by−ax)τ �Ψm ∈ Ker G1(k1).

(iv) For wave functions with simple poles k1, k̄1 and residue �Φ at k1,

�µ1(k) = �µ1,reg(k) +
�Φ

(k − k1)
,(22)

the following relationship for the Laurent coefficients �ν ≡ �ν0 and �Φ can be derived:

�ν = (z + γ)�Φ + ρ1e
2i(by−ax)τ �Φ(23)

(where z ≡ y− iJ1x ≡ y− ix, and γ and ρ1 are constants). Corresponding to ρ1 = 0,

(23) was first derived in [8], noticing that �ν − z�Φ ∈ Ker G1(k1), and was employed

to obtain a class of solutions to DSII which decay weakly (as 1/r, r ≡ (x2 + y2)
1
2 )

but are singular. The general formula (23) with ρ1 �= 0 was first derived in [4] and
used to find nonsingular rational solutions that decay as 1/r2 at infinity (in [23] the
stability of these configurations is discussed). These solutions are usually referred to
as the lumps of DSII. We recover them in section 4 below.

(v) Corresponding to the focusing case (σ = −1) of DSII, convergence via iteration
requires that q(x, y) satisfies the condition ‖q‖∞‖q‖1 < π

2 [19]. If in addition q satisfies

2

π
‖q‖∞‖q‖1 ≤ 1

(1− τ)2
‖q̂‖∞‖q̂‖1 < 1, τ2 ≡ 1

(2π)3
‖q‖1‖q̂‖1,(24)

where q̂ is the Fourier transform, then it is proven that the inverse problem also has
a unique solution, and hence so does the Cauchy problem for (2.1), (2.2).

(vi) The inverse formula to reconstruct the potential (12) yields in this case that

(25.1) q ≡ A12 = −2iξ12, where ξlj = lim
k→∞

kµlj ,

(25.2) |q|2 = −4σ
∂

∂z̄
ξ11, R = ∂−1

z ξ11, where z ≡ y − ix.

2. New results for the discrete spectrum of the DO. We now elaborate
on our results for the discrete spectrum of the operator (1). As has been remarked,
the appearance of lumps of DSII is intimately related to the possibility of having a
higher-dimensional null space Ker G1(k1), i.e., with (21). We shall see that there
is also additional freedom in both (i) the order of the poles and (ii) the value of
an integer-valued quantity that we call indices or charges (as we shall see they are
winding numbers), which we now introduce.



1260 JAVIER VILLARROEL AND MARK J. ABLOWITZ

At any pole k1 ≡ a+ ib, of the jth column �µj(k) we define the index of the pole
as the matrix functional Qlj [Φ, k1] ≡ Qlj , l, j = 1, . . . , n,

Qjj =
sign Jj
2πi

∫ ∫
(AΦ)jj(x̃

′)dx̃′,

Qlj ≡ c+lj

4πi
sign Jj

∫ ∫
e−iθlj(k1)(AΦ)lj(x̃

′)dx̃′,(26)

where �Φj(k) is the residue of �µj(k) at the pole k1, the quantities clj+, θlj are defined
in (6), and we recall our notation (�µj)i = µij . We shall see that meromorphic wave
functions with simple or multiple poles yield a new class of rationally decaying, reg-
ular and localized potentials of (1) and (2). We find that different potentials exist
that correspond to the same analytic structure of the wave function, in particular
to simple poles. The degeneracy of the spectrum is classified in terms of the index.
These potentials—even in the case of simple poles in the wave function—are found to
correspond to values of the index that satisfy Qlj = (Qδlj), with Q being a positive
integer. We note that both in [8] and [4] the relationship (23) and the lump potentials
correspond to assuming Q = 1. (This has been checked a posteriori by direct evalu-
ation of the integral (26) in [23].) In this regard, a natural problem is to determine
the most general values the index may take. We can state the following.

Result 1. (i) The index can be represented as

Qlj =
c+lj

4πi
sign Jj

∮
Γ

Φ̃lj(x̃)dz,(27)

where Γ is a closed contour at infinity that winds the origin once in the positive
(counterclockwise) direction and z ≡ y − iJlx, and we write e−iθlj(k1)Φlj ≡ Φ̃lj .

(ii) If Φ̃lj is nonsingular, decaying with a power series expansion in z, z̄ at infinity
(see below), one has for the index matrix

Qlj =

λ
c+lj

2 sign Jj if Φ̃lj = λ
z as r2 ≡ x2 + y2 →∞,

0 otherwise.
(28)

It will turn out that Qjj are integers.
(iii) The index matrix must be diagonal:

Qlj = 0, l �= j.(29)

(iv) For the Dirac system corresponding to the DSII reduction, Q22 = Q̄11.
(v) If for some positive integer Q is Φjj = d

dz lnH(z, z̄) with H(z, z̄) > 0 and
H ∼ (zz̄)Q as r2 →∞, then

Qjjsign Jj = Q = winding number of H.(30)

Proof. (i) Considering (3) for Φlj and using Green’s theorem, we obtain∫ ∫
e−iθlj(k1)(AΦ)lj(x̃

′)dx̃′ =
∫ ∫

(∂x + iJl∂y) (e−iθlj(k1)Φlj)dx̃
′

=

∮
Γ

e−iθlj(k1)Φlj(z, z̄)dz.
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(ii) Assume that at infinity Φ̃lj(z, z̄) has the power series expansion

Φ̃lj(z, z̄) =

∞∑
n,m=0

λn,m
znz̄m

, n+m ≥ 1.

Recalling that for a large contour Γ at infinity∮
Γ

1

2πiznz̄m
dz =

{
1, n = 1−m = 1,

0 otherwise,

(27) yields that

Qlj =
c+lj

4πi
sign Jj

∮
Γ

Φ̃lj(z, z̄)dz =
c+lj

2
( sign Jj)λ1,0.

(iii) We skip the proof here.
(iv) This follows directly from (19): Φ22 = Φ̄11 and (27).
(v)

Qj =
sign Jj
2πi

∮
Γ

Φjj(z, z̄)dz =
sign Jj
2πi

∮
Γ

d lnH

dz
dz = Q.

Note. By (ii) Qlj �= 0 iff at infinity Φ̃lj decays like 1
z . According to (iii) this holds

only for the diagonal elements of the index matrix. It follows that we can simply write
Qj ≡ Qjj for the diagonal elements.

Conjecture. For any potential of the DSII reduction for which µ is singular, the
index matrix must be an integer multiple of the identity matrix:

Qlj = Qδlj or Q11 = Q22 ≡ Q a positive integer, Q12 = Q21 = 0,(31)

and in addition Φ11 = d
dz lnH(z, z̄) with H ∼ (zz̄)Q as r2 →∞.

We note that in all the examples of lump-type solutions considered, this turns out
to be the case; we also note that the proofs corresponding to section 4 below apply
for generic singular eigenfunctions, irrespective of whether a continuous spectrum is
present or not.

Index and L2 norms. The index has been originally defined (cf. (26) and (27))
as an integral of certain functions that are inherent to the spectral space: the residues
Φj . A natural question arises as to whether Q is directly related to the potential
q(x, y) itself. We see next that under certain conditions the answer is affirmative. Let

‖q‖22 ≡
∫ ∫

|q(x, y)|2dxdy

be the (square of the) L2 norm. With time present (e.g., Davey–Stewartson) physically
it represents the mass of the wave q(x, y, t) and it is conserved in time (i.e., it is an
integral of the motion). We can state the following.

Result 2. (i) Assume that R(x, y) = ln ∆(x, y), where ∆(x, y) > 0 satisfies ∆ =
(zz̄)s + O((zz̄)s−1) as r2 → ∞ for some positive integer s and z ≡ y − ix with
J1 = 1 = −J2 = −σ. Then

‖q‖22 = 4πs.(32)
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(ii) Assume �µ1 is purely meromorphic with just one pole and residue Φ11 satisfying
Φ11 = d

dz lnH(z, z̄) with H > 0 and H ∼ (zz̄)Q as r2 →∞. Then

4πQ = ‖q‖22.(33)

Proof. (i) Using (2.2) with σ = −1 and Green’s theorem, one has that∫ ∫
|q(x, y, t)|2dxdy =

∫ ∫ (
∂2
y + ∂2

x

)
Rdxdy =

∮
Γ

(dy∂x − dx∂y)R(x̃)

=
2

i

∮
Γ

d

dz
R(z, z̄)dz =

2

i

∮
Γ

d

dz
ln ∆(z, z̄)dz,

where Γ is a closed contour at infinity that winds the origin once in the positive
direction. We have R = ln ∆, where we write ∆ = ∆1.∆2.∆3, ∆1 ≡ zs,∆2 ≡ z̄s, and
∆3 ≡ 1 +O(1/(zz̄)). The remainder decays, and it is zero when integrated out along
Γ. It follows by the argument principle that

1

4π

∫ ∫
|q(x, y, t)|2dxdy =

1

2πi

∮
Γ

d

dz
log ∆1(z)dz = s.

(ii) In this case in (25.1) ξ11 = Φ11 and by (25.2) R(x, y) = lnH(z, z̄); hence by
(30) Q equals the index. The result follows by (i) with ∆(x, y) = H and s = Q.

Remarks. 1. This formula extends to the case in which µ is purely meromorphic
with N simple poles k1, . . . , kN , residues Φj), j = 1, . . . , N , and different indices
Q[Φj), kj ], j = 1, . . . , N . In this case s =

∑N
j=1 Q[Φj), kj ] = 1

4π‖q‖22.
2. By means of Green’s theorem as well as the argument principle, we have given

three different representations, (26), (27), and (33), of the index. We have also shown
that it is a winding number (the reader may consult [24] in connection with the above
ideas). The mass of the wave is proportional to the index for basic lump solutions of
DSII, and to the sum of indices for N -lump solution. For generic potentials (solutions
of DSII) we do not expect that the mass of the wave be finite.

3. Determination of the wave functions of the discrete spectrum. We
shall see that the determination of singular eigenfunctions associated with the discrete
spectrum requires the following integers: the number of poles N , and at every pole
m ≡ multiplicity of the pole, Q ≡ index matrix, and d ≡ Dim Ker G1(k1). Note:
we find that certain constants determine Ker G1(k1). If d̃ of these constants vanish,
we consider that the effective dimension of the null space is ≥ d − d̃. Given this
information we find a linear relationship between a subset of the Laurent coefficients
{�Ψr

j , �ν
r
j , r = 0, 1, . . . } of µ(k), which fixes the function µ. We consider here the DSII

reduction. The general case is taken up later.

Simple poles. We consider first the case of simple poles. In this case we show
that the formula (23) is not the only possible one corresponding to this pole structure;
this implies that there exist different localized potentials of DSII that correspond to
wave functions having simple poles.

Result 3. Assume that there exists a solution to (7) such that its columns
�µ1(k), �µ2(k) have simple poles k1 ≡ a+ ib, k̄1 and residues Φ1,Φ2, respectively. Define

Fj;1 ≡ (zj + γj), Fj;2 ≡ 1

2
(F 2

j;1 + δj), j = 1, 2,(34)
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where γj , δj are certain constants (under evolution γj , δj are functions of time), and
we recall that zj ≡ y − ixJj and that (see (16), (21) for the DSII reduction) we have
as homogeneous solutions

�Φ1;π1 ≡ e2i(by−ax)τ �Φ1 and �Φ2 = τ �Φ1, �π2 = e−2i(by−ax)�Φ.(35)

We also introduce fj;r ≡ Fj;r(γ = δ = 0). The conditions (18), (19) require that
γ2 = γ̄1, δ2 = δ̄1, which implies F2;1 = F̄1;1, F2;2 = F̄1;2. It follows that we can drop
the column indices of these functions and write F1;n ≡ Fn, γ1 ≡ γ, δ1 ≡ δ. Define also
θ ≡ θ21 = 2(by − ax). The following hold:

(i) The index matrix must be diagonal: (Q)lj = Diag (Q1, Q̄1).

(ii) If Q1 = 1, then the Laurent coefficients �νj , �Φj satisfy �νj = Fj�Φj +ρj�πj , where
ρj are certain constants (we take here ρ1 ≡ ρ̄, ρ2 ≡ σρ̄1), or

(36.1.1) �ν1 = F1
�Φ1 + ρ̄eiθ�Φ2,

(36.1.2) �ν2 = F̄1
�Φ2 + σρe−iθ�Φ1.

(iii) If Q1 = 2, then the Laurent coefficients �ν1
j , �νj ,

�Φj satisfy

(36.2.1) �ν1
1 = F1�ν1 + ρ̄eiθ�ν2 − F2

�Φ1 + eiθH̄�Φ2,

(36.2.2) �ν1
2 = F̄1�ν2 + σρe−iθ�ν1 − F̄2

�Φ2 + σe−iθH�Φ1,

where H ≡ ρ′ − ρF̃1, F̃1 ≡ (z1 + γ′1), and where γ′1, ρ
′ are certain constants (which

become functions of time under evolution).

(iv) If Q1 is any positive integer, then the Laurent coefficients �νQ−1
j , . . . , �νj , �Φj

satisfy

(36.Q.1) �νQ−1
1 =

Q−2∑
l=−1

(−1)l+1FQ−l−1�ν
l
1 + eiθ

Q−2∑
l=−1

(−1)l+1F̃Q−l−2�ν
l
2,

(36.Q.2) �νQ−1
2 =

Q−2∑
l=−1

(−1)l+1F̄Q−l−1�ν
l
2 + σe−iθ

Q−2∑
l=−1

(−1)l+1F̃ ∗Q−l−2�ν
l
1,

where we define Fl, F̃l recursively via ∂z1Fl + Fl−1 = 0, F1 = z1, ∂z1 F̃l + F̃l−1 = 0,

F̃0 = ρ̄, and �ν−1
1 ≡ �Φ1, �ν

−1
2 ≡ �Φ2. In addition, by obvious reasons we use F ∗ ≡ F̄ .

We skip here the rather technical proof.

Double poles. We briefly mention how the above theory generalizes to deal with
higher order singular wave functions, in particular those for the case of poles of order
2. Assume that around k = kj , �µj(k) has the singular representation (13) with m = 2,
i.e.,

�µjsing.(k) =
�Ψj

(k − kj)2
+

�Φj

k − kj
, j = 1, 2,(37)

and k2 = k̄1.
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Note that in this case (19) implies the following relationship for the principal
Laurent coefficients of the first and second columns of µ:

�Ψ1 ≡ �Ψ, �Ψ2 = τ �Ψ; �Φ1 ≡ �Φ, �Φ2 = τ �Φ.

In addition, if �π1 ≡ e2i(by−ax)�Ψ2, �π2 = e−2i(by−ax)�Ψ1, then (21) implies

{�Ψ1, �π1} ⊂ Ker G1(k1), {�Ψ2, �π2} ⊂ Ker G2(k̄1).

Define also (similar to the case of simple poles) the functions (see (34))

Fj;1 ≡ (zj + γj); Fj;2 ≡ 1

2
(F 2

j;1 + δj), Hj ≡ ρ′j − ρjF̃j ; F̃j ≡ (zj + γ′j),(38)

where γj , δj , ρj , γ
′
j , ρ
′
j are constants (functions of time under evolution).

Result 4. Assume that there exists a solution to (7) such that its columns
�µ1(k), �µ2(k) have double poles. Then the charge Qj(Φ, k1) takes integer values with

Qj ≥ 2. If Qj(Φ, k1) = 2, Qj(Ψ, k1) = 0, then the Laurent coefficients �νj , �Φj , �Ψj are
linearly related as follows:

(39.1) �Φj = Fj;1�Ψj + ρjπj ,

(39.2) �νj = Fj;2�Ψj −Hj�πj .

4. DSII potentials. The former development has a direct bearing on the con-
struction of localized, nonsingular rationally decaying solutions of the DSII equation.
Upon considering particular analytic structures for the wave functions and relevant
indices, using the inverse formula (25) we can reconstruct the potential, with the
appropriate temporal dependence of the scattering data (the constants (γ, δ, . . . ))
inserted.

Recall that the DSII equations (2.1), (2.2) arise from the compatibility [L,M ] = 0,
with L given by (1) and with M = −∂t +A1 −A∂y + iJ∂yy. Here A1 is given by

A1 =

(
A11 A12

A21 A22

)
(40)

with elements satisfying

(∂x + i∂y)A11 = i
σ

2
(∂x − i∂y)|q|2, (∂x − i∂y)A22 = −iσ

2
(∂x + i∂y)|q|2,

A12 = − i
2
(∂x − i∂y)q, a21 =

σ

2
(i∂x − ∂y)q̄.(41)

The temporal evolution of the scattering data follows in the standard way by sub-
stituting the relevant eigenfunctions in the time operator evolution M . The constants
γj , δj , . . . of section 3 are found to satisfy the following:

Simple poles.

∂tγj = −2iJjkj , ∂tδj = 2iJj , ∂tρ = 2i(a2 − b2)ρ, j = 1, 2,(42)

and hence the temporal evolution is given by

γj(t) = γj(0)− 2iJjkjt, δj(t) = δj(0) + 2iJjt, ρ(t) = ρ(0) exp 2i(a2 − b2)t(43)

both for quantities with or without primes.



DISCRETE SPECTRUM OF THE DAVEY–STEWARTSON EQUATION 1265

Double poles. In this case one has that the temporal evolution is given by

(44.1) γj(t) = γj(0)− 2iJjkjt, ρ(t) = ρ0e
2i(a2−b2)t

both for quantities with or without primes, and (notice the change in sign)

(44.2) δj(t) = δj(0)− 2iJjt.

We consider here the simplest examples of DSII solutions that correspond to pure
discrete spectrums; in this case the wave function is purely meromorphic.

Simple poles. Assume that the column components of wave functions �µ1(k), �µ2(k)

have simple poles k1 ≡ a+ ib and k̄1, residues �Φ1, �Φ2, respectively, and �µ1,2reg = �I1,2;
i.e., take N = m = 1 and

�µ1(k) = �I1 +
�Φ

(k − k1)
, �µ2(k) = �I2 +

�Φ2

(k − k̄1)
.(45)

We obtain the following:
(i) Q = 1. Then the relevant system is (36.1) with �νj(k) = �Ij . Upon solution and

use of (25) we find that the eigenfunctions and potentials are given by [4]

�Φ2 = τ �Φ1 =
1

∆

(
σρe−iθ

F1

)
,(46)

q(x, y, t) = −2iρσ
e−iθ

∆
, R = ln ∆,(47)

∆ ≡ |F1|2 − σ|ρ|2 ≡ (x− γI + 2at)2 + (y + γR + 2bt)2 − σ|ρ|2,(48)

where θ ≡ 2(by − ax + (b2 − a2)t). This solution is characterized by the integers
m = N = Q = 1 and d = 2.

The potential takes a simpler form upon transformation to a frame moving with
the wave with coordinates

x̂ = x− γI + 2at, ŷ = y + γR + 2bt.(49)

Indeed, relative to this coordinate frame

q = −2iσρ
e2i(ax̂−bŷ+(b2−a2)t+aγI+bγR)

ŷ2 + x̂2 − σ|ρ|2 .(50)

Note that upon transformation of the Galilean frame, the field q(x, y, t) is not invariant
but picks a phase factor 4(b2 − a2)t+ 2aγI + 2bγR.

Corresponding to σ = −1 and taking ρ �= 0 the solution is nonsingular and decays
rationally as 1/(x2+y2) at infinity. Hence it has all the Lp, p > 1 norms finite. Indeed
by direct calculation one finds

‖q‖1 =∞, ‖q‖p ≡
(∫ ∫

|q(x, y, t)|pdxdy
) 1

p

= 2

(
ρ2−pπ
p− 1

) 1
p

, p > 1.(51)
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This implies that all the constants of the motion (see [9]) are finite. The opposite
situation arises in the defocusing case (σ = 1), where the solution is singular and
hence the Lp, p > 1 norms are all infinite (unlike what was claimed in [4]).

From a physical perspective the solution for σ = −1 describes a wave (lump) trav-
eling with constant velocity vx = −2a, vy = −2b, and amplitude |q| = 2

|ρ| modulated

by the phase θ(x, y, t). However, this wave is unstable against perturbations [23].

(ii) If µ(k) has the structure (45) and Q = 2, then the Laurent coefficients satisfy
(36.2) with �ν1

j = 0:

F1
�I1 + ρ̄eiθ�I2 − F2

�Φ1 + eiθH̄�Φ2 = 0,

F̄1
�I2 + σρe−iθ�I1 − F̄2

�Φ2 + σe−iθH�Φ1 = 0,(52)

where we recall that F1 ≡ z1 + γ, F̃1 ≡ (z1 + γ′), F2 ≡ 1
2 (F 2

1 + δ), H ≡ ρ′ − ρF̃1 =

−ρ(F1 + η), and η ≡ γ′ − γ − ρ′

ρ . We first analyze the case corresponding to ρ = 0.
Solving this system we obtain the corresponding residue and DSII solution as

�Φ2 =
1

∆

(
σF1ρ

′e−iθ

F2F̄1

)
, q(x, y) = −2iσρ′

∆
F1e
−iθ(53)

with ∆ ≡ |F2|2 + |G|2. Finally ∆ is now

∆ ≡ |F2|2 + |H|2 =
1

4
(ŷ2 − x̂2 + δR)2 + (x̂ŷ − δI

2
− t)2 − σ|ρ′|2.(54)

In the moving frame with coordinates (49) we have

q(x, y) = −8iσρ′
e2i(ax̂−bŷ+(b2−a2)t+aγI+bγR)(ŷ − ix̂)

(ŷ2 − x̂2 + δR)2 + 4(x̂ŷ − δI
2 − t)2 − 4σ|ρ′|2 .(55)

From a spectral point of view, and since ρ equals 0 this solution could be inter-
preted as arising from a one-dimensional homogeneous space of solutions and hence
to correspond to the integers m = N = d = 1 and Q = 2. Note that, as has been
commented, Φ11 = d

dz log ∆ with ∆ = (zz̄)2, r2 → ∞ (see (30), (33)). This solution
for particular choice of the parameters was also obtained in [13] by use of Darboux
formalism.

We consider next the general case corresponding to ρ �= 0. Solving (52) we obtain
the corresponding residue and DSII solution as

�Φ2 =
1

∆

(
σ(F2ρ+ F1H)e−iθ

F2F̄1 + σρ̄H

)
, q(x, y) = −iρσe−iθ (F 2

1 + 2ηF1 − δ)

∆
, R = ln ∆,

(56)

and ∆ ≡ |F2|2 − σ|H|2. In the moving frame with coordinates (49) we obtain

∆ =
1

4
(ŷ2 − x̂2 + δR)2 +

(
x̂ŷ − δI

2
− t

)2

− σ|ρ|2((x̂− ηI)
2 + (ŷ + ηR)2,(57)



DISCRETE SPECTRUM OF THE DAVEY–STEWARTSON EQUATION 1267

q(x, y, t) = −4iσρe2i(ax̂−bŷ+(b2−a2)t+aγI+bγR)

· (ŷ2 − x̂2 + 2(ηRŷ + ηI x̂)− δR − 2i(x̂ŷ + ηRx̂− ηI ŷ + δI
2 + t))

(ŷ2 − x̂2 + δR)2 + 4(x̂ŷ − δI
2 − t)2 − 4σ|ρ|2((x̂− ηI)2 + (ŷ + ηR)2)

.(58)

Spectrally this solution corresponds to the integers m = N = 1 and d = Q = 2.
Next we describe the main physical features of the above solution corresponding

to σ = −1. The solution depends on 5 complex (or 10 real) parameters: k1, γ, δ, η,
and ρ. It is nonsingular and at infinity it decays like O( 1

r2 ). The lump positions are
asymptotically expected to be found at the locations at which the denominator has
smallest order. Inspection of (54) shows that this occurs when the highest polynomials
vanish at leading order. Hence we require ŷ2 − x̂2 = x̂ŷ − t = 0 and obtain for the
lump positions

(59−) (x̂±, ŷ±) ∼ ±
√
|t|(−1, 1), t→ −∞,

and

(59+) (x̂±, ŷ±) ∼ ±
√
|t|(1, 1), t→∞,

where (x̂+, ŷ+) and (x̂−, ŷ−) are the coordinates of the front and rear lumps. It follows
that asymptotically the solution decomposes into two separate lumps, which, as seen
in the Galilean frame (49), are moving with respect to the origin along the straight
line y = −x with velocities ± 1

2
√
t
(1,−1). Eventually they will collide and scatter off

at an angle of π
2 . This is unlike KPI, where the scattering angle takes on any possible

value between 0 and 2π depending on the value of parameters [12]. The amplitude of
both humps is maintained constant through the interaction process and given by 2

|ρ| ;
this follows noting that at lump locations (59±) one has ∆ = O(t), F 2

1 +2ηF1 = O(t),
and hence their ratio is bounded with limit 2

|ρ| . With respect to a frame at rest,

the asymptotic motion of the lumps is more complicated. As t→∞ the trajectories
follow a hyperbola given by 2(bx− ay)2 + (a− b)(x− y) = 0.

Lump scattering and motion can be thought of as the motion due to an attractive
force f(r) ≈ 1

r3 between the lumps. Define xi,j ≡ xi − xj , yi,j ≡ yi − yj , i, j = +,−,
�ri ≡ (xi, yi), �ri,j ≡ (xi,j , yi,j), ri,j ≡ |�ri,j |. The above trajectories as t → ±∞ of the
humps solve the following system:

d2�ri
dt2

=
∑
j,j �=i

�ri,j
ri,j

f(ri,j).

We see that humps attract each other, but they do not form a bound state since the
attractive interaction is not strong enough to bind them together. Figures 1, 2, and
3 show a plot of this configuration before, during, and after interaction.

We next study the regularity properties of the solution corresponding to σ = −1.
The possible singularities of the solution appear at points at which the denominator
vanishes. The denominator attains a minimum value S2 at x̂ = ηI ; ŷ = −ηR at a time
2t = −2ηIηR − δI ≡ 2t̃, where S ≡ η2

R − η2
I + δR. At this point

|q|(ηI ,−ηR, t̃) =
4ρ

|S| .(60)
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Thus the condition S �= 0 on the free parameters guarantees that the solution is never
singular. However, one should not be misled into thinking that the amplitude grows
unboundedly if the parameters satisfy S = 0 . The difficulty stems from letting first
x̂ = ηI , ŷ = −ηR, t = t̃ and then S = 0 (instead of doing these manipulations in the
opposite order). Setting t = t̃, S = 0 we find that (58) yields

(60′) |q|(x̂, ŷ, t̃) =
4ρ

(x̂+ ηI)2 + (ŷ − ηR)2 + 4ρ2
,

and hence

|q|(ηI ,−ηR, t̃) =
ρ

η2
I + η2

R + ρ2
≤ |q|(−ηI , ηR, t̃) ≡ 1

ρ
.

This means that at time t = t̃ the two lumps have merged into one single rotationally
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invariant structure and with an amplitude that is the sum of that of the individual
lumps. This is interesting; it implies that all constants of motion of (58) depending
only on the amplitude take the same value as those of (50) upon setting ρ → 2ρ.
In Figure 4 we show a plot of configuration during interaction t = t̃ displaying its
rotational invariance.

The interaction process is similar to the solution (55). There exist several differ-
ences, however, between (55) and (58). We note that the DSII potential (55) decays
as 1

r3 at infinity. Hence it has all the Lp, p ≥ 1 norms finite. However, it depends
only on 8 real parameters, and furthermore the lump’s amplitude is not bounded but
grows with time as

√|t| (recall that at the lump locations (55) one has ∆ = O(1)



1270 JAVIER VILLARROEL AND MARK J. ABLOWITZ

and F1 = O(
√|t|)). Hence only for moderate periods of time can (55) be physically

meaningful. On the other hand, (58) depends on 10 real parameters and decays at
infinity (away from lump locations (55)) as 1

r2 . The Lp, p > 1 norms are therefore
finite—and hence there are all constants of the motion—but the L1 norm is infinite.
Unlike (55), the lump’s amplitude of the lump (58) is bounded by 2

|ρ| , and hence it

can be physically meaningful for all times.
(iii) If µ(k) has the structure (45) and Q is any positive integer, then the Laurent

coefficients satisfy (36.Q) with �νlj = 0, l ≥ 1, j = 1, 2. Obtaining the corresponding
DSII potential is a matter of linear algebra and is left for the reader.

Double poles. Next we briefly describe the simplest example of potentials cor-
responding to a double pole in the wave function. Assume that µ1(k) has the repre-
sentation

�µ1(k) =
�Ψ1

(k − k1)2
+

�Φ1

k − k1
+ �I1.

From Result 4 in such a case (39.1), (39.2) apply with �ν1(k) = �I1. The resulting
system can be solved to give the DSII potential (for convenience we take σ = −1)

q(x, y, t) = −2iρ̄e−iθ
(F̄ 2

1 + 2ηF̄1 − δ)

∆

= −4iρ̄eiθ
(ŷ2 − x̂2 + 2(ηRŷ + ηI x̂)− δR + 2i(x̂ŷ + ηRx̂− ηI ŷ + δI

2 − t))

(ŷ2 − x̂2 + δR)2 + 4(x̂ŷ − δI
2 + t)2 + 4|ρ|2((x̂− ηI)2 + (ŷ + ηR)2)

.(61)

Spectrally this solution corresponds to the integers N = 1 and m = d = Q = 2.
Note that this solution can be obtained from (58) upon letting t → −t and taking
a complex conjugation. This is remarkable: it means that if q(x, y) is a potential
on the discrete spectrum of the DO corresponding to a wave function with simple
poles and Q = 2, then q̄(x, y) is also related to the discrete spectrum of the DO
corresponding to a wave function with double poles! Thus the transformation q →
q̃ ≡ q̄(x, y,−t) preserves the index but not the pole structure. From a physical
perspective this means that q(x, y, t) and the physically related state q̃(x, y, t) ≡
q̄(x, y,−t), obtained by backwards evolution and conjugation of phase, have quite
a different spectral classification in the case Q = 2. This stems from the following
reason: the integers N = 1 and m = d = Q = 2 define an entire (equivalence)
class of potentials, those qk1,γ,δ,η,ρ(x, y, t) members of the 10-parameter family (61).
However, q̃ is not a member of the latter family, unlike what happens for Q = 1, where
q̃k1,γ,ρ(x, y, t) = q−k1,γ,−ρ(x, y, t). It follows that for Q = 2, q̃ cannot correspond to
the same spectral numbers that q does.

Potentials corresponding to superposition of simple poles. More compli-
cated solutions are found by taking a simple linear combination of N poles located at
kl ≡ al + ibl, l = 1, . . . , N . Assume that

�µ1(k) = �I1 +

N∑
l=1

�Φl)

(k − kl)
, �µ2(k) = �I2 +

N∑
l=1

τ �Φl)

(k − k̄l)
.(62)

In this case one has that at every pole kj
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(63.1) �ν1(kj) = �I1 +

N∑
l �=j

�Φl)

ajl
, �ν1

1(kj) = −
N∑
l �=j

�Φl)

a2
jl

,

(63.2) �ν2(k̄j) = �I2 +

N∑
l �=j

τ �Φl)

ājl
, �ν1

2(k̄j) = −
N∑
l �=j

τ �Φl)

ā2
jl

,

where ajl ≡ kj − kl. We obtain the following:
(i) Assume that Qj) = 1, j = 1, . . . , N . Then the solution satisfies

|q|2 = −σ(∂xx + ∂yy)R, R(x, y) = log ∆.(64)

Here ∆ ≡ detB is real, B is the 2N × 2N matrix with the block decomposition

B =

(
m n
σn̄ m̄

)
,(65)

and we have defined

mjl = F
j)
1 δjl − (1− δjl)

e−ajlz

ajl
, njl = ρ̄j)δjl, j, l = 1, 2, . . . , N,(66)

F
j)
1 = z1 + γj), z1 ≡ z ≡ y − ix, θj) ≡ θ

j)
21 = 2(bj)y − aj)x+ (bj)

2 − aj)
2
)t).

(Note that we use superscripts to label functions corresponding to different poles.)
The solution is a rational function with coefficients modulated by the difference

of phases θj) − θk), j, k = 1, . . . , N ; for long times it is a superposition of N lumps
like (50), each of them traveling with a speed that for the j)th lump is given by
(−2aj),−2bj)). These lumps asymptotically do not suffer interaction effects among
themselves. Finally

‖q‖22 = 4πN.(67)

(ii) All the Qj) = 2. In this case let

B =

(
m n
σn̄ m̄

)
, ∆ = detB,(68)

where we define the N ×N matrices m and n by

mjl ≡ F
j)
2 δjl −

[
F j)

ajl
+

1

a2
jl

]
e−ajlz(1− δjl), njl ≡ −H̄j)δjl − ρ̄j)

e−ājlz̄

ājl
(1− δjl).

(69)

Then

|q|2 = −σ(∂2
y + ∂2

x) log ∆, R(x, y) = log ∆,(70)

where ∆ is real and

‖q‖22 = 8πN.(71)
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The solution is a rational function with coefficients depending on the difference of

phases ei(θ
j)−θk)), j, k = 1, . . . , N . For long time, the solution is composed of a sum of

2N lumps like (58); the trajectory for the j)th lump is given by (59) with the relevant
parameters. Only pairs of lumps corresponding to the same pole interact, and in a
similar way to that described above with scattering in an angle of π

2 . Otherwise,
lumps corresponding to different poles do not interact.

Proof. We first prove that ∆ is real (note that the proof is valid for both case (i)
and case (ii)). We note the following:

∆ = det

(
m n
σn̄ m̄

)
= (1)N det

(
σn̄ m̄
m n

)
= det

(
m̄ σn̄
n m

)
= det

(
m̄ n̄
σn m

)
= ∆.

We next prove formula (64). If all the Qj) = 1, then equations (36.1) apply and
for j = 1, . . . , N we obtain the system

F
j)
1 Φj) −

N∑
l �=j

�Φl)

ajl
+ ρ̄j)eiθ

j)

τ �Φj) = �I1,

F̄
j)
1 τΦj) −

N∑
l �=j

τ �Φl)

ājl
+ σρj)e−iθ

j)�Φj) = �I2.(72)

For convenience we introduce the column vector �p with entries pj) ≡ e−k
j)z and

�πj) = �Φj)pj), ζj) ≡ �π
j)
1 , ωj) ≡ σπ̄

j)
2 ,

in terms of which (72) reads

N∑
l �=j

mjlζ
l) + ρ̄j)ωj) = e−k

j)z,

N∑
l �=j

m̄jlω
l) + σρj)ζj) = 0.

If B is the 2N × 2N matrix defined in (65) and for j = 1, . . . , n, Bj) is the 2N × 2N

matrix obtained substituting the j)th column of B by the column vector
( 'p
'0

)
, the

above system can be written as

B

(
ζj)

ωj)

)
=

(
�p
�0

)
.

Therefore

ζj) =
Bj)

B
,

N∑
j=1

Φj1 =
1

B

N∑
j=1

Bj)

pj)
=

∂

∂z
log ∆,

where the last equality is obtained using the expression for the derivative of a deter-
minant along with the fact

∂

∂z
mjl(z) =

pl)

pj)
,

∂

∂z
m̄jl(z) =

∂

∂z
σn̄jl(z) =

∂

∂z
njl(z) = 0
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and on account of (25.2)

|q|2 = −4σ
∂

∂z̄

∂

∂z
log ∆.

This solution was obtained in [4]. Unlike what (64)–(66) suggests (and as was
claimed in [4]), for N > 1, ∆ does not increase exponentially; to see this note that
∆ = detB′, where B′ is the 2N × 2N matrix with the block decomposition

B′ =
(
m′ n′

σn̄′ m̄′

)
,

and we have defined

m′jl = F
j)
1 δjl − (1− δjl)

1

ajl
, n′jl = ρ̄j)eiθ

j)

δjl, j, l = 1, 2, . . . , N.

From this expression it can be proven that ∆ is a polynomial with coefficients de-

pending on ei(θ
j)−θk)), j, k = 1, . . . , N . It also follows that for long values of either

z or t, ∆ =
∏N

j=1 F
j)
1 F̄

j)
1 + O(zz̄)N−2; i.e., the relevant determinant factorizes as a

product of determinants corresponding to one lumps, with relevant parameters, and
hence that the solution is a superposition of N lumps like (50). In addition, (32) and
∆ = (zz̄)N +O(zz̄)N−2 imply that ‖q‖22 = 4πN , i.e., (67).

The case corresponding to all the Qj) = 2 can be proven along similar lines using
equations (36).

Summary of potentials. Below we summarize the above discussion on the
spectral classification of potentials on the discrete spectrum and DSII solutions. Re-
call that the integers N,m,Q, d are defined at the beginning of section 3. Finally s
represents the number of fundamental lumps the solution is composed of.

Spectral classification.
Solution N m Q d s
(50) 1 1 1 2 1
(55) 1 1 2 1 2
(58) 1 1 2 2 2
(61) 1 2 2 2 2
(66) N 1 1 2 N
(69) N 1 2 2 2N

Physical properties. The following table gives a summary of the physical prop-
erties of the main localized DSII solutions (we take σ = −1). Recall that ‖q‖22 = 4πs
is the (square of the) L2 norm, which physically represents the mass of the wave.

Solution s Smooth Scattering Angle Amplitude Decay Parameters Mass

(50) 1 Yes 2
ρ

1/r2 5 4π

(55) 2 Yes Yes π
2

√
t→ ∞ 1/r3 8 8π

(58) 2 Yes Yes π
2

2
ρ

1/r2 10 8π

(61) 2 Yes Yes π
2

2
ρ

1/r2 10 8π

(66) N Yes No 0 2
ρ

1/r2 5N 4πN

(69) 2N Yes Yes (by pairs) π
2

2
ρ

1/r2 10N 8πN
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Remarks. We have presented the simplest examples of potentials associated with
the discrete spectrum and localized solutions to DSII. While we shall not elaborate
any further on this, we remark that one could also consider a mixture of poles of
different types. Also, following the methods described one can in principle derive
equations corresponding to higher order charges and/or poles.

Potentials corresponding to general spectrum. Next we consider potentials
corresponding to the general case when both continuous and discrete spectrums are
present. For simplicity we assume that the discrete spectrum corresponds to having
just one simple pole; more general cases can be handled via the theory exposed before
and linear algebra. One has the following:

Assume that there exists a solution to (7) such that its columns �µ1(k), �µ2(k) have

simple poles k1 ≡ a+ ib, k̄1 and residues �Φ, τ �Φ, respectively,

�µ1(k) = �µ1reg(k) +
�Φ

(k − k1)
, �µ2(k) = τ�µ1reg(k) +

τ �Φ

(k − k̄1)
,(73)

where �µ1reg(k) �= �I1 and �µ1reg(k) → �I1 as k → ∞. Then, in terms of the definitions
given above, �µ1(k) solves the linear equation of the inverse problem

�µ1(k) = �I1 +
1

2πi

∫
C

eiθ12T12(z)

z − k
τ�µ1(z̄)dz ∧ dz +

�Φ

(k − k1)
,(74)

and also, if Q = 1,

(75.1) �I1 +
1

2πi

∫
C

eiθ12T12(z)

z − k1
τ�µ1(z̄)dz ∧ dz = F1

�Φ + ρ̄eiθτ �Φ

or, if Q = 2,

∂

∂k1

∫
C

eiθ12T12(z)

z − k1
τ�µ1(z̄)dz ∧ dz = F1

[
2πi�I1 +

∫
C

eiθ12T12(z)

z − k1
τ�µ1(z̄)dz ∧ dz

]

(75.2.) + ρ̄eiθ
[
2πi�I2 + σ

∫
C

e−iθ12 T̄12(z)

z̄ − k̄1
�µ1(z)dz ∧ dz

]
− 2πiF2

�Φ + 2πieiθH̄τ �Φ.

Finally the potential is obtained from (25) with

ξ12 =
σ

2πi

∫
C

e−iθ12 T̄12(z)µ11(z̄)dz ∧ dz + σΦ̄2.(76)

Proof. If µ(k) has the structure (73), it follows that there exists a solution �Φ to

the homogeneous equation G1(k1)�Φ = �0 at k = k1. In this case one finds that (10) is
to be modified as follows:

(10′)
∂µ

∂k̄
=

n∑
j,l=1

µ

(
kR + i

Jj
Jl
kI

)
Ωlj(k) +AΦδ(k − kj),

where A is an arbitrary constant. Direct derivation of (73) and use of the relationship
∂
∂k̄

1
(k−kj)

= πδ(k − kj) shows that A = π. Equation (74) follows substituting (10′)
in (11). To obtain (75) use (36)—which is valid for general wave functions that have



DISCRETE SPECTRUM OF THE DAVEY–STEWARTSON EQUATION 1275

only simple poles—the symmetry relationship (18), (19), and also the fact that (74)
implies that

�ν1(k1) = �I1 +
1

2πi

∫
C

eiθ12T12(z)

z − k1
τ�µ1(z̄)dz ∧ dz,

�ν1
1 =

1

2πi

∂

∂k1

∫
C

eiθ12T12(z)

z − k1
τ�µ1(z̄)dz ∧ dz.

Equation (76) also follows from (73).
Remark. We leave it to the reader to derive the linear equation of the inverse

problem that �µ1(k) satisfies when it has the structure (73) and Q is any positive
integer. One only needs to determine �νlj , l ≥ 1, j = 1, 2, and note that in this case the
Laurent coefficients satisfy (36.Q).

5. The general case. Most of the former theory can be generalized to the
general case corresponding to J = Diag(J1, . . . , Jn), J1 �= J2 �= · · · �= Jn, and A(x, y)
an off-diagonal matrix. We mention the relevant generalizations.

Consequence of Result 0. For any fixed column j, let kj ≡ aj + ibj be an
eigenvalue for that column: i.e., there exists a solution �ωj to the jth homogeneous
equation at the point kj and let Lj be the set of indices

Lj =

{
l| exists �ωl that solves the lth homogeneous equation at aj + i

Jjbj
Jl
≡ klj

}
.

Let πlj ≡ e−iθjl(klj)�ωl. Note that j ∈ Lj ⊂ {1, . . . , n} and hence in particular (if
l = j) πjj = �ωj . Then the null space of the jth homogeneous equation at k = kj
contains the span of the functions πlj when l ranges in L:

{πlj}l∈L ⊂ Ker Gj(kj) =; Dim Ker Gj(kj) ≡ |L| ≥ 1.

Result 3 is generalized as follows.
Let �µj(k) have the Laurent expansion (13) around any simple pole k1. Then the

following hold:
(i) The index matrix must be diagonal: (Q)lj = Diag (Q1, . . . , Qn).
(ii) If Qj = 1, then the Laurent coefficients satisfy

(77.1) �νj = Fj;1�Φj +
∑
l∈L

ρjle
−iθjl(kl)�Φl,

where Fj;1 ≡ (zj + γj), Fj;2 ≡ 1
2 (F 2

j;1 + δj), and γ, δ, ρjl, . . . are arbitrary constants.
(iii) If Qj = 2, then the Laurent coefficients satisfy

(77.2) �ν1
j = Fj;1�νj − Fj;2�Φj +

∑
l∈L

e−iθjl(kl)
(
ρjl�νl + (ρ′jl − ρjlF̃l;1)�Φl

)
,

where F̃j;1 ≡ (zj + g′j) and g′j , ρ
′
jl are new constants.

Temporal evolution. In the general case the relevant evolution equation is the
compatibility of (1) and[
∂t − iJl∂yy + 2ikjJl∂y + ik2

j (Jj − Jl)
]
µlj +

∑
r

Alr∂yµrj −A1lrµrj + kjAlrµrj = 0,

l, j = 1, . . . , n,

where A1lr is a certain matrix. One finds that the discrete scattering data correspond-
ing to an eigenvalue kj ≡ aj + ibj evolves as the following.
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Simple poles.

∂tγj = −2iJjkj , ∂tδj = 2iJj , ∂tρlj = iJlj

(
a2
l + i

Jl
Jj
b2l

)
ρlj ,

Jlj ≡ Jl − Jj and hence that γj(t) = γj(0)− 2iJjkjt, δj(t) = δj(0) + 2iJjt,

ρlj(t) = ρlj(0) exp iJlj

(
a2
l + i

Jl
Jj
b2l

)
.(78)

Double poles.

γj(t) = γj(0)− 2iJjkjt, δj(t) = δj(0)− 2iJjt,(79)

ρlj(t) = ρlj(0) exp iJlj

(
a2
l + i

Jl
Jj
b2l

)
.(80)

Appendix. Here we prove that for DSII, no poles in k̄ may exist.
Assume the eigenfunction has canonical normalization and the following expan-

sion as |k| → ∞:

µ(k) = I +
Φ

k
+
ϕ

k̄
+ o(1/k).(A.1)

Inserting this expansion into (3) one obtains that (we consider n = 2, i.e., DSII)

•O(k) : (Jj − Jl)δlj = 0,

which is identically satisfied.

•O(1) : Alj = i(Jj − Jl)Φlj ,(A.2)

which implies

Aii = 0,(A.3)

•O(k/k̄) : (Jj − Jl)ϕlj = 0.(A.4)

It follows that

ϕij = 0, i �= j,(A.5)

•O(1/k̄) : (∂x + iJl∂y)ϕlj =
∑
r

Alrϕrj = Aljϕjj .

With l �= j we have that the left-hand side is zero: (∂x + iJl∂y)ϕlj = 0 (using (A.5));
since for off-diagonal elements Alj �= 0, l �= j, we conclude that

ϕjj = 0 and ϕlj = 0 for all l, j.(A.6)
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Assume a wave function with canonical normalization and pure simple poles at
k1, k̄1 in both variables k, k̄ exists, i.e., that

�µ1(k) = �I1 +
�Φ1

(k − k1)
+

�ϕ1

(k̄ − k̄1)
(A.7)

and (recalling that we consider DSII)

�µ2(k) = �I2 +
τ �Φ1

(k − k̄1)
+

τ �ϕ1

(k̄ − k1)
.(A.8)

It follows that this eigenfunction has, as |k| → ∞, the expansion (A.1) with

ϕ =
(
�ϕ1 τ �ϕ1

)
=

(
ϕ11 σϕ̄21

ϕ21 ϕ̄11

)
.

It follows that �ϕ1 = �0.
Therefore, no “pure” poles eigenfunctions of the type (A.7) exist; we expect that

neither will do more complicated pole states.
This argument must still apply when a continuous spectrum is added; indeed, in

the scattering theory the discrete spectrum separates from the continuous spectrum—
so it seems unnecessary to consider the latter. This is substantiated using a formal
expansion of the continuous spectrum in formula (74), which does not contain terms
in 1/k̄.

REFERENCES

[1] A. Davey and K. Stewartson, On three-dimensional packets of surface waves, Proc. Roy.
Soc. London Ser. A, 338 (1974), pp. 101–110.

[2] M. J. Ablowitz and H. Segur, On the evolution of packets of water waves, J. Fluid Mech.,
92 (1979), pp. 691–715.

[3] K. Nishinari, K. Abe, and J. Satsuma, J. Phys. Soc. Japan, 62 (1993), p. 2021.
[4] V. A. Arkadiev, A. K. Progrebkov, and M. C. Polivanov, Inverse scattering transform

method and soliton solutions for Davey–Stewartson II equation, Phys. D, 36 (1989), pp.
189–197.

[5] M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse
Scattering, London Math. Soc. Lecture Note Ser. 149, Cambridge University Press, Cam-
bridge, UK, 1989.

[6] M. J. Ablowitz and A. S. Fokas, Comments on the inverse scattering transform and related
nonlinear evolution equations, in Nonlinear Phenomena (Oaxtepec, 1982), Lecture Notes
in Phys. 189, Springer-Verlag, Berlin, 1983, pp. 3–24. See also [7].

[7] A. S. Fokas and M. J. Ablowitz, The inverse scattering transform for multidimensional
(2 + 1) problems, in Nonlinear Phenomena (Oaxtepec, 1982), Lecture Notes in Phys. 189,
Springer-Verlag, Berlin, 1983, pp. 137–183.

[8] A. Fokas and M. J. Ablowitz, On the inverse scattering transform of multidimensional
nonlinear equations related to first-order systems in the plane, J. Math. Phys., 25 (1984),
pp. 2494–2505.

[9] J. Villarroel and M. J. Ablowitz, On the Hamiltonian formalism for the Davey–Stewartson
system, Inverse Problems, 7 (1991), pp. 451–460.

[10] M. J. Ablowitz and J. Villarroel, On the complete integrability of certain nonlinear evo-
lution equations in one and two spatial dimensions, in Chaos & Order (Canberra, 1990),
World Scientific, Teaneck, NJ, 1991, pp. 1–13.

[11] M. J. Ablowitz and J. Villarroel, Solutions to the time dependent Schrödinger and the
Kadomtsev–Petviashvili equations, Phys. Rev. Lett., 78 (1997), pp. 570–573.

[12] J. Villarroel and M. J. Ablowitz, On the discrete spectrum of the nonstationary
Schrödinger equation and multipole lumps of the Kadomtsev–Petviashvili I equation,
Comm. Math. Phys., 207 (1999), pp. 1–42.



1278 JAVIER VILLARROEL AND MARK J. ABLOWITZ
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EXISTENCE OF WEAK SOLUTIONS TO SOME VORTEX DENSITY
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Abstract. We study the weak solutions to equations arising in the modeling of vortex motions in
superfluids such as superconductors. The global existence of measure-valued solutions is established
with a bounded Radon measure as initial data. Moreover, we get a local space-time Lq estimate
for the continuous part of the solution, and we prove the global existence of a distributional weak
solution for a particular case. We also consider a modification to the model in order to physically
account for the different signs of vortices, and we present, in one space dimension, the global existence
of weak solutions with the initial data in BV for the modified model.

Key words. quantized vortices, vortex density, hydrodynamics, vortex sheets, weak conver-
gence, measure-valued solutions
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1. Introduction. In this paper, we study the concentration phenomenon of the
approximate solution sequences to the equations

∂tρ+ div(uρ) = 0, (t, x) ∈ (0,∞)× R
2,

u = M∇�−1ρ,
ρ|t=0 = ρ0,

(1.1)

with ρ0 being a bounded Radon measure and M being a constant orthogonal matrix
of the form

M(θ) =

(
cosθ −sin θ
sin θ cos θ

)
.

Our investigation yields the global existence of a measure-valued solution to (1.1) and
the classical weak solution to (1.1) if ρ0 is a bounded positive (resp., negative) Radon
measure when cos θ > 0 (resp., cos θ < 0). For the case cos θ = 1, our results here
extend those available in the literature (see, for instance, [21]). In the more general
case, our study is related to the mathematical study of incompressible fluids as well
as the vortex state in superfluids.

Indeed, when cos θ = 0, (1.1) is the classical two-dimensional incompressible Euler
equations, which can be rewritten in the velocity formulation

∂tu+ div(u⊗ u) = −∇P, (t, x) ∈ (0,∞)× R
2,

divu = 0,
u|t=0 = u0.

(1.2)
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The initial value problem to (1.2) with u0 = (u1
0, u

2
0) ∈ L2

loc(R
2) and ω0 = ∂2u

1
0 −

∂1u
2
0 ∈M(R2) is an outstanding open problem, known as the vortex sheets problem,

in incompressible fluid mechanics (see [25]). In 1991, Delort [7] proved the global exis-
tence of weak solutions to this problem when ω0 is a bounded Radon measure without
negative singular part. Later, Majda [26] obtained the same result by the vanishing
viscosity limit to the two-dimensional incompressible Navier–Stokes equations. When
ω0 is a general Radon measure, only a measure-valued solution seems possible for this
problem; see [8, 9, 27, 28] for more details.

In recent years, studies of the stability, dynamics, and interactions of the vortices
in both classical fluids and superfluids have received a lot of attention. For example,
in the mezoscale Ginzburg–Landau models of superconductors [14], the individual
vortices are resolved and their interactions and dynamics are studied in great detail.
On a macroscopic level, when the number of vortices becomes exceedingly large, it is
advantageous to model the vortex state using a vortex density function [4, 16]. When
cos θ = 1, (1.1) has been obtained as the hydrodynamic limit of Ginzburg–Landau
vortices governing by gradient dynamics. A formal derivation was given in [16], and a
rigorous justification was given in [21]. Studies in this direction also include [2, 4, 15]
on model derivation, [19, 29, 30] on mathematical analysis, and [5, 12, 13, 18] on
numerical simulations (see [3] for additional references). The general case of θ 
= 0
corresponds to a complex time relaxation in the gradient dynamics. In [21], the global
existence of weak solutions to (1.1) with cos(θ) = 1 and ρ0 being a positive bounded
Radon measure was established. In the case of ρ0 taking on different signs, the
notion of weak solutions to (1.1) with cos(θ) 
= 0 requires further study, as additional
difficulties do arise.

A similar but somewhat modified version of (1.1) was studied in [2, 4] when
the vortices are of different signs. Taking the London approximation to the induced
magnetic field into account, a system of equations similar to (1.1) with cos(θ) = 1
was derived in [4]: 

∂tρ+ div(u|ρ|) = 0, (t, x) ∈ (0,∞)× R
2,

u = ∇(λ2�− I)−1ρ,
ρ|t=0 = ρ0.

(1.3)

Here, λ denotes the penetration depth. The density function ρ is allowed to change
sign in order to represent vortices of different signs. The general case of θ 
= 0 can also
be easily derived when the time relaxation parameter becomes complex valued [17].
In [11], such an approach was taken to account for the Hall effect. A vector-valued
version of (1.3) was also available [4] to account for the three-dimensional effect. The
existence and uniqueness of a viscosity solution to an equation similar to (1.3) was
proved in [19] by the viscosity solution method in [6] for an R

2-valued function ρ,
since a scalar stream function ψ can be found in that case such that ρ = ∇⊥ψ. Such
a technique obviously is not applicable here. To our knowledge, the general existence
to (1.3) is still open except for the stationary solutions studied in [4].

To draw an analogy with (1.1), we consider a modification of the above equation:
∂tρ+ div(u|ρ|) = 0, (t, x) ∈ (0,∞)× R

2,
u = ∇�−1ρ,
ρ|t=0 = ρ0.

(1.4)

Notice that when ρ0 ≥ 0, (1.4) is the same as (1.1).
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This paper consists of two main parts. In the first part, we study the global
existence of weak solutions to (1.1) with general Radon measure as initial data under
the condition that cos θ 
= 0 and obtain more general results than those given in [21].
Without loss of generality, we restrict ourselves to the case cos θ > 0; the results for
cos θ < 0 can be similarly obtained. In the second part of the paper, we present an
existence result to (1.4) in one space dimension.

To introduce our main results, let us examine the general procedure on proving
the global existence of weak solutions. As in [9], the first step is to construct the
approximate solution sequences. For simplicity, let us define the following cut-off
function:

Tε(ξ) :=

{
ξ, ξ ≥ −1/ε,
−1/ε, ξ ≤ −1/ε.(1.5)

We study the approximate solution sequence to (1.1) constructed by the equations
∂tρε + uε∇ρε = −cos θTε(ρε)ρε, (t, x) ∈ R

+ × R
2,

uε = M(θ)∇�−1ρε,
ρε|t=0 = ρ0,ε,

(1.6)

where ρ0,ε = (ρ0χε) ∗ jε, χε(x) = χ(xε ), χ ∈ C∞c (R2), χ(x) =
{

1, |x| ≤ 1,
0, |x| ≥ 2,

and jε(x)

is the standard Friedrich’s mollifier with suppjε ⊂ Bε(0).
Let Sε(ξ) = |ξ| ∗ jε. The approximate solution sequence to (1.4) may be defined

by the following equation:
∂tρε + div(uεSε(ρε)) = ε�ρε, (t, x) ∈ R

+ × R
2,

uε = ∇�−1ρε,
ρε|t=0 = (ρ0χε) ∗ jε.

(1.7)

Now, a main result of this paper can be stated in the following theorem.
Theorem 1.1. Let ρ0 ∈ M(R2) and cosθ > 0. Then there exist a subsequence

of {ρε, uε} constructed by (1.6) (still denoted by {ρε, uε} for convenience), functions
ρ ∈ Lqloc(R

+ × R
2) ∩ L∞(R+, L1(R2)) and u ∈ Lqloc(R

+,W 1,q
loc (R2)) for any q < 2, and

a positive Radon measure µ ∈M+(R+ × R
2) such that the following hold:

1. The following convergence properties and estimates hold:

ρε ⇀ ρ weakly in Lqloc(R
+ × R

2),(1.8)

uε ⇀ u weakly in Lqloc(R
+,W 1,q

loc (R2)),(1.9) (
ρε +

1

ε

)
ρε1ρε≤− 1

ε
⇀ µ in the sense of M(R+ × R

2),(1.10) ∫ ∞
0

∫
R2

dµ ≤
∫

R2

| dρ0(x)|.(1.11)

2. The following decay estimates hold:

ρ(t, x) ≤ cos θ

t
for a.e. (t, x) ∈ R

+ × R
2.(1.12)

3. For all test functions ϕ ∈ C∞c ([0,∞)× R
2), there holds∫ ∞

0

∫
R2

(ρ∂tϕ+ ρu∇ϕ+ µϕ) dx dt+

∫
R2

ϕ(0, x)ρ0 dx = 0(1.13)
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and

u = M(θ)∇�−1ρ.(1.14)

Definition 1.1. We call (ρ, u, µ) the measure-valued solution to (1.1) if (ρ, u, µ)
satisfies (1.13) and (1.14).

A similar definition was used by Alexandre and Villani in the study of the Boltz-
mann equation without Grad’s angular assumption to the cross section [1]. There,
f(t, x, v) was defined as a renormalized solution to the Boltzmann equation with a
defect measure µ(t, x, v) if, for all nonlinearity β ∈ C2(R+,R+) satisfying β(0) = 0,
0 < β′(f) ≤ C

1+f , β
′′(f) < 0, there holds

∂tβ(f) + v · ∇β(f) = β′(f)Q(f, f) + µ

in the sense of distributions. One may check [1] for more details.
When ρ0 ∈M+(R2), we have the following improvement of Theorem 1.1.
Corollary 1.1. Let 0 < cos θ < 1 and ρ0 ∈ M+(R2). Then µ = 0 in (1.13),

and ρ ∈ L2((0,∞)× R
2). Moreover,

‖ρ‖L2((0,∞)×R2) ≤ Cρ0(R
2).(1.15)

If 0 ≤ ρ0 ∈ Lp(R2) for 1 < p <∞, we have the following better estimate for ρ:∫
R2

ρp(T, x) dx+(p−1)cos θ
∫ T

0

∫
R2

ρp+1(t, x) dx dt ≤
∫

R2

ρp0(x) dx for a.e. T ∈ R
+.

(1.16)

Remark 1.1. In comparison with the measure-valued solutions to (1.2) in [8]
and that of the one-dimensional two-component Vlasov–Poisson equations in [27,
28], the measure-valued solution to (1.1) here is much more explicit and closer to
the distributional weak solution of (1.1). By (1.10), if ρ0 is a sign-changing Radon
measure, µ may not be 0 even if {ρε} strongly converges to ρ in Lqloc(R

+ × R
2) for

any q < 2. Moreover, from the corollary, we can see that if cos θ > 0 and ρ0 is a
positive Radon measure, then the approximate solutions satisfy ρε(t, x) ≥ 0 for all
(t, x) ∈ R

+ × R
2, which in turn implies, by the definition of µ, that µ = 0. Thus,

(ρ, u) is the classical distributional weak solution to (1.1).
Remark 1.2. If cos θ > 0 and 0 ≤ ρ0(x) ∈ L∞comp(R

2), following exactly the same
procedure as that in [21] and [33], we can prove the uniqueness of the weak solution
in the above corollary.

Remark 1.3. We can replace the second equation in (1.1) by u = −M(θ)∇(−λ2�+
1)−1ρ in correspondence to the equations derived in [4]. Step-by-step modifications of
the proofs given here will yield similar results for such equations as those in Theorem
1.1.

In one space dimension, (1.4) takes on the following form:
∂tρ+ ∂x(u|ρ|) = 0, (t, x) ∈ (0,∞)× R,
u =

∫ x
−∞ ρ(t, y) dy,

ρ|t=0 = ρ0.
(1.17)

Then we have the following existence result to (1.17).
Theorem 1.2. Let ρ0 ∈ BV (R). Then the weak limit (ρ, u) obtained by

the vanishing viscosity of (1.7) satisfies (1.17) in the sense of distributions, and
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ρ ∈ C([0, T ], Lp(K)) ∩ L∞([0, T ], BV (R)), u ∈ L∞([0, T ],W 1,p(R)) for any T < ∞,
2 < p <∞, and any compact subset K of R. Furthermore,∫

R

|ρ(t, x)| dx ≤
∫

R

|ρ0| dx,
∫

R

| dρ(t, x)| ≤
∫

R

| dρ0|,(1.18)

where
∫

R
| dρ| denotes the total variation of ρ, if supp ρ0 ⊂ Br(0), supp ρ(t, ·) ⊂ {x :

|x| ≤ r +Mt} with M the L∞ bound of u.
Remark 1.4. (1) An explicit solution to (1.17) may be constructed: let ρ0 be

defined by ρ0(x) = 1 in (0, 1), ρ0(x) = −1 in (1, 2), and ρ0(x) = 0 elsewhere; then a
global weak solution to (1.17) may be defined by

ρ(t, x) =


1

1+t , x ∈ (0, 1),
−1
1+t , x ∈ (1, 2),

0 otherwise.

Here, x = 1 is the shock line of this solution. Naturally, this leads to a conjecture that
shocks will be formed for d = 2 when ρ0 changes sign. In general we cannot prove
|ρε|⇀ m = |ρ|. Nevertheless, we can prove that

∂tρ+ div(um) = 0, u = ∇�−1ρ

holds in the sense of distributions and m = |ρ| for almost all (t, x) in a subset of
R

+ × R
2; see Proposition 3.1 for more details.

(2) With d = 2, to get the uniform L∞([0, T ], L1(R2)) estimate for {∂xρε}, the
solution sequence to (1.7), we need the uniform L∞ estimate for ∇uε (see the proof
of Lemma 3.2 for details). But with ρε being uniformly bounded, we cannot get
the desired estimate for ∇ ⊗ uε = ∇ ⊗ ∇�−1ρε by the singular integral operator
theory [31]. However, in the case of d = 1, by the second equation of (1.17), we find
∂xuε = ρε, which gives the desired estimate for ∂xuε.

Remark 1.5. Again, one may replace the second equation of (1.17) by u =
−∂x(−λ2∂xx+1)−1ρ and, using the same type of arguments as those in Theorem 1.2,
prove similar results.

We now introduce some notation that will be used throughout the paper. We let
Br(0) = {x : |x| ≤ r} and denote byM(Ω) the bounded Radon measure space on Ω,
byM+(Ω) the bounded positive Radon measure space on Ω, and BV (R) = {f : f ∈
L1(R), ∂xf ∈ M(R)}. We use C(a, b, . . .) as a uniform constant which only depends
on the listed variables and may change from line to line.

The proofs of the above theorems are given in later sections.

2. Proof of Theorem 1.1. Now let us first prove the global existence of solu-
tions to (1.6). For convenience, we omit the subscript ε in the approximate solution
sequence {(ρε, uε)} in the following lemma.

Lemma 2.1 (solution of (1.6) with smooth data). For ρ0 ∈ C∞c (R2), (1.6) has
a global strong solution (ρ, u) such that ρ ∈ L∞([0, T ],W 1,p(R2)), ∇u ∈ L∞([0, T ],
W 1,p(R2)) for any p > 1, T <∞, and

‖ρ(t, ·)‖L1 ≤ ‖ρ0‖L1 and ρ(t, x) ≤ cos θ

t
, t > 0.(2.1)

Proof. 1. (Blow-up principle.) Following the standard argument for a nonlinear
hyperbolic equation, we can prove the local existence of solution (ρ, u) to (1.6) with
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smooth data such that ρ,∇u ∈ L∞([0, T ],W 1,p(R2)) for some positive constant T and
any p < ∞. Now, let T ∗ be the lifespan of the solution (ρ, u) to (1.6). We are going
to show that if T ∗ <∞,

lim
t→T∗

‖ρ(t, ·)‖L∞ =∞.(2.2)

In fact, for any even positive number p, it follows from (1.6) that

∂t(∂xiρ)
p + u∇(∂xiρ)p + p∂xiu∇ρ(∂xiρ)p−1(2.3)

= −pcos θ∂xi(Tε(ρ)ρ)(∂xiρ)p−1.

Noticing that divu = cos θρ, |∂xi(Tε(ρ)ρ)| ≤ 2|ρ||∂xiρ|, integrating the above equation
over R

2, and using integration by parts, we get

d

dt

∫
R2

|∂xiρ|p dx ≤ ((2p+ 1)cos θ‖ρ‖L∞ + p‖∂xiu‖L∞)

∫
R2

|∇ρ|p dx.(2.4)

Let us take χ(ξ) ∈ C∞c (R2), χ(D) the corresponding pseudodifferential operator with
symbol χ(ξ); then by singular integrals theory [31, 32], we have

‖χ(D)∇⊗∇�−1ρ‖L∞ ≤ C‖∇ ⊗∇�−1ρ‖Lp ≤ C‖ρ‖Lp .(2.5)

While by Lemma B.1.C of [32], for all p > 2, we find

‖(1− χ(D))∇⊗∇�−1ρ‖L∞ ≤ C‖ρ‖L∞

(
1 + log

‖ρ‖W 1,p

‖ρ‖L∞

)
.(2.6)

Summing up the second equation of (1.6) and inequalities (2.5) and (2.6), we find

‖∇u‖L∞ ≤ C

{
‖ρ‖L∞

(
1 + log

‖ρ‖W 1,p

‖ρ‖L∞

)
+ ‖ρ‖Lp

}
.(2.7)

A simple interpolation result gives us

‖ρ‖Lp ≤ ‖ρ‖
p−1
p

L∞ ‖ρ‖
1
p

L1 .(2.8)

Summing up (2.4) and (2.7)–(2.8) we obtain

1

2

d

dt
‖∇ρ(t, ·)‖pLp ≤ C

{
‖ρ‖L∞

(
1 + log

‖∇ρ‖Lp

‖ρ‖L∞

)
+ ‖ρ‖L1

}
‖∇ρ‖pLp .(2.9)

Then the Gronwall inequality yields that

‖∇ρ(t, ·)‖Lp ≤ C(T, ‖ρ‖L1 , ‖ρ‖L∞)‖∇ρ0‖Lp .(2.10)

On the other hand, by multiplying signρ on both sides of (1.6), we find by (1.5) that

∂t|ρ|+ div(u|ρ|) = cos θ(ρ− Tε(ρ))|ρ| ≤ 0.(2.11)

Integrating (2.11) over R
2, we get the first inequality of (2.1). Summing up (2.1) and

(2.10), we complete the proof of the claim (2.2).
2. (Estimate of ‖ρ‖L∞ .) By (2.7) and the classical theory on ordinary differential

equations, the equation {
dΦt(x)
dt = u(t,Φt(x)),

Φt(x)|t=0 = x
(2.12)
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has a unique solution Φt(x) ∈ C([0, T ∗)×R
2), and ∂xΦt(x) ∈ L∞([0, T ]×R

2) for any
T < T ∗. Then, by the first equation of (1.6), we have

dρ(t,Φt(x))

dt
≤ 0,

which implies that

ρ(t, ·) ≤ ‖ρ0‖L∞ .(2.13)

This together with (1.5) shows that

‖Tε(ρ)‖L∞ ≤ max

{
1

ε
, ‖ρ0‖L∞

}
.(2.14)

Thus by the first equation of (1.6) and by (2.12), we have

d|ρ|(t,Φt(x))
dt

≤ cos θmax

{
1

ε
, ‖ρ0‖L∞

}
|ρ|(t,Φt(x)),

which together with the Gronwall inequality yields that

‖ρ‖L∞ ≤ exp

(
cos θmax

{
1

ε
, ‖ρ0‖L∞

}
t

)
‖ρ0‖L∞ .(2.15)

Summing up (2.2) and (2.15), we get the global existence of strong solutions to (1.6)
with smooth initial data.

3. (Decay estimate.) By the first equation of (1.6) and by (2.12), we have

dρ(t,Φt(x))

dt
= −cos θ(Tε(ρ)ρ)(t,Φt(x)),(2.16)

which implies that if ρ0(x) ≤ 0, then ρ(t,Φt(x)) ≤ 0, and if ρ0(x) ≥ 0, then
ρ(t,Φt(x)) ≥ 0. So to prove the one-sided decay estimate (2.1), we need to con-
sider only the points where ρ0(x) > 0. By (1.5), Tε(ρ(t,Φt(x)) = ρ(t,Φt(x)). Solving
(2.16), we get

ρ(t,Φt(x)) =
cos θρ0(x)

1 + tρ0(x)
<

cos θ

t
, t > 0.(2.17)

Summing up the above, we get the second inequality of (2.1). This completes the
proof of the lemma.

Next let us get the key uniform space-time estimate for the approximate solution
sequence {ρε} constructed in Lemma 2.1.

Lemma 2.2 (L1+α estimate). Let ρ0,ε ∈ L1(R2), α ∈ (0, 1), T,R > 0. Then for
the solutions (ρε, uε)ε>0 of (1.6), there holds the estimate∫ T

0

∫
|x|≤R

|ρε|1+α dx dt ≤ Cα,T,R,(2.18)

where the constant Cα,T,R depends only on the L1 norm of ρ0,ε and the listed vari-
ables.

Proof. 1. (Elementary estimate.) We first assume α = d2/d1 ∈ (0, 1/2), where d1

and d2 are odd positive integers. Let χ ∈ C∞c (R2), χ ≥ 0 and χ = 1 on {x||x| ≤ R},
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with suppχ ⊂ {x||x| ≤ R + 1}. Set η(ξ) = α
∫ ξ
0
max(1, |s|)α−1 ds for ξ ∈ R

1 such
that η′(ξ) = αmax(1, |ξ|)α−1. Multiplying (1.6) by χη′(ρε), integrating the resulting
identity over [0, T ]×R

2, and performing integration by parts several times, we obtain

cos θ

∫ T
0

∫
R2

χ(ρεη(ρε) − ρεTε(ρε)η
′(ρε)) dx dt(2.19)

=

∫
R2

χη(ρε) dx|T0 −
∫ T

0

∫
R2

∇χuεη(ρε) dx ds.

First, by the second equation of (1.6), for all test functions φ(x), ψ(x) ∈ C∞c (R2), we
have

φ(x)ψ(x)uε(t, x) = M(θ)φ(x)

∫
R2

(ψ(x)− ψ(y))
x− y

|x− y|2 ρε(t, y) dy

+ M(θ)

∫
R2

φ(x)ψ(y)
x− y

|x− y|2 ρε(t, y) dy.(2.20)

Notice that φ(x)ψ(y) x−y|x−y|2 = φ(x)ψ(y)ζ(|x − y|) x−y|x−y|2 , where ζ(z) ∈ C∞c (R) with

ζ(z) = 1 for z ∈ suppφ+ suppψ. And trivially ζ(z) z|z|2 ∈ Lp(R2) for all p < 2, by the

Hausdorff–Young inequality to the second term of (2.20), we get

‖φψuε(t, ·)‖Lp ≤ (sup |∇ψ|‖φ‖Lp + cφ,ψ)‖ρε(t, ·)‖L1 for all 1 ≤ p < 2.

In particular, by taking φ(x) = ψ(x) = 1 for |x| ≤ R+ 1, we get(∫
|x|≤R+1

|uε(t, x)|p dx
) 1

p

≤ CR‖ρ0,ε‖L1 for all 1 < p < 2.(2.21)

Note that α < 1
2 , and thus by (2.1) and (2.21), we have∣∣∣∣∣

∫ T
0

∫
R2

∇χuεη(ρε) dx ds

∣∣∣∣∣ ≤
∫ T

0

(∫
|x|≤R+1

|uε| 1
1−α dx

)1−α(∫
|x|≤R+1

|ρε| dx
)α

dt

≤ C1(R, ‖ρ0,ε‖L1) .(2.22)

By (2.1) and the definition of η, we have∣∣∣∣∫
R2

χη(ρε)(T, x) dx

∣∣∣∣
≤
∫
|ρε|≥1

χ(α+ |ρε|α)(T, x) dx+ α

∫
|ρε|≤1

χ(x)|ρε| dx
(2.23)

≤ 2πα(R+ 1)2 +

(∫
|x|≤R+1

|ρε|(T, x) dx
)α

(2π(R+ 1)2)1−α + α2π(R+ 1)2

≤ C2(α,R, ‖ρ0,ε‖L1).

Finally it follows from the definition of α and η that∫ T
0

∫
R2

χ(x)(ρεη(ρε)− ρεTε(ρε)η
′(ρε)) dx dt

=

∫ T
0

∫
R2

1|ρε|≥1χ
(
(1− α)ρ1+α

ε + α(ρ1+α
ε − Tε(ρε)ρ

α
ε ) + αρε

)
dx(2.24)

≥
∫ T

0

∫
R2

1|ρε|≥1χ((1− α)ρ1+α
ε + αρε) dx,
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where 1|ρε|≥1 is the characteristic function on the set {(t, x) : |ρε(t, x)| ≥ 1}.
Summing up (2.19)–(2.24), we find∫ T

0

∫
|ρε|≥1

χρ1+α
ε dx dt ≤ 1

1− α

(
α

∫
R2

χ|ρε| dx+ C1 + C2

)
(2.25)

for all α = d2/d1 ∈ (0, 1/2).

2. (Inductive step 1.) Next, we are going to show by the bootstrap method that
(2.25) holds for all α ∈ (0, 1). First, let us take α = d2/d1 ∈ (0, 5/6) with d1, d2

positive odd integers. In particular, due to the arbitrariness of R, by interpolation,
and by (2.25), we have∫ T

0

∫
|x|≤R+1

|ρε|p1 dx dt ≤ C(R, T, ‖ρ0,ε) for all p1 <
3

2
.(2.26)

On the other hand, again by (2.20) and the Hausdorff–Young inequality, we have∫ T
0

(∫
R2

|φψuε(t, ·)|q1 dx
)p1/q1

dt

≤ (sup |∇ψ|‖ρε(t, ·)‖L1‖φ‖Lq1 )
p1 T + Cφ,ψ

∫ T
0

‖ψρε(t, ·)‖p1Lp1 dt,(2.27)

with 1
q1

= 1
p1

+ 1
p − 1 for any p < 2. This implies that

∫ T
0

(∫
|x|≤R+1

|uε(t, x)|q1 dx
) p1

q1

dt ≤ C(R, T, ‖ρ0,ε‖L1),(2.28)

with the same p1 and q1. Thus by the Hölder inequality, we have∣∣∣∣∣
∫ T

0

∫
R2

∇χuεη(ρε) dx ds

∣∣∣∣∣ ≤
∫ T

0

(∫
|x|≤R+1

|uε| 1
1−α dx

)1−α(∫
|x|≤R+1

|ρε| dx
)α

dt

≤ ‖ρ0,ε‖αL1

∫ T
0

(∫
|x|≤R+1

|uε| 1
1−α dx

)1−α
dt

≤ C3(χ, T, ‖ρ0,ε‖L1),(2.29)

with 1− α ≥ 1
p1

+ 1
p − 1. As p1 < 3

2 , p < 2, we can always take α = d2
d1
∈ (0, 5

6 ) such

that 1− α ≥ 1
p1

+ 1
p − 1.

Summing up (2.19), (2.23), (2.24), and (2.29), we then find∫ T
0

∫
|ρε|≥1

χρ1+α
ε dx dt ≤ 1

1− α

(∫
R2

χ|ρε| dx+ C2 + C3

)
.(2.30)

This together with interpolation theory implies∫ T
0

∫
|x≤R+1

|ρε|p2 dx dt ≤ C(α,R, T, ‖ρ0,ε‖L1) for all p2 <
11

6
.(2.31)
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3. (Induction.) Inductively, let us assume α ∈ (0, αn), with
1
2 < αn < 1, and set

p̄n = 1+αn; there holds the estimate (2.18). Then by (2.27) and the similar proof of
(2.28), we have∫ T

0

(∫
|x|≤R+1

|χuε|qn+1 dx

) pn
qn+1

dt ≤ C(χ, T, ‖ρ0,ε‖L1),(2.32)

with 1
qn+1

= 1
pn
− 1

2 and pn < p̄n. Thus by the similar proof of (2.28), we have∣∣∣∣∣
∫ T

0

∫
R2

∇χuεη(ρε) dx dt

∣∣∣∣∣ ≤ ‖ρ0,ε‖αL1

∫ T
0

(∫
|x|≤R+1

|uε| 1
1−α dx

)1−α
dt

≤ C(χ, T, ‖ρ0,ε‖L1),(2.33)

with 1 − α ≥ 1
pn
− 1

2 . As pn < 1 + αn, we can always take α = d2
d1
∈ (0, αn+1) with

d1, d2 being positive odd integers, and αn+1 = 1+3αn

2(1+αn) such that 1 − α ≥ 1
pn
− 1

2 .

Then, summing up (2.19), (2.23), (2.24), and (2.33), we find there holds (2.29) with
α ∈ (0, αn+1), which implies that∫ T

0

∫
|x≤R+1

|ρε|pn+1 dx dt ≤ C(α,R, T, ‖ρ0,ε‖L1) for all pn+1 < 1 + αn+1.(2.34)

Notice by the definition of αn we have αn+1 > αn if 1/2 < αn < 1. Thus, the limit
limn→∞αn exists. Moreover, by the inductive formula αn+1 = 1+3αn

2(1+αn) , we have

lim
n→∞αn = 1.(2.35)

Summing up (2.34) and (2.35), we complete the proof of Lemma 2.2.
When ρ0,ε ≥ 0 and 0 < cos θ < 1, we can have the following improved estimates

for the approximate solution sequence {ρε}.
Lemma 2.3 (Lp+1 estimate). Let ρ0,ε ≥ 0 and 0 < cos θ < 1. The solution

sequence {ρε} then satisfies∫ T
0

∫
R2

ρ2
ε dx dt ≤ C‖ρ0,ε‖L1 ,(2.36) ∫

R2

ρpε (T, x) dx+ (p− 1)cos θ

∫ T
0

∫
R2

ρp+1
ε dx dt =

∫
R2

ρp0,ε dx(2.37)

for 1 < p <∞.
Proof. First, by the first equation of (1.6), we know that if ρ0,ε ≥ 0, then ρε(t, x) ≥

0 for (t, x) ∈ R
+ × R

2. Then, by the definition of Tε(ξ) in (1.5), we have Tε(ρε) = ρε
and

∂tρε + uε∇ρε = −cos θρ2
ε .(2.38)

Thus by (2.12) and (2.17), we have

det

(
∂Φεt(x)

∂x

)
= exp

(∫ t
0

divuε(s,Φ
ε
s(x)) ds

)
= exp

(
cos θ

∫ t
0

ρε(s,Φ
ε
s(x)) ds

)
= exp

(
cos θ

∫ t
0

ρ0,ε(x)

1 + sρ0,ε(x)
ds

)
= (1 + tρ0,ε)

cos θ.

(2.39)
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Moreover, by (2.12) and (2.17), we can write the solution to (1.6) in the following
form:

ρε(t, y) =
cos θρ0,ε((Φ

ε
s)
−1(y))

1 + tρ0,ε((Φεs)
−1(y))

.(2.40)

Thus, summing up (2.39) and (2.40), we have for any T <∞ and 0 < cos θ < 1 that∫ T
0

∫
R2

ρ2
ε dy dt =

∫ T
0

∫
R2

(
cos θρ0,ε((Φ

ε
s)
−1(y))

1 + tρ0,ε((Φεs)
−1(y))

)2

dy dt

=

∫ T
0

∫
R2

cos2θρ2
0,ε

(1 + tρ0,ε(x))2−cos θ
dx dt

=
cos2θ

cos θ − 1

∫
R2

ρ0,ε(1 + tρ0,ε)
cos θ−1|T0 dx(2.41)

≤ 1

1− cos θ

∫
R2

ρ0,ε dx ≤ C‖ρ0,ε‖L1 ,

which proves (2.36).
On the other hand, multiplying pρp−1

ε with (2.38), we find

∂tρ
p
ε + div(uερ

p
ε ) = cos θ(1− p)ρp+1

ε .(2.42)

Integrating (2.42) over [0, T ]× R
2, we get (2.37). This proves the lemma.

Now, we are in a position to complete the proof of Theorem 1.1.
Proof of Theorem 1.1. First by (2.18), there is a subsequence of {ρε}, which is

still denoted by {ρε} for convenience, and some ρ ∈ Lqloc(R
+ × R

2) such that

{ρε}⇀ ρ weakly in Lq([0, T ], Lqloc(R
2)) for all q < 2(2.43)

as ε → 0. Thus by (2.43) and the first equation of (2.1), for all ϕ ∈ C∞c (R+ × R
2),

there holds ∣∣∣∣∫
R+

∫
R2

ϕρ dx dt

∣∣∣∣ = ∣∣∣∣limε→0

∫
R+

∫
R2

ϕρε dx dt

∣∣∣∣
≤ sup
t∈R+

‖ρε(t, ·)‖L1

∫ ∞
0

‖ϕ(t, ·)‖L∞ dt(2.44)

≤ C

∫ ∞
0

‖ϕ(t, ·)‖L∞ dt,

which implies that ρ ∈ L∞(R+, L1(R2)).
Notice that the first equation of (1.6) can be rewritten as

∂tρε + div(uερε) = cos θ(ρ2
ε − Tε(ρε)ρε)

= cos θ

(
ρε +

1

ε

)
1ρε≤− 1

ε
ρε.(2.45)

By integrating the above equation over [0, T ]× R
2 and using (2.1), we find

cos θ

∫ T
0

∫
R2

(
ρε +

1

ε

)
ρε1ρε≤− 1

ε
dx dt =

∫
R2

ρε(T, x) dx−
∫

R2

ρ0,ε dx

≤ 2

∫
R2

|ρ0,ε| dx.(2.46)
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Thus by [20], up to a subsequence, which we still denote by {(ρε + 1
ε )ρε1ρε≤− 1

ε
} for

convenience, there exists a positive Radon measure µ on R× R
2 such that(

ρε +
1

ε

)
ρε1ρε≤− 1

ε
⇀ µ in the sense of measure as ε→ 0.(2.47)

On the other hand, by (2.1), (2.18), and interpolation theory,

{ρε} is uniformly bounded in Lp1([0, T ], Lp2loc(R
2)),(2.48)

with 1
p1

= β
∞ + 1−β

q , 1
p2

= β
1 + 1−β

q for any 0 < β < 1, 1 < q < 2. Since uε =

M(θ)∇�−1ρε, by Bessel potential theory [31], we have

{uε} is uniformly bounded in Lp1([0, T ], Lp3loc(R
2)),(2.49)

with 1
p3

= 1
p2
− 1

2 . If we take β = 2 − q for 3
2 < q < 2, then 1

p1
+ 1
q = 1 and

1
q +

1
p3

= 1
2 + β < 1. With these particular choices, and with (2.45), (2.46), we find

{∂tρε} is uniformly bounded in L1

(
[0, T ],W

−1, 2
5−2q

loc (R2) + L1(R2)

)
.(2.50)

Moreover by the definition of uε, (2.48), and Riesz transform theory [31], we have

{∇xuε} is uniformly bounded in Lp1([0, T ], Lp2loc(R
2)),(2.51)

so that

‖uε(t, ·)− uε(t, x+ ξ)‖Lp1 ([0,T ],Lp(BR)) → 0 as |ξ| → 0(2.52)

for all p < p3 but close to p3, so that 1
q +

1
p ≤ 1.

Thus if we denote u to be the weak limits of {uε} in Lp1([0, T ], Lp3loc(R
2)), summing

up (2.50), (2.52) and using Lemma 5.1 of [23], we find

ρεuε ⇀ ρu in the sense of distributions as ε→ 0.(2.53)

While by (2.45) and integration by parts, for any test function ϕ ∈ C∞c ([0, T ]× R
2),

we obviously have∫ T
0

∫
R2

(∂tϕρε + ρεuε∇ϕ) dx dt+ cos θ

∫ T
0

∫
R2

ϕ

(
ρε +

1

ε

)
ρε1ρε≤− 1

ε
dx dt

+

∫
R2

ϕρ0,ε dx = 0.(2.54)

Summing up (2.43), (2.47), and (2.53), and taking ε to 0 in (2.54), we get (1.13).
Moreover, by the second equation of (1.6), it is trivial to get (1.14). By summing up
(2.1) and (2.43), we get (1.12). This completes the proof of Theorem 1.1.

Now let us turn to the proof of Corollary 1.1.
Proof of Corollary 1.1. First by the proof of Lemma 2.1, if ρ0 is a positive Radon

measure, then ρε(t, x) ≥ 0 for all (t, x) ∈ R
+ × R

2, and thus by (2.47), µ(t, x) = 0.
Moreover, by (2.36) and [20], we have

‖ρ(t, x)‖L2([0,T ]×R2) ≤ limε→0‖ρε(t, x)‖L2([0,T ]×R2) ≤ Cρ0(R
2)(2.55)
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for all 0 < cos θ < 1. Then (2.55) and Fatou’s lemma imply (1.15). For p > 1, again
by [20] and (2.37), we have∫

R2

ρp(T, x) dx + (p− 1)cos θ

∫ T
0

∫
R2

ρp+1 dx dt

≤ limε→0

(∫
R2

ρpε (T, x) dx+ (p− 1)cos θ

∫ T
0

∫
R2

ρp+1
ε dx dt

)

≤ limε→0

∫
R2

ρp0,ε(x) dx =

∫
R2

ρp0 dx.(2.56)

Then, by summing (2.55) and (2.56), we complete the proof of Corollary 1.1.

3. Proof of Theorem 1.2 and the remarks. Again the first step in the proof
of Theorem 1.2 is to construct the approximate solution sequence {(ρε, uε)}. By
Theorem A.1, we immediately have the following lemma.

Lemma 3.1 (solution of (1.7) with smooth data). Let d = 1, 2, ρ0 ∈ L∞(Rd).
Then (1.7) has a global smooth solution (ρε, uε) such that ρε,∇uε ∈ L∞([0, T ], Hs(Rd))∩
L2([0, T ], Hs+1(Rd)) for any s > d

2 + 1, T <∞, and

‖ρε(t, ·)‖L1 ≤ ‖ρ0‖L1 , ‖ρε(t, ·)‖L∞ ≤ ‖ρ0‖L∞ + ε,(3.1) ∫
Rd

ρ2
ε(t, x) dx+ 2ε

∫ t
0

∫
Rd

|∇ρε|2 dx ds ≤
∫

Rd

ρ2
0 dx+ ε2t

∫
Rd

|ρ0| dx.(3.2)

Furthermore, if supp ρ0 ⊂ Br(0), we denote M = (‖ρ0‖L∞ + 1)
1
d ‖ρ0‖1−

1
d

L1 ; then for
r > ε and (t, x) ∈ Ωo =: {(t, x) : |x| ≥ r +Mt, t ≥ 0}, there holds

|ρε(t, x)| ≤ ‖ρ0‖L∞ exp[ε−1(r +Mt− |x|) + t‖ρ‖L∞ ] ≡ Qε(t, x).(3.3)

Proof. First by the third equation of (1.7), the global existence and uniqueness of
solution to (1.7) is a direct consequence of Theorem A.1. Moreover, (A.2) and (A.3)
imply (3.1) and (3.2), respectively. Consequently, (A.15) implies that

‖uε‖L∞ ≤M.

Next, we rewrite the first equation of (1.7) as

∂tρε + uεS
′
ε(ρε)∇ρε + Sε(ρε)ρε = ε�ρε.(3.4)

Let us denote L = ∂t + uεS
′
ε(ρε)∇ + Sε(ρε) − ε�. Notice by the definition of Sε(ξ)

that |S′ε(ρε)| ≤ 1 and ‖Sε(ρε)‖L∞ ≤ ‖ρε‖L∞ . We find

LQε ≥ 0 on Ωo,(3.5)

Qε||x|=r+Mt ≥ ‖ρ0‖L∞ , Qε|t=0,|x|≥r ≥ 0.(3.6)

Hence by the maximum principle, we have

ρε(t, x) ≤ Qε(t, x) for all (t, x) ∈ Ωo.(3.7)

Similarly, we can prove

−ρε(t, x) ≤ Qε(t, x) for all (t, x) ∈ Ωo.(3.8)
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Combining (3.7) with (3.8), we get (3.3). This completes the proof of the lemma.
With this lemma, by (1.7), (3.1), (3.2), and [31], we have that

∂tuε = ∂t∇�−1ρε = −∇�−1div(uεSε(ρε)) + ε∇ρε(3.9)

is uniformly bounded in L∞([0, T ], L2(Rd)).
While again by (1.7), (3.1), and [31], we have

uε is uniformly bounded in L∞([0, T ],W 1,p(Rd))(3.10)

for any 2 < p < ∞. Thus by combining (3.9), (3.10), the Lions–Aubin lemma, and
the similar proof of Lemma 3 in [34], we obtain that there exists a subsequence of
{uε}, which we still denote by {uε}, and some u ∈ L∞([0, T ],W 1,p(Rd)) such that

uε → u uniformly on any compact subset of [0, T ]× R
d.(3.11)

Trivially by (3.1), there exist ρ,m ∈ L∞([0, T ]× R
d) such that

ρε ⇀ ρ weakly ∗ in L∞([0, T ]× R
d),(3.12)

|ρε|⇀ m weakly ∗ in L∞([0, T ]× R
d).(3.13)

While by the definition of Sε(ξ), for any compact subset K of [0, T ]× R
2, we have

‖Sε(ρε)− |ρε|‖L1(K) → 0 as ε→ 0.(3.14)

Thus by combining the first equation of (1.7) with (3.11)–(3.14), we have that

∂tρ+ div(um) = 0(3.15)

holds in the sense of distributions.
Summing up the second equation of (1.7) and (3.11) and (3.12), we get

u = ∇�−1ρ .(3.16)

Thus, in order to prove that (ρ, u) is indeed a global weak solution to (1.4), we only
need to prove that m = |ρ|. However, only in one space dimension, and ρ0 ∈ BV (R),
we can prove that d(t, x) = |ρ|(t, x) for almost all (t, x) ∈ R

+ × R. In order to do so,
let us first present the following lemma.

Lemma 3.2. Let ρ0 ∈ BV (R). Then∫
R

|∂xρε(T, x)| dx ≤ e3εT

∫
R

| dρ0|,(3.17)

where
∫

R
| dρ0| is the total variation of ρ0.

Proof. Let g be the solution of the adjoint equation

∂tg + uεS
′
ε(ρε)∂xg − (Sε(ρε) + ρεS

′
ε(ρε))g + ε∂xxg = 0,(3.18)

with the Cauchy data g(T, ·) = γ ∈ C∞0 ({x : |x| < R}), and ‖γ‖L∞ ≤ 1. Let τ = T−t,
h = e−3ετg; then by (3.18), we have

∂τh− uεS
′
ε(ρε)∂xh+ (Sε(ρε) + ρεS

′
ε(ρε) + 3ε)h− ε∂xxh = 0.(3.19)
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We assume that h reaches its minimum value at (τ0, x0). Then we claim that

either h(τ0, x0) ≥ 0 or τ0 = 0.(3.20)

Otherwise, if h(τ0, x0) < 0 and τ0 > 0, we have by the definition of (τ0, x0) that

∂th(τ0, x0) = 0, ∂xh(τ0, x0) = 0, ∂xxh(τ0, x0) ≥ 0,(3.21)

which implies that

{∂τh− uεS
′
ε(ρε)∂xh+ (Sε(ρε) + ρεS

′
ε(ρε) + 3ε)h− ε∂xxh} (t0, x0) < 0

as Sε(ρε) ≥ 0, ρεS
′
ε(ρε)+3ε > 0. This contradicts (3.19), which proves the claim (3.20).

Hence

h(τ, x) ≥ min (0,min(h(0, x))) = −1,
which implies that

g(t, x) ≥ −e3ε(T−t) for all (t, x) ∈ [0, T ]× R.(3.22)

Exactly as in the proof of (3.22), we can also prove that

g(t, x) ≤ e3ε(T−t) for all (t, x) ∈ [0, T ]× R.(3.23)

Combining (3.22) with (3.23), we get

‖g(t, ·)‖L∞ ≤ e3ε(T−t), 0 ≤ t ≤ T.(3.24)

With (3.24) and the similar proof to (3.3), we get

|g(t, x)| ≤ exp[ε−1(R+M(T − t)− |x|) + 4(T − t)‖ρε‖L∞ ](3.25)

for all (t, x) ∈ {(t, x) : |x| ≥ R+M(T − t), 0 ≤ t ≤ T}.
On the other hand, taking ∂x to the first equation of (1.7), we have

∂t(∂xρε) + ∂x(uεS
′
ε(ρε)∂xρε) + (Sε(ρε) + ρεS

′
ε(ρε))∂xρε − ε∂xx∂xρε = 0.(3.26)

Combining (3.18), (3.25), and (3.26), we get∫
R

∂xρε(T, x)γ(x) dx−
∫

R

∂xρ0,εg(0, x) dx

=

∫ T
0

∫
R

(∂t(∂xρε)g + ∂xρε∂tg) dx dt = 0.(3.27)

It follows from (3.24) that∣∣∣∣∫
R

∂xρε(T, x)γ(x) dx

∣∣∣∣ ≤ e3εT

∫
R2

∫
R

|∂xρ0,ε| dx

≤ e3εT

∫
R

|dρ0|,(3.28)

which implies (3.17). This completes the proof of the lemma.
We now complete the proof of Theorem 1.2.
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Proof of Theorem 1.2. First by (3.17), we find that {ρε(t, x)} is uniformly bounded
in L∞([0, T ], BV (R)).While by (3.1), (3.2), and the first equation in (1.7), we find that
{∂tρε} is uniformly bounded in L∞([0, T ],W−1,∞(R))+L2([0, T ], H−1(R)). Notice by
the compact embedding theorem that BV (R) ↪→↪→ Lp(R) for any p < ∞. Thus by
the Lions–Aubin lemma and a proof similar to that of Lemma 3 in [34], we find that
there exists a ρ ∈ L∞([0, T ], BV (R)) for any T <∞ such that

ρε → ρ in C([0, T ], Lp(K)) for all T <∞(3.29)

and all compact subset K of R. In particular, this implies that m = |ρ|. Thus by
combining (3.15) and (3.16), we prove that (ρ, u) satisfies (1.17) in the sense of dis-
tributions. Moreover, if supp ρ0 ⊂ Br(0), (3.3) implies that

sup
(t,x)∈Ωo

|ρε| → 0 as ε→ 0,(3.30)

where Ωo is the set defined by Lemma 3.1. Thus supp ρ(t, ·) ⊂ {x : |x| ≤ r + Mt}.
This completes the proof of the theorem.

For d = 2, in general, we cannot prove that m = |ρ|. Instead, the following
proposition can be proved.

Proposition 3.1. Let ρ0 ∈ L∞(R2) with supp ρ0 ⊂ Br(0), and let us use the
notation supp ρ+

0 =: {x, ρ0(x) > 0} and supp ρ−0 =: {x, ρ0(x) < 0}. Then m = |ρ| for
almost all (t, x) ∈ D = D+ ∪D−, where

D+ = {(t,Φ+
t (x)) : x ∈ supp ρ−0 } , D− = {(t,Φ−t (x)) : x ∈ supp ρ+

0 },

with Φ±t (x) being defined by {
dΦ±

t (x)

dt = ±u(t,Φ±t (x)),
Φ±t (x)|t=0 = x.

(3.31)

Proof. First by multiplying signρε on both sides of (1.7), we find

∂t|ρε|+ div(uεsign(ρε)(Sε(ρε)− Sε(0))) ≤ −|ρε|Sε(0) + ε�|ρε|.(3.32)

Then by (3.1), it is trivial to prove that

‖sign(ρε)(Sε(ρε)− Sε(0))− ρε‖L1(K) → 0, ‖Sε(0)ρε‖L1(K) → 0(3.33)

as ε→ 0. Hence by summing up (3.11), (3.32), (3.33), and taking ε→ 0 in (3.32), we
find

∂tm+ div(uρ) ≤ 0.(3.34)

Now let w = ρ+m. By summing up (3.15) and (3.34), we find

∂tw + div(uw) ≤ 0.(3.35)

Denote wε(t, x) =
∫

R2 jε(y)w(t, x − y) dy, and by [22, Lemma 2.3], we find that wε

satisfies

∂tw
ε + div(uwε) ≤ Rε(t, x),(3.36)
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where Rε(t, x) = div(uwε) − jε ∗ div(uw), and Rε → 0 in L1
loc(R

+ × R
2). Equation

(3.36) directly implies that

dwε(t,Φ+
t (x))

dt
≤ (ρwε)(t,Φ+

t (x)) +Rε(t,Φ
+
t (x)).(3.37)

On the other hand, by (3.3), we find that

suppρ ⊂ {(t, x) : |x| ≤ r +Mt} =: B.

Thus by [21, Lemma 1] or [33], we find that (3.31) has a unique global solution such
that

C(T )−1|x1 − x2|e4πt ≤ |Φ+
t (x1)− Φ+

t (x2)| ≤ C(T )|x1 − x2|e−4πt

,(3.38)

and because divu = ρ, by [10, equation (74)], we have

‖Rε(t,Φ+
t (x))‖L1(K) ≤ e‖ρ‖L∞ t‖Rε‖L1(BT ) → 0(3.39)

as ε→ 0, where BT = B ∩ {(t, x) : t ≤ T}. By summing up (3.37), (3.39), and letting
ε→ 0 in (3.37), we get for almost all x ∈ R

2 that there holds{
dw(t,Φ+

t (x))

dt ≤ (ρw)(t,Φ+
t (x)),

w(t,Φ+
t (x))|t=0 = 0, x ∈ supp ρ−0 .

(3.40)

Then the Gronwall inequality implies that

w(t,Φ+
t (x)) = 0, x ∈ supp ρ−0 , t ∈ R

+.(3.41)

By (3.38) and (3.41), we get

d(t, x) = −ρ(t, x) for a.e. (t, x) ∈ D+.(3.42)

Similarly, by subtracting (3.15) from (3.34) and letting q = m− ρ, we have

∂tq − div(uq) ≤ 0.(3.43)

By the proof of (3.42), we have

m(t, x) = ρ(t, x) for a.e. (t, x) ∈ D−.(3.44)

Combining (3.42) and (3.44), we complete the proof of the proposition.

Appendix. The construction of the approximate solutions. Let Sε(ξ) =
|ξ| ∗ jε(ξ), where jε(ξ) is the standard Friedrich mollifier with supp jε(·) ⊂ Bε(0). In
the following, we are going to prove the global existence of smooth solutions to the
following equations:

∂tρ+ div(uSε(ρ)) = ε�ρ, (t, x) ∈ (0,∞)× R
d, d = 1, 2, 3,

u = ∇�−1ρ for d = 2, 3, u =
∫ x
−∞ ρ dy for d = 1,

ρ|t=0 = ρ0.
(A.1)
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Theorem A.1. Let s > d/2 + 1, ρ0 ∈ Hs0(R
d). Equation (A.1) has a unique

global solution (ρ, u) such that ρ,∇u ∈ L∞([0, T ], Hs(Rd)) ∩ L2([0, T ], Hs+1(Rd)) for
any T <∞. Furthermore,

‖ρ(t, ·)‖L1 ≤ ‖ρ0‖L1 , ‖ρ(t, ·)‖L∞ ≤ ‖ρ0‖L∞ + ε.(A.2) ∫
Rd

ρ2(t, x) dx+ 2ε

∫ t
0

∫
Rd

|∇ρ|2 dx ds ≤
∫

Rd

ρ2
0 dx+ ε2t

∫
Rd

|ρ0| dx.(A.3)

Proof. Following the standard argument for a nonlinear parabolic equation, we
can prove the local existence and uniqueness of solution (ρ, u) to (A.1) such that
ρ,∇u ∈ L∞([0, T ], Hs(Rd))∩L2([0, T ], Hs+1(Rd)) for some positive constant T. Now
let T ∗ be the lifespan of the solution (ρ, u) to (A.1). Then for t < T ∗, notice the
classical convex inequality: signρ�ρ ≤ �|ρ|. By multiplying signρ on both sides of
(A.1), we find

∂t|ρ|+ div(u signρ(Sε(ρ)− Sε(0))) ≤ −|ρ|Sε(0) + ε�|ρ|.(A.4)

Integrating the above inequality over R
d, we get the first inequality of (A.2) for t < T ∗.

Next, multiplying pρp−1 on both sides of the first equation of (A.1) with p an
even integer, we get

∂tρ
p + div(uFε(ρ)) = Gε(ρ) + εpρp−1�ρ,(A.5)

with Fε(ρ) =
∫ ρ
0
pS′ε(ξ)ξ

p−1 dξ and Gε(ρ) = ρFε(ρ)− pρpSε(ρ).
By the definition of Sε(ρ), we have

Gε(ρ) =


pρ
∫ ε
0
S′ε(ξ)ξ

p−1 dξ − (p− 1)ρp+1 − εpρ+ pρp
∫

Rd ξjε(ξ) dξ, ρ ≥ ε,

pρ
∫ ρ
0
S′ε(ξ)ξ

p−1 dξ − pρpSε(ρ), |ρ| ≤ ε

pρ
∫ −ε
0

S′ε(ξ)ξ
p−1 dξ + (p− 1)ρp+1 + εpρ− pρp

∫
Rd ξjε(ξ) dξ, ρ ≤ −ε,

which together with the simple inequalities that

p|ρ|p ≤ (p− 1)|ρ|p+1 + |ρ|, p

∣∣∣∣∫ ε
0

S′ε(ξ)ξ
p−1 dξ

∣∣∣∣ ≤ εp, Sε(ρ) ≥ 0

gives us

Gε(ρ) ≤ εp|ρ|.(A.6)

Combining (A.2) with (A.6), and integrating (A.5) over R
d, we find∫

Rd

ρp dx+ p(p− 1)ε

∫ t
0

∫
Rd

ρp−2|∇ρ|2 dx ds

≤
∫

Rd

ρp0 dx+ εp
∫ t

0

∫
Rd

|ρ| dx ds ≤
∫

Rd

ρp0 dx+ εpt

∫
Rd

|ρ0| dx.(A.7)

In particular, by taking p = 2 in the above, we get (A.3). Moreover, for any compact
subset K of R

d, (A.7) implies that(∫
K

ρp(t, x) dx

) 1
p

≤ ‖ρ(t, ·)‖Lp ≤ ‖ρ0‖Lp + εt
1
p ‖ρ0‖

1
p

L1 .(A.8)
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Letting p→∞ in (A.8), we prove the second inequality of (A.2) for t < T ∗.
Now let E(t, x) be the fundamental solution of the heat operator (∂t − ε�); then

E(t, x) = (4πεt)−
d
2 e−

|x|2
4εt , t > 0,(A.9)

by (A.1), and ρ can also be written by the following form:

ρ(t, x) = −
∫ t

0

∫
Rd

E(t− s, x− y)div(uSε(ρ))(s, y) dy ds+

∫
Rd

E(t, x− y)ρ0(y) dy

for t < T ∗. By integrating by parts in the above formula, we find

ρ(t, x) = −
∫ t

0

∫
Rd

∇xE(t− s, x− y)(uSε(ρ))(s, y) dy ds+ ρ0(t, x),(A.10)

and consequently,

∂xρ(t, x) = −
∫ t

0

∫
Rd

∇xE(t− s, x− y)(∂xuSε(ρ)

+ uS′ε(ρ)∂xρ)(s, y) dy ds+ ∂xρ0(t, x).(A.11)

Thus by the Hausdorff–Young inequality and the fact that |S′ε(ξ)| ≤ 1, we get

‖∂xρ(t, ·)‖L1 ≤ C(sup
t>0
‖ρ(t, ·)‖L1 + ‖u‖L∞)

∫ t
0

(t− s)−
1
2 (‖∂xu(s, ·)‖L∞

+ ‖∂xρ(s, ·)‖L1) ds+ ‖∂xρ0‖L1 ,(A.12)

‖∂xρ(t, ·)‖L∞ ≤ C(‖ρ(t, ·)‖L∞ + ‖u‖L∞)

∫ t
0

(t− s)−
1
2 (‖∂xu(s, ·)‖L∞

+ ‖∂xρ(s, ·)‖L∞) ds+ ‖∂xρ0‖L∞ .(A.13)

On the other hand, for d = 2 and 3, by the second equation of (A.1), we have

|u(t, x)| =
∣∣∣∣∫

Rd

x− y

|x− y|d ρ(t, y) dy
∣∣∣∣

≤ ‖ρ(t, ·)‖L∞

∫
|x−y|≤R

1

|x− y|d−1
dy +

‖ρ(t, ·)‖L1

Rd−1

≤ CR‖ρ(t, ·)‖L∞ +
‖ρ(t, ·)‖L1

Rd−1
.(A.14)

Taking R = (
‖ρ(t,·)‖L1

‖ρ(t,·)‖L∞ )
1
d in (A.14), we find

‖u(t, ·)‖L∞ ≤ C‖ρ(t, ·)‖ 1
d

L1‖ρ(t, ·)‖1−
1
d

L∞ ≤ C (‖ρ(t, ·)‖L1 + ‖ρ(t, ·)‖L∞) ,(A.15)

while for d = 1, the second equation of (A.1) directly implies that

‖u(t, ·)‖L∞ ≤ ‖ρ(t, ·)‖L1 .(A.16)

Similar to the proof of (A.15) and (A.16), we have

‖∂xu(t, ·)‖L∞ ≤ C (‖∂xρ(t, ·)‖L1 + ‖∂xρ(t, ·)‖L∞) .(A.17)
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Now let us set y(t) = ‖∂xρ(t, ·)‖L1 + ‖∂xρ(t, ·)‖L∞ . By combining (A.2) with (A.12)–
(A.17), we find

y(t) ≤ C

∫ t
0

(t− s)−
1
2 y(s) ds+ y0, t < T ∗.

The Gronwall inequality yields that

y(t) ≤ y0e
C
√
t, t < T ∗.(A.18)

On the other hand, standard energy estimates (see [24]) show that if T ∗ < ∞,
then

lim
t→T∗

(‖∂xu(t, ·)‖L∞ + ‖∂xρ(t, ·)‖L∞) =∞.(A.19)

This contradicts (A.17) and (A.18). Thus T ∗ = ∞. This completes the proof of the
theorem.

Acknowledgments. The authors would like to thank the referees for their valu-
able suggestions.
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OPTIMAL RATE OF CONVERGENCE FOR ANISOTROPIC
VANISHING VISCOSITY LIMIT OF A SCALAR BALANCE LAW∗
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Abstract. An open question in numerical analysis of multidimensional scalar conservation
laws discretized on nonstructured grids is the optimal rate of convergence. The main difficulty lies
on a priori BV bounds which cannot be derived by opposition to the case of structured (Cartesian)
grids. In this paper we consider a related question for a corresponding continuous model, namely, the
vanishing viscosity method for a multidimensional scalar conservation law with a general diffusion
matrix which is only bounded. Then BV estimates are not available here; nevertheless we prove
the h1/2 convergence rate. Our strategy of proof differs from the classical method of Kuznetsov.
It consists in using in an accurate way the entropy dissipation due to the parabolic terms. The
dissipation of the conservation law is not strong enough, and we thus consider an auxiliary parabolic
problem to compensate that. Using the kinetic formulation and the related uniqueness method also
helps to avoid unessential technicalities.

Key words. rate of convergence, vanishing viscosity method, kinetic formulation, scalar con-
servation laws

AMS subject classifications. 35B25, 35K65, 35B45, 35L60, 65M15
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1. Introduction. We consider the entropy solution

u ∈ C(R+;L1(Rd)) ∩ L∞(R+;BV (Rd))

to a multidimensional scalar conservation law

∂

∂t
u(t, x) + divA(u) = 0, t > 0, x ∈ R

d,

∂

∂t
S(u(t, x)) + div ηS(u) ≤ 0 for all S convex,

u(t = 0, x) = u0(x) ∈ BV ∩ L∞(Rd),

(1.1)

with the notation ηS(u) =
∫ u
0
S′(·)a(·) and a = A′ : R→ R

d.
A classical open question in the numerical analysis of this equation discretized

on nonstructured grids is the optimal rate of convergence. Indeed, in such situations
BV bounds on the numerical approximation are not available, and thus Kuznetsov’s
classical approach [13] does not apply and only a reduced convergence rate in h1/4 can
be established (see [5], [19] and also [7] , [11], [10], [15], [9]). This multidimensional
situation is in opposition with the one-dimensional case, where such BV bounds are
derived [18] and optimal rate of convergence h1/2 follows. The result of Sanders [18]
can be generalized in more than one dimension only for Cartesian grids. Recently,
Cockburn and Gremaud [6], as a means of proving the optimal rate, proposed a variant
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of Kuznetsov’s approach aiming to show the expected rates by bypassing the stability
estimates of the approximate problem. This approach was, however, restricted to
strong conditions on the mesh and the discrete fluxes.

It is usual to relate numerical methods to the vanishing viscosity method (below
we always use the convention of summation upon the repeated index),

∂

∂t
v(t, x) + divA(v) =

∂

∂xi

(
aij(x)

∂

∂xj
v

)
, t > 0, x ∈ R

d,

v(t = 0, x) = v0(x) ∈ L1 ∩ L∞(Rd),
(1.2)

where the anisotropic matrix aij reflects the unstructured character of the grid, and
thus it is only natural to assume that for some constant K > 0,

aij is a positive definite symmetric matrix, ‖ aij ‖L∞(Rd) = K.(1.3)

Then the same difficulty appears that the standard method for error estimates does
not apply.

Indeed, we recall that, as stated in a compact form in [1], Kuznetsov’s result
requires us to control entropies in a weak form. Namely, error terms ES in the
hyperbolic entropy inequalities, for convex S,

∂

∂t
S(v) + divηS(v) ≤ divES(t, x),(1.4)

imply error estimates

‖u(t)− v(t)‖L1(Rd) ≤ ‖u0 − v0‖L1(Rd) + C(t)
(‖u0‖TV (Rd)

)1/2‖|E‖|1/2,(1.5)

with

‖|E‖| =
∫ t

0

∫
Rd

sup
|S′|≤1,S′′≥0

|ES(s, x)|dx ds.

For the vanishing viscosity method (1.2), we have, for S convex,

∂

∂t
S(v) + divηS(v) ≤ ∂

∂xi

(
aij(x)

∂

∂xj
S(v)

)
.(1.6)

Therefore the inequality (1.5) applies with

ES(t, x) = ∇S(v(t, x)) = S′(v)∇v,

and we directly deduce the standard result

‖u(t)− v(t)‖L1(Rd) ≤ ‖u0 − v0‖L1(Rd)

+C(t)
(‖u0‖TV (Rd) ‖v‖L∞((0,t);TV (Rd))

)1/2(‖aij‖L∞(Rd)

)1/2
.

With only the L∞ assumption (1.3), we do not have a priori BV bound for the
function v (except in one dimension). Therefore the general estimate (1.5) does not
apply here.

The present paper develops new ideas to prove the following.
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Theorem 1.1. For a smooth matrix aij satisfying (1.3) and the smooth bounded
solution v ∈ C(R+;L1(Rd)) to (1.2), we have

‖u(t)− v(t)‖L1(Rd) ≤ ‖u0 − v0‖L1(Rd)

+C(d)‖u0‖TV (Rd)

(
t ‖ aij ‖L∞(Rd)

)1/2
.

(1.7)

One of the ingredients of the proof relies on the precise entropy equality for (1.2),
namely,

∂

∂t
S(v) + divηS(v) =

∂

∂xi

(
aij(x)

∂

∂xj
S(v)

)
− S′′(v)aij(x) ∂v

∂xi

∂v

∂xj
.(1.8)

In particular we have included the precise parabolic entropy dissipation term
S′′(v)aij(x) ∂v∂xi

∂v
∂xj
, which is essential in our analysis. This term has already been

used in the proof of uniqueness for various hyperbolic/parabolic problems with the
anisotropic nonlinear diffusions [4], and also by Chen and DiBenedetto [3] (but it can
be recovered from a weaker entropy inequality for isotropic diffusions [2], [8]). An-
other idea developed here is that this entropy dissipation is not enough and a direct
comparison with the hyperbolic solution u is not possible. In order to obtain such
entropy dissipation we can only compare v with a solution to a parabolic equation
with a constant diffusion term.

The proof also covers the case

∂

∂t
v(t, x) + divA(v) =

∂

∂xi

(
aij(x, v)

∂v

∂xj

)
, t > 0, x ∈ R

d,

under appropriate smoothness assumptions on v and, provided that matrix aij still is
bounded, (1.3). Note that estimates of the viscosity approximation

∂

∂t
v(t, x) + divA(v) =

∂

∂xi

(
Bij(v)

∂v

∂xj

)
, t > 0, x ∈ R

d,

without using the TV stability of v, were first proved in [6] in one dimension and
extended to many dimensions in [1]. These proofs do not cover our case (1.3) since
when applied to (1.2) they require aij to be differentiable.

Remark 1.1. The method does not use the smoothness of the function v, neither
the positivity nor smoothness of the matrix aij , and it could be extended to a purely
C(R+;L1(Rd)) setting using kinetic solutions along the lines of [17]. We have chosen,
for simplicity, to use this framework on v in order to avoid unessential technicalities.

2. Proof of Theorem 1.1.

2.1. More entropy dissipation. In fact we are going to prove a variant of
Theorem 1.1, comparing v with the solution w ∈ C(R+;L1(Rd)) ∩ L∞(R+;BV (Rd))
to the parabolic equation (recall the definition of K in (1.3))

∂

∂t
w + divA(w) = K∆w,

w(t = 0, x) = u0(x).
(2.1)

Theorem 2.1. With the assumptions of Theorem 1.1, we have

‖w(t)− v(t)‖L1(Rd) ≤ ‖u0 − v0‖L1(Rd)

+C(d) ‖u0‖TV (Rd) (K t)
1/2.

(2.2)
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Theorem 1.1 follows directly from this because we can apply (1.5) to compare u
and w. Since we have, for all t ≥ 0,

‖w(t)‖TV (Rd) ≤ ‖u0‖TV (Rd),

we indeed deduce from (1.5) that

‖w(t)− u(t)‖L1(Rd) ≤ C(t)‖u0‖TV (Rd) K
1/2.

The proof is therefore reduced to proving Theorem 2.1. This will be shown in
what follows; a main point here is the fact that (2.1) contains more entropy dissipation
than (1.1).

2.2. Kinetic formulations. We use the kinetic framework [14], [16], [17], which
simplifies very much uniqueness arguments compared to the initial Kruzhkov approach
[12]. This needs some notation. We define after [14] the “equilibrium” function of
density w by χ(t, x, ξ) := χ(ξ;w(t, x)) by

χ(ξ;w) =


+1 for 0 < ξ < w(t, x),
−1 for w(t, x) < ξ < 0,
0 otherwise.

(2.3)

The theory of kinetic formulations states that (2.1) is equivalent to writing the kinetic
equation on χ,

∂tχ+ a(ξ) · ∇xχ = K ∆χ+
∂

∂ξ
m(t, x, ξ),(2.4)

for some nonnegative bounded measure m given by

m(t, x, ξ) = K δ(ξ − w(t, x)) |∇w|2.(2.5)

The derivation of this equation from (2.1) shows that the measure m expresses the
entropy dissipation. Indeed, after multiplying (2.4) by S′(ξ) and ξ integration, we
obtain

∂

∂t
S(w) + divηS(w) = K∆S(w)− S′′(w) K |∇w|2,(2.6)

which is the entropy equality for (2.1). Indeed, the function χ is chosen because it
provides the equalities

S(w) =

∫
R

S′(ξ)χ(t, x, ξ) dξ, ηS(w) =

∫
R

S′(ξ) a(ξ)χ(t, x, ξ) dξ.

Similarly, we can perform the same construction for the function v and define,
still using the notation in (2.3), χ̄(t, x, ξ) := χ(ξ; v(t, x)). It solves

∂tχ̄+ a(ξ) · ∇xχ̄ = ∂

∂xi

(
aij(x)

∂

∂xj
χ̄

)
+
∂

∂ξ
m̄(t, x, ξ),(2.7)

m̄(t, x, ξ) = δ(ξ − v(t, x)) aij ∂
∂xi

v
∂

∂xj
v.(2.8)
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2.3. Regularization. We shall need more regularity than is available on the
function χ(ξ;w(t, x)). We set ε = (ε1, ε2), ε1 for the forward time regularization and
ε2 for the space regularization, and we define

ϕε(t, x) =
1

ε1
ϕ1

(
t

ε1

)
1

εd2
ϕ2

(
x

ε2

)
,

where ϕj ≥ 0, j = 1, 2, denote the normalized regularizing kernels with
∫
ϕj = 1,

supp(ϕ1) ⊂ (−1, 0) in order to allow the time regularization. Next we set

χε(t, x, ξ) = χ(ξ;w(t, x)) �(t,x) ϕε.(2.9)

The regularity of the kinetic formulation leads to an equation on χε,

∂tχε + a(ξ) · ∇xχε = K∆χε +
∂

∂ξ
mε(t, x, ξ),(2.10)

mε(t, x, ξ) = m(t, x, ξ) �(t,x) ϕε.(2.11)

2.4. Decay functional. Following [16], we introduce the decay functional

Qε(t) =

∫
R×Rd

[|χε(t, x, ξ)|+ |χ̄(t, x, ξ)| − 2χε(t, x, ξ) χ̄(t, x, ξ)] dξ dx ≥ 0.(2.12)

Since |χε| = sgn(ξ)χε, and using the L1 assumption, which allows us to integrate
by parts, we have

d

dt
Qε(t) = −2

∫
R×Rd

[mε(t, x, ξ = 0) + m̄(t, x, ξ = 0)] dξ dx

+2

∫
Rd

aij
∂

∂xi
χ̄

∂

∂xj
χε dx+ 2

∫
R×Rd

m̄(t, x, ξ)
∂

∂ξ
χε dξ dx

−2
∫

R×Rd

Kχ̄ ∆χε dξ dx+ 2

∫
R×Rd

mε(t, x, ξ)
∂

∂ξ
χ̄ dξ dx

= −2
∫

R+×R2d

m̄(t, x, ξ = w(s, y)) ϕε(t− s, x− y)dsdydx− 2
∫

Rd

mε(t, x, ξ = v(t, x)) dx

+2

∫
R×Rd

aij
∂

∂xi
χ̄

∂

∂xj
χε dξ dx− 2

∫
R×Rd

Kχ̄ ∆χε dξ dx.

We refer to [16], [17] for justification of the significance of all these terms. Here the
two negative terms containing m are favorable to proving the decay of Qε, and the
two other terms have to be controlled, which we do now.
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We begin with the worse, containing aij , which is treated in an original way here.∫
R×Rd

aij
∂

∂xi
χ̄

∂

∂xj
χε dξ dx

=

∫
R+×R2d+1

δ(ξ − v(t, x))δ(ξ − w(s, y)) aij(x) ∂
∂xi

v(t, x)
∂

∂xj
w(s, y) ϕε(t− s, x− y)

≤ 1
2

∫
R+×R2d+1

δ(ξ − v(t, x))δ(ξ − w(s, y)) aij(x)
[
∂

∂xi
v(t, x)

∂

∂xj
v(t, x)

+
∂

∂xi
w(s, y)

∂

∂xj
w(s, y)

]
ϕε(t− s, x− y) dξ dx dy ds

≤ 1
2

∫
R+×R2d

m̄(t, x, ξ = w(s, y)) ϕε(t− s, x− y) + 1
2

∫
Rd

mε(t, x, ξ = v(t, x)) dx,

where we have used the definitions of mε and m̄ and the bound in (1.3). Hence we
conclude that

d

dt
Qε(t) ≤ −2

∫
R×Rd

Kχ̄ ∆χε dξ dx ≤ 2K
∫

R×Rd

|∆χε| dξ dx.(2.13)

To proceed further, we upper bound the right-hand side of (2.13) by

|∆χε| =
∣∣∣∣∫

R+×Rd

∆χ(s, y, ξ)ϕε(t− s, x− y)ds dy
∣∣∣∣

=

∣∣∣∣∫
R+×Rd

∇χ(s, y, ξ) · ∇ϕε(t− s, x− y)ds dy
∣∣∣∣

=

∣∣∣∣∫
R+×Rd

δ(ξ − w(s, y))∇w(s, y) · ∇ϕε(t− s, x− y)ds dy
∣∣∣∣ ,

and we conclude that ∫
R×Rd

|∆χε| dξ dx ≤
C

ε2
‖u0‖TV (Rd),

d

dt
Qε(t) ≤ C K

ε2
‖u0‖TV (Rd).(2.14)

2.5. Conclusion of the proof. We can now conclude the proof. We deduce
from (2.14) that

Qε(t) ≤ Qε(0) + C K t
ε2
‖u0‖TV (Rd).

On the other hand, we can upper bound the initial error by

Qε(0) =

∫
R2d

[|w(s, y)|+ |v0(x)| − 2min(|w(s, y)|, |v0(x)|)sgn(w(s,y)v0(x))≥0]

ϕε(−s, x− y) dx dy ds

=

∫
R2d

|u0(s, y)− v0(x)| ϕε(−s, x− y) dx dy ds.
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At this level we may pass to limit as ε1 vanishes, and we find (with the obvious
modification on the definition of Qε2)

Qε2(t) ≤ ‖u0 − v0‖L1(Rd) + Cε2‖u0‖TV (Rd) +
C K t

ε2
‖u0‖TV (Rd).(2.15)

Finally, following the above lines, we lower bound Qε2(t) by

Qε2(t) =

∫
R2d

|w(t, y)− v(t, x)|ϕε2(x− y) dx dy

≥ ‖w(t)− v(t)‖L1(Rd) − Cε2‖u0‖TV (Rd).

Together with (2.15) we find

‖w(t)− v(t)‖L1(Rd) ≤ ‖u0 − v0‖L1(Rd) + Cε2‖u0‖TV (Rd) +
C K t

ε2
‖u0‖TV (Rd),

and optimizing the parameter ε2, we conclude the proof of Theorem 2.1.
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Abstract. This paper is concerned with convergence rates toward the rarefaction waves of the
solutions for scalar viscous conservation laws in a half space. We show that the convergence rate is
(1+ t)−1/4 log(2+ t) in L2-norm if the initial perturbation from the corresponding rarefaction waves
is located in H1 ∩ L1. This rate is equal to the well-known rate obtained for viscous conservation
laws in the whole space. The proof is given by the combination of the standard L2-energy method
and L1-estimate.
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1. Introduction. We consider the initial-boundary value problem for scalar vis-
cous conservation laws in the one-dimensional half space R+ := (0,∞):

ut + f(u)x = uxx, x ∈ R+, t > 0,

u(0, t) = u−, t > 0,

u(x, 0) = u0(x) =

{
u−, x = 0,

→ u+, x→∞,

(1.1)

where f is a smooth function and u± are constants. We assume that f is strictly
convex, i.e., for a certain positive constant α,

f ′′(u) ≥ α > 0,(1.2)

and that the characteristic speeds f ′(u±) satisfy

0 ≤ f ′(u−) < f ′(u+).(1.3)

We have from (1.2) and (1.3) that u− < u+. Under the conditions (1.2) and (1.3),
it was already shown in [9] that the solutions of (1.1) converge to the corresponding
rarefaction waves as t→∞. The rarefaction wave r(x, t) is given as a weak solution
of the Riemann problem for the corresponding hyperbolic conservation laws on the
whole space: 

rt + f(r)x = 0, x ∈ R, t > −1,

r(x,−1) = rR0 (x) :=

{
u−, x < 0,
u+, x > 0.

(1.4)
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Note here that r(x, t) is a continuous function for t ≥ 0. r(x, t) is expressed explicitly
for t > −1 by

r(x, t) =


u−, x ≤ f ′(u−)(t + 1),

(f ′)−1
( x

t + 1

)
, f ′(u−)(t + 1) ≤ x ≤ f ′(u+)(t + 1),

u+, f ′(u+)(t + 1) ≤ x.

In the case of a one-dimensional whole space, Il’in and Oleinik [3] studied the
stability of rarefaction waves. The convergence rate toward the rarefaction waves
was first investigated by Harabetian [1] and has been considered by many authors
[2, 10, 11]. This problem was also considered for the multidimensional conservation
laws in [4, 12].

For the half space, it is shown by Liu, Matsumura, and Nishihara [9] that the
asymptotic states of the solutions of (1.1) are classified into the following three cases
according to the signatures of f ′(u±): (a) f ′(u−) < f ′(u+) ≤ 0, (b) f ′(u−) < 0 <
f ′(u+), and (c) 0 ≤ f ′(u−) < f ′(u+). In case (a), the solutions of (1.1) converge to
stationary waves. In case (b), the asymptotic states are superpositions of stationary
waves and rarefaction waves. And case (c) yields rarefaction waves. Recently, the large
time behaviors of the solutions for multidimensional conservation laws were studied
by Kawashima, Nishibata, and Nishikawa [6, 7]. Their results will be published.

The main purpose of the present paper is to obtain the convergence rate for case
(c). Note that the convergence rate for case (a) was also considered in [9] and that
case (b) should be considered. The main theorem of the present paper is stated as
follows.

Theorem 1.1. Suppose that (1.2) and (1.3) hold. Let u0 − u+ ∈ (H1 ∩ L1)(R+)
and u0(0) = u−. Then the initial-boundary value problem (1.1) has a unique global
solution u(x, t). Moreover, u(x, t) satisfies the following estimates:

|u(t)− r(t)|2 ≤ C(1 + t)−
1
4 log(2 + t),

|u(t)− r(t)|∞ ≤ C(1 + t)−
1
2 log3(2 + t),

where C is a positive constant depending only on u0.

Notation. Lp denotes the usual Lebesgue space with the norm | · |p for 1 ≤ p ≤ ∞.
For m = 0, 1, . . . , Hm denotes the mth order Sobolev space with the norm ‖ · ‖m.
Ck(I;Hm) denotes the space of k-times continuously differentiable functions from the
interval I into Hm. We also denote generic positive constants by c and C.

The paper is outlined as follows. In section 2, we construct the “smooth ap-
proximation w(x, t)” of the rarefaction wave r(x, t) in the same way as in [2]. Such
an approximation is necessary because r(x, t) is not smooth. The difficulty of the
present problem comes from the boundary effects, which result from the fact that
w(0, t) �= u−. Here u− is the boundary data in (1.1). To avoid this difficulty, we
construct the “modified smooth approximation W (x, t)” which is given by modify-
ing w(x, t) around the boundary to satisfy W (0, t) = u−. This modification enables
us to obtain the L1-estimate of the perturbation in section 4. In section 3, we get
the a priori estimates of the perturbation by using the standard energy method. Fi-
nally, in section 4, we show the decay estimates of the perturbation by combining the
L1-estimate with the L2-estimate.
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2. Smooth approximation and reformulation of the problem. First, we
derive the smooth approximation of the rarefaction wave r(x, t) by employing the idea
of Hattori and Nishihara [2]. We define w̃(x, t) as a solution of the Cauchy problem{

w̃t + w̃w̃x = w̃xx, x ∈ R, t > −1,
w̃(x,−1) = wR

0 (x), x ∈ R,
(2.1)

where the initial data wR
0 (x) is defined by

wR
0 (x) :=

{
f ′(u−), x < 0,

f ′(u+), x > 0,

for the case f ′(u−) > 0. When f ′(u−) = 0, w̃(x, t) defined above does not con-
verge to the corresponding rarefaction wave fast enough around the boundary x = 0.
Therefore, when f ′(u−) = 0, we need to modify wR

0 (x) as

wR
0 (x) :=

{
−f ′(u+), x < 0,

f ′(u+), x > 0,

for which the solution w̃(x, t) of (2.1) satisfies w̃(0, t) = 0. Because (2.1) is the
Burgers equation, we can get the explicit formula of w̃(x, t) by using the Hopf–Cole
transformation. Then, using this formula, we can get the optimal estimates of w̃(x, t)
[2]. Successively, we define a smooth approximation w(x, t) of the rarefaction wave
r(x, t) as

w(x, t) := (f ′)−1(w̃(x, t)).(2.2)

w(x, t) is well-defined since f is strictly convex. Substituting (2.2) for (2.1), we have
the equation of w(x, t): wt + f(w)x = wxx +

f ′′′(w)

f ′′(w)
w2
x, x ∈ R, t > 0,

w(x, 0) = w0(x) := (f ′)−1(w̃(x, 0)), x ∈ R.
(2.3)

Here we summarize the well-known results for the smooth approximation w(x, t) in
Lemma 2.1. This lemma is proved by the direct computations of the explicit formula
of w̃(x, t). For details, readers are referred to [2, 8].

Lemma 2.1. For 1 ≤ p ≤ ∞ and t ≥ 0, w(x, t) satisfies the following:
(i) 0 ≤ w(0, t)−u− ≤ Ce−c(1+t) for f ′(u−) > 0 and w(0, t) = u− for f ′(u−) = 0.
(ii) |wx(0, t)| ≤ Ce−c(1+t), |wxx(0, t)| ≤ Ce−c(1+t).
(iii) |w(t)− r(t)|p ≤ C(1 + t)−

1
2+ 1

2p .

(iv) |wx(t)|p ≤ C(1 + t)−1+ 1
p , |wxx(t)|p ≤ C(1 + t)−

3
2+ 1

2p .
(v) wx(x, t) > 0 for x ∈ R.
If the characteristic speed satisfies f ′(u−) > 0, w(x, t) does not satisfy the bound-

ary condition in (1.1), i.e., w(0, t) �= u−. So we need to modify w(x, t) around the
boundary. Our modified smooth approximation W (x, t) is defined as

W (x, t) := w(x, t)− ψ(x, t),(2.4)

where

ψ(x, t) := (w(0, t)− u−)e−x.(2.5)
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By virtue of this modification, W (x, t) satisfies the boundary condition W (0, t) = u−.
Note that ψ(x, t) ≡ 0 if f ′(u−) = 0. Substituting (2.4) for (2.3), we get the equation
of W (x, t): 

Wt + f(W )x = Wxx −R(x, t), x ∈ R+, t > 0,

W (0, t) = u−, t > 0,

W (x, 0) = W0(x) := w0(x)− ψ(x, 0), x ∈ R+,

(2.6)

where R(x, t) is defined as

R(x, t) := −f
′′′(w)

f ′′(w)
w2
x + ψt + (f(W + ψ)− f(W ))x − ψxx.(2.7)

By using Lemma 2.1, the direct computations give the estimates of W (x, t) and
R(x, t), as follows.

Lemma 2.2. For 1 ≤ p ≤ ∞ and t ≥ 0, W (x, t) and R(x, t) satisfy

(i) |W (t)− r(t)|p ≤ C(1 + t)−
1
2+ 1

2p ,

(ii) |Wx(t)|p ≤ C(1 + t)−1+ 1
p , |Wxx(t)|p ≤ C(1 + t)−

3
2+ 1

2p ,
(iii) Wx(x, t) > 0 for x ∈ R+,

(iv) |R(t)|p ≤ C(1 + t)−2+ 1
p .

Define the perturbation v(x, t) from the modified smooth approximation W (x, t)
as

v(x, t) := u(x, t)−W (x, t).

Since W (x, t) converges to the rarefaction wave r(x, t) fast enough, it suffices to obtain
the decay estimates of v(x, t). From (1.1) and (2.6), we have the equation of v(x, t):

vt + (f(W + v)− f(W ))x = vxx + R(x, t), x ∈ R+, t > 0,

v(0, t) = 0, t > 0,

v(x, 0) = v0(x) := u0(x)−W0(x), x ∈ R+.

(2.8)

Here we state an existence result for the solution v(x, t) of (2.8). To this end, we
define the solution space as

XM (0, T ) =
{
v ∈ C0([0, T ];H1(R+))

∣∣∣ vx ∈ L2(0, T ;H1(R+)) and

sup
0≤t≤T

‖v(t)‖1 ≤M
}

for positive constants T and M . Equation (2.8) is rewritten as an integral equation

v(x, t) = Gt ∗ v0 +

∫ t

0

Gt−τ ∗N(v(τ)) dτ,

where N(v) and Gt ∗ are given by

N(v) := −(f(W + v)− f(W ))x + R,

Gt ∗ v :=
1√
4πt

∫ ∞
0

(
e−(x−y)2/4t − e−(x+y)2/4t

)
v(y) dy.

By making use of a standard iteration method, it is shown that (2.8) has a unique
solution locally in time.

Proposition 2.3 (local existence). Suppose that v0 ∈ H1(R+) and v0(0) = 0.
For any M > 0 with ‖v0‖1 ≤M , there exists a positive time T depending on M such
that (2.8) has a unique solution v ∈ X2M (0, T ).
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3. A priori estimate. In this section, we show the a priori estimate of v(x, t).
The outline of the proof is similar to [4, 12], which consider the full space problems,
but we also need to pay attention to the boundary effects.

Proposition 3.1 (a priori estimate). Suppose that v ∈ XM (0, T ) is a solution
of (2.8) for some positive constants T and M . Then there exists a positive constant
C independent of T such that v(x, t) satisfies the estimate

‖v(t)‖21 +

∫ t

0

|
√
Wx(τ)v(τ)|22 + ‖vx(τ)‖21 dτ ≤ C(‖v0‖21 + 1).(3.1)

Proof. First, we obtain the L2-estimate of the perturbation v(x, t). Multiplying
(2.8) by v, we have(1

2
v2
)
t

+ (f(W + v)− f(W )− f ′(W )v) ·Wx + v2
x + {B(x, t)}x = Rv,(3.2)

where B(x, t) are boundary terms represented as

B(x, t) = (f(W + v)− f(W ))v −
∫ W+v

W

f(s)ds + f(W )v − vvx.

Note that the integration of {B(x, t)}x over R+ is equal to 0 since v(0, t) = 0. The
second term of (3.2) is estimated below by using (1.2) and Lemma 2.2(iii) as

(f(W + v)− f(W )− f ′(W )v) ·Wx ≥ α

2
Wxv

2 ≥ 0.(3.3)

Here we have used the maximum principle of the parabolic equations. Integrating the
right-hand side of (3.2) over R+× (0, t) and using the Schwarz inequality and Lemma
2.2(iv), we have∫ t

0

∫ ∞
0

|Rv| dxdτ ≤
∫ t

0

|R(τ)|2|v(τ)|2 dτ

≤
∫ t

0

1

2
|R(τ)|2 +

1

2
|R(τ)|2|v(τ)|22 dτ

≤ C +
1

2

∫ t

0

|R(τ)|2|v(τ)|22 dτ.(3.4)

Therefore, integrating (3.2) over R+ × (0, t) and using the estimates (3.3) and (3.4)
yield

|v(t)|22 +

∫ t

0

|
√
Wxv|22 + |vx|22 dτ ≤ |v0|22 + C +

∫ t

0

|R|2|v|22 dτ.(3.5)

Especially, we have

|v(t)|22 ≤ |v0|22 + C +

∫ t

0

|R|2|v|22 dτ.(3.6)

Applying the Gronwall inequality to (3.6), we obtain

|v(t)|22 ≤ (|v0|22 + C) exp
(∫ t

0

|R|2 dτ
)
≤ C(|v0|22 + 1),
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where we have used Lemma 2.2(iv). Applying the above inequality to the last term
of (3.5), we get the basic energy estimate

|v(t)|22 +

∫ t

0

|
√
Wxv(τ)|22 + |vx(τ)|22 dτ ≤ C(|v0|22 + 1).(3.7)

Next, we estimate the spatial derivative of v. Multiplying (2.8) by −vxx, we have(1

2
v2
x

)
t
− (f(W + v)− f(W ))xvxx + v2

xx − (vtvx)x = −Rvxx.(3.8)

Note that the fourth term of (3.8) disappears after integrating over R+. By using the
maximum principle of v and boundedness of Wx, the second term of (3.8) is estimated
as

|(f(W + v)− f(W ))xvxx| ≤ 1

4
v2
xx + {f ′(W + v)vx + (f ′(W + v)− f ′(W ))Wx}2

≤ 1

4
v2
xx + C(Wxv

2 + v2
x).(3.9)

The right-hand side of (3.8) is estimated by the Schwarz inequality as

|Rvxx| ≤ 1

4
v2
xx + R2.(3.10)

Apply the inequalities (3.9) and (3.10) to (3.8) and integrate the resultant inequality
over R+ × (0, t). Then we obtain the estimate of vx:

|vx(t)|22 +

∫ t

0

|vxx|22 dτ ≤ |v0x|22 + C

∫ t

0

|
√
Wxv|22 + |vx|22 + |R|22 dτ

≤ C(‖v0‖21 + 1).(3.11)

Here the last inequality in (3.11) is given by using (3.7). Finally, adding (3.7) to
(3.11) gives the desired estimate (3.1).

The combination of Propositions 2.3 and 3.1 proves the global existence theorem.
Theorem 3.2 (global existence). Suppose that v0 ∈ H1(R+) and v0(0) = 0.

Then there exists a unique global solution v(x, t) of (2.8) satisfying

v ∈ C0([0,∞);H1(R+)), vx ∈ L2(0,∞;H1(R+))

and the estimate (3.1).

4. Decay estimate. In order to derive the decay rate, we employ the L1-
estimate of v. This method is adopted from [4, 5, 12]. To this end, we define aδ(v)
and Aδ(v) as follows:

aδ(v) := (sgn ∗ρδ)(v) =

∫ ∞
−∞

sgn(y)ρδ(v − y)dy,

Aδ(v) :=

∫ v

0

aδ(η)dη,

where sgn is a usual signature function defined as

sgn(v) :=


−1 for v < 0,

0 for v = 0,

1 for v > 0.
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ρδ denotes the Friedrichs mollifier defined as

ρδ(v) :=
1

δ
ρ
(v
δ

)
,

where ρ is a smooth function which has a compact support and satisfies
∫∞
−∞ ρ(x)dx =

1. The time global solution v(x, t) obtained in Theorem 3.2 satisfies the following L1-
estimate.

Proposition 4.1 (L1-estimate). Suppose that v0 ∈ (H1 ∩ L1)(R+). Then the
solution v(x, t) of (2.8) satisfies the estimate

|v(t)|1 ≤ |v0|1 + C log(1 + t).(4.1)

Proof. Multiplying aδ(v) on (2.8), we obtain

Aδ(v)t + (f(W + v)− f(W ))xaδ(v)− vxxaδ(v) = R(x, t)aδ(v).(4.2)

The second and third terms on the left-hand side of (4.2) are computed as

(4.3) (f(W + v)− f(W ))xaδ(v)− vxxaδ(v)

=

{
(f(W + v)− f(W ))aδ(v)−

∫ v

0

(f(W + s)− f(W ))a′δ(s) ds− vxaδ(v)

}
x

+

∫ v

0

(f ′(W + s)− f ′(W ))a′δ(s)Wx ds + v2
xa
′
δ(v).

Note that the integration of the first term on the right-hand side of (4.3) over R+

is equal to 0 since v(0, t) = 0 and aδ(0) = 0. The second and third terms on the
right-hand side of (4.3) are positive since a′δ ≥ 0 and Wx ≥ 0. The right-hand side of
(4.2) is estimated by Lemma 2.2(iv) as∣∣∣∫ t

0

∫ ∞
0

Raδ(v) dxdτ
∣∣∣ ≤ ∫ t

0

|R(τ)|1 dτ ≤ C log(1 + t).(4.4)

Integrate (4.2) over R+×(0, t) by using the above estimates and make δ → 0 afterward.
This yields the desired estimate (4.1).

Finally, we obtain the decay estimate of v. The combination of Lemma 2.2 and
the following theorem immediately proves Theorem 1.1. The following theorem is
proved by the same idea as that in [4, 12].

Theorem 4.2 (decay estimate). Suppose that v0 ∈ (H1 ∩ L1)(R+). Then the
solution v(x, t) of (2.8) satisfies

(4.5) (1 + t)
1
2+ε|v(t)|22 +

∫ t

0

(1 + τ)
1
2+ε

{
|
√
Wxv(τ)|22 + |vx(τ)|22

}
dτ

≤ C(1 + t)ε log2(2 + t),

(4.6) (1 + t)
3
2+ε|vx(t)|22 +

∫ t

0

(1 + τ)
3
2+ε
{
|
√
Wxvx(τ)|22 + |vxx(τ)|22

+ f ′(u−)vx(0, τ)2
}
dτ ≤ C(1 + t)ε log10(2 + t)



ASYMPTOTIC DECAY TOWARD THE RAREFACTION WAVES 1315

for arbitrary constant ε ∈ (0, 1
2 ).

Proof. First, we obtain the decay estimate of v. Integrating (3.2) over R+ and
using Lemma 2.2(iv), we have

1

2

d

dt
|v(t)|22 +

α

2
|
√
Wxv(t)|22 + |vx(t)|22 ≤

∫ ∞
0

|Rv| dx ≤ C(1 + t)−1|v(t)|∞.(4.7)

From the Gagliardo–Nirenberg inequality, it follows that

|v|22 + |v|∞ ≤ |v|∞(|v|1 + 1) ≤ |vx|
2
3
2 (|v|1 + 1)

4
3 .

Using this inequality, multiplying (1 + t)
1
2+ε by (4.7) yields

d

dt

{
(1 + t)

1
2+ε|v(t)|22

}
+ (1 + t)

1
2+ε
{
|
√
Wxv(t)|22 + |vx(t)|22

}
≤ C(1 + t)−

1
2+ε(|v(t)|22 + |v(t)|∞)

≤ C(1 + t)
1
6+ 1

3 ε|vx(t)| 232 · (1 + t)−
2
3+ 2

3 ε(|v(t)|1 + 1)
4
3

≤ 1

2
(1 + t)

1
2+ε|vx(t)|22 + C(1 + t)−1+ε(|v(t)|1 + 1)2,(4.8)

where the last inequality is obtained by using the Young inequality. Applying Propo-
sition 4.1, (4.8) is rewritten as

d

dt

{
(1 + t)

1
2+ε|v(t)|22

}
+ (1 + t)

1
2+ε
{
|
√
Wxv(t)|22 + |vx(t)|22

}
≤ C(1 + t)−1+ε(|v(t)|1 + 1)2

≤ C(|v0|1 + 1)2(1 + t)−1+ε log2(2 + t).(4.9)

Integrating (4.9) over (0, t), we get the estimate (4.5). In particular, we have

|v(t)|2 ≤ C(1 + t)−
1
4 log(2 + t).(4.10)

Next, we obtain the decay estimate of vx. Integrating (3.8) over R+ yields

1

2

d

dt
|vx(t)|22 −

∫ ∞
0

(f(W + v)− f(W ))xvxx dx +
1

2
|vxx(t)|22 ≤ C|R(t)|22

≤ C(1 + t)−3.(4.11)

The second term on the left-hand side of (4.11) is computed by using integration by
parts as

(4.12) −
∫ ∞

0

(f(W + v)− f(W ))xvxx dx

= −
∫ ∞

0

(f ′(W + v)− f ′(W ))Wxvxx dx−
∫ ∞

0

f ′(W + v)
(1

2
v2
x

)
x
dx

= −
∫ ∞

0

(f ′(W + v)− f ′(W ))Wxvxx dx +
1

2

∫ ∞
0

f ′′(W + v)v3
x dx

+
1

2

∫ ∞
0

f ′′(W + v)Wxv
2
x dx +

f ′(u−)

2
vx(0, t)2.
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Note that the third and fourth terms on the right-hand side of (4.12) are positive.
The first term on the right-hand side of (4.12) is estimated by using the Schwarz
inequality and Lemma 2.2(ii) as∣∣∣ ∫ ∞

0

(f ′(W + v)− f ′(W ))Wxvxx dx
∣∣∣ ≤ C

∫ ∞
0

|Wxvvxx| dx

≤ 1

4
|vxx|22 + C(1 + t)−1|

√
Wxv|22.(4.13)

By using the Gagliardo–Nirenberg inequality and the Young inequality, the second
term on the right-hand side of (4.12) is estimated as∣∣∣∫ ∞

0

f ′′(W + v)v3
x dx

∣∣∣ ≤ C|vx|33 ≤ C|vxx|
7
4
2 |v|

5
4
2 ≤

1

4
|vxx|22 + C|v|102 .(4.14)

Therefore, by using (4.12)–(4.14), (4.11) is rewritten as

(4.15)
d

dt
|vx(t)|22 + |

√
Wxvx(t)|22 + |vxx(t)|22 + f ′(u−)vx(0, t)2

≤ C
{

(1 + t)−3 + (1 + t)−1|
√
Wxv(t)|22 + |v(t)|102

}
.

Multiply (4.15) by (1 + t)
3
2+ε and integrate the resultant inequality over (0, t). Then

by applying (4.5) and (4.10) we have that

(1 + t)
3
2+ε|vx(t)|22 +

∫ t

0

(1 + τ)
3
2+ε

{
|
√
Wxvx|22 + |vxx|22 + f ′(u−)vx(0, τ)2

}
dτ

≤ |v0x|22 + C + C

∫ t

0

(1 + τ)
1
2+ε

{
|
√
Wxv|22 + |vx|22

}
+ (1 + τ)

3
2+ε|v|102 dτ

≤ |v0x|22 + C + C(1 + t)ε log2(2 + t) + C

∫ t

0

(1 + τ)−1+ε log10(2 + τ) dτ

≤ C(1 + t)ε log10(2 + t).

This completes the proof.
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1. Introduction. In this paper, we discuss the regularity problem of smooth
solutions to the time dependent harmonic heat flow from R

n into a unit sphere S
m,

∂tu−∆u = u(∇u,∇u), t > 0, x ∈ R
n,

u(t, x) : R+ × R
n → S

m, t > 0, x ∈ R
n,

u(0, x) = u0(x),

(1.1)

where u(∇u,∇u) = ui
∑

1≤l,j≤n |∇luj |2 denotes the second fundamental form on the
sphere. This equation is first considered by Eells and Sampson [13] for the sake
of constructing the stationary harmonic map from R

n into a sphere. By a simple
observation, the following type of energy inequality is immediately obtained:

‖∇u(t)‖22 + 2
∫ t

0

‖∂tu(τ)‖22dτ ≤ ‖∇u0‖22, t ∈ [0, T ].(1.2)

Based on the above energy inequality, a weak solution is constructed in the space
L∞(0, T ; Ḣ1(Rn;Sm)) with ∂tu ∈ L2(0, T ;L2(Rn;Sm)). By an elegant penalizing
method, the existence of a weak solution on the general compact Riemannian manifold
was established by Chen and Struwe [10]. On the other hand, if the initial data is
smooth, it is implicitly known that a smooth solution exists in time locally by using
the Bochner-type formula (see, for example, Eells and Sampson [13] and Struwe [31]).
This time the local smooth solution belongs to u ∈ W 1,∞(Rn;Sm), and the maximal
existence time is characterized by ‖∇u0‖∞.
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†Faculty of Mathematics, Kyushu University 36, Fukuoka 812-8581, Japan (ogawa@math.kyushu-
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The regularity of the weak solution fails in general because of the existence of a
blowing-up weak solution for large initial data. The example for the map from R

n

to a sphere was shown by Coron and Ghidaglia [12] for n ≥ 3 and by Chang, Ding,
and Ye [9] for n = 2. However, some smallness assumption on the initial data or
integrability condition on the solution itself may be possible to give the regularity.

This situation is related to the theory of a weak solution to the incompressible
fluid mechanics. For the viscous incompressible fluid governed by the Navier–Stokes
equation, 

∂tu−∆u+ u · ∇u+∇p = 0, t > 0, x ∈ R
n,

div u = 0, t > 0, x ∈ R
n,

u(0, x) = u0(x),

(1.3)

it is well known that there exists a global weak solution u based on an analogous
energy inequality to (1.1) due to Leray [23]:

‖u(t)‖22 + 2
∫ t

0

‖∇u(τ)‖22dτ ≤ ‖u0‖22.(1.4)

Although the full regularity of the weak solution to (1.3) remains open, there is some
sufficient condition for the regularity in terms of a seminorm invariant under the
scaling that maintains the equations. For the Navier–Stokes case, the equation is
invariant under the scaling uλ(t, x) = λu(λ2t, λx), pλ(t, x) = λ2p(λ2t, λx) (λ > 0).
Hence a criterion by the space-time norms such as∫ T

0

‖|∇|αu(t)‖θpdt <∞,
2

θ
+

n

p
= 1 + α, 2 ≤ θ <∞,

gives the regularity of a weak solution. This is known as the Serrin condition (Ohyama
[24], Serrin [28], Giga [17], Beirão da Veiga [2]). By observing the analogous scaling
u→ uλ = u(λ2t, λx) to (1.1) that preserves the equation, it is expected that there is
a regularity criterion for (1.1) under the conditions

∇u ∈ Lθ(0, T ;Lp(Rn)),
2

θ
+

n

p
= 1, n < p ≤ ∞.

These conditions correspond to the Serrin criterion and are enough to show the reg-
ularity of the strong solution to (1.1).

In Kozono, Ogawa, and Taniuchi [21], the above observation is extended to an
even weaker regularity criterion to the harmonic heat flow (1.1) by terms of the Besov
spaces: Let φj(x) be the Littlewood–Paley dyadic decomposition of unity. Then the

homogeneous Besov space Ḃs
p,ρ is defined by

Ḃs
p,ρ = {f ∈ Z ′(Rn) : ‖f‖Ḃs

p,ρ
<∞},

where ‖f‖Ḃs
p,ρ
=
(∑∞

j=−∞ 2
jsρ‖φj ∗ f‖ρp

)1/ρ
and Z ′(Rn) denotes the coefficient space

of S ′ by the polynomials P. The regularity criterion in the Besov space obtained in
[21] is as follows.
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Proposition 1.1 (Kozono, Ogawa, and Taniuchi [21]). Let u be a smooth solu-
tion to (1.1) in C([0, T );W 1,∞(Rn;Sm))∩C1((0, T );W 2,∞(Rn;Sm)) with initial data
u0 ∈W 1,∞(Rn;Sm). Suppose that the solution u satisfies either

(i) for any pair of (p, θ) with 2
θ +

n
p = 1 and n < p <∞ and for any σ ≤ 2p/n,

∫ T

0

‖∇u(τ)‖θ
Ḃ0

p,σ
dτ <∞(1.5)

or

(ii)

∫ T

0

‖∇u(τ)‖2
Ḃ0

∞,2
dτ <∞.(1.6)

Then the solution can be extended after t = T , namely, for some T < T̃ , u ∈
C([0, T̃ );W 1,∞(Rn;Sm)) ∩ C1((0, T̃ );W 2,∞(Rn;Sm)). In other words, if the solution
blows up at t = T , then

∫ T

0

‖∇u(τ)‖θ
Ḃ0

p,σ
dτ =∞

for any pair of (p, θ) satisfying 2/θ + n/p = 1 with σ ≤ 2p/n if p < ∞ and σ = 2 if
p =∞.

The analogous regularity criterion to the Navier–Stokes equations is established
in the scale where the equation remains invariant under the scaling [20], [27]. Among
others, the corresponding condition involving bounded mean oscillation (BMO) is
considered [21] (cf. for the Euler equations [22]). More precisely, the Leray weak
solution is regular up to t = T under the condition

∫ T

0

‖rot u(t)‖BMOdt <∞.

Here BMO is the space of the bounded mean oscillation defined by

f ∈ L1
loc(R

n) sup
x,R

1

|BR|
∫
BR(x)

|f(y)− f̄BR(x)|dy <∞,

where f̄BR
is the average of f over BR(x) = {y ∈ R

n; |x− y| < R}. We see that there
is a gap comparing the result for the Navier–Stokes equations with the one to the
harmonic heat flow, namely, the criterion at the limiting case p = ∞, θ = 2. By the
strict inclusion Ḃ0

∞,2 � BMO (cf. Strichartz [30], Bergh and Löfström [3]), the result
for (1.1) in [21] is slightly weaker than the one for the Navier–Stokes equations in view
of Ḃ0

∞,2 � BMO. This gap appears between the two cases because of the balance
between the order of the nonlinearity and the order of the interpolation inequalities.
To see this, we recall the basic argument found in [1] and [22]. In both results, the
critical Sobolev embedding inequality of logarithmic type plays the crucial role of the
regularity criterion.
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Namely, the inequality originally due to Brezis and Gallouet [4], Beale, Kato, and
Majda [1], and Kozono and Taniuchi [22] is suitable only for the quadratic order of
nonlinearity like in the Navier–Stokes equations (1.3).

In the result of Beale, Kato, and Majda [1] (see also Kato and Ponce [20]), they
showed that, for f ∈ {W s,p(Rn)}n (s > n/p+ 1) with div f = 0,

‖∇f‖∞ ≤ C {1 + ‖∇f‖2 + ‖ω‖∞ log(e+ ‖f‖W s+1,p)} , ω = rot f.(1.7)

An even more improved version of the inequality due to Kozono and Taniuchi [22]
states that, for f ∈ {W s,p(Rn)}n (s > n/p+ 1) with div f = 0, there holds

‖f‖∞ ≤ C {1 + ‖f‖BMO log(e+ ‖f‖W s,p)} .(1.8)

However, for the regularity problem (1.1) under the condition∫ t

0

‖∇u(t)‖2BMOdt <∞,

inequalities (1.7) and (1.8) are not sufficient.

One way to fill this gap is to improve the Sobolev inequality (1.8). We first
introduce a generalized version of the critical Sobolev inequality in the Lizorkin–
Triebel space that includes the above inequalities. It then turns out that the second
exponent of those spaces gives an explicit dependence of the logarithmic order of higher
regularity, which reflects hypotheses on the integral exponent in the time direction of
those criteria. In the following section, we show a refined version of the Beale–Kato–
Majda- and Kozono–Taniuchi-type inequalities and give some discussion. Then, in
section 3, we show our new regularity criterion for each of the problems of (1.1). The
statement reads as follows.

Theorem 1.2 (limiting regularity criterion). Let u be a smooth solution to
(1.1) in C([0, T );W 1,∞(Rn;Sm)) ∩ C1((0, T );W 2,∞(Rn;Sm)) with initial data u0 ∈
W 1,∞(Rn;Sm). Suppose that the solution u satisfies∫ T

0

‖∇u(τ)‖2BMOdτ <∞.(1.9)

Then the solution can be extended after t = T , namely, for some T < T̃ , u ∈
C([0, T̃ );W 1,∞(Rn;Sm)) ∩ C1((0, T );W 2,∞(Rn;Sm)). In other words, if the solution
blows up at t = T , then ∫ T

0

‖∇u(τ)‖2BMOdτ =∞

for any pair of (p, θ) satisfying 2/θ + n/p = 1 and σ ≤ 2p/n and σ = 2 if p =∞.
It is important to compare the results of the existence of blowing-up solutions for

(1.1) to the above criterion. There are several results for constructing the finite time
blow-up of the solution. Coron and Ghidaglia [12] and Chen and Ding [8] showed that
there exists a finite time blowing-up solution to (1.1) for n ≥ 3. For n = 2, Chang,
Ding, and Ye [9] constructed a blowing-up solution from a smooth data (cf. for the
regularity of the stationary harmonic maps Hélein [19], Evans [15], and Coifman et
al. [11], and see also Feldman [16] for the time dependent case). The solution satisfies
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0

‖∇u(t)‖r∞dt =∞ (r > 1),

where T > 0 is the expected blow-up time. We simply remark that, for the two
dimensional case, if we make the stronger regularity assumption that∫ T

0

‖∆u(t)‖22dt <∞,(1.10)

then, by the embedding, ∫ T

0

‖∇u(t)‖2BMOdt <∞,

and our criterion gives the regularity. Because the weak solution satisfies the energy
inequality, we have ∫ T

0

‖∂tu(t)‖22dt <∞.

Hence, if the nonlinearity has the integrability condition∫ T

0

‖∇u(t)‖44dt <∞,

then the condition (1.10) is fulfilled, and the solution has to be smooth near t = T .
This is nothing but the case of the criterion from the scaling invariant norm∫ T

0

‖∇u(t)‖θpdt <∞,
2

θ
+

n

p
= 1.

Our criterion Theorem 1.2 is a stronger result and is outside of this kind of regular-
ity criterion. We should also remark on the related results for the Euler equation.
Chemin [7] considered the Euler equation in the Zygmund and log-Lipschitz class.
His argument also includes the logarithmic type functional inequality in terms of the
log-Lipschitz seminorm and Bony’s para-product formula. Vishik [33] also develops
this direction in the two dimensional case. Some related uniqueness result was shown
by Yudovich [34] and Ogawa and Taniuchi [26] for the two dimensional unbounded
vorticity solution.

Before closing this section, we introduce some notation. Ff and f̂ denote the
Fourier transform of f . 〈x〉 = (1+|x|2)1/2. We define a saturated logarithmic function
log+ t = log(e + t). The usual Sobolev space W s,p(Rn) is abbreviated as W s,p with
the norm

‖f‖W s,p ≡ ‖F−1〈·〉sf̂(·)‖p

for 1 < p <∞ and s ≥ 0.
We recall the Paley–Littlewood dyadic decomposition (cf. Stein [29] and Bergh

and Löfström [3]). Let φj(x) be the inverse Fourier transform of the jth component of

the dyadic decomposition, i.e.,
∑∞

j=−∞ φ̂(2−jξ) = 1 except ξ = 0, where the support
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of φ̂(ξ) is located on 2−1 < |ξ| < 2. We denote ψ(x) = F−1[ψ̂(ξ)](x), where

ψ̂ =


1, |ξ| < 1,

smooth, |ξ| < 2,

0, |ξ| > 2.

Set ψj = F−1[ψ̂(2jξ)](x). For a smooth function f , we set Φjf = φj ∗ f and

Ψ(x)f = ψ ∗ f . The homogeneous Besov space Ḃs
p,ρ is defined through the full dyadic

decomposition by

Ḃs
p,ρ = {f ∈ Z ′(Rn) : ‖f‖Ḃs

p,ρ
<∞},

where ‖f‖Ḃs
p,ρ

=
(∑∞

j=−∞ 2
jsρ‖φj ∗ f‖ρp

)1/ρ
and Z ′(Rn) denotes the dual space of

Z(Rn) = {f ∈ S;Dαf̂(0) = 0∀α ∈ N
n multiindex} and can be identified by the

coefficient space of S ′/P with the polynomial space P. The homogeneous Lizorkin–
Triebel space Ḟ s

p,ρ is similarly defined by

Ḟ s
p,ρ = {f ∈ Z ′(Rn) : ‖f‖Ḟ s

p,ρ
<∞},

where ‖f‖Ḟ s
p,ρ
= ‖(∑∞j=−∞ 2jsρ|φj ∗f |ρ

)1/ρ‖p and 1 ≤ p <∞, 1 ≤ ρ ≤ ∞ (1 ≤ ρ <∞
if p =∞). We refer to Triebel [32] for more detailed properties of those spaces.

2. Sharp version of logarithmic inequality. In this section, we give a sharp
version of the logarithmic Sobolev inequality. The original type of Sobolev inequality
was found by Brezis and Gallouet [4] and Brezis and Wainger [5] (see also Engler
[14]). And the similar type of inequality we shall discuss here was first established
by Beale, Kato, and Majda [1] and was improved by Kozono and Taniuchi [22] and
Kozono, Ogawa, and Taniuchi [21]. We show the sharp version of the Kozono–Taniuchi
inequality.

Theorem 2.1 (sharp version of logarithmic inequality). (1) For any p, ρ, σ ∈
[1,∞], q ∈ [1,∞), ν ≤ σ1, σ2, ν < ρ, and γ > 0, there exists a constant C which
depends only on n, p such that, for f ∈ Ḟ γ

p,σ1
∩ Ḟ−γp,σ2

, we have

‖f‖Ḟ 0
p,ν
≤ C‖f‖Ḟ 0

p,ρ

1 +( 1
γ
log+

‖f+‖Ḟγ
p,σ1

+ ‖f−‖Ḟ−γ
p,σ2

‖f‖Ḟ 0
p,ρ

)1/ν−1/ρ
 ,(2.1)

where f+ =
∑

j>0 φj ∗ f and f− =
∑

j<0 φj ∗ f .
Remark 2.1. In the theorem, the assumption γ > 0 is essential. The analogous

version of the inequality (2.1) in the Besov space was proved in Ogawa and Taniuchi
[25].

Proof of Theorem 2.1. To show Theorem 2.1, we recall the definition of the
Lizorkin–Triebel (semi)norm. We decompose f into the following three parts: Noting
that ν < ρ, σ1, σ2, we have
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‖f‖Ḟ 0
p,ν
≤

∥∥∥∥∥∥∥
∑

j>N

|φj ∗ f |ν
1/ν

∥∥∥∥∥∥∥
p

+

∥∥∥∥∥∥∥
 ∑
|j|≤N

|φj ∗ f |ν
1/ν

∥∥∥∥∥∥∥
p

+

∥∥∥∥∥∥∥
 ∑

j<−N
|φj ∗ f |ν

1/ν
∥∥∥∥∥∥∥
p

≤

∥∥∥∥∥∥∥
∑

j>N

2−jγ(1/ν−1/σ1)

1/ν−1/σ1
∑

j>N

2jγσ1 |φj ∗ f |σ1

1/σ1

∥∥∥∥∥∥∥
p

+ (2N + 1)1/ν−1/ρ

∥∥∥∥∥∥∥
 ∑
|j|≤N

|φj ∗ f |ρ
1/ρ

∥∥∥∥∥∥∥
p

+

∥∥∥∥∥∥∥
 ∑

j<−N
2jγ(1/ν−σ2)

1/ν−1/σ2
 ∑

j<−N
2−jγσ2 |φj ∗ f |σ

1/σ2

∥∥∥∥∥∥∥
p

≤ 2−γN

∥∥∥∥∥∥∥
∑

j>N

2jγσ1 |φj ∗ f |σ1

1/σ1

∥∥∥∥∥∥∥
p

+

∥∥∥∥∥∥∥
 ∑

j<−N
2−jγσ2 |φj ∗ f |σ2

1/σ2

∥∥∥∥∥∥∥
p


+ (2N + 1)1/ν−1/ρ

∥∥∥∥∥∥∥
 ∑
|j|≤N

|φj ∗ f |ρ
1/ρ

∥∥∥∥∥∥∥
p

≤ 2−γN
{
‖f+‖Ḟγ

p,σ1
+ ‖f−‖Ḟ−γ

p,σ2

}
+ (2N + 1)1/ν−1/ρ‖f‖Ḟ 0

p,ρ
.

(2.2)

Now we optimize (2.2) for each f by setting N = 1 if

‖f+‖Ḟγ
p,σ
+ ‖f−‖Ḟγ

p,σ
≤ ‖f‖Ḟ 0

p,ρ

and

N �
[
log2γ

(‖f+‖Ḟγ
p,σ1

+ ‖f−‖Ḟ−γ
p,σ2

‖f‖Ḟ 0
p,ρ

)]
+ 1

otherwise.

Some minor modification shows that the exponents of the higher regularity for f
can be chosen arbitrarily under the following form.

Corollary 2.2. There exists a constant C which depends only on n, p such

that, for f ∈ Ḟ
n/p+γ
p,σ1 ∩ Ḟ

n/p−γ
p,σ2 , we have for γ < γ′

‖f‖Ḟ 0∞,ν
≤ C‖f‖Ḟ 0∞,ρ

1 +( 1
γ
log+

‖f+‖Ḟn/p+γ′
p,σ1

+ ‖f−‖Ḟn/p−γ′
p,σ2

‖f‖Ḟ 0∞,ρ

)1/ν−1/ρ
 ,(2.3)

where f+ =
∑

j≥0 φj ∗ f and f− =
∑

j≤0 φj ∗ f .
The relation between the Lizorkin–Triebel spaces and the BMO is well under-

stood. The following result is due to Peetre and Triebel (see also Qui [6]).
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Proposition 2.3 (Triebel [32]). Ḟ 0
∞,2 � BMO. Namely, there exists a constant

C such that

C−1‖f‖Ḟ 0
∞,2
≤ ‖f‖BMO ≤ C‖f‖Ḟ 0

∞,2
.

From (2.3) and the equivalence between Ḟ 0
∞,2 � BMO and Ḟ 0

∞,∞ � Ḃ0
∞,∞, it is

explicitly shown that the difference between L∞, BMO, and the Besov space Ḃ0
∞,∞

is as follows. This is a version of the sharp form of the Kozono–Taniuchi inequality
(1.8).

Corollary 2.4. We have the following: For γ′ > 0,

‖f‖BMO ≤C
(
1 + ‖f‖Ḃ0∞,∞

(
1

κ
log+(‖f+‖Ḟκ∞,σ1

+ ‖f−‖Ḟ−κ
∞,σ2

)

)1/2)
,(2.4)

and if f̂(0) = 0,

‖f‖∞ ≤C
(
1 + ‖f‖BMO

(
1

κ
log+(‖f+‖Ḟκ

∞,2
+ ‖f−‖Ḟ−κ

∞,2
)

)1/2)
.(2.5)

In particular, if ∇f ∈W 1,q(Rn) ∩ L2(Rn) for n < q, we have

‖∇f‖∞ ≤ C(q)

(
1 + ‖∇f‖BMO

(
log+ (‖∇f‖W 1,q + ‖f‖∞)

)1/2)
.(2.6)

Remark 2.2. The last inequality (2.5) improves the related logarithmic inequal-
ities (1.7) and (1.8) due to Beale, Kato, and Majda and Kozono and Taniuchi. Re-
calling the Brezis–Gallouet inequality,

‖f‖∞ ≤ C(1 + ‖f‖2 + ‖∇f‖2(log+ ‖∆f‖2)1/2), f ∈ H2(R2),

one may notice that inequality (2.6) has the same order of the higher regular term
despite the dimension independence, although it is substituted by the Dirichlet norm
instead of the BMO seminorm.

Proof of Corollary 2.4. Noting the inequality

x
(
log
(
e+

y

x

))1/2

≤
{
C(1 + x(log(e+ y))1/2) for 0 < x ≤ 1,
Cx (log(e+ y))

1/2
for 1 < x,

the first inequality (2.4) is an immediate consequence of (2.1) with ν = 2 and ρ =∞
and Proposition 2.3. Similarly, the second inequality (2.4) follows from (2.1) with
ν = 1 and ρ = 2, observing that

‖f‖∞ =

∥∥∥∥∥
∞∑

i=−∞
φj ∗ f

∥∥∥∥∥
∞
≤ ‖f‖Ḟ 0

∞,1

when f̂(0) = 0.
To obtain the last modification (2.6), we first notice

lim
M→∞

∥∥∥∥∥∥∇f −
 ∑

j≥−M
φj ∗ f

∥∥∥∥∥∥
∞

= 0.
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To see this, we define a smooth function ψ(x) such that

ψ̂(ξ) =

{
1, |ξ| ≤ 1/2,
0, |ξ| ≥ 1,

and we set ψ̂j(ξ) = ψ̂(ξ/2j). Then we have by the L1-L∞ bound of the Fourier inverse
transform

‖ψ−M ∗ ∇f‖∞ ≤ Cn‖ψ̂−Mξf̂‖1
≤ Cn

∫
B2−M

|ξf̂(ξ)|dξ

≤ Cn|B2−M |1/2
(∫

B2−M

|ξ|2|f̂(ξ)|2dξ
)1/2

≤ Cn2
−Mn/2‖∇f‖2 → 0,

(2.7)

as M → ∞. Hence, for sufficiently large M such that ‖ψ−M ∗ ∇f‖∞ ≤ 1, it suffices
to estimate

∑
j≥−M φj ∗ f . We apply inequality (2.4) with small κ specified below.

For small κ > 0 and α > 0 with κ < α < 1− n/q,

‖∇f+‖Ḟκ
∞,2

=

∥∥∥∥∥∥∥
 ∞∑

j=1

22jκ|φj ∗ ∇f |2
1/2

∥∥∥∥∥∥∥
∞

≤
 ∞∑

j=1

22j(κ−α)

1/2 ∥∥∥∥sup
j
2αj |φj ∗ ∇f |

∥∥∥∥
∞

(2.8)

≤ C‖∇f‖Ḃα∞,∞
≤ C‖∇f‖

Ḃ
α+n/q
q,∞

≤ C‖∇f‖Ẇ 1,q ,

where ‖ · ‖Ẇ 1,q stands for the homogeneous Sobolev seminorm. This is possible under
the condition n < q. On the other hand, using the L∞ boundedness of the Hardy–
Littlewood maximal function (cf. Stein [29, p. 62–63]), we have for small 0 < κ < 1

‖∇f−‖Ḟ−κ
∞,2

=

∥∥∥∥∥∥∥
 −∞∑

j=−1

2−2jκ|φj ∗ ∇f |2
1/2

∥∥∥∥∥∥∥
∞

≤

∥∥∥∥∥∥∥
 −∞∑

j=−1

22j(1−κ)|(∇φ)j ∗ f |2
1/2

∥∥∥∥∥∥∥
∞

(2.9)

≤
 −∞∑

j=−1

22j(1−κ)

1/2 ∥∥∥∥sup
j
|(∇φ)j ∗ f |

∥∥∥∥
∞

≤ C‖M [f ]‖∞ ≤ C‖f‖∞,

where (∇φ)j(x) = 2nj∇φ(2jx). From (2.8) and (2.9), we obtain the last inequality
(2.6).
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3. The harmonic heat flow. In this section, we give the proof of the regularity
criterion to the weak solution of the harmonic heat flow equation onto a sphere:

∂tu−∆u = u(∇u,∇u), t > 0, x ∈ R
n,

u(t, x) : R+ × R
n → S

m, t > 0, x ∈ R
n,

u(0, x) = u0(x),

(3.1)

where u(∇u,∇u) = ui
∑

1≤l,j≤n |∇luj |2 denotes the second fundamental form on the

sphere, and in the following we express this form as u|∇u|2 except when it may cause
confusion.

The proof is in fact a simple application to the argument in the previous section.

Proof of Theorem 1.2. We first give a proof for n < p < ∞. Let u be a smooth
solution to (3.1) on [0, T ). By operating the Laplacian to the equation and then taking
an L2 inner product of the equation with |∆u|q−2∆u, we have

1

q

d

dt
‖∆u(t)‖qq+

∫
Rn

∇k∆u(t) · ∇k(|∆u|q−2∆u(t))dx

=

∫
Rn

|∇u(t)|2∆u(t) · |∆u(t)|q−2∆u(t)dx

+

∫
Rn

∇ku(t) · ∇k|∇u(t)|2|∆u(t)|q−2∆u(t)dx

−
∫

Rn

u(t)∇k|∇lu(t)|2 · ∇k(|∆u(t)|q−2∆u(t))dx

= (|∇u(t)|2, |∆u(t)|q)
+ 2(∇ku(t)(∇lu(t) · ∇k∇lu(t)), |∆u(t)|q−2∆u(t))

− 2(u(t)(∇lu(t) · ∇k∇lu(t)), |∆u(t)|q−2∇k∆u(t))

− 2(u(t)(∇lu(t) · ∇k∇lu(t)),∆u(t)∇k(|∆u(t)|q−2))

≡ I1 + I2 + I3 + I4.

(3.2)

The first and second terms I1, I2 in (3.2) are dominated by the elliptic estimate in Lq

(cf. [18]),

I1 + I2 ≤ ‖∇u‖2∞‖∆u‖qq.(3.3)

For the third term I3, we again use the elliptic estimate to get

I3 ≤ ‖u‖∞
∫

Rn

|∇u||∇k∇lu| · |∆u|q−2|∇k∆u|dx

≤ ‖u‖∞
(∫

Rn

|∇u|2|∆u|q−2|∇k∇lu|2dx
)1/2(∫

Rn

|∆u|q−2|∇k∆u|2dx
)1/2

≤ C

∫
Rn

|∇u|2|∆u|q−2|∇k∇lu|2dx+ ε

∫
Rn

|∆u|q−2|∇k∆u|2dx

≤ C‖∇u‖2∞‖∆u‖qq +
1

2

∫
Rn

|∆u|q−2|∇k∆u|2dx.(3.4)
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The last term I4 can be dealt with in a similar manner:

I4 =

∫
Rn

ui∇luj∇k∇luj∆ui∇k(|∆u|2)(q−2)/2dx

=
q − 2
2

∫
Rn

ui∇luj∇k∇luj∆ui|∆u|q−4∇k(|∆u|2)dx

= (q − 2)
∫

Rn

ui∇luj∇k∇luj∆ui|∆u|q−4(∆u · ∇k∆u)dx

≤ (q − 2)‖u‖∞
(∫

Rn

|∇u|2|∆u|q−2|∇k∇lu|2dx
)1/2(∫

Rn

|∆u|q−2|∇k∆u|2dx
)1/2

≤ C‖∇u‖2∞‖∆u‖qq +
1

2

∫
Rn

|∆u|q−2|∇k∆u|2dx.

(3.5)

On the other hand, the second term in the left-hand side of (3.2) is∫
Rn

∇k∆u · ∇k(|∆u|q−2∆u)dx

=

∫
Rn

|∆u|q−2|∇k∆u|2dx+ 1

2

∫
Rn

∇k|∆u|2 · ∇k|∆u|q−2dx

=

∫
Rn

|∆u|q−2|∇k∆u|2dx+ q − 2
4

∫
Rn

|(|∆u|2)(q−4)/4∇k|∆u|2|2dx

=

∫
Rn

|∆u|q−2|∇k∆u|2dx+ 4(q − 2)
q2

∫
Rn

|∇(|∆u|2)q/4|2dx.

(3.6)

Hence, by gathering estimates (3.3)–(3.5) and (3.6) and plugging them into (3.2), it
follows that

1

q

d

dt
‖∆u(t)‖qq +

4(q − 2)
q2

‖∇|∆u|q/2‖22
≤ C‖∇u‖2∞‖∆u‖qq.(3.7)

Integration (3) over [0, T ] and the Young inequality imply

‖∆u(t)‖qq ≤ ‖∆u(0)‖qq + C(ε)

∫ T

0

‖∇u‖2∞‖∆u(τ)‖qqdτ.(3.8)

Noting the energy inequality (1.2), the logarithmic inequality (2.6) in Corollary
2.4 yields that, for γ > n/q and q > n,

‖∇u‖∞ ≤ C(1 + ‖∇u‖BMO(log
+ (‖∇u+‖W 1,q + ‖u‖∞))1/2)

≤ C(1 + ‖∇u‖BMO(log
+ (‖∇u‖W 1,q + 1))1/2).

(3.9)

Hence it follows from (3.8) and (3.9) that

‖∆u(t)‖qq ≤ ‖∆u0‖qq + C

∫ T

0

‖∇u(τ)‖2∞‖∆u(τ)‖qqdτ

≤ ‖∆u0‖qq + C

∫ T

0

‖∇u‖2BMO(1 + log
+(‖∇u(τ)‖W 1,q + 1)

1
2 )2‖∆u(τ)‖qqdτ.

(3.10)
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Combining the energy inequality

‖∇u(t)‖22 + 2
∫ t

0

‖∂tu(τ)‖22dτ ≤ ‖∇u0‖22

with ‖u‖∞ = 1, we conclude by the Gronwall argument that

‖∇u(t)‖qW 1,q ≤ C‖∇u0‖qW 1,q exp

{
C exp

(
C

∫ T

0

(1 + ‖∇u‖2BMO)dτ

)}
.

This estimate ensures that the solution has regularity in C((0, T ]; Ẇ 2,q) under the
assumption (1.9). Since we have chosen that q > n, the Sobolev embedding implies
that ∇u(t) is a continuous function in (x, t). A general argument for the harmonic
heat flow gives the higher regularity. This completes the proof of Theorem 1.2.
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Abstract. In this paper we propose a gas-solid free boundary problem for a one-dimensional
model system of a compressible viscous gas associated with the inflow problem, where the solid
constantly changes into the gas and produces the inflow of the gas on the free boundary. We first
show the existence of the traveling wave solution and its asymptotic stability. We further discuss the
case in which the asymptotic state of the solution is given by a combination of the traveling wave
solution and rarefaction wave.

Key words. gas-solid free boundary, compressible viscous gas, traveling wave, rarefaction wave
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1. Introduction. We consider the one-dimensional barotropic motion of com-
pressible viscous gas and study the situation where the gas is adjacent to the solid by
the free boundary x̃ = X(t). In what follows we use the Eulerian coordinates (x̃, t) to
represent the spatial and time variables. We assume that the part x̃ < X(t) is filled
by the solid whose density ρ̄ is a given positive constant and whose velocity ū is zero,
and that the part x̃ > X(t) is filled by the gas with the density ρ̃(x̃, t) and velocity
ũ(x̃, t) satisfying the conservation of mass

ρ̃t + (ρ̃ũ)x̃ = 0(1.1)

and the conservation of momentum

(ρ̃ũ)t + (ρ̃ũ2 + p̃− µũx̃)x̃ = 0,(1.2)

where the pressure p̃ is a given function of ρ̃, and the viscosity coefficient µ is a given
positive constant. Here we should note that in the solid part, ρ̃ = ρ̄ and ũ = ū = 0
also satisfy (1.1) and (1.2). On the free boundary, so that the conservation of mass
holds, we assume the Rankine–Hugoniot condition

−dX(t)

dt
(ρ̃− ρ̄) + (ρ̃ũ− ρ̄ū) = 0 on x̃ = X(t),

which implies

dX(t)

dt
=

ρ̃ũ

ρ̃− ρ̄ .(1.3)
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Depending on the sign of X ′(t) and also on whether ρ̃ is more or less than ρ̄, we can
consider various situations. Among them we study here the situation

ρ̃ < ρ̄,
dX(t)

dt
< 0.(1.4)

It is noted that the first condition is physically natural because the density of the gas
changed in phase from the solid is usually much less than that of the solid, and the
second condition makes us focus on the phase transition process from the solid to the
gas. In this situation, since the density in front of the free boundary is more than
that in back of the boundary, the discontinuity of the solution at the boundary is
not a classical shock but a detonation-type discontinuity. By (1.3) we also know the
velocity ũ on the boundary is positive, which means the gas constantly flows in from
the free boundary, so this situation is closely related to the inflow problem on the half
space for (1.1), (1.2) (cf. [5, 19]). We discuss this matter more later. Since we need
another boundary condition on the density in this inflow situation, we assume

ρ̃ = ρb on x̃ = X(t), p̃(ρb) = p̄ := p̃(ρ̄),(1.5)

where ρb (< ρ̄) is a given positive constant, and the second assumption means the
pressure is continuous across the interface. We also assume

p̃(ρ̃) > 0, p̃′(ρ̃) > 0, p̃′′(ρ̃) ≥ 0 in a neighborhood of ρ̃ = ρb,(1.6)

which means that once the solid changes to the gas it follows the standard property
of pressure-density relation as barotropic gas. Since we need another boundary con-
dition to determine the movement of the free boundary, the data of the density, and
momentum on the boundary, we also assume another Rankine–Hugoniot condition
for the conservation of momentum

−dX
dt
ρ̃ũ+ ρ̃ũ2 + p̃− µũx̃ − p̄ = 0 on x̃ = X(t).(1.7)

By (1.3), (1.5), and (1.7), we have a nonlinear Neumann condition for the velocity

µũx̃ =
ρ̄ρb
ρ̄− ρb ũ

2.(1.8)

We know that to be more physical, especially to unify the arguments of fluid dy-
namical aspects and that of Stephan problems, we should further take into account
the conservation of energy and its Rankine–Hugoniot condition with a jump of en-
ergy structure. However, even for 2 × 2 systems like (1.1), (1.2) there have been no
mathematical results under the free boundary condition like (1.3) because of various
difficulties. In all previous works (e.g., Kazhikhov [10], Nagasawa [20]) they assume

dX(t)

dt
= ũ,(1.9)

which means the particles on the free boundary always stay on the boundary. In this
case, if we introduce the Lagrangian mass coordinates, we can reformulate the problem
to that with the fixed boundary. On the other hand, in our case (1.3) we cannot do it,
which gives us serious difficulty. We believe that to investigate a simple mathematical
model as (1.1), (1.2) under the conditions (1.3), (1.8) is a quite meaningful one-step to
overcoming mathematical difficulties and proceeding to more general problems. We
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should note that Kaliev and Kazhikhov [7] showed the existence and uniqueness of the
local solution for a free boundary value problem which does not satisfy (1.9). But in
their case they assumed that there is no discontinuity of the density. That is, ρ̃ = ρb
on the boundary. Thus we propose and concentrate on the following system in the
Eulerian coordinates:

ρ̃t + (ρ̃ũ)x̃ = 0 in x̃ > X(t),

(ρ̃ũ)t + (ρ̃ũ2 + p̃)x̃ = µũx̃x̃ in x̃ > X(t),

ρ̃(X(t), t) = ρb,

µũx̃(X(t), t) =
ρbρ̄

ρ̄− ρb ũ
2(X(t), t),

dX(t)

dt
=

ρb
ρb − ρ̄ ũ(X(t), t) X(0) = 0,

(ρ̃, ũ)|(+∞,t) = (ρ+, u+),

(ρ̃, ũ)|t=0 = (ρ0, u0).

(1.10)

It is worthwhile to point out that in (1.10) the density ρ̃ must be imposed on the
boundary because the boundary is moving to the left, while the fluid particles on the
boundary are moving to the right, so that characteristics for the ρ̃ equation come out
of the boundary in forward time.

In this paper we first investigate the existence of the traveling wave solution of
(1.10) and establish its asymptotic stability. We further discuss the case in which the
asymptotic state of the solution is expected to consist of the traveling wave solution
and rarefaction wave.

We now state the relations of (1.10) to the inflow problem with the fixed boundary
and recall the results on it. We consider the case X(t) = s̄t(s̄ < 0). Let y = x̃ − s̄t,
z(y, t) = ũ(x̃, t)− s̄, ρ(y, t) = ρ̃(x̃, t); then (1.3) and (1.5) yield the following boundary
condition:

ρ|y=0 = ρb > 0, z|y=0 = − ρ̄s̄
ρb

=: ub > 0.

Thus the system (1.10) is changed into

ρt + (ρz)y = 0 in y > 0,

(ρz)t + (ρz2 + p)y = µzyy in y > 0,

ρ(0, t) = ρb > 0,

z(0, t) = ub > 0,

(ρ, z)|(+∞,t) = (ρ+, u+ − s̄),
(ρ, z)|t=0 = (ρ0, u0 − s̄),

(1.11)

where p = p̃(ρ(y, t)).
The problem (1.11) is called the inflow problem with the fixed boundary. In

this situation, a new wave, denoted by the boundary layer solution, or BL-solution,
appears in the solutions due to the presence of a boundary. Matsumura [13] classified
all possible large time behaviors of the solutions in terms of the boundary values.
Matsumura and Nishihara [19] and we [5] have proved that if the boundary values are
in the subsonic region, the solution tends to the superposition of a BL-solution and
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a rarefaction wave, and the superposition of a BL-solution and a viscous shock wave
under some smallness conditions. Shi [23] studied the rarefaction wave case when the
boundary values are in the supersonic region. We refer the readers to [5, 13, 19, 23].

We now concentrate on the free boundary problem (1.10). We here transform
(1.10) to the problem in the Lagrangian coordinate:

vt − ux = 0, x > x(t), t > 0,

ut + p(v)x = µ
(ux
v

)
x
, x > x(t), t > 0,

v(x(t), t) = vb,

µux(x(t), t) =
vb

vb − v̄ u
2(x(t), t),

dx(t)

dt
=

1

v̄ − vbu(x(t), t), x(0) = 0,

(v, u)|(+∞,t) = (v+, u+) =

(
1

ρ+
, u+

)
,

(v, u)|t=0 = (v0, u0), v0(0) = vb,

(1.12)

where v = 1/ρ. The transformation (x̃, t)→ (x, t) is given by
∂x̃(x, t)

∂t
= ũ(x̃(x, t), t), t > 0, x > 0

x̃(x, 0) = x̃0(x),

with ∫ x̃0(x)

0

ρ̃(r, 0)dr = x,

where (x̃, t) ∈∑
1 = {(x̃, t); x̃ > x̃(0, t)}, and by

∂x̃(x, t)

∂t
= ũ(x̃(x, t), t), t > t0(x), x > 0

x̃(x, t0(x)) = X(t0(x)),

with

x =

∫ X(t0(x))

0

ρbdr −
∫ t0(x)

0

ρbũ(X(t), t)dt = ρ̄X(t0(x)),

where (x̃, t) ∈∑
2 = {(x̃, t);X(t) < x̃ < x̃(0, t)}. From the definition, we have

x ≥ x(t) = ρ̄X(t)

and ∫ x̃(x,t)

x̃(0,t)

ρ̃(r, t)dr = x

for (x̃, t) ∈∑
i(i = 1, 2). Hence, for f(x, t) = f̃(x̃(x, t), t),

∂

∂t
f(x, t) =

(
∂

∂t
+ u

∂

∂x̃

)
f̃(x̃(x, t), t),

∂

∂x
f(x, t) = v

∂

∂x̃
f̃(x̃(x, t), t),
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which gives (1.12).

We now seek a traveling wave solution of (1.12). The argument of section 2 shows
that for any given 0 < v̄ < vb < v+, if

u+ = (v+ − v̄) 1
2 (p(vb)− p(v+)) 1

2 , ub =
v̄ − vb
v̄ − v+u+, s̄ =

ub
v̄ − vb ,(1.13)

there exists a unique traveling wave solution (V,U)(ξ), ξ = x− s̄t, satisfying
−s̄V ′ − U ′ = 0,

−s̄U ′ + p(V )′ = µ
(
U ′

V

)′
,

(1.14)

with {
V (0) = vb, U(0) = ub, µU ′(0) = vb(vb − v̄)s̄2,
V (+∞) = v+, U(+∞) = u+,

(1.15)

provided that u2
+ < (v+ − v̄)2|p′(v+)|. We call (V,U) the traveling wave solution.

Therefore for any 0 < v̄ < vb < +∞, the traveling wave solution curve with the
parameter v̄ through the point (vb, 0) in the phase plane is defined by

TWv̄(vb, 0)

=
{
(v, u);u = (v − v̄) 1

2 (p(vb)− p(v)) 1
2 , u2 < (v − v̄)2|p′(v)|, v > vb

}
.

(1.16)

When (v+, u+) ∈ TWv̄(vb, 0), the solution of (1.12) is expected to tend to the traveling
wave solution satisfying (1.13)–(1.15) as t tends to infinity.

On the other hand, it is known that the 2-rarefaction curve R2(vb, 0) through the
point (vb, 0) is

R2(vb, 0) =

{
(v, u);u = −

∫ v

vb

λ2(s)ds, v < vb

}
(1.17)

and R2(vp, up) through the point (vp, up) is

R2(vp, up) =

{
(v, u);u = up −

∫ v

vp

λ2(s)ds, v < vp

}
,(1.18)

where λ2 =
√−p′(v) is the second characteristic speed of the corresponding hyper-

bolic system without viscosity and

up = (vp − v̄) 1
2 (p(vb)− p(vp)) 1

2 , u2
p = (vp − v̄)2|p′(vp)|.

Then let us define R2TWv̄(vb, 0) as the domain surrounded by curves TWv̄(vb, 0),
R2(vb, 0), R2(vp, up), and the u-axis. When (v+, u+) is in R2TWv̄(vb, 0), the solution
of (1.12) is expected to tend to the superposition of a traveling wave solution and a
2-rarefaction wave as t tends to infinity.

Our aim in this present paper is to investigate the stability of the traveling wave
solution and of a superposition of the traveling wave solution and the 2-rarefaction
wave. Our results are, roughly speaking, as follows.
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(I) If (v+, u+) ∈ TWv̄(vb, 0), then the traveling wave solution is stable, provided
that |v+ − vb| is small. The precise statement is given in Theorem 4.1 below.

(II) If (v+, u+) ∈ R2TWv̄(vb, 0), then there exists (v∗, u∗) ∈ TWv̄(vb, 0) such that
(v+, u+) ∈ R2(v∗, u∗), and the superposition of the traveling wave solution connecting
(vb, ub) with (v∗, u∗) and the 2-rarefaction wave connecting (v∗, u∗) with (v+, u+) is
stable provided that |v∗−vb| is small. That is, the traveling wave solution is necessary
to be weak; however, the 2-rarefaction wave is not necessarily weak. The precise
statement is given in Theorem 5.3 below.

Remark. Although we only study the case (1.4) in this paper, the case ρ̃ >

ρ̄, dX(t)
dt < 0 could be treated by the same method. We note that in this case both

the boundary and the fluid are moving to the left. However, the fluid speed is faster
than that of the boundary. Therefore, similar to the case (1.4), the characteristics for
the ρ̃ equation still come out of the boundary in forward time and the density ρ̃ must
be imposed on the boundary.

It is interesting to compare our results with those of the traveling wave with
shock profile. For the stability of the viscous shock wave, it is known that the scalar
equation has been extensively investigated (cf. [6, 21, 22]). Studies on systems began
with the independent works of Goodman [3] and Matsumura and Nishihara [15] with
zero mass. The generic initial perturbations were investigated by Liu [11] and Szepessy
and Xin [24]. Unlike the viscous shock wave, since the traveling wave is unique here,
it is not necessary to locate which of its translates the perturbed solution converges
to. Therefore we do not need any hypothesis that states that the perturbations in
Theorems 4.1 and 5.3 have zero mass.

Our method is based on the energy estimates and a new approximation to the
rarefaction wave. It is noted that the new approximation could be applied to extend
the results of [19]—where a stability theorem for the superposition of a BL-solution
and a weak rarefaction wave with the fixed boundary was obtained by Matsumura
and Nishihara—to the strong rarefaction wave.

Our paper is organized as follows. In sections 2–4, we focus on case I. Precisely
speaking, in section 2, we study the existence of the traveling wave solution. In
section 3, we reformulate the original problem to a new initial boundary value problem
and prove the local existence of the solution. In section 4, we establish the a priori
estimates and then prove the stability of the traveling wave solution. In section 5,
case II is treated.

Notation. Throughout this paper, several positive generic constants are denoted
by c, C without confusion. For function spaces, Lp(Ω), 1 ≤ p ≤ ∞, denotes a usual
Lebesgue space on Ω ⊂ R = (−∞,∞) with its norm

‖f‖Lp(Ω) =

(∫
Ω

|f(x)|pdx
) 1

p

, 1 ≤ p <∞, ‖f‖L∞(Ω) = sup
Ω
|f(x)|.(1.19)

H l(Ω) denotes the lth order Sobolev space with its norm

‖f‖l =
 l∑

j=0

‖∂jxf‖2


1
2

, when ‖ · ‖ := ‖ · ‖L2(Ω).(1.20)

The domain Ω will often be abbreviated to avoid confusion.
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2. Existence of the traveling wave solution. In this section we investigate
the existence of the traveling wave solution (V,U)(ξ), ξ = x− s̄t, satisfying

−s̄V ′ − U ′ = 0, ′ = d/dξ, ξ = x− s̄t,
−s̄U ′ + p(V )′ = µ

(
U ′

V

)′
,

V (0) = vb, U(0) = ub,

µU ′(0) = vb(vb − v̄)s̄2,
V (+∞) = v+, U(+∞) = u+,

(2.1)

where

s̄ =
ub
v̄ − vb < 0.(2.2)

We have the following existence result.

Lemma 2.1. For any given v̄, vb, and v+ with 0 < v̄ < vb < v+, when

ub =
v̄ − vb
v̄ − v+u+, u+ = (v+ − v̄) 1

2 (p(vb)− p(v+)) 1
2 ,(2.3)

there exists a unique solution (V,U)(ξ) to (2.1) and (2.2) satisfying 0 < vb < V (ξ) <
v+, V

′ > 0, provided that u2
+ < (v+ − v̄)2|p′(v+)|. Furthermore, fix v̄ and vb, and let

v+ − vb = δ; then there exists a positive constant δ0 > 0 such that, for any δ ≤ δ0,

|V (ξ)− v+| = O(δ)e−
c√
δ
ξ

(2.4)

and

u+, s̄, ub = O(δ
1
2 ), V ′ = O(δ

1
2 )e
− c√

δ
ξ
.(2.5)

Proof. When (V,U) exists, the integration of (2.1) with respect to ξ yields{
s̄V + U = s̄vb + ub = s̄v+ + u+,

µ
U ′

V
= p(V ) + s̄2(V − v+)− p(v+).

(2.6)

Let ξ = 0; then (2.3) holds. By (2.6) we have the ordinary equation{
−s̄µV

′

V
= F(V ) := p(V ) + s̄2(V − v+)− p(v+),

V (0) = vb, V (+∞) = v+.
(2.7)

To the contrary, since

u2
+ < (v+ − v̄)2|p′(v+)|(2.8)

implies F(V ) > 0 for vb < V < v+, it is easy to see there exists a unique solution
(V,U) of (2.1). Furthermore, (2.3) and (2.7) imply that the solution satisfies (2.4)
and (2.5) if v+ − vb is suitably small. Thus Lemma 2.1 is proved.
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3. Local existence of the solution. In this section, we first reformulate (1.12)
to a new initial-boundary value problem and then prove the local existence of the
solution.

Assume that (v+, u+) ∈ TWv̄(vb, 0). Then Lemma 2.1 gives a unique solution
(V,U)(ξ), ξ = x− s̄t ≥ 0, satisfying

−s̄V ′ − U ′ = 0,

−s̄U ′ + p(V )′ = µ
(
U ′

V

)′
,

V (0) = vb, U(0) = ub,

µU ′(0) = vb(vb − v̄)s̄2,
(V,U)|(+∞) = (v+, u+),

(3.1)

where s̄ = ub

v̄−vb < 0 and ub, u+ satisfies (2.3). To investigate the free boundary

problem (1.12), we consider the coordinate transformation

t = t, y = x− x(t),(3.2)

where x(t) = s̄t+ γ(t). By (3.2), we rewrite (1.12) as

vt − (s̄+ γ′(t))vy − uy = 0, y > 0, t > 0,

ut − (s̄+ γ′(t))uy + p(v)y = µ
(uy
v

)
y
, y > 0, t > 0,

v(0, t) = vb,

µuy(0, t) =
vb

vb − v̄ u
2(0, t),

dγ(t)

dt
=

1

v̄ − vbu(0, t)− s̄, γ(0) = 0,

(v, u)|(+∞,t) = (v+, u+),

(v, u)(y, 0) = (v0, u0)(y), y > 0.

(3.3)

On the other hand, we take the traveling wave solution as the form (V,U)(y).
Thus, by (3.1) (V,U) satisfies

−s̄Vy − Uy = 0, y > 0,

−s̄Uy + p(V )y = µ

(
Uy

V

)
y

, y > 0,

V (0) = vb, U(0) = ub,

µUy(0) = vb(vb − v̄)s̄2,
(V,U)|(+∞) = (v+, u+).

(3.4)

We now put the perturbation (φ, ψ)(y, t) by

(v, u)(y, t) = (V,U)(y) + (φ, ψ)(y, t),(3.5)
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so that the reformulated problem is

φt − (s̄+ γ′(t))φy − ψy = γ′(t)V ′(y), y > 0, t > 0,

ψt − (s̄+ γ′(t))ψy + (p(V + φ)− p(V ))y

−µ
(
ψy
V + φ

+
s̄V ′(y)φ
V (V + φ)

)
y

= −s̄γ′(t)V ′(y), y > 0, t > 0,

φ(0, t) = 0,

µψy(0, t) =
2vbub
vb − v̄ ψ(0, t) +

vb
vb − v̄ ψ

2(0, t),

γ′(t) =
1

v̄ − vbψ(0, t), γ(0) = 0,

(φ, ψ)|(+∞,t) = (0, 0),

(φ, ψ)(y, 0) = (φ0, ψ0) = (v0 − V, u0 − U)(y).

(3.6)

We shall combine the local existence and the a priori estimates to investigate the
stability of the traveling wave solution. The a priori estimates will be treated in the
next section. Here we only study the problem of local existence.

The solution space is

Xm,M (0, T ) =

{
φ ∈ C(0, T ;H1

0 ), ψ ∈ C(0, T ;H1)|φy ∈ L2(0, T ;L2),

ψy ∈ L2(0, T ;H1),with sup
[0,T ]

‖(φ, ψ)(t)‖1 ≤M,

inf
R+×[0,T ]

(V + φ)(y, t) ≥ m
}(3.7)

for some positive constants m,M .
Proposition 3.1 (local existence). For any given 0 < v̄ < vb < +∞, there

exist positive constants δ0 and M0 such that if v+ − vb = δ ≤ δ0, φ0 ∈ H1
0 , ψ0 ∈ H1,

‖(φ0, ψ0)‖1 ≤M(≤ M0

b ), and infR+
(V +φ0) ≥ m, then there exists a positive constant

T0 = T (m,M0) such that there exists a unique solution (φ(y, t), ψ(y, t), γ(t)) to (3.6)
satisfying

φ(y, t), ψ(y, t) ∈ Xm
2 ,bM (0, T0), γ(t) ∈ C1([0, T0]),

where b = 3(1 + 2
√

vb
µ +

√
2vb
vb−v̄ ).

Proof. We first consider the characteristic equation of (3.6)1. When y ≥ −x(t)(x(t)
= s̄t + γ(t)), the characteristic starts from the y-axis. That is, for any x̄0 ≥ 0, the
characteristic y(x̄0, t) from (x̄0, 0) satisfies

dy(x̄0, t)

dt
= −s̄− γ′(t),

y(x̄0, 0) = x̄0,

(3.8)

which yields

y(x̄0, t) = −x(t) + x̄0.(3.9)
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Thus, φ has the explicit form

φ(y, t) = φ0(x̄0) +

∫ t

0

ψy(x̄0 − x(τ), τ)dτ(3.10)

+

∫ t

0

γ′(τ)V ′(x̄0 − x(τ))dτ, x̄0 = y + x(t).

In the same way, when 0 ≤ y ≤ −x(t), the characteristic starts from the t-axis.
It is noted that the inverse function of x(t) exists if |γ′(t)| = | 1

v̄−vbψ(0, t)| ≤ c‖ψ(t)‖1
is small. Thus, by (3.6)1 and the boundary condition φ(0, t) = 0, we have

φ(y, t) =

∫ t

t̄0

ψy(x(t̄0)− x(τ), τ)dτ(3.11)

+

∫ t

t̄0

γ′(τ)V ′(x(t̄0)− x(τ))dτ, t̄0 = x−1(y + x(t)).

On the other hand, (3.6)2 is regarded as the initial-boundary value problem for
the parabolic equation of ψ:

ψt − µ( ψy
V + φ

)y = g := g(φ, φy, ψ(0, t), ψy)

µψy(0, t) =
2vbub
vb − v̄ ψ(0, t) +

vb
vb − v̄ ψ

2(0, t),

ψ|t=0 = ψ0,

(3.12)

where

g(φ, φy, ψ(0, t), ψy)

= −(p(V + φ)− p(V ))y +
(
s̄+

1

v̄ − vbψ(0, t)
)
ψy

+µ

(
Uy

V + φ
− Uy

V

)
y

− s̄

v̄ − vbψ(0, t)V
′(y).

By virtue of the boundary condition of (3.6), γ(t) has the explicit form

γ(t) =

∫ t

0

1

v̄ − vbψ(0, τ)dτ.(3.13)

We now approximate φ0 ∈ H1
0 , ψ0 ∈ H1 by φ0k ∈ H3 ∩H1

0 , ψ0k ∈ H3 such that

(φ0k, ψ0k)→ (φ0, ψ0) strongly in H1(3.14)

as k →∞ and ‖(φ0k, ψ0k)‖1 ≤ 3
2M, infR+

(V + φ0k) ≥ 2
3m hold for any k.

We will use the iteration method to prove Proposition 3.1. We define the sequence

{(φ(n)
k (y, t), ψ

(n)
k (y, t), γ

(n)
k (t))} for each k so that

(φ
(0)
k , ψ

(0)
k )(y, t) = (φ0k, ψ0k)(y), γ

(0)
k (t) =

∫ t

0

1

v̄ − vbψ0k(0)dτ(3.15)
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and for a given ((φ
(n−1)
k , ψ

(n−1)
k )(y, t), γ

(n−1)
k (t)), ψ

(n)
k is a solution to


ψ

(n)
kt − µ

(
ψ

(n)
ky

V + φ
(n−1)
k

)
y

= g(n−1) = g
(
φ

(n−1)
k , φ

(n−1)
ky , ψ

(n−1)
k (0, t), ψ

(n−1)
ky

)
,

µψ
(n)
ky (0, t) =

2vbub
vb − v̄ ψ

(n)
k (0, t) +

vb
vb − v̄ [ψ

(n)
k (0, t)]2,

ψ
(n)
k |t=0 = ψ0k,

(3.16)

γ
(n)
k (t) =

∫ t

0

1

v̄ − vbψ
(n)
k (0, τ)dτ,(3.17)

and

φ
(n)
k (y, t) =



∫ t

t̄
(n−1)
k

ψ
(n)
ky (x

(n−1)
k (t̄

(n−1)
k )− x(n−1)

k (τ), τ)dτ

+

∫ t

t̄
(n−1)
k

[γ
(n−1)
k (τ)]′V ′(x(n−1)

k (t̄
(n−1)
k )− x(n−1)

k (τ))dτ

if 0 ≤ y ≤ −x(n−1)
k (t),

φ0k(x̄
(n−1)
k ) +

∫ t

0

ψ
(n)
ky (x̄

(n−1)
k − x(n−1)

k (τ), τ)dτ

+

∫ t

0

[γ
(n−1)
k (τ)]′V ′(x̄(n−1)

k − x(n−1)
k (τ))dτ,

if y ≥ −x(n−1)
k (t),

(3.18)

where

x
(n−1)
k (t) = s̄t+ γ

(n−1)
k (t),

t̄
(n−1)
k = (x

(n−1)
k )−1(y + x

(n−1)
k (t)),

x̄
(n−1)
k = y + x

(n−1)
k (t).

We now assume M0 is small. By the principle of contraction mapping, it is easy
to prove there exists a positive time t0(m,M0)� 1 such that if g(n−1) ∈ C(0, t0;H2)

and ψ0k ∈ H3, there exists a unique local solution ψ
(n)
k to (3.16) satisfying

ψ
(n)
k ∈ C(0, t0;H3) ∩ C1(0, t0;H

1) ∩ L2(0, t0;H
4)

and |ψ(n)
k (y, t)| ≤ CM0.
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Thus, if (φ
(n−1)
k , ψ

(n−1)
k ) ∈ X 1

2m,bM , multiplying (3.16) by ψ
(n)
k and integrating it

over R+, we have

‖ψ(n)
k (t)‖2t +

µ

v+
‖ψ(n)

ky ‖2 +
4vbub
vb − v̄ [ψ

(n)
k (0, t)]2

≤ 2

∫ ∞
0

|g(n−1)ψ
(n)
k |dy + C|ψ(n)

k (0, t)|3

≤ C(m,M0)(1 + ‖ψ(n)
k (t)‖2) + 2vbub

vb − v̄ [ψ
(n)
k (0, t)]2.

(3.19)

Thus, we have ‖ψ(n)
k (t)‖2 ≤ (2M)2 due to t0 = t0(m,M0)� 1 and∫ t0

0

‖ψ(n)
ky ‖2dt ≤

v+
µ
(2M)2.(3.20)

Multiplying (3.16) by −ψ(n)
kyy and integrating it over R+, one has, if δ0 is suitably

small, (
‖ψ(n)

ky ‖2 +
2vbub
vb − v̄ [ψ

(n)
k (0, t)]2 +

2vb
3(vb − v̄) [ψ

(n)
k (0, t)]3

)
t

+
µ

2v+
‖ψ(n)

kyy(t)‖2≤ C(m,M0) + ‖ψ(n)
ky ‖2.

(3.21)

The integration of (3.21) over (0, t) gives

‖ψ(n)
ky ‖2 +

2vbub
vb − v̄ [ψ

(n)
k (0, t)]2 +

2vb
3(vb − v̄) [ψ

(n)
k (0, t)]3

+
µ

2v+

∫ t

0

‖ψ(n)
kyy(τ)‖2dτ

≤ ‖ψ0k‖21 +
2vbub
vb − v̄ [ψ0k(0)]

2 +
2vb

3(vb − v̄) |ψ0k(0)|3

+ C(m,M0)t+

∫ t

0

‖ψ(n)
ky ‖2dτ

≤ (2M)2
(
1 +

2v+
µ

+
2vbub
vb − v̄

)
≤ (2M)2

(
1 +

4vb
µ

+
2vb
vb − v̄

)
.

(3.22)

Thus, we have

‖ψ(n)
ky ‖2 ≤

(
3

(
1 + 2

√
vb
µ

+

√
2vb
vb − v̄

)
M

)2

= (bM)2(3.23)

and ∫ t0

0

‖ψ(n)
kyy‖2dt ≤

2v+
µ

(bM)2.(3.24)

On the other hand, a direct estimate on (3.18) together with (3.20), (3.23), and
(3.24) gives

‖φ(n)
k (t)‖21 ≤ (3M)2(3.25)
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and infR+×[0,T ](V + φ
(n)
k )(y, t) ≥ 1

2m.

Therefore, (φ
(n)
k , ψ

(n)
k ) ∈ X 1

2m,bM (0, t0). From (3.17), it is easy to see γ
(n)
k (t) ∈

C1([0, t0]). By a standard way, (φ
(n)
k , ψ

(n)
k ) is a Cauchy sequence in C(0, t0;H

2). Thus
we have a solution (φk(y, t), ψk(y, t), γk(t)) by letting n tend to infinity, where γk(t) =∫ t

0
1

v̄−vbψk(0, τ)dτ. In the same way, letting k → ∞, we obtain the desired unique-

local solution (φ(y, t), ψ(y, t), γ(t)) to (3.6), which satisfies (φ, ψ) ∈ X 1
2m,bM (0, T0)

and γ(t) ∈ C1([0, T0]) (taking T0 smaller than t0 if necessary).

4. Stability of the traveling wave solution. This section is devoted to the
stability of the traveling wave solution. Our stability theorem is as follows.

Theorem 4.1. For any given 0 < v̄ < vb < +∞, there exist positive constants
δ1 and C1. If (v+, u+) ∈ TWv̄(vb, 0), v+ − vb = δ ≤ δ1, v0 − V ∈ H1

0 , u0 − U ∈ H1,
and ‖v0 − V, u0 − U‖1 ≤ C1δ, then there exists a global solution (v(x, t), u(x, t), x(t))
to (1.12) satisfying

(v − V, u− U)(x, t) ∈ C(0,+∞;H1(x(t),+∞)),

(v − V )x(x, t) ∈ L2(0,+∞;L2(x(t),+∞)),

(u− U)x(x, t) ∈ L2(0,+∞;H1(x(t),+∞)), x(t) ∈ C1([0,+∞)),

x′(t)− s̄ ∈ L2(0,+∞),

and

sup
x≥x(t)

|(v, u)(x, t)− (V,U)(x− x(t))| → 0 as t→ +∞.

Theorem 4.1 is derived directly from local existence (Proposition 3.1) and the
following a priori estimates.

Proposition 4.2. For any given v̄ and vb, there exist positive constants δ1 and
C0. If v+ − vb = δ ≤ δ1(≤ δ0), (φ, ψ) ∈ X 1

4vb,bM
(0, T ) with M ≤ C0

b δ is a solution to

(3.6) for some positive constant T , then

‖(φ, ψ)(t)‖21 + δ
1
2

∫ t

0

ψ2(0, τ)dτ + δ
1
2

∫ t

0

∫ ∞
0

φ2V ′(y)dydτ

+

∫ t

0

‖φy(τ)‖2dτ +
∫ t

0

‖ψy(τ)‖21dτ ≤ C‖(φ0, ψ0)‖21,
(4.1)

where C > 1 is a constant.
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Proof. By virtue of the previous section, (φ, ψ) satisfies

φt − (s̄+ γ′(t))φy − ψy = γ′(t)V ′(y), y > 0, t > 0,

ψt − (s̄+ γ′(t))ψy + (p(V + φ)− p(V ))y,

−µ( ψy
V + φ

+
s̄V ′(y)φ
V (V + φ)

)
y
= −s̄γ′(t)V ′(y), y > 0, t > 0,

φ(0, t) = 0,

µψy(0, t) =
2vbub
vb − v̄ ψ(0, t) +

vb
vb − v̄ ψ

2(0, t),

γ′(t) =
1

v̄ − vbψ(0, t), γ(0) = 0,

(φ, ψ)|(+∞,t) = (0, 0),

(φ, ψ)(y, 0) = (φ0, ψ0) = (v0 − V, u0 − U)(y).

(4.2)

Let

Φ(v, V ) = p(V )φ−
∫ V +φ

V

p(s)ds.

Multiplying the first equation of (4.2) by (p(V )− p(V +φ)) and the second one by ψ,
we have {[

1

2
ψ2 +Φ(v, V )

]}
t

− (s̄+ γ′)∆φVy

+

{
(p(V + φ)− p(V ))ψ − (s̄+ γ′)

(
Φ(v, V ) +

1

2
ψ2

)
−µ

(
ψy
V + φ

+
s̄Vyφ

V (V + φ)

)
ψ

}
y

+ µ
ψ2
y

V + φ

+
µs̄Vyψyφ

V (V + φ)
+ (p(V + φ)− p(V ))γ′Vy + s̄γ′Vyψ = 0,

(4.3)

where ∆φ = p(V + φ)− p(V )− p′(V )φ satisfies cφ2 ≤ ∆φ ≤ Cφ2.
Let E =

∫∞
0

1
2ψ

2 +Φ(v, V )dy. The integration of (4.3) over R+ × [0, T ] gives

E(t)− E(0) + µ
∫ t

0

∫ ∞
0

ψ2
y

V + φ
dydτ−

∫ t

0

∫ ∞
0

(s̄+ γ′)∆φVydydτ

+

∫ t

0

[
1

2
(s̄+ γ′)ψ(0, τ) + µ

ψy(0, τ)

vb

]
ψ(0, τ)dτ+

∫ t

0

∫ ∞
0

µs̄Vyψyφ

V (V + φ)
dydτ

+

∫ t

0

∫ ∞
0

(p(V + φ)− p(V ))γ′Vydydτ+
∫ t

0

∫ ∞
0

s̄γ′Vyψdydτ = 0.

(4.4)

Since s̄ = O(δ
1
2 ) is negative and |γ′| = O(δ), we have

−(s̄+ γ′)∆φVy ≥ cδ 1
2φ2Vy.(4.5)
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On the other hand, the boundary conditions of (4.2) give

µ
ψy(0, τ)

vb
ψ(0, τ) =

2ub
vb − v̄ ψ

2(0, τ) +
1

vb − v̄ ψ
3(0, τ) ≥ −3

2
s̄ψ2(0, τ),(4.6)

which implies[
1

2
(s̄+ γ′)ψ(0, τ) + µ

ψy(0, τ)

vb

]
ψ(0, τ) ≥ −1

2
s̄ψ2(0, τ) ≥ cδ 1

2ψ2(0, τ).(4.7)

Thus, from (4.4)–(4.7), we have

E(t)− E(0) + µ
∫ t

0

∫ ∞
0

ψ2
y

V + φ
dydτ + cδ

1
2

∫ t

0

∫ ∞
0

φ2Vydydτ

+ cδ
1
2

∫ t

0

ψ2(0, τ)dτ = −
∫ t

0

∫ ∞
0

µs̄Vyψyφ

V (V + φ)
dydτ

−
∫ t

0

∫ ∞
0

(p(V + φ)− p(V ))γ′Vydydτ−
∫ t

0

∫ ∞
0

s̄γ′Vyψdydτ.

(4.8)

We now estimate each term on the right-hand side of (4.8). From Lemma 2.1 and

cφ2 ≤ Φ(v, V ) ≤ Cφ2,(4.9)

we have

µs̄Vyψyφ

V (V + φ)
≤ λψ2

y + Cs̄
2φ2V 2

y ≤ λψ2
y + Cδ

3
2φ2Vy,(4.10)

∫ ∞
0

|(p(V + φ)− p(V ))γ′Vy|dy

≤ C
∫ ∞

0

|γ′Vyφ|dy ≤ C|γ′|‖φy‖
∫ ∞

0

y
1
2Vydy

≤ Cδ 5
4 |γ′|‖φy‖ ≤ λδ 1

2 |γ′|2 + Cδ2‖φy‖2,

(4.11)

and ∫ ∞
0

s̄γ′Vyψdy = −s̄γ′
∫ ∞

0

(V − v+)ψydy−s̄(vb − v+)γ′ψ(0, τ)

≤ λ‖ψy‖2 + Cδ 3
2ψ2(0, τ),

(4.12)

where we have used the fact that

|φ(y, τ)| =
∣∣∣∣∫ y

0

φydy

∣∣∣∣ ≤ y 1
2 ‖φy‖,

due to [8] and λ is a suitably small positive constant.
Combining (4.8)–(4.12), we get the basic lemma.
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Lemma 4.3. Let the conditions of Proposition 4.2 hold. Then

‖(φ, ψ)(t)‖2 +
∫ t

0

‖ψy(τ)‖2dτ + δ 1
2

∫ t

0

ψ2(0, τ)dτ + δ
1
2

∫ t

0

∫ +∞

0

Vyφ
2dydτ

≤ C‖(φ, ψ)(0)‖2 + Cδ2
∫ t

0

‖φy(τ)‖2dτ.
(4.13)

Following [17], we adapt a new variable,

ṽ =
v

V
,(4.14)

to estimate ‖φy‖. Then (4.2)2 is rewritten as(
µ
ṽy
ṽ
− ψ

)
t

− (s̄+ γ′(t))
(
µ
ṽy
ṽ
− ψ

)
y

− p′(v)V ṽy + (p′(V )− p′(v)ṽ)Vy

= µ

(
Vy
V

)
y

γ′(t)− s̄γ′(t)Vy.
(4.15)

Thus, we have the following lemma.

Lemma 4.4. It holds that

‖ ṽy
ṽ
(t)‖2 +

∫ t

0

∫ +∞

0

ṽ2y
ṽγ+2

dydτ

≤ C(‖φ0‖21 + ‖ψ0‖2).
(4.16)

Proof. Multiplying (4.15) by
ṽy
ṽ , one gets{

µ

2

(
ṽy
ṽ

)2

− ψ
(
ṽy
ṽ

)}
t

− p′(v)V ṽ
2
y

ṽ

+

{
ψ
ṽt
ṽ
− µ(s̄+ γ

′(t))
2

(
ṽy
ṽ

)2
}

y

=
ψ2
y

v
+
s̄φψyVy
vV

+ (p′(V )− p′(v)ṽ)Vy ṽy
ṽ

+

(
µ

(
Vy
V

)
y

γ′ − s̄γ′(t)Vy
)
ṽy
ṽ

+ γ′(t)ψy
Vy
V
.

(4.17)

We compute ∣∣∣∣( ṽyṽ
)
(0, t)

∣∣∣∣= ∣∣∣∣φy(0, t)vb

∣∣∣∣ = ∣∣∣∣γ′(t)V ′(0) + ψy(0, t)vb(s̄+ γ′(t))

∣∣∣∣≤ C|ψ(0, t)|,(4.18)

∣∣∣∣(p′(V )− p′(v)ṽ)Vy ṽyṽ
∣∣∣∣ ≤ λṽ2y + CV 2

y φ
2,(4.19)
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and ∫ ∞
0

∣∣∣∣∣
(
Vy
V

)
y

γ′(τ)
ṽy
ṽ

∣∣∣∣∣
≤

∫ ∞
0

λṽ2ydy + C

∫ ∞
0

∣∣∣∣∣
(
Vy
V

)
y

∣∣∣∣∣
2

dy|γ′(τ)|2

≤
∫ ∞

0

λṽ2ydy + Cδ
1
2 |γ′(τ)|2,

(4.20)

where we have used V ′(0) = O(δ
1
2 ) and ψy(0, t) = O(δ

1
2 )|ψ(0, t)|. It is noted that

c1φ
2
y − c2V 2

y φ
2 ≤

∣∣∣∣ ṽyṽ
∣∣∣∣2 ≤ C1φ

2
y + C2V

2
y φ

2,

where ci, Ci, i = 1, 2, are positive constants which only depend on v̄ and vb. Integrat-
ing (4.17) over (0,+∞)× (0, t) and using Lemma 4.3, we get Lemma 4.4.

Lemma 4.5. It holds that

‖ψy(t)‖2 +
∫ t

0

‖ψyy(τ)‖2dτ ≤ C‖φ0, ψ0‖21.(4.21)

Proof. Multiplying (4.2)2 by −ψyy, we have(
ψy
2

)2

t

+

(
−ψtψy + s̄+ γ

′(t)
2

ψ2
y

)
y

+ µ
ψ2
yy

v

=

{
−µψy(Vy+φy)

(V +φ)2 + µ
(

s̄Vyφ
(V +φ)V

)
y
− (p(V + φ)− p(V ))y

}
(−ψyy)

+s̄γ′(t)Vyψyy.

(4.22)

Integrating (4.22) over (0,+∞)× (0, t), one has

1

2
‖ψy(t)‖2 +

∫ t

0

ψt(0, τ)ψy(0, τ)dτ −
∫ t

0

s̄+ γ′(t)
2

ψ2
y(0, τ)dτ

+
µ

2v+

∫ t

0

‖ψyy(τ)‖2dτ

≤ C(‖φ0‖21 + ‖ψ0‖21) + C
∫ t

0

‖φy(τ)‖2 + ‖ψy(τ)‖2dτ

+ C

∫ t

0

∫ ∞
0

s̄2V 2
yyφ

2dydτ.

(4.23)

By the boundary conditions of (4.2), we have

ψt(0, t)ψy(0, t) =
vb

vb − v̄
{
ubψ

2(0, t) +
1

3
ψ3(0, t)

}
t

.(4.24)

On the other hand,∫ t

0

∫ ∞
0

s̄2V 2
yyφ

2dydτ ≤ Cδ
∫ t

0

∫ ∞
0

|Vyy|ydy · ‖φy‖2dτ ≤ Cδ2
∫ t

0

‖φy‖2dτ.
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Thus, combining (4.22)–(4.24) and the fact that s̄ < 0, we get Lemma 4.5.
Proposition 4.2 is obtained at once from Lemmas 4.3–4.5.
Proof of Theorem 4.1. Let δ1, C0, C, and M0 be the constants in Propositions 3.1

and 4.2. We assume C0δ1 ≤ M0. This is possible because we can choose δ1 smaller
if necessary. We now let v+ − vb = δ ≤ δ1 and the initial data ‖(φ0, ψ0)‖1 ≤ M ≤
C0δ√
Cb
≤ M0/b. Then by Proposition 3.1 there exists a positive time t0 = t0(vb,M0)

such that there is a unique local solution (φ, ψ, γ) to (3.6) satisfying

φ(y, t), ψ(y, t) ∈ X vb
4 ,bM (0, t0), γ(t) ∈ C1([0, t0]).

It is noted that bM ≤ C0δ. Thus, by virtue of Proposition 4.2, we have

‖(φ, ψ)(t0)‖1 ≤
√
C‖(φ0, ψ0)‖1 ≤ C0δ/b ≤M0/b,

which satisfies the conditions of Proposition 3.1. Hence, from the time t = t0, again
using Propositions 3.1 and 4.2, we know there exists a solution (φ, ψ, γ) to (3.6) in
the interval [t0, 2t0] and

‖(φ, ψ)(2t0)‖1 ≤
√
C‖φ0, ψ0‖1 ≤ C0δ/b ≤M0/b.

Repeating the above procedure, we obtain the asymptotic stability theorem, Theorem
4.1.

5. Superposition of a traveling wave solution and a rarefaction wave.
This section is devoted to the superposition of a traveling wave solution and a rar-
efaction wave. Assume that

(v+, u+) ∈ R2TWv̄(vb, 0),(5.1)

where 0 < v̄ < vb.
In this case, there exists (v∗, u∗) ∈ TWv̄(vb, 0) such that (v+, u+) ∈ R2(v∗, u∗),

and the superposition of the traveling wave solution connecting (vb, ub) with (v∗, u∗)
and the 2-rarefaction wave connecting (v∗, u∗) with (v+, u+).

We now consider the 2-rarefaction wave (vR, uR)(xt ) connecting (v∗, u∗) with
(v+, u+), which is the weak solution of the Riemann problem

vt − ux = 0, (x, t) ∈ � × (0,+∞),

vt + p(v)x = 0,

(v, u)
∣∣
t=0

= (vR0 , u
R
0 )(x) =

{
(v∗, u∗), x < 0,

(v+, u+), x > 0.

(5.2)

It is known that (vR, uR)(xt ) has the explicit form

(vR, uR)
(x
t

)

=


(v∗, u∗), −∞ ≤ x

t
≤ λ2(v∗),(

λ−1
2

(x
t

)
, u∗ −

∫ λ−1
2 ( x

t )

v∗
λ2(s)ds

)
, λ2(v∗) ≤ x

t
≤ λ2(v+),

(v+, u+), λ2(v+) ≤ x
t
≤ +∞,

(5.3)
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where λ2(v) =
√−p′(v).

To study the large time behavior of solutions to (1.12), it is necessary to construct
a smooth approximate rarefaction wave (Ṽ , Ũ)(x, t) of (vR, uR)(xt ) in �×(0,+∞) and

its restriction (V R, UR)(x, t) := (Ṽ , Ũ)(x, t)
∣∣
x≥x(t)

. For this reason, we investigate the

Riemann problem on �× (0,+∞) of the Burgers equation
wR
t + wRwR

x = 0, (x, t) ∈ � × �+,

wR(x, 0) = wR
0 (x) =

{
w− = λ2(v∗), x < 0,

w+ = λ2(v+), x > 0.

(5.4)

Here 0 < w− < w+. The weak solution of (5.4) with the entropy condition is a
rarefaction wave wR(xt ) connecting w− and w+,

wR
(x
t

)
=


w−, x ≤ w−t,
x

t
, w−t < x < w+t,

w+. w+t ≤ x.

(5.5)

We now approximate wR(xt ) by
wt + wwx = 0, (x, t) ∈ � × (0,+∞),
w

∣∣
t=0

= w0(x)

=

 w−, x < 0,

w− + w̃κq

∫ εx

0

zqe−zdz, x ≥ 0.

(5.6)

Here w̃ = w+−w−, κq is a constant such that κq
∫ +∞
0

zqe−zdz = 1 for large constant
q ≥ 8, and ε is a positive constant determined later. We have the following lemma.

Lemma 5.1. Let 0 < w− < w+. Then the problem (5.6) has a unique smooth
solution w(x, t) satisfying the following:

(i) w− ≤ w(x, t) < w+, wx ≥ 0 for x ≥ 0, t ≥ 0.
(ii) For any p(1 ≤ p ≤ +∞), there exists a constant Cp,q such that for t ≥ 0,

‖wx(·, t)‖Lp ≤ Cp,q min
(
w̃ε1−

1
p , w̃

1
p t−1+ 1

p

)
,

‖wxx(·, t)‖Lp ≤ Cp,q min
(
w̃ε2−

1
p , w̃

1
q ε1−

1
p+ 1

q t−1+ 1
q

)
.

(iii) When x ≤ 0, w(x, t)− w− = wx(x, t) = wxx(x, t) = 0.
(iv) lim supt→+∞,x∈�

∣∣w(x, t)− wR(x, t)
∣∣ = 0.

Proof. Since the solution w(x, t) of (5.6) has the explicit form

w(x, t) = w0(x0(x, t)), x = x0(x, t) + w0(x0(x, t))t,

and

w′0(x0) =

{
0, x0 ≤ 0,
w̃kqε(εx0)

qe−εx0 , x0 > 0,

|w′′0 (x0)| ≤ Cw̃ 1
q ε1+

1
q |w′0(x0)|1− 1

q e−
εx0
2q ,
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it is not difficult to get Lemma 5.1 by virtue of the method of [17]. We omit the
details here.

Now we define the approximate solution (Ṽ , Ũ)(x, t) as follows:

(Ṽ , Ũ)(x, t) =

λ−1
2

(
w(x, t)

)
, u∗ −

∫ λ−1
2

(
w(x,t)

)
v∗

λ2(s)ds

 .(5.7)

Setting

(V R, UR)(y, t) := (Ṽ , Ũ)
∣∣
x≥x(t)

, y = x− x(t).(5.8)

Since w(x, t) is the smooth solution of the problem (5.6), it is easy to see

V R
t − (s̄+ γ′(t))V R

y − UR
y = 0,

UR
t − (s̄+ γ′(t))UR

y + p(V R)y = 0, (y, t) ∈ R+ × (0,+∞),

(V R, UR)
∣∣
y=0

= (v∗, u∗),

(V R, UR)
∣∣
t=0

=

(
λ−1

2 (w0(y)), u∗ −
∫ λ−1

2 (w0(y))

v∗
λ2(s)ds

)
.

(5.9)

Note that |V R
yy| ≤ C(|wxx|+ |wx|2), and one has the following from Lemma 5.1.

Lemma 5.2. Let δ2 = |v+ − v∗| + |u+ − u∗|. Then (V R, UR)(y, t) satisfies the
following if q ≥ p:

(i) UR
y (y, t) ≥ 0, |UR

y | ≤ Cεδ2 for t ≥ 0, y ≥ 0.
(ii) For any p(1 ≤ p ≤ +∞), there exists a constant Cp,q such that

‖V R
y (·, t)‖Lp({y≥0}) ≤ Cp,q min

{
δ2ε

1− 1
p , δ

1
p

2 (1 + t)−1+ 1
p

}
,

‖V R
yy(·, t)‖Lp({y≥0}) ≤ Cp,q min

{
δ2ε

2− 1
p , δ

1
q

2 (1 + t)
−1+ 1

q

}
, t ≥ 0.

(iii) (V R, UR)|y≤−x(t) = (v∗, u∗), (V R
y , U

R
y , V

R
yy, U

R
yy)|y≤−x(t) = 0.

(iv) lim supt→+∞,y∈{y≥0} |(V R, UR)(y, t)− (vR, uR)(y+x(t)
t )| = 0.

On the other hand, the traveling wave solution (VB , UB)(y) connecting (vb, ub)
with (v∗, u∗) satisfies, from Lemma 2.1,

−s̄Vy − Uy = 0, y > 0,

−s̄Uy + p(V )y = µ

(
Uy

V

)
y

, y > 0,

V (0) = vb, U(0) = ub,

µUy(0) = vb(vb − v̄)s̄2,
(V,U)|(+∞) = (v∗, u∗),

(5.10)

where

s̄ =
ub
v̄ − vb < 0, ub =

v̄ − vb
v̄ − v∗u∗, u∗ = (v∗ − v̄) 1

2 (p(vb)− p(v∗)) 1
2 .(5.11)
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Let

V (y, t) = VB(y) + V
R(y, t)− v∗, U(y, t) = UB(y) + U

R(y, t)− u∗;(5.12)

we set the perturbation (φ, ψ)(y, t) by (v, u)(y, t) = (V + φ,U + ψ)(y, t). Then the
reformulated equation is, from (1.12), (5.9), and (5.10),

φt − (s̄+ γ′(t))φy − ψy = γ′(t)VBy, y > 0, t > 0,

ψt − (s̄+ γ′(t))ψy + (p(V + φ)− p(V ))y
−µ

(
ψy
V + φ

− Uyφ

V (V + φ)

)
y

= −s̄γ′(t)VBy +G(y), y > 0, t > 0,

φ(0, t) = 0,

µψy(0, t) =
2vbub
vb − v̄ ψ(0, t) +

vb
vb − v̄ ψ

2(0, t),

γ′(t) =
1

v̄ − vbψ(0, t), γ(0) = 0,

(φ, ψ)|(+∞,t) = (0, 0),

(φ, ψ)(y, 0) = (φ0, ψ0) = (v0 − V0, u0 − U0)(y),

(5.13)

where

G = −(p(V )− p(VB)− p(V R) + p(v∗)) + µ
(
Uy

V
− UBy

VB

)
= −G1 +G2.(5.14)

We now derive the a priori estimates like Proposition 4.2. First we fix v̄ and vb. Then
we choose a suitably small constant δ0 which will be given later. We assume that
v∗ − vb = δ ≤ δ0 and (ψ,ψ) ∈ X 1

4vb,M
(0, T ) is a solution to (5.13) with M ≤ C0δ

3
5

for some positive constants T and C0.

Multiplying (5.13)1 by p(V )− p(V + φ) and (5.13)2 by ψ, we have{[
1

2
ψ2 +Φ(v, V )

]}
t

+∆φUR
y − (s̄+ γ′)∆φVBy

+

{
(p(V + φ)− p(V ))ψ − (s̄+ γ′)

(
Φ(v, V ) +

1

2
ψ2

)
− µ

(
ψy
V + φ

− Uyφ

V (V + φ)

)
ψ

}
y

+ µ
ψ2
y

V + φ

− µ(U
R
y + UBy)ψyφ

V (V + φ)
+ (p(V + φ)− p(V ))γ′VBy

+ s̄γ′VByψ −Gyψ = 0.

(5.15)

Since p′′(V ) > 0, one has

∆φ = p(V + φ)− p(V )− p′(V )φ = f(v, V )φ2 ≥ 0.(5.16)

We regard

Q = ∆φUR
y −

µUR
y ψyφ

V (V + φ)
+ µ

ψ2
y

v
(5.17)
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as the quadratic equation:

(√
µ
ψy√
v

)2

−
√
µUR

y

V
√
vf(v, V )

· √µ ψy√
v
·
√
UR
y f(v, V )φ+

(√
UR
y f(v, V )φ

)2

.(5.18)

By Lemma 5.2, if ε is suitably small, the discriminate of (5.18) satisfies

D =
µUR

y

V 2vf(v, V )
− 4 < 0.(5.19)

It is noted that all terms including VB(y) could be treated by the same methods of
the previous section; thus if δ0 is suitably small, then we have

‖(φ, ψ)(t)‖2 +
∫ t

0

‖ψy(τ)‖2dτ + δ 1
2

∫ t

0

ψ2(0, τ)dτ

+ δ
1
2

∫ t

0

∫ +∞

0

VByφ
2dydτ+

∫ t

0

∫ +∞

0

UR
y φ

2dydτ

≤ C‖(φ, ψ)(0)‖2 + Cδ2
∫ t

0

‖φy(τ)‖2dτ +
∫ t

0

∫ +∞

0

|Gy||ψ|dydτ .

(5.20)

We now estimate the last term of (5.20). We compute

|G1y| = |p′(V )(VBy + V
R
y )− p′(VB)VBy − p′(V R)V R

y |(5.21)

≤ |VBy||V R − v∗|+ |V R
y ||VB − v∗|.

It is observed that (V R − v∗, V R
y )|y≤−s̄t−γ(t) = 0; thus we have, from Lemma 2.1,

‖G1y‖2 =

∫ +∞

−
(
s̄t+γ(t)

) |G1y|2(y, t)dy

≤ C sup
y≥−

(
s̄t+γ(t)

){|V R(y, t)− v∗|2|VBy|}
∫ +∞

−
(
s̄t+γ(t)

) |VBy|dy

+ C sup
y≥−

(
s̄t+γ(t)

){|V R
y (y, t)|2|v∗ − VB |}

∫ +∞

−
(
s̄t+γ(t)

) |v∗ − VB |dy
≤ Cδ 3

2 δ22e
−ct.

(5.22)

This implies, by ‖ψ‖ ≤ C0δ
3
5 ,∫ t

0

∫ ∞
0

|G1y||ψ|dydτ

≤ C
∫ t

0

‖G1y‖‖ψ‖dτ ≤ Cδ 27
20 .

(5.23)

On the other hand, we calculate

G2 = µ

(
Uy

V
− UBy

VB

)
= µ

(
UR
y

V
− UBy(V

R − v∗)
V VB

)
(5.24)
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and

|G2y| ≤ C(|V R
yy|+ |V R

y |2 + |V R
y ||VBy|(5.25)

+ |UByy||V R − v∗|+ |UBy||V R − v∗||VBy|).
From Lemma 5.2 and (5.25), we have∫ ∞

0

|G2y|dy ≤ C(‖V R
yy‖L1 + δe−ct + ε

1
6 (1 + t)−

5
6 ).(5.26)

Thus, ∫ t

0

∫ ∞
0

|G2y||ψ|dydτ

≤ C
∫ t

0

‖ψ‖ 1
2 ‖ψy‖ 1

2 (‖V R
yy‖L1 + δe−ct + ε

1
6 (1 + t)−

5
6 )dτ

≤ λ
∫ t

0

‖ψy‖2 + C
(∫ t

0

δ
2
5 ‖V R

yy‖
4
3

L1 + δ
26
15 e−ct + ε

2
9 δ

2
5 (1 + τ)−

10
9 dτ

)
≤ λ

∫ t

0

‖ψy‖2dτ + Cε 1
6 δ

2
5 + Cδ

26
15

≤ λ
∫ t

0

‖ψy‖2dτ + Cδ 7
5

(5.27)

if ε = O(δ6), where λ is a small positive constant. Therefore, we have the following
estimate:

‖(φ, ψ)(t)‖2 +
∫ t

0

‖ψy(τ)‖2dτ + δ 1
2

∫ t

0

ψ2(0, τ)dτ

+δ
1
2

∫ t

0

∫ +∞

0

VByφ
2dydτ+

∫ t

0

∫ +∞

0

UR
y φ

2dydτ

≤ C‖(φ, ψ)(0)‖2 + Cδ2
∫ t

0

‖φy(τ)‖2dτ + Cδ 27
20 .

(5.28)

Remark 5.1. If we choose the approximate waves (V R, UR) defined by (5.8)
instead of the waves in [19], and let ε be suitably small, then it is not difficult to extend
the stability theorem of [19] to the strong rarefaction wave by the same method.

The estimates of higher order derivatives are also obtained, though the calcula-
tions are rather tedious. Thus, we have the following theorem.

Theorem 5.3 (the case (v+, u+) ∈ R2TWv̄(vb, 0)). For any given 0 < v̄ <
vb < +∞, assume that (v+, u+) ∈ R2TWv̄(vb, 0). Define (V,U)(y, t) by (5.12). Then
there exist positive constants δ0 and C0. If v∗ − vb = δ ≤ δ0, v0(y) − V (y, 0) ∈ H1

0 ,

u0(y) − U(y, 0) ∈ H1, and ‖v0 − V (y, 0), u0 − U(y, 0)‖1 ≤ C0δ
3
5 , then there exists a

global solution (v(x, t), u(x, t), x(t)) to (1.12) satisfying

(v − V, u− U)(x, t) ∈ C(0,+∞;H1(x(t),+∞)),

(v − V )x(x, t) ∈ L2(0,+∞;L2(x(t),+∞)),

(u− U)x(x, t) ∈ L2(0,+∞;H1(x(t),+∞)), x(t) ∈ C1([0,+∞)),
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x′(t)− s̄ ∈ L2(0,+∞),

and

sup
x≥x(t)

|(v, u)(x, t)− (V,U)(x− x(t))| → 0 as t→ +∞.

Remark 5.2. Theorem 5.3 implies that it is not necessary for the 2-rarefaction
wave to be weak, though the traveling wave solution is necessarily weak.

Acknowledgments. We would like to thank the referees, whose comments led
to considerable improvement in this paper.

REFERENCES

[1] E. Fermi, Thermodynamics, Dover, New York, 1956.
[2] A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood

Cliffs, NJ, 1964.
[3] J. Goodman, Nonlinear asymptotic stability of viscous shock profiles for conservation laws,

Arch. Ration. Mech. Anal., 95 (1986), pp. 325–344.
[4] W. Grenier, L. Neise, and H. Stocker, Thermodynamics and Statistical Mechanics,

Springer-Verlag, New York, 1995.
[5] F.M. Huang, A. Matsumura, and X.D. Shi, Viscous Shock Wave and boundary layer solution

to an inflow problem for compressible viscous gas, Comm. Math. Phys., to appear.
[6] A.M. Il’in and O.A. Oleinik, Behavior of the solutions of the Cauchy problem for certain

quasi linear equations for unbounded increase of time, Trans. Amer. Math. Soc., 42 (1964),
pp. 19–23.

[7] I.A. Kaliev and A.V. Kazhikhov, Well-posedness of a gas-solid phase transition problem, J.
Math. Fluid Mech., 1 (1999), pp. 282–308.

[8] S. Kawashima and Y. Nikkuni, Stability of stationary solutions to the half-space problem for
the discrete Boltzmann equation with multiple collisions, Kyushu J. Math., 54 (2000), pp.
233–255.

[9] S. Kawashima and S. Nishibata, Stability of Stationary Waves for Compressible Navier-Stokes
Equations in the Half Space, in preparation.

[10] A. Kazhikhov, On the theory of boundary value problems for equations of the one-dimensional
time dependent motion of a viscous heat-conducting gas, Comm. Math. Phys., 82
(1981/1982), pp. 37–62 (in Russian).

[11] T.P. Liu, Nonlinear stability of shock waves for viscous conservation laws, Mem. Amer. Math.
Soc., 56 (1985).

[12] T.P. Liu, A. Matsumura, and K. Nishihara, Behaviors of solutions for the Burgers equation
with boundary corresponding to rarefaction waves, SIAM J. Math. Anal., 29 (1998), pp.
293–308.

[13] A. Matsumura, Inflow and outflow problems in the half space for a one-dimensional isentropic
model system of compressible viscous gas, Methods Appl. Anal., 8 (2001), pp. 645–666.

[14] A. Matsumura and M. Mei, Convergence to travelling fronts of solutions of the p-system with
viscosity in the presence of a boundary, Arch. Ration. Mech. Anal., 146 (1999), pp. 1–22.

[15] A. Matsumura and K. Nishihara, On the stability of traveling wave solutions of a one-
dimensional model system for compressible viscous gas, Japan J. Appl. Math., 2 (1985),
pp. 17–25.

[16] A. Matsumura and K. Nishihara, Asymptotics toward the rarefaction wave of the solutions
of a one-dimensional model system for compressible viscous gas, Japan J. Appl. Math., 3
(1986), pp. 1–13.

[17] A. Matsumura and K. Nishihara, Global stability of the rarefaction wave of a one-
dimensional model system for compressible viscous gas, Comm. Math. Phys., 144 (1992),
pp. 325–335.

[18] A. Matsumura and K. Nishihara, Global asymptotics toward the rarefaction wave for solu-
tions of viscous p-system with boundary effect, Quart. Appl. Math., 58 (2000), pp. 69–83.

[19] A. Matsumura and K. Nishihara, Large time behaviors of solutions to an inflow problem
in the half space for a one-dimensional system of compressible viscous gas, Comm. Math.
Phys., 222 (2001), pp. 449–474.



GAS-SOLID FREE BOUNDARY PROBLEM 1355

[20] T. Nagasawa, On the one-dimensional free boundary problem for the heat-conductive com-
pressible viscous gas, in Recent Topics in Nonlinear PDE IV, Kyoto, 1988, Lecture Notes
in Numer. Appl. Anal. 10, Kinokuniya, Tokyo, 1989, pp. 83–99.

[21] S. Osher and J. Ralston, L1 stability of travelling waves with applications to convective
porous media flow, Comm. Pure Appl. Math., 35 (1982), pp. 737–751.

[22] D.H. Sattinger, On the stability of waves of nonlinear parabolic systems, Advances in Math.,
22 (1976), pp. 312–355.

[23] X.D. Shi, Asymptotic toward the rarefaction wave to an inflow problem for viscous p-system,
supersonic case, Acta Math. Appl. Sinica, to appear.

[24] A. Szepessy and Z.P. Xin, Nonlinear stability of viscous shock waves, Arch. Ration. Mech.
Anal., 122 (1993), pp. 53–103.



ANALYSIS OF A SEMILINEAR PDE FOR MODELING
STATIC SOLUTIONS OF JOSEPHSON JUNCTIONS∗
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Abstract. A semilinear elliptic partial differential equation problem that models the static (zero
voltage) behavior of a Josephson window junction is considered. A priori estimates and differential
properties of the solution are obtained. The existence of the solutions is shown and iterative methods
for solving this problem are analyzed. Experimental numerical data that couple with the theoretical
results are presented. Useful physical information is extracted from our analysis

Key words. semilinear elliptic equations, a priori estimates, Josephson window junction

AMS subject classifications. 35J25, 35Q53

PII. S0036141002303673

1. Introduction. A Josephson junction is a weak link between two supercon-
ducting films separated by a thin oxide layer enabling the tunneling of Cooper pairs
of electrons. The steady state operation under the action of an external magnetic
field and bias with a constant external current is described by a semilinear elliptic
partial differential equation (PDE) with a sinusoidal nonlinearity which arises from
the Josephson tunneling current. The quantity that completely describes the elec-
tromagnetic properties of such a device is the difference φ(x, y) of the phases of the
superconducting order parameters in the two films. The response of the junction to
an external current and magnetic field depends crucially on the ratio of the junction
dimensions L (length) andW (width) to the characteristic length of the problem, the
Josephson penetration depth λj . Short junctions for which L,W < λj are widely used
in the static case (zero voltage) for magnetic field detection. When φ becomes time
dependent the governing equation is of hyperbolic type, and such small junctions are
used for voltage standard, while long junctions (L > λj >W) are very high frequency
oscillators (> 100 GHz) used in astrophysical measurements. An in-depth presenta-
tion of the physics and the technological applications of Josephson junctions can be
found in [2].

The main difficulty of the resonant fluxon operation of a long junction is its low
energy output compounded by a strong impedance mismatch at the boundaries. The
coupling of the Josephson junction to a cavity in the so-called window design allows a
better impedance matching [6, 4]. It is also interesting for tailoring the static or zero
voltage behavior of the device for specific purposes [10] like increasing the maximum
allowed bias current in the absence of magnetic field. An extension of this model to
inhomogeneous critical current density can be relevant for high Tc superconducting
materials with grain boundaries [7]. Finally static solutions can be considered as
fixed points and play an important role in computing the solutions of the associated

∗Received by the editors March 13, 2002; accepted for publication (in revised form) July 24,
2002; published electronically May 12, 2003. This work was supported in part by a French–Greek
collaboration agreement and PENED grant 2028.

http://www.siam.org/journals/sima/34-6/30367.html
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hyperbolic time-dependent problem. In [4] we proposed a semilinear PDE problem
which accurately and effectively modeled the static behavior of a window Josephson
junction. This model enabled us to predict specific effects depending on the size of
the cavity, such as the rescaling of λj and the increase of the maximum current for
zero magnetic field [5].

If an annular geometry is considered, the periodic boundary conditions are ap-
propriate and in this case an exhaustive classification and stability analysis of the
solutions has already been carried out in one and two space dimensions including
time [8]. For this geometry one is limited only to solutions with integer number of
fluxons. Note, however, that this eliminates many of the interesting physical solutions
that arise due to the finite size and the possibility of continuously introducing flux
from the boundaries as we vary the magnetic field H.

The static two-dimensional Josephson junction problem was solved numerically
by Barone et al. [1] only in the homogeneous junction case by introducing a damping
term. This transforms the equation into a semilinear diffusion equation which can be
discretized using explicit finite differences. A careful choice of the initial condition can
lead to stable static solutions, but this cannot be guaranteed in general. In particular
the junction with inhomogeneous properties requires special care. In all cases the
multiplicity of solutions makes the choice of initial conditions very important, so that
we need to address the static problem directly. Notice also that both the proof of the
existence of a solution and some regularity estimates can be obtained easily in this
time-dependent case but that these results cannot be extended to the static limit,
which turns out to be a more difficult problem.

The derivation of this PDE model together with preliminary numerical experi-
ments was presented in [4] and is briefly discussed in section 2, where comments on
several mathematical peculiarities inherent in our problem are also included. In par-
ticular the periodic nonlinear right-hand side and the Neumann boundary conditions
lead to an obvious nonuniqueness of the solution. Note also that the coefficients of
the operator are nonsmooth. Using the additional variable method proposed in [11]
and [17, 18], we first obtain a priori estimates on the gradient of the solution that
are of physical interest. We then prove, under certain assumptions, the existence and
uniqueness of the solution and the convergence of a fixed point linearization method.
The study of the stability of the solutions is under way and will not be considered
here. In particular we obtain in section 3 a priori estimates of the gradient of the
solution of φ and show that the gradients are Hölder continuous functions. Based
on these estimates we prove in section 4 the existence of the solution and show that
a generalized second derivative exists in L2. Assuming that the domain is narrow
enough, we show, in the case of zero Neumann boundary conditions in one direction,
that the solution does not depend on the associated variable. In section 5 we obtain
additional estimates for the solution and its first derivatives only in terms of the ex-
ternal current and the magnetic field applied to it. Furthermore, assuming that the
solution is in a given interval, we improve our a priori estimates. In section 6 we prove
the convergence of an iterative method for linearizing the semilinear PDE problem.
Numerical results that couple with our theoretical results are presented in section 7,
which also discusses their physical relevance. Our conclusions are given in section 8.

2. The mathematical Josephson window junction model. Figure 2.1 shows
a window junction for the case where the window Ωj is a rectangle of size �×w cen-
tered in Ω. The spatial variation of the difference φ of the superconducting phases in
both superconductors is modeled accurately in the case where the surface inductances
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Fig. 2.1. A window Josephson junction.

are equal in the junction and the idle region by the equation

∂2φ

∂x2
+

∂2φ

∂y2
= Ij(x, y) sin(φ) in Ω ≡

(
−L
2
,
L
2

)
×
(
−W

2
,
W
2

)
,(2.1)

coupled with the boundary conditions

∂φ

∂x

∣∣∣∣x=−L
2
= H − α1,

∂φ

∂x

∣∣∣∣
x=L

2

= H+α2,
∂φ

∂y

∣∣∣∣y=−W
2
= −δ1, ∂φ

∂y

∣∣∣∣
y=W

2

= δ2,(2.2)

where all lengths have been normalized by λj . Physically Ij in (2.1) is the indicator
function of the domain Ωj and is discontinuous. Although in the derivation of the
results that will follow we have assumed that Ij is continuous, we will see that all our
results are independent of the smoothness of Ij .

The model given in (2.1) can be made more realistic by including the difference
in the surface inductances in the superconducting and junction regions, which leads
to the equation

∂

∂x

(
1

L̃(x, y)

∂φ

∂x

)
+

∂

∂y

(
1

L̃(x, y)

∂φ

∂y

)
= Ij(x, y) sin(φ),

where L̃ is the normalized surface inductance. We believe that the analysis presented
below can be extended to cover the case where L̃(x, y) is strictly positive and differ-
entiable.

The boundness of the right-hand side of (2.1) determines the maximum allowed
values for α1, α2, δ1, and δ2. To see this, integrate both sides of (2.1) and use Green’s
theorem to obtain∫

Ωj

sinφdxdy =

∫
Ω

∇(∇φ)dxdy =

∫
∂Ω

∂φ

∂n
ds = (α1 + α2)W + (δ1 + δ2)L,

from which we have that

|(α1 + α2)W + (δ1 + δ2)L| ≤ µ(Ωj),(2.3)
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jµ(Ωj

µ(Ω

j

j

−µ(Ω

−µ(Ω

W)/ )/

)/

)/

α1 + α2

δ1+δ2

L

L

W

Fig. 2.2. Allowed values for α’s and δ’s.

where µ(Ωj) is the measure of the window domain Ωj . From (2.3) we easily see that
our PDE problem has no solutions if the α’s and δ’s are outside the rhombus shown
in Figure 2.2.

Physically H corresponds to an external magnetic field applied in the y-direction
which induces a gradient of φ along the x-direction. α’s and δ’s are current densities
flowing through the device along the x- and y-directions, respectively. They can be
assumed to be positive and constant. As can be seen in Figure 2.2 the sum of these
currents cannot exceed the maximum critical current of the junction, which is the
measure of Ωj .

Notice also that if φ is a solution of the problem, then φ + 2kπ, k ∈ Z, is also a
solution. This defines an equivalence class, so that solutions can be classified in terms
of their fluxon content nf� defined by

nf� ≡
(
sup
Ω

φ− inf
Ω

φ

)
/(2π).

We also define the oscillation of φ(x, y) with respect to the variable x (and similarly
for the variable y) as

oscxφ ≡ sup
y

(
sup
x

φ− inf
x

φ

)
.(2.4)

Depending on the boundary conditions we can have (see [4]) a one-fluxon solution
where the oscillation is between 0 and 2π, a two-fluxon solution where the oscillation
is between 0 and 4π, and so on. These different solutions will have different regions
of existence and different stability properties with respect to a perturbation of the
boundary conditions, and as the current is increased only one will subsist. This
solution gives the maximum current at zero voltage of the junction, which can be
observed experimentally to indicate the quality of the junction. In the inline config-
uration α1 = α2 = α, δ1 = δ2 = 0, in the absence of an idle region (Ωj = Ω), Owen
and Scalapino showed that the maximum current for H = 0 is 4W [15]. For that
they reduced the problem to one dimension and wrote the solution in terms of elliptic
functions. In the same geometry but with the overlap design for which α1 = α2 = 0
δ1 = δ2 = δ, the problem can be reduced to a one-dimensional equation only for
W < 2 [3], yielding a maximum current for H = 0 of L × W. When W > 2 the
current for H = 0 saturates, as expected, to 4× L, and transverse modes are needed
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for the description [3]. The presence of an idle region (Ωj �= Ω) has important effects
on the behavior of the junction. In particular the characteristic length is larger than
λJ ≡ 1, which leads to an increase of the maximum current for H = 0.

An important case is when the device is symmetric with respect to the center.
Then if δ1 = δ2, one can assume the solution to be symmetric with respect to the
horizontal middle line, and if the x boundary conditions are antisymmetric, i.e., α1 =
α2 and H = 0, the solution will be symmetric with respect to the vertical middle line,
so that just a quarter of the device might be considered. A priori estimates have been
derived for these cases also.

Notice also that the solution of the PDE problem is a minimum of the free energy
functional

F =

∫
Ω

[
1

2

(
∂φ

∂x

)2

+
1

2

(
∂φ

∂y

)2

+ Ij (1− cosφ))

]
dxdy

−
∫ W

2

−W
2

[
(H − α1)φ

(
−L
2
, y

)
− (H + α2)φ

(L
2
, y

)]
dy

−
∫ L

2

−L
2

[
−δ2φ

(
x,
W
2

)
− δ1φ

(
x,−W

2

)]
dx.

Due to the multiplicity of solutions there are several minima. In the simple case where
the boundary conditions are nonzero only in x or y and Ω ≡ Ωj , the y or x dependence
can be neglected and the last term of the free energy can be significantly simplified.

3. A priori estimates of the gradient. The main objective of this section
is to obtain estimates of the gradient of the solution that are of practical interest
in either proving the existence of the solution or measuring the gradient in terms
of physical quantities. Estimates of the gradient in terms of the maximum of the
solution are easily obtained from well-known results [13, 9]. In this section we obtain
a priori estimates for the gradient of a classical solution of the proposed PDE model
only in terms of the size of the domain and the physical parameters of the problem.
Note that the estimates obtained below are independent of the solution and cannot
be obtained from classical results [13, 9].

We start by homogenizing the problem (2.1)–(2.2) by setting u ≡ φ− f with

f ≡ Hx+
α1

2L
(
x− L

2

)2

+
α2

2L
(
x+
L
2

)2

+
δ1
2W

(
y − W

2

)2

+
δ2
2W

(
y +
W
2

)2

to get from (2.1) and (2.2) that

∂2u

∂x2
+

∂2u

∂y2
= Ij sin(u+ f)− α1 + α2

L − δ1 + δ2
W in Ω(3.1)

and

∂u

∂x

∣∣∣∣
x=±L

2

=
∂u

∂y

∣∣∣∣
y=±W

2

= 0.(3.2)

In what follows, without explicitly stating, we assume that the indicator function
Ij is smooth. This assumption is set only to guarantee the existence of a classical
solution of the problem and does not affect the result of the lemmas since we do
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not have any smoothness requirements. In practice these indicator functions are
discontinuous (i.e., Ij(x, y) is 1 if (x, y) ∈ Ωj and 0 otherwise). To treat such Ij we
can consider a continuously differentiable function Iδj ∈ C1

(
Ω
)
, 0 ≤ Iδj ≤ 1, such

that Iδj → Ij *weak in L∞ for which the analysis that will follow is valid. Therefore
in what follows and for simplicity in the notation we will use the symbol Ij instead
of Iδj .

Lemma 3.1. For any classical solution u(x, y) of the problem (3.1)–(3.2) we have
that

|ux| ≤ L, |uy| ≤ W.(3.3)

Proof . We start by writing (3.1) at a point (ξ, y) ∈ Ω with ξ �= x as

∂2u(ξ, y)

∂ξ2
+

∂2u(ξ, y)

∂y2
= Ij(ξ, y) sin (u(ξ, y) + f(ξ, y))− α1 + α2

L − δ1 + δ2
W .(3.4)

Now define the function v(x, y, ξ) ≡ u(x, y)− u(ξ, y), for which, by subtracting (3.4)
from (3.1), we have

∂2v

∂x2
+

∂2v

∂y2
+

∂2v

∂ξ2
= Ij(x, y) sin (u(x, y) + f(x, y))− Ij(ξ, y) sin (u(ξ, y) + f(ξ, y)) ,

and thus

∂2v

∂x2
+

∂2v

∂y2
+

∂2v

∂ξ2
≥ −2.(3.5)

Now consider the prism

P1 =

{
(x, ξ, y) : |x| < L

2
, |ξ| < L

2
, |y| < W

2
, x− ξ > 0

}
and the ordinary differential equation problem

h′′(τ) = −1, with h(0) = 0 and h′(L) = ε,(3.6)

where ε is a positive constant. The solution of (3.6) is given by h(τ) = − τ2

2 +τ(L+ε).
Define the function ω(x, y, ξ) ≡ v(x, y, ξ)−h(x− ξ) and take into account (3.5) to get
that

∂2ω

∂x2
+

∂2ω

∂y2
+

∂2ω

∂ξ2
≥ 0,(3.7)

from which, using the strong maximum principle (see Lemma 3.5 in [9]), we conclude
that ω does not achieve its maximum value in P1 unless it is a constant function. On
the boundary sector defined by x = L

2 , |y| ≤ W2 , and −L2 ≤ ξ < L
2 we have that

∂ω(L2 , y, ξ)
∂x

=
∂u(L2 , y)

∂x
− h′

(L
2
− ξ

)
= −h′

(L
2
− ξ

)
< 0.

Since x is the outward normal to the domain, ω does not achieve its maximum on
this part of the boundary. On the boundary sector defined by ξ = −L2 , |y| ≤ W2 , and

−L2 < x ≤ L2 we have that

∂ω(x, y,−L2 )
∂ξ

= −∂u(−L2 , y)
∂ξ

+ h′
(
x+
L
2

)
= h′

(
x+
L
2

)
> 0,
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and since ξ is the inward normal we conclude that the maximum of ω is not achieved
on this part of the boundary either. On the planes y = ±W2 , |x| < L

2 , and |ξ| < L
2 we

have that

∂ω(x,±W2 , ξ)

∂y
=

∂u(x,±W2 )

∂y
− ∂u(ξ,±W2 )

∂y
= 0,

and assuming that ω is not a constant function we have, from Lemma 3.4 in [9],
that ω does not achieve its maximum on these boundary planes either. Therefore,
the maximum is achieved at x = ξ, and since ω(x, y, ξ)|x=ξ = 0 we have that the
inequality

u(x, y)− u(ξ, y) ≤ h(x− ξ)

holds in Ω, which, as can be easily seen, becomes an equality if ω is a constant
function.

Subtracting relation (3.1) from (3.4) and applying the above analysis we obtain
that

u(ξ, y)− u(x, y) ≤ h(x− ξ),

and hence

|u(x, y)− u(ξ, y)| ≤ h(x− ξ) for x > ξ.

Working in a similar way (or directly obtained by symmetry) for x < ξ we easily see
that

|u(x, y)− u(ξ, y)| ≤ h(|x− ξ|)− h(0).

By dividing the last relation by |x−ξ| and taking the limit, we have that
∣∣∂u
∂x

∣∣ ≤ h′(0)
and finally obtain the first of the following inequalities (when ε→ 0), while the second
can be obtained similarly.

sup
(x,y)∈Ω

∣∣∣∣∂u(x, y)∂x

∣∣∣∣ ≤ L, sup
(x,y)∈Ω

∣∣∣∣∂u(x, y)∂y

∣∣∣∣ ≤ W.

Remark 3.1. As a direct consequence of the above lemma, we easily get the
following estimates for the gradient of the solution of the problem (2.1)–(2.2):

−L+H +
α1 + α2

L x+
α2 − α1

2
≤ ∂φ

∂x
≤ L+H +

α1 + α2

L x+
α2 − α1

2
(3.8)

and

−W +
δ1 + δ2
W y +

δ2 − δ1
2

≤ ∂φ

∂y
≤ W +

δ1 + δ2
W y +

δ2 − δ1
2

.(3.9)

It is worth noting here that as it follows from (3.8) φx > 0 in the case of large magnetic
field H. This is consistent with the physical properties of Josephson junctions [2].

Next we obtain sharper estimates by making certain assumptions, on typical
junction’s size, on the domain.
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Lemma 3.2. (a) Suppose that Ij depends only on the variable y. If L < 2, then
for any classical solution u(x, y) of the problem (2.1)–(2.2) we have

|ux| ≤ L2f1

4− L2
,(3.10)

where f1 = max |fx(x, y)|.
(b) Suppose that Ij depends only on the variable x. If W < 2, then for any

classical solution u(x, y) of the problem (2.1)–(2.2) we have

|uy| ≤ W2f2

4−W2
,(3.11)

where f2 = max |fy(x, y)|.
Proof. Arguing in the same manner as in the proof of Lemma 3.1, for v(x, y, ξ) =

u(x, y)− u(ξ, y) we obtain

∂2v

∂x2
+

∂2v

∂y2
+

∂2v

∂ξ2
= Ij(y) (sin (u(x, y) + f(x, y))− sin (u(ξ, y) + f(ξ, y))) ,(3.12)

and thus (from Lemma 3.1 we already have that |ux| ≤ L)

∂2v

∂x2
+

∂2v

∂y2
+

∂2v

∂ξ2
≥ −L(x− ξ) for x > ξ.(3.13)

Consider the prism

P1 =

{
(x, ξ, y) : |x| < L

2
, |ξ| < L

2
, |y| < W

2
, x− ξ > 0

}
,

and let h1(τ) be a solution of the problem

h′′1(τ) = −
L+ f1

2
τ, h1(0) = 0, and h′1(L) = ε > 0.(3.14)

Obviously for h1 = h1(x− ξ) we have

∂2h1

∂x2
+

∂2h1

∂y2
+

∂2h1

∂ξ2
= −(L+ f1)(x− ξ).(3.15)

Subtracting (3.15) from (3.13) for ω(x, y, ξ) ≡ v(x, y, ξ)− h1(x− ξ) we obtain that

∂2ω

∂x2
+

∂2ω

∂y2
+

∂2ω

∂ξ2
≥ 0.(3.16)

Arguing analogously to the proof of Lemma 3.1 we have

|ux(x, y)| ≤ h′1(0) =
L+ f1

4
L2 + ε,

and passing to the limit when ε→ 0,

|ux(x, y)| ≤ L+ f1

4
L2 ≡ L1.
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Returning back to (3.12) and taking into account that now |ux| ≤ L1 we obtain

∂2v

∂x2
+

∂2v

∂y2
+

∂2v

∂ξ2
≥ −(L1 + f1)(x− ξ) for x > ξ.(3.17)

Construct the function

h′′2(τ) = −
L1 + f1

2
τ, h2(0) = 0, and h′2(L) = ε.(3.18)

In a similar manner as above we conclude that

|ux(x, y)| ≤ h′2(0) =
L1 + f1

4
L2 + ε,

and letting ε→ 0 we have

|ux(x, y)| ≤ L1 + f1

4
L2 =

(L
2

)4

(L+ f1) +

(L
2

)2

f1 ≡ L2.

Continuing this procedure we obtain the sequence of the bounds for |ux|,

Ln =

(L
2

)2n

L+ f1

[(L
2

)2n

+

(L
2

)2(n−1)

+ · · ·+
(L
2

)4

+

(L
2

)2
]
.

If L < 2, then
(L

2

)2n L → 0 when n→∞, and the second term

f1

[(L
2

)2n

+ · · ·+
(L
2

)2
]
→ f1

L2

4− L2
.

This concludes the proof of part (a); the proof of part (b) is similar.
Remark 3.2. Recall that u ≡ φ − f and use the above lemma to obtain the

following estimates in terms of φ:

− L
2f1

4− L2
+H+

α1 + α2

L x+
α2 − α1

2
≤ ∂φ

∂x
≤ L2f1

4− L2
+H+

α1 + α2

L x+
α2 − α1

2
.(3.19)

In particular, if f1 = H = α1 = α2 ≡ 0, then ∂φ
∂x ≡ 0.

− W
2f2

4−W2
+

δ1 + δ2
W y +

δ2 − δ1
2

≤ ∂φ

∂y
≤ W2f2

4−W2
+

δ1 + δ2
W y +

δ2 − δ1
2

.(3.20)

In particular, if f2 = δ1 = δ2 ≡ 0, then ∂φ
∂y ≡ 0.

Remark 3.3. If δ1 = δ2 = 0, Ij = Ij(x), and W < 2, then our problem becomes
one-dimensional: φ(x, y) = φ(x) and (2.1)–(2.2) take the form

φ′′(x) = Ij(x) sinφ(x), φ′
(
−L
2

)
= H − α1, φ′

(L
2

)
= H + α2.(3.21)

Lemma 3.3. The first order derivatives of the classical solution of problem (2.1)–
(2.2) are Hölder continuous with the Hölder coefficient and exponent depending only
on ||∂φ∂x ||L2(Ω), ||∂φ∂y ||L2(Ω), and α1, α2, δ1, δ2,L, and W .

The bounds on the Hölder norm of the gradient follow from Theorem 9.11 in [9].
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4. Existence and uniqueness. In this section we show, under certain condi-
tions, the existence and the uniqueness of a solution of the PDE problem (3.1)–(3.2)
(and therefore of the problem (2.1)–(2.2)). We start by giving the definition of the
generalized solution.

Definition 4.1. We call a function u(x, y) ∈ C1,α(Ω) ∩W 2
2 (Ω) a generalized

solution of the PDE problem (3.1)–(3.2) if it satisfies the integral identity∫
Ω

(uxx + uyy − Ij sin(u+ f)− g)ψdxdy = 0 ∀ψ ∈ L2(Ω)(4.1)

and the boundary conditions (3.2), where g ≡ −α1+α2

L − δ1+δ2
W .

4.1. Existence. We start by assuming that Ij is smooth and consider the aux-
iliary problem

∆v = κIj
(
sin(v + f)− 1

µ(Ωj)

∫
Ωj

sin(v + f)dxdy

)
in Ω,(4.2)

∂v

∂n
= 0 on ∂Ω,(4.3)

and

1

µ(Ω)

∫
Ω

vdxdy = ζ,(4.4)

where κ ∈ [0, 1] and ζ is an arbitrary fixed real number. Recall that by µ(Ω) we
denote the measure of Ω. We will show that a solution v ∈ C1,γ(Ω̄) ∩ C3(Ω) of the
auxiliary problem (4.2)–(4.4) exists. For this we define ψ ≡ v− ζ and write the above
problem in the following equivalent form:

∆ψ = κIj
[
sin(ψ + ζ + f)− 1

µ(Ωj)

∫
Ωj

sin(ψ + ζ + f)dxdy

]
in Ω,(4.5)

∂ψ

∂n
= 0 on ∂Ω,(4.6)

and ∫
Ω

ψdxdy = 0.(4.7)

As we easily see, the only difference between (3.1) and (4.5) is a bounded constant term
on the right-hand side. Hence the estimates obtained in the lemmas in the previous
section hold for (4.5)–(4.6) too. We can also observe that ψ becomes zero at least at
one point in Ω so that using the estimate of the gradient (which are independent of
the max |ψ|) we can obtain a bound for the maximum of |ψ| in the domain Ω̄. We
are in the position now to use the Leray–Schauder theorem [9, Theorem 11.3] (see the
appendix) to prove the existence of the generalized solution of problem (4.2)–(4.4).

Leray–Schauder theorem. Let T be a compact mapping from a Banach space
B to itself, and suppose there exists a constant M such that ||u||B < M for all u ∈ B
and κ ∈ [0, 1] satisfying u = κTu. Then T has a fixed point.
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We now address the case of a nonsmooth function Ij .
Lemma 4.2. For the classical solution of the PDE problem (4.2)–(4.4) for ζ = 1

the following inequality holds:∫
Ω

[(
∂2v

∂x2

)2

+ 2

(
∂2v

∂x∂y

)2

+

(
∂2v

∂y2

)2
]
dxdy ≤ 4µ(Ωj).(4.8)

Proof. We square both sides of (4.2), integrate them two times (using integration
by parts for the second term on the left-hand side). Then the use of the boundary
conditions easily gives the above bound.

Obviously the classical solution v satisfies the integral identity (4.1), i.e.,∫
Ω

(
∂2v

∂x2
+

∂2v

∂y2
− Iδj sin(v + f) +

1

µ(Ω)

∫
Ωj

sin(v + f)dxdy

)
ψdxdy = 0 ∀ψ ∈ L2(Ω).

(4.9)
Taking the limit, as δ → 0 we readily obtain the existence of the generalized solution.

Let us fix arbitrarily ζ = ζ0. For this ζ0 we find the generalized solution of the
problem (4.2)–(4.4) for κ = 1. In order to obtain the existence of the original problem
we need to find boundary conditions such that

R(c) = c,(4.10)

where

c ≡ µ(Ωj)

(
α1 + α2

L +
δ1 + δ2
W

)
and

R(c) ≡
∫

Ωj

sin(v + f)dxdy.

Note that R satisfies the inequality |R| < µ(Ωj), and observe, assuming that R
continuously depends on c, that it is impossible to have R < c for c varying from
µ(Ωj) to −µ(Ωj). Hence there exists such c0 that verifies (4.10). For this c0 the
solution of the auxiliary problem (4.2)–(4.4) coincides with the solution of the original
one (2.1)–(2.2). Mark that the assumption on the continuity of R is satisfied in the
cases of the uniqueness of the solution of the auxiliary problem. Such uniqueness can
be proved following an analysis similar to the one presented in Theorem 4.4. From
the above we readily obtain the following theorem.

Theorem 4.3. If the solution of the problem (4.2)–(4.4) is unique, then for any
ζ ∈ R we can find values for H,α1, α2, δ1, and δ2 for which there exists a generalized
solution φ of the problem (2.1)–(2.2) such that

1

µ(Ω)

∫
Ω

(φ− f)dxdy = ζ.(4.11)

Let us note that Theorem 4.3 also holds if condition (4.11) is replaced by

(φ− f)|(x0,y0)
= ζ, (x0, y0) ∈ Ω.

To prove this, one has to carry out an analysis similar to the above, which is lengthy
and tedious and so will not be presented here.
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4.2. Uniqueness. It has been observed both numerically and experimentally
[2, 3, 4] and it is intuitively expected that our PDE problem might have more than
one nontrivial solution. In the case when L < 2 and W < 2 we can easily see from
Lemma 3.2 that the only solution is nπ, n = 0,±1,±2, . . . . An extensive theoretical
and experimental bifurcation analysis is under way and will be presented elsewhere.
Nevertheless, as we show below, under certain conditions only one solution exists.

Theorem 4.4. Assume that either
(a) L < 2, w <

√
2, Ij = Ij(y), and H = α1 = α2 = 0, or

(b) W < 2, � <
√
2, Ij = Ij(x), and δ1 = δ2 = 0.

Then the generalized solution u of (3.1)–(3.2) satisfying the condition

1

µ(Ω)

∫
Ω

udxdy = ζ,(4.12)

where ζ is an arbitrarily given constant, is unique.
Proof. From Lemma 3.2 it follows that ux ≡ 0. Thus we have

uyy = Ij(y) sin(u+ f)− δ1 + δ2
W in Ω,(4.13)

uy

(
±W

2

)
= 0,(4.14)

and ∫ W
2

−W
2

udy = ζ.(4.15)

Suppose now that there exist two different solutions u and v, both satisfying
condition (4.15), i.e., ∫ W

2

−W
2

udy =

∫ W
2

−W
2

vdy.(4.16)

This implies that u and v cross each other. Now let σ ≡ u− v and observe that

σyy = Ij(y) (sin(u(y) + f(y))− sin(v(y) + f(y))) = Ij(y)σ cos θ.(4.17)

Suppose that u and v intersect at a point y0. Consider the two cases

(α) y0 /∈
[
−w

2
,
w

2

]
, (β) y0 ∈

[
−w

2
,
w

2

]
.(4.18)

In (α) consider the case y0 ∈
(−W2 , w2

]
. In the interval

(−W2 , y0

)
we have σyy = 0

and σy(−W2 ) = σ(y0) = 0. Hence σ ≡ 0 ∈ (−W2 , y0

)
. Therefore, due to the analyticity

of σ in
(−W2 , w2

]
we have σ ≡ 0 ∈ (−W2 , w2

]
. Similarly we can consider the case

y0 ∈
[
w
2 ,
W
2

)
.

Consider now the (β) case. Multiplying (4.17) by σ and integrating by parts we
get ∫ W

2

y0

σ2
ydy ≤

∫ W
2

y0

Ijσ2dy =

∫ w
2

y0

σ2dy.(4.19)
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Applying the Poincaré inequality we obtain∫ w
2

y0

σ2
ydy ≤

∫ W
2

y0

σ2
ydy ≤

∫ w
2

y0

σ2dy ≤ w2

2

∫ w
2

y0

σ2
ydy.(4.20)

Due to the assumption w <
√
2 we have

∫ w
2

y0
σ2
ydy = 0, and therefore σy ≡ 0. Since

σ(y0) = 0 we have σ ≡ 0 and u ≡ v.
We note that there are other cases where one might be able to show this unique-

ness. For example, we have shown that if we assume that the window is such that
� <

√
2 and w <

√
2, then the generalized solution u of (3.1)–(3.2) satisfying the

condition

1

µ(Ω)

∫
Ω

udxdy = ζ,(4.21)

where ζ is an arbitrarily given constant, is unique. The proof of this statement is
similar to the proof of the previous theorem. Since it is rather technical, tedious, and
lengthy it is not included here.

In a manner similar to the above theorem it can be shown that there exist cases
where the solution of the auxiliary problem is unique.

5. Additional estimates. In this section we obtain estimates of the gradient
of the solution of the problem in some special cases that are of physical interest. As
discussed in section 2 it is useful [3, 4, 5] to characterize the solutions of (2.1)–(2.2) by
their oscillations, defined by (2.4). In what follows we derive estimates of the gradient
of the solution as a function of its oscillations in the x- and y-directions.

Lemma 5.1. For any classical solution φ(x, y) of the problem (2.1)–(2.2) we have
that ∣∣∣∣∂φ∂x

∣∣∣∣ ≤√2oscxφ+ (H + α2)2(5.1)

and ∣∣∣∣∂φ∂y
∣∣∣∣ ≤√2oscyφ+ δ2

2 .(5.2)

Proof. We follow the analysis of Lemma 3.1, with the main difference being in
the construction of the barrier h. Specifically we set v(x, y, ξ) ≡ φ(x, y)− φ(ξ, y) and
define h(τ) as the solution of the problem

h′′(τ) = −1, h(0) = 0, h(τ∗) = oscxφ,

where τ∗ will be defined later. We need to compare the functions v and h(x − ξ) in
the prism P2 ∩ {x− ξ < L}, where

P2 =

{
(x, ξ, y) : |x| < L

2
, |ξ| < L

2
, |y| < W

2
, τ∗ > x− ξ > 0

}
,

whose cross-section along the y-axis is given in Figure 5.1. Obviously (see (3.7)) we
have ∆(v − h) ≥ 0 in P2 ∩ {x − ξ < L}, and hence the maximum is not achieved in
the interior of P2 ∩ {x − ξ < L}. We need to check the boundary. When x = ξ and
y ∈ [−W2 , W2 ] we have v − h = 0.
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L/2

τ∗
τ∗

τ∗

x

ξ

-L/2
L/2

-L/2

Fig. 5.1. A cross-section of domain P2 along a plane in the y-direction.

For x − ξ = τ∗ we obtain v − oscxφ ≤ 0 for y ∈ [−W2 , W2 ]. For x = L
2 , ξ ∈

(−τ∗ + L2 , L2 ), and y ∈ [−W2 , W2 ] we have that

∂(v − h)

∂x

∣∣∣∣x=L
2
= H + α2 − h′

(L
2
− ξ

)
.

Similarly if ξ = −L2 , x ∈ (−L2 ,−L2 + τ∗), and y ∈ [−W2 , W2 ], then

∂(v − h)

∂ξ

∣∣∣∣ξ=−L
2
= −(H − α1) + h′

(
x+
L
2

)
.

Therefore if h′ > H + α2 (note that H,α1, α2, δ1, δ2 are positive constants), then

∂(v − h)

∂x

∣∣∣∣x=L
2
< 0,

∂(v − h)

∂ξ

∣∣∣∣
ξ=−L

2

> 0,

and hence we do not have a maximum on these parts of the boundary of P2. Fur-
thermore, since for y = ±L2 , x ∈ (−L2 , L2 ), and for ξ ∈ (−L2 , L2 ) and ξ ∈ (−L2 , L2 ) and
0 < x − ξ < τ∗ we have ∂(v−h)

∂y = 0, we conclude (see Lemma 3.4 in [8]) that we do

not have a maximum here either. It remains to choose τ∗ such that h′(τ) > H + α2

for τ ∈ [0, τ∗]. For this we get

τ∗ < −(H + α2) +
√
(H + α2)2 + 2oscxφ.

As previously we have that

|φx(x, y)| ≤ h′(0) =
oscxφ

τ∗
+

τ∗

2
.

It can be seen that the minimum of h′(0) with respect to τ∗ is achieved when τ∗ =
−(H + α2) +

√
(H + α2)2 + 2oscxφ, from which we obtain relation (5.1).
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For τ∗ ≥ L the only difference is the absence of the boundary x − ξ = τ∗, and
the boundaries x = L

2 , ξ ∈ (−τ∗ + L
2 ),
L
2 , y ∈ [−W2 , W2 ] become x = L

2 , ξ ∈ (−L2 , L2 ,
y ∈ [−W2 , W2 ], and ξ = −L2 , x ∈ (−L2 ,−L2 + τ∗), y ∈ [−W2 , W2 ] become ξ = −L2 ,
x ∈ (−L2 , L2 ), y ∈ [−W2 , W2 ]. We work similarly for the case τ∗ < L

One can obtain relation (5.2) working similarly for the y variable.
Remark . We conclude the discussion in this section by observing that in the

case where α1 = α2 = α and δ1 = δ2 = δ the numerical experiments that we have
conducted, shown in section 7, indicate that a solution of the PDE problem (2.1)–
(2.2) is symmetric along the axis y = 0. To obtain this solution one can reduce the
PDE problem (2.1) to the domain defined by (−L2 , L2 ) × (−W2 , 0) together with the

boundary conditions ∂φ(x,y)
∂x = H ± α on x = ±L/2, ∂φ(x,y)

∂y = δ on y = −W/2, and
∂φ(x,y)
∂y = 0 on y = 0. The solution to the original problem is obtained by applying

symmetry across the y-axis. For the reduced problem the estimates (3.9) and (4.8)
obtained above can be improved to become

−W
2
− 2δ

W y ≤ ∂φ(x, y)

∂y
≤ W

2
− 2δ

W y(5.3)

and ∫ L
2

−L
2

∫ 0

−W
2

[(
∂2φ

∂x2

)2

+ 2

(
∂2φ

∂x∂y

)2

+

(
∂2φ

∂y2

)2
]
dxdy

≤ 1

2
µ(Ωj)

[
1 + 4

(
α

L +
δ

W
)]

+ 2α
HW
L + 5δ2 L

W + 2αδ,(5.4)

respectively.
In the particular case when H = δ = 0 and the junction is placed symmetrically

inside Ω, we have observed the existence of a solution for which the phase is equal
to a constant along the line x = 0 (see the top of Figure 7.2). Although we are
unable to prove their existence, such solutions have been observed in practice, and
their physical justification is well established in the case where no extra fluxons have
entered the interior of the window [4, 5]. For this type of solution we are able to
obtain the following estimations of its size.

Lemma 5.2. For any classical solution φ(x, y) of the problem (2.1)–(2.2) with
H, δ = 0 and αi = a, for which φ = k, k is a constant, at x = 0, we have that

k +
x2

2
+

(L
2
− α

)
x ≤ φ ≤ k − x2

2
−
(
α+
L
2

)
x for − L

2
≤ x ≤ 0,(5.5)

k +
x2

2
−
(L
2
− α

)
x ≤ φ ≤ k − x2

2
+

(L
2
+ α

)
x for 0 ≤ x ≤ L

2
.(5.6)

Proof. To obtain relation (5.5) we consider the domain Ω1 ≡ (−L2 , 0)× (−W2 , W2 ),
and from (3.1) we have

−β − 1 ≤ ∂2u(x, y)

∂x2
+

∂2u(x, y)

∂y2
≤ −β + 1,

where β = 2α
L . We define now the function g(x) ≡ 1−β

2 (x + L
2 )

2 + εx, where ε > 0
and v ≡ u− g. Obviously we have that

∂2v(x, y)

∂x2
+

∂2v(x, y)

∂y2
≤ 0;
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thus v does not achieve its minimum in Ω1 (unless it is a constant). It does not
achieve it on the boundary lines x = −L2 , y ∈ [−W2 , W2 ] (since the derivative in the

x-direction is negative) and y = ±W2 for x ∈ (−L2 , 0) (see Lemma 3.4, p. 34 in [9])
either. So, we conclude that the minimum of v occurs at x = 0, and we have that

v ≥ min (u− g)|x=0 = k − L
2

8
,

and therefore

u ≥ k +
1− β

2
x2 + (1− β)

L
2
x− β

8
L2 + εx.

We now set v̂ ≡ u− ĝ, where ĝ(x) ≡ −β+1
2 (x+ L2 )

2− εx, where ε > 0, from which we
have that

∂2v̂(x, y)

∂x2
+

∂2v̂(x, y)

∂y2
≥ 0.

Using arguments similar to those above we can show that v̂ ≤ max v̂|x=0 to obtain

u ≤ k − β + 1

2
x2 − (β + 1)

L
2
x− β

8
L2 − εx.

To conclude the proof of relation (5.5) we simply repeat the above analysis for the
domain (0, L2 ) × (−W2 , W2 ), use the fact that ε is an arbitrary positive constant, and
simply go from the function u to the function φ.

6. Linearization. For the numerical solution of the semilinear elliptic PDE
problem (2.1)–(2.2) one can linearize the PDE equation by means of the following
fixed point iteration scheme:

Lφ(i) ≡ ∆φ(i) − Ijrφ(i) = Ij
(
sin(φ(i−1))− rφ(i−1)

)
, i = 1, 2, . . . ,(6.1)

where r ≡ r(x, y) is a relaxation function to accelerate the convergence, and it can
be any nonzero function. We start these iterations using an initial guess u(0) of the
solution u obtained using one of the approaches described in [4], and we terminate
them when the max-norm of the difference of two successive approximations of the
solution vector (||φ(i) − φ(i−1)||∞) or the max-norm of the residual of the problem
(||∆φ(i) − I sinφ(i)||∞) is less than a given tolerance. Two obvious choices for that
parameter are r(x, y) = c (constant function) and r(x, y) = cos(φ(i−1)(x, y)). With
the latter one, the iteration scheme (6.1) reduces to the well-known Newton iterative
method [14]. The implementation and the performance of this quadratically converg-
ing method is given in [4], and its convergence analysis is under way and will be
presented elsewhere. For the convergence of (6.1) when r is a positive constant we
have the following theorem.

Theorem 6.1. If c ≡ c(r) is the measure of the smallest eigenvalue of the
operator L, then the iterative method (6.1) converges, from any initial guess φ(0), to
the solution of (3.1)–(3.2) if

1

c

(
1

2
+ r

)
< 1.(6.2)
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Proof. If we denote by e(i) ≡ φ − φ(i) the error at the ith iteration, we see that
for i = 1, 2, . . . we have

Le(i) = Ij
[
cos

(
e(i−1)

2
+ φ

)
sin

(
e(i−1)

2

)
− re(i−1)

]
,

from which we obtain

||Le(i)|| ≤
∥∥∥∥cos(e(i−1)

2
+ φ

)
sin

(
e(i−1)

2

)∥∥∥∥+ r||e(i−1)||.

By expanding the sine term and dropping the cosine term in the above relation we
have for i = 1, 2, . . . that

||Le(i)|| ≤
(
1

2
+ r

)
||e(i−1)||,

from which relation (6.2) can be easily obtained by requiring the amplification factor
to be less than 1.

It is worth pointing out here that the lack of convergence, as one increases the cur-
rent, of the Newton iterative scheme defined above reflects the dynamical instability
of the static solution in the time-dependent sine-Gordon system.

7. Numerical experiments and physical relevance. Using the proposed
PDE model we have built a powerful simulation tool that accurately and effectively
models window Josephson junctions. Our implementation, described in detail in [4],
is based on the ELLPACK infrastructure [16], and its basic components are as follows:
a uniform discretization of the domain Ω using a tensor product of n × n grid lines,
the Newton linearization scheme, and the discretization of the PDE problem (3.1)–
(3.2) using the standard 5-point-star finite difference method. For all experiments we
have used a junction Ω = [0, 12] × [0, 3], and unless otherwise stated the window Ωj
has sizes � = 10 and w = 1 in the x- and y-direction, respectively, and is placed in
the center of Ω. The boundary conditions were selected such that α1 = α2 ≡ α and
δ1 = δ2 ≡ δ.

In Figure 7.1 we present the properties of the Newton linearization scheme with
which we obtained all the numerical data reported here. On the left we see the history
of convergence during the first four iterations. Specifically we plot, in log–log scale,
the quantity ||φ(i) − φ(i−1)||∞ versus the iteration number i for i = 1, 2, 3, 4 with
n = 20, 40, and 60, and we easily see the quadratic rate of convergence. To measure
the accuracy obtained in the fourth iteration, we plot in the middle panel the infinity
and the L2 norms of the residual (∆φ − Ij sinφ) versus n in semilog scale. The
theoretically expected [16] second order convergence, with respect to discretization
stepsize, of the 5-point-star discretization scheme used to solve the linear problems at
every step in (6.1) can be easily verified. The time complexity of the Newton iterative
algorithm is presented in the right panel, where we plot the per-iteration CPU time
required versus n. As is easily seen this is approximately n3.

To understand the structure of the solutions for various boundary conditions and
confirm the obtained barrier functions, we give in Figures 7.2 and 7.3 a series of
contour and three-dimensional plots of the computed solutions and their gradients
for three different boundary conditions. Figure 7.2 corresponds to a situation where
H = 0, δ ≡ 0, and α ≡ 0 in the top plate and bottom plate, respectively. In this case
the solution has an oscillation in x smaller than 2π.
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Fig. 7.1. Log–log plot of the infinity norm of the difference of two successive iterants of Newton
method for discretization parameter n = 20, 40, 60 versus the iteration number (left), semilog plot of
the infinity and L2 norms of the residual versus the discretization parameter n (middle), and plot
of the per-iteration CPU time versus the discretization parameter n (right).
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Fig. 7.2. Plots of the solution (left column) and the derivatives in the x- (middle column) and
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Table 7.1
A priori bounds for the gradients of the solution associated with the PDE problems considered

in Figures 7.2 and 7.3.

Figures Lemma 3.1 Lemma 5.1

7.2 top ∂φ
∂x

≤ 12 + 0.055(x− 6) ∂φ
∂x

≤ 0.448

∂φ
∂y

≤ 3 ∂φ
∂y

≤ 0.14

7.2 bottom ∂φ
∂x

≤ 12 ∂φ
∂x

≤ 0.223

∂φ
∂y

≤ 3 + 0.00553y ∂φ
∂y

≤ 0.173

7.3 top ∂φ
∂x

≤ 13.1 + 0.00833(x− 6) ∂φ
∂x

≤ 3.72

∂φ
∂y

≤ 3 ∂φ
∂y

≤ 0.447

7.3 bottom ∂φ
∂x

≤ 13.1 + 0.055(x− 6) ∂φ
∂x

≤ 6.43

∂φ
∂y

≤ 3 ∂φ
∂y

≤ 0.447

For a larger value of the magnetic field H = 1.1, shown in Figure 7.3, the os-
cillation in x of the solution increases. The existence of more than one solution for
certain values of the boundary conditions is confirmed here. The first solution pre-
sented in the top plate has an oscillation of less than 2π (one-fluxon solution) while
the oscillation of the second one is between 4π and 6π (three-fluxon solution).

For the PDE problems considered in Figures 7.2 and 7.3 we present in Table 7.1
the a priori estimates for the gradients of the solution theoretically obtained using
Lemmas 3.1 and 5.1, respectively. The confirmation of these lemmas can be readily
obtained by comparing the entries of the table with the associated plots in the figures.
We also easily see the improvement of the estimates in the x-direction obtained in
section 5. To confirm the theoretically obtained estimates in Lemma 5.2 of the solution
(in the special case where it has a constant value on the line x = 0) we have computed
using this lemma the upper and lower bounds of φ for the problems considered in the
top of Figure 7.2,

5.967(x− 6) + 0.5(x− 6)2 ≤ φ ≤ −6.033(x− 6)− 0.5(x− 6)2 for 0 ≤ x ≤ 6

and

−5.967(x− 6) + 0.5(x− 6)2 ≤ φ ≤ 6.033(x− 6)− 0.5(x− 6)2 for 6 ≤ x ≤ 12,

and in the top of Figure 7.3,

5.95(x− 6) + 0.5(x− 6)2 ≤ φ ≤ −6.05(x− 6)− 0.5(x− 6)2 for 0 ≤ x ≤ 6

and

−5.95(x− 6) + 0.5(x− 6)2 ≤ φ ≤ 6.05(x− 6)− 0.5(x− 6)2 for 6 ≤ x ≤ 12.

As is easily seen these estimates agree with the numerical data presented in the
associated figures.

As mentioned in section 2 an important question from both a theoretical and a
practical point of view is, For what values of H, α, and δ does the solution to our PDE
problem exist? Or, equivalently, Which is the maximum current It = 2(αW + δL)
that the device can carry for a given magnetic field? We have numerically determined
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Fig. 7.4. Allowed values for magnetic field and current for the inline geometry (δ ≡ 0).

Table 7.2
Oscillations for the solutions corresponding to the branches of Figure 7.4 for several values of

the magnetic field H.

H It oscx oscy

10−2 6.65 3.73 0.21

0.41 4.37 4.28 0.21

0.47 0.52 7.75 0.21

0.81 2.13 5.51 0.21

1.01 1.97 11.54 0.20

1.21 1.23 12.89 0.19

the relation between the magnetic field and the maximum current for the case where
δ = 0, and we present it graphically in Figure 7.4. It is important to note that for
pairs of currents and magnetic fields below each (starting from the leftmost) of the
three “maximum lines” shown, there exist one-fluxon, two-fluxon, and three-fluxon
solutions, respectively. Above them no solutions exist. The overlap of the branches
corresponding to one fluxon and three fluxons is consistent with the observation made
from Figure 7.3 on the coexistence of a one-fluxon solution and three-fluxon solution
for H = 1.1. Notice also that in this case the maximum current which is obtained for
H = 0 is significantly lower than the bound given by (2.3), which is l × w = 10.

We have calculated the oscillations in the x- and y-directions for the solutions
corresponding to the maximum current for several values of the magnetic field and
reported them in Table 7.2. An initial observation is that the oscillations in the y-
direction are small and do not vary significantly as a function of H for the values
considered. This indicates that a one-dimensional description of this problem could
be possible; such a heuristic approach based on an appropriate rescaling of a one-
dimensional sine-Gordon equation is currently under way. In turn the oscillations in
the x-direction vary from π to 6π and correspond to the different fluxon branches
described in the introduction. Notice, however, that the oscillation for the solution
at the right-hand tip of the first branch is larger than 2π, contrary to what happens
for the pure one-dimensional sine-Gordon equation. This is due to the fact that the
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Fig. 7.5. Allowed values for magnetic field and current for the overlap geometry (α ≡ 0).

Table 7.3
Oscillations for the solutions corresponding to the branches of Figure 7.5 for several values of

the magnetic field H.

H It oscx oscy

10−2 9.75 0.91 0.54

0.41 6.94 3.05 0.45

0.81 3.45 5.43 0.33

0.87 1.50 9.43 0.24

1.11 1.94 11.87 0.27

1.61 1.27 18.75 0.21

junction domain is smaller than Ω. The case of a very small domain Ω = [0, 3]× [0, 3]
and a window Ωj = [1, 2] × [1, 2] is presented in the inset of Figure 7.4. Another
interesting feature is that the branches do not overlap and that their graph is very well

approximated by
∣∣∣ sin H

2
H
2

∣∣∣, a feature that is well known for small Josephson junctions

[2]. In this situation, the maximum current for H = 0 is l × w = 1, corresponding to
a solution equal to π

2 inside the junction.

Returning to the long junction, we have calculated the maximum current when
the distribution is of the overlap type (α = 0) and present it in Figure 7.5. In this
case the maximum current for H = 0 is very close to the theoretical bound l×w = 10,
indicating that the solution inside the junction is very close to π

2 . As in the inline
case the branches overlap, indicating a multiplicity of solutions. The oscillations are
reported in Table 7.3. Contrary to the inline case discussed above the oscillation in
the y-direction varies significantly, indicating a stronger two-dimensional variation of
the solution. As expected the values of the magnetic field corresponding to the zeros
of the current coincide in Figures 7.4 and 7.5.

It is possible to use the bounds obtained on ∂φ
∂x and ∂φ

∂y in section 5 to obtain an

estimate of the total current It. To do this notice by integrating the PDE (2.1)–(2.2)
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over the domains Ωj and Ω that

It = 2(αW + δL) =
∫

Ωj

sinφdxdy =

∫
∂Ωj

∇φnds =
∫
∂Ωj

(
∂φ

∂x
nx +

∂φ

∂y
ny

)
ds,(7.1)

where the last integral is a flux integral taken on the boundary of the junction ∂Ωj ,
and n = (nx

ny
) is the normal vector associated to this boundary. This integral can be

bounded in the case of a junction with arbitrary shape and perimeter P ,∣∣∣∣∣
∫
∂Ωj

(
∂φ

∂x
nx +

∂φ

∂y
ny

)
ds

∣∣∣∣∣ ≤
(
max

∣∣∣∣∂φ∂x
∣∣∣∣+max

∣∣∣∣∂φ∂y
∣∣∣∣)P,

so that using Lemma 5.2 one obtains the following inequality for α and δ assumed
positive:

It
2
= αW + δL ≤ P

2

(√
2oscx + (H + α)2 +

√
2oscy + δ2

)
.(7.2)

In the case of a rectangular junction centered in the domain Ω, this estimate can be
improved by separating the integrals on the parts of the boundary ∂Ωj parallel to the
x- and y-directions to obtain∫

∂Ωj

(
∂φ

∂x
nx +

∂φ

∂y
ny

)
ds =

∫ l
2

− l
2

[
∂φ

∂y

(
x,

w

2

)
− ∂φ

∂y

(
x,−w

2

)]
dx

+

∫ w
2

−w
2

[
∂φ

∂x

(
l

2
, y

)
− ∂φ

∂x

(
− l

2
, y

)]
dy.

Recall that l and w are the length and width of the junction domain Ωj , respectively.
One can then bound the absolute values of the above integrals using Lemma 5.2 and
obtain

It
2
= αW + δL ≤

√
2oscx + (H + α)2w +

√
2oscy + δ2l.(7.3)

This upper bound for the current is not as sharp as (2.3). For example, for the case
of Figure 7.4 for H = 0.41 we find It = 4.37 corresponding to α = 0.728. Using
the values of the oscillations given by Table 7.2 we obtain for the right-hand side
of the inequality (7.3) 9.62, which corresponds to a total current of 19.24, while the
maximum current allowed is l × w = 10.

8. Conclusions and future work. Josephson junctions have already proved
themselves to be technologically useful, and it is our belief that their importance
will increase significantly in the near future. Many recent reports and books have
been dedicated to the analysis of the one-dimensional case, where one can usually
give the solution of the associated boundary value problem analytically in terms of
elliptic functions. Our report is, to the best of our knowledge, the first to try to theo-
retically analyze the semilinear PDE problem that effectively and accurately models
two-dimensional window Josephson junctions. Specifically we established the exis-
tence of solutions and obtained regularity and a priori estimates for the derivatives of
the solution. We had to use a specific method to establish these estimates instead of
the well-known theory for elliptic PDEs [9] because the solution is defined modulo a
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multiple of 2π due to the periodicity of the nonlinearity and the Neumann boundary
conditions, and therefore its norm cannot be bounded.

From the practical point of view this study validates the practical observation that
for a pure junction (Ωj ≡ Ω) of small dimensions L < 2, W < 2 and zero boundary
conditions the only solutions are the constants nπ, where n is an integer. Another
important practical result is that if Ij depends only on x and δ ≡ 0 and if W < 2,

then ∂φ
∂y ≡ 0. It is interesting to notice that in both results, the value 2 comes up.

The same value appears in the one-dimensional reductions of the problem, where it
corresponds to the maximum of ∂φ∂x for the separatrix of the pendulum phase space.

The theoretical analysis of two-dimensional window Josephson junctions is by no
means complete. Below are some of the issues that are of practical interest (and as
such some experimental analysis has already been carried out), and their theoretical
analysis will be mathematically challenging.

Notice that all a priori estimates obtained are independent of the window Ωj . This
is due to the fact that we bound | sin(φ)| by 1 very early in our analysis. Therefore,
although these estimates seem to be very generous for the PDE problems considered
in Table 7.1, they are sharp for large windows. Nevertheless, since many important
physical properties of Josephson junctions depend on the size and the geometry of
the window [4, 5] new a priori estimates which sense the geometrical parameters of
the window would be of importance.

The maximum current that a Josephson junction can carry for a given configura-
tion of α’s and δ’s and for a given H is another point of interest, and its theoretical
estimation is a challenging and difficult problem. One approach for that is carry-
ing out a three-parameter stability analysis. These parameters are the values at the
boundary conditions and the size of the window. Such stability analysis to determine
the turning and bifurcation points and eigenvalues corresponding to the different so-
lutions is under way.

The method of Newton proved to be a very reliable and efficient linearization
tool. We believe that the proof of its quadratic convergence at continuum level (PDE
analysis) or discrete level (numerical analysis) is another interesting mathematical
problem. This problem does not have a unique solution and is therefore ill-posed in
the Hadamard sense.

Appendix. Proof of existence of the generalized solution for the aux-
iliary problem. To apply the Leray–Schauder theorem we consider the Banach
space B,

B =

{
u ∈ C1(Ω̄) and

∫
Ω

udxdy = 0

}
,

and construct the mapping

κT : ∀u ∈ B −→ w,

where w is the solution of the problem

∆w = κ

[
Ij sin(u+ ζ + f)− 1

µ(Ω)

∫
Ωj

sin(u+ ζ + f)dxdy

]
≡ F(x, y) in Ω,

∂w

∂n
= 0 on ∂Ω.
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Note that we have formed the right-hand side F so that the solution of the above
linear PDE problem exists up to a constant and, as it can be easily seen using the
a priori estimates obtained in section 3, it belongs to C1,γ(Ω̄). From this class of
infinitely many solutions, we can select (by choosing the appropriate constant) the
one that satisfies relation (4.7). Therefore we have constructed a mapping from B
to Bγ , where Bγ =

{
u ∈ C1,γ(Ω̄) and

∫
Ω
udxdy = 0

}
. The mapping T : B −→ Bγ is

bounded and hence T : B −→ B is compact. To apply the Leray–Schauder theorem,
and therefore to prove the existence of a fixed point of T , we need only show that for
every solution of w = κTw, κ ∈ [0, 1] we have that ||w||C1(Ω) is bounded. This is a

direct consequence of the a priori estimates we have already obtained. Note that from
Schauder estimates we also have that the above-mentioned solution belongs to C3(Ω).
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Abstract. We study the nonlinear equation of elastodynamics where the free energy functional is
allowed to be nonconvex. We define the notion of Young measure solutions for this problem and prove
an existence theorem in this class. This can be used as a model for the evolution of microstructures
in crystals. We furthermore introduce an optional coupling with a parabolic equation and prove the
existence of a Young measure solution for this system.

Key words. nonlinear elasticity, hyperbolic-parabolic systems, Young measures, nonconvex
variational problems

AMS subject classifications. 74B20, 74N15, 74N25

PII. S0036141001392141

1. Introduction. A crucial assumption to obtaining the existence of weak so-
lutions for nonlinear elasticity equations in the static case is the quasi convexity of
the underlying free energy potential (see [2]). However, in many cases the quasi con-
vexity of the potential is not appropriate to reflect the physical situation. Therefore
a weaker concept for solutions has been introduced, the so-called Young measure
solutions (YM-solutions). This concept can be applied to crystals where noncon-
vex elasticity equations can be used to describe the development of microstructures
(which are important especially for shape-memory alloys), as has been pointed out
in the fundamental paper [3]. (For further information and references consider, e.g.,
[16], [15].)

The equation of elastodynamics,

utt(x, t)− div S(∇u(x, t)) = 0,

is even more difficult to handle. Global existence results for weak solutions have been
found only in one space dimension in [10], [19]. Under certain convexity assumptions
Dafermos and Hrusa [5] proved the local existence of smooth solutions.

The concept of YM-solutions has been applied to dynamic problems in [20], [12],
and [6] (in the context of the forward-backward heat equation) and was applied to
the wave equation by [14] and [7].

An approach to the dynamic elasticity equation (with some additional assump-
tions on the free energy, valid in particular for antiplane shear, and with an optional
coupling to a parabolic partial differential equation) was presented in [17] using the
method of discretization in time. (For a numerical implementation of this construc-
tion, see [18] and [4].) A similar result was obtained in [9], where (in a different
context) existence was proved in arbitrary space dimensions for the polyconvex case
under some growth conditions.

In the first part of this article we prove the existence (globally in time for large
initial data) of YM-solutions for nonconvex elasticity equations in arbitrary space
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dimensions under some growth conditions on the free energy. In contrast to [9] we
have to assume that the Andrews–Ball condition (see below) is satisfied, but we do
not need polyconvexity.

In the second part we study a model problem where we couple a nonconvex elas-
ticity equation with a parabolic equation (possibly of forward-backward type). The
physical motivation is to study crystals consisting of different types of atoms, where
solid state diffusion occurs and influences the elastic properties of the material. The
mathematical structure is also similar to thermoelastic problems (cf. [24]). We extend
the concept of YM-solutions to this hyperbolic-parabolic system and prove existence.

We remark that the coupling is not crucial for the proof, so the system studied
in section 2 is a special case of the system in section 3, but we need stronger bounds
for the energy density in the coupled case. This is probably only due to technical
reasons, but we decided to discuss both cases separately.

2. YM-solutions for an elasticity equation. In this section we prove the
existence of YM-solutions for nonconvex elasticity equations. Let p ≥ 2 be a fixed
constant. (Later p will denote the growth rate of the free energy at infinity.) By p′

we denote its conjugate, i.e., 1
p + 1

p′ = 1.
Throughout this article we denote by M a positive generic constant depending

only on the initial data. By || · || we denote the L2(Ω)-norm.
For an open bounded set Ω ⊂ R

n with Lipschitz boundary, T > 0, g ∈W 1,p(Ω, R
m)

and a function u : Ω→ R
m we study the initial boundary value problem

utt(x, t)− div S(∇u(x, t)) = 0, (x, t) ∈ Ω× [0, T ),

u(·, 0) = u0,

ut(·, 0) = z0,

u = g on ∂Ω,(2.1)

with S = ∇φ and φ ∈ C2(Rm×n, R+) satisfying the growth conditions (for positive
constants M1, M2)

|S(A)|≤M2(|A|p−1 + 1),

M1(|A|p − 1) ≤ φ(A) ≤M2(|A|p + 1)(2.2)

and S satisfying the Andrews–Ball condition (introduced in [1] and generalized in
[11]) for some R > 0:

(S(F1)− S(F2)) (F1 − F2) ≥ 0(2.3)

for all F1 ∈ R
m×n, F2 ∈ R

m×n, and |F1|, |F2| ≥ R. An interpretation of this condition
is that for “large” values the potential φ is assumed to be convex. The condition is not
very restrictive since every sufficiently smooth function φ on an arbitrarily large ball
B(0, R) can be extended to a function φ̃ such that S̃ := ∇φ̃ satisfies the Andrews–Ball
condition.

We can even relax this condition slightly (see [11]): It is sufficient to assume that
there exists a constant M > 0 such that for all F1, F2 ∈ R

m×n,

(S(F1)− S(F2)) (F1 − F2) ≥ −M |F1 − F2|2.(2.4)

We now want to define a YM-solution. Therefore we introduce a measure ν expressing
the probability distribution of the deformation gradient at a certain point (x, t) ∈
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Ω×(0, T ). For “classical” solutions this measure will be a Dirac measure concentrated
in ∇u.

Definition 2.1 (YM-solutions for elasticity). A pair (u, ν) is a YM-solution of
the system (2.1) if for fixed T > 0,

u ∈W 1,∞((0, T ), L2(Ω)), u− g ∈ L∞((0, T ),W 1,p
0 (Ω)),

ν = (νx,t)x,t is a probability measure,∫ T
0

∫
Ω

〈ν, S(·)〉∇ζ − utζt dx dt = 0 ∀ζ ∈ C∞0 ((0, T )× Ω),

∇u(x, t) = 〈νx,t, Id〉 a.e.

Here 〈ν, S(·)〉 is defined as a dual pairing of S with the measure ν, i.e., 〈ν, S(·)〉 :=∫
S(A) dν(A).

In this section we prove the following existence theorem.
Theorem 2.1 (existence of YM-solutions). Assume φ ∈ C2, that the growth

conditions (2.2) are satisfied, and that one of the conditions (2.3) or (2.4) is valid.
Furthermore let u0 − g ∈ W 1,p

0 (Ω), z0 ∈ H1
0 (Ω). Then there exists a YM-solution

(u, ν) of problem (2.1).
To prove this we use a viscosity regularization, based on an idea of [21]. Under

the assumptions stated above the following viscoelastic equation (together with the
standard initial and boundary conditions) has a weak solution (see [11], or consider
[8] for more general viscosity terms):

uεtt(x, t)− div S(∇uε(x, t))− ε∆uεt (x, t) = 0.

More precisely there exists

uε ∈W 2,2((0, T ),W−1,p′(Ω)) ∩W 1,2((0, T ),W 1,2(Ω)) ∩W 1,∞((0, T ), L2(Ω)),

uε − g ∈ L∞((0, T ),W 1,p
0 (Ω))

such that for all T > 0 and for all ζ ∈ C∞0 ((0, T )× Ω)),∫ T
0

∫
Ω

(S(∇uε) + ε∇uεt )∇ζ − uεtζt dx dt = 0.(2.5)

Furthermore we have the inequality

1

2
||uεt ||2 + ||∇uε||pLp(Ω) +

∫ T
0

||√ε∇uεt ||2 dt ≤M,

where M > 0 is independent of ε and t. To get this estimate we can follow [11], where
we simply add an ε to the viscosity term. Additionally we use the growth condition
on φ.

These bounds on uε imply that there exists a subsequence, again denoted by uε,
with

uε


⇀ u in L∞((0, T ),W 1,p(Ω)) ∩W 1,∞((0, T ), L2(Ω)),

and (∇uε(·, t))ε generates for every fixed t ∈ (0, T ) a Young measure ν·,t.
Now we claim that (u, ν) is a YM-solution of the elasticity equation. To prove

this we consider the convergence of the terms in the viscoelastic equation (taking
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subsequences if necessary). First we observe that by the convergence proved above
and the Hölder inequality,

uεt


⇀ ut in L2((0, T ), L2(Ω)).

Thus
∫ T
0

∫
Ω
uεtζt dx dt (the third term in the weak equation (2.5)) converges to∫ T

0

∫
Ω
utζt dx dt. On the other hand

∫ T
0

∫
Ω
ε∇uεt∇ζ dx dt converges for ε → 0 to

zero as the following calculation (using the Cauchy–Schwarz inequality) proves:

∫ T
0

∫
Ω

ε∇uεt∇ζ dx dt ≤
(
ε

∫ T
0

||√ε∇uεt ||2 dt︸ ︷︷ ︸
≤M

)1/2(∫ T
0

||∇ζ||2 dt︸ ︷︷ ︸
=const.

)1/2

→ 0.

It remains to consider the term
∫ T
0

∫
Ω
S(∇uε)∇ζ dx dt. If we define ν·,t for all t ∈ (0, T )

as the gradient Young measure generated by the sequence ∇uε(·, t) (for a definition
and an existence proof, consider, e.g., [13], [15], or [16]), we can see that S(∇uε(·, t))
converges for all t ∈ (0, T ) weakly in Lp−1(Ω) to 〈ν·,t, S〉.

On the other hand a subsequence of S(∇uε) converges weakly-� in L∞((0, T ),
Lp

′
(Ω)), since the bounds from the energy estimate together with the growth condition

imply

sup
t
||S(∇uε)||p′

Lp′ (Ω)
≤M sup

t

∫
Ω

(1 + |∇uε|p−1)p
′
dx

≤M sup
t

(
1 +

∫
Ω

|∇uε|(p−1)p′
)

dx

= M sup
t

(
1 + ||∇uε||pLp(Ω)

)
dx

≤M.

Hence the term S(∇uε) converges weakly-� in L∞((0, T ), Lp
′
(Ω)) to 〈ν, S〉, and since

∇ζ ∈ C∞0 ((0, T )×Ω) ⊂ L1((0, T ), Lp(Ω)) we have derived that (u, ν) is a YM-solution
of the elasticity equation, proving Theorem 2.1.

We notice that the Andrews–Ball condition was used only to find a solution to
the viscous system.

3. Hyperbolic-parabolic systems. If we want to consider a coupling between
elasticity and diffusion, or if we want to study thermoelastic problems, we have to
couple a parabolic equation (possibly of forward-backward type) to the elasticity
equation. For this purpose we study the following model problem, where Ω ⊂ R

n

is a domain with Lipschitz boundary, T > 0, (x, t) ∈ Ω × [0, T ), g ∈ H1(Ω, R
m),

u : Ω× [0, T )→ R
m, and c : Ω× [0, T )→ R

d:

utt(x, t)− div S(∇u(x, t), c(x, t)) = 0,

ct(x, t)− div K(∇c(x, t), u(x, t)) = 0,

u(·, 0) = u0,

ut(·, 0) = z0,

c(·, 0) = c0,

u = g on ∂Ω,

 nK(∇c, u) = 0 on ∂Ω,(3.1)
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with S = ∇1φ and K = ∇1ψ (∇1 denoting the derivative with respect to the first
variable). By  n we denote the outward normal on ∂Ω.

Here we consider only the case p = 2; i.e., we assume that S and K are of linear
growth in the first variable and φ, ψ ∈ C2 are positive and of quadratic growth in
the first variable. More precisely there are constants M1, M2 > 0 such that for all
A ∈ R

m×n, B ∈ R
n×d, b ∈ R

d, and a ∈ R
m the following estimates hold:

M1(|A|2 − 1) ≤ φ(A, b) ≤M2(|A|2 + |b|2 + 1),

M1(|B|2 − 1) ≤ψ(B, a)≤M2(|B|2 + |a|2 + 1),

S(A, b)≤M2(|A|+ |b|+ 1),

K(B, a)≤M2(|B|+ |a|+ 1).(3.2)

Furthermore we assume that S and K are globally Lipschitz continuous.
We want to remark that (3.1) is only a model problem for studying some typical

mathematical difficulties. A realistic model for diffusion phenomena should include
at least a ∇u-dependence of the diffusion tensor K rather than a u-dependence.

We extend the notion of YM-solutions to the coupled system, where the measure
ν describes the probability distribution of the gradient of u (in the same way as in the
last section) and the measure µ describes the probability distribution of the gradient
of c.

Definition 3.1 (YM-solutions for an hyperbolic-parabolic system). We call the
quadruple (u, ν, c, µ) a YM-solution of the system (3.1) if for T > 0,

u ∈W 1,∞((0, T ), L2(Ω)), u− g ∈ L∞((0, T ), H1
0 (Ω)),

c ∈W 1,2((0, T ), L2(Ω)) ∩ L∞((0, T ), H1(Ω)),

ν = (νx,t)x,t, µ = (µx,t)x,t, probability measures,∫ T
0

∫
Ω

〈ν, S(·, c)〉∇ζ − utζt dx dt = 0 ∀ζ ∈ H1((0, T )× Ω), ζ|∂Ω = 0,(3.3) ∫ T
0

∫
Ω

〈µ,K(·, u)〉∇ζ + ctζ dx dt = 0 ∀ζ ∈ H1((0, T )× Ω),(3.4)

∇u(x, t) = 〈νx,t, Id〉 a.e.,

∇c(x, t) = 〈µx,t, Id〉 a.e.

In the rest of this section we prove the following existence theorem.
Theorem 3.1 (existence of YM-solutions). Let S, K, φ, ψ satisfy the conditions

in (3.2), and assume that S and K are globally Lipschitz continuous. Then for u0−g ∈
H1

0 , z0 ∈ H1
0 , c0 ∈ H1,  nK(∇c0, 0) = 0 there exists a YM-solution (u, ν, c, µ) of the

problem stated above.
To prove this theorem we apply the same methods as in the previous section: We

first prove the existence of a weak solution for our system equipped with additional
dissipation terms; i.e., we study (for ε > 0)

uεtt(x, t)− div S(∇uε(x, t), cε(x, t))− ε∆uεt (x, t) = 0,

cεt (x, t)− div K(∇cε(x, t), uε(x, t))− ε∆cεt (x, t) = 0,

uε(·, 0) = u0,

uεt (·, 0) = z0,

cε(·, 0) = c0,
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uε = g on ∂Ω,

 n(K(∇cε, uε) + ε∇cεt ) = 0 on ∂Ω.(3.5)

For this system we can prove the following theorem.
Theorem 3.2. For every T > 0 and u0−g ∈ H1

0 , z0 ∈ H1
0 , c0 ∈ H1,  nK(∇c0, 0) =

0 there exists a weak solution (uε, cε) of the system (3.5); i.e.,

uε ∈ L∞((0, T ), H1
0 (Ω)) ∩W 1,∞((0, T ), L2(Ω)) ∩W 1,2((0, T ), H1(Ω))

∩W 2,2((0, T ), H−1(Ω)),

cε ∈W 1,2(R+, L2(Ω)) ∩ L∞(R+, H1(Ω)),

and ∫ T
0

∫
Ω

S(∇uε, cε)∇ζ + ε∇uεt∇ζ − uεtζt dx dt = 0 ∀ζ ∈ H1
0 ((0, T )× Ω),(3.6) ∫ T

0

∫
Ω

K(∇cε, uε)∇ζ + ε∇cεt∇ζ + cεtζ dx dt = 0 ∀ζ ∈ H1((0, T )× Ω).(3.7)

Furthermore we have the following inequality:

1

2
||uεt ||2 + ||uε||2H1 + ||cε||2H1 +

∫ T
0

||√ε∇uεt ||2 dt +

∫ T
0

||√ε∇cεt ||2 dt ≤M.(3.8)

For the proof of this theorem we apply the methods introduced by [12] for the heat
equation and [7] for the wave equation. These methods were used for viscoelasticity
by [8] and [11]. For a different coupled system describing thermoviscoelastic materials,
Zimmer proved the existence of weak-renormalized solutions [24].

First we discretize with respect to time. To make life easier we drop the ε in the
notation of uε and cε and use u and c instead. We denote the discretized variables
by (uh,j)h,j , (c

h,j)h,j . (Often we will drop the h.) For j = 0, 1, . . . we will construct
(weak) solutions uh,j ∈ H1

0 (Ω), ch,j ∈ H1(Ω) of these discretized equations (together
with the standard boundary conditions), valid in H−1(Ω):

uh,j − 2uh,j−1 + uh,j−2

h2
− div S(∇uh,j , ch,j−1) − ε

∆uh,j − ∆uh,j−1

h
= 0,

ch,j − ch,j−1

h
− div K(∇ch,j , uh,j−1) − ε

∆ch,j − ∆ch,j−1

h
= 0,

uh,0 = u0, uh,−1 = u0 − hz0, ch,0 = c0.

More precisely we consider the integral form of these equations; i.e., for ζ ∈ H1
0 (Ω),

ξ ∈ H1
0 (Ω) we have∫
Ω

uh,j − 2uh,j−1 + uh,j−2

h2
ζ + S(∇uh,j , ch,j−1)∇ζ + ε

∇uh,j −∇uh,j−1

h
∇ζ = 0,(3.9) ∫

Ω

ch,j − ch,j−1

h
ξ + K(∇ch,j , uh,j−1)∇ξ + ε

∆ch,j − ∆ch,j−1

h
∇ξ = 0.(3.10)

It is convenient to define the “discretized velocity”:

vh,j :=
uh,j − uh,j−1

h
.
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We now want to derive an a priori estimate for the discrete energy:

Ej := Eh,j :=

∫
Ω

φ(∇uh,j , ch,j−1) + ηψ(∇ch,j , uh,j−1) +
1

2
|vh,j |2 dx,

where η > 0 will be chosen later.
We formulate the following lemma.
Lemma 3.3 (discrete energy). Let T > 0, jh < T , and δ ∈ (0, ε). Then for every

positive h < h0(δ) the following inequality holds:

Ej +

∞∑
j=1

h

2

∫
Ω

(ε− δ)|∇vh,j |2dx +

∞∑
j=1

h

2

∫
Ω

(ε− δ)

∣∣∣∣∇ch,j −∇ch,j−1

h

∣∣∣∣2 dx ≤M.

To prove this we exploit the fact that the nonconvex energy densities φ and ψ are
“convexified” by the viscosity term. We start by considering the energy difference in
one time step:

∆Ej := Ej+1 − Ej

=

∫
Ω

(
φ(∇uj+1, cj) +

1

2
|vj+1|2 + ηψ(∇cj+1, uj)

)
−
(
φ(∇uj , cj−1) +

1

2
|vj |2 + ηψ(∇cj , uj−1)

)
dx

=

∫
Ω

(
φ(∇uj+1, cj)− φ(∇uj , cj−1)

+
δ

h
|∇uj+1 −∇uj |2 − δ

h
|∇uj+1 −∇uj |2 − δ

h
|∇uj −∇uj |2︸ ︷︷ ︸

=0

+ ηψ(∇cj+1, uj)− ηψ(∇cj , uj−1)

+ η
δ

h
|∇cj+1 −∇cj |2 − η

δ

h
|∇cj+1 −∇cj |2 − η

δ

h
|∇cj −∇cj |2︸ ︷︷ ︸

=0

+
1

2
|vj+1|2 − 1

2
|vj |2

)
dx.

Before we proceed by estimating this expression, we first state the following auxiliary
lemma.

Lemma 3.4. Let r, s ≥ 1 and ω ∈ C2(Rr×s,R+). Assume that either ω satisfies,
for every F1, F2 ∈ R

r×s, the inequality

(∇ω(F1)−∇ω(F2))(F1 − F2) ≥ −M |F1 − F2|2,(3.11)

where M > 0 is a constant, or that ∇ω satisfies the Andrews–Ball condition; see (2.3).
Then for every A ∈ R

r×s the function

g : F �−→ ω(F ) +
δ

h
|F −A|2

is convex for every h ≤ h0(δ).
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Furthermore for every F1, F2 ∈ R
r×s and h ≤ h0(δ) the following estimate holds:(

ω(F1) +
δ

h
|F1 −A|2

)
−
(
ω(F2) +

δ

h
|F2 −A|2

)
≤
(
∇ω(F1) +

2δ

h
(F1 −A)

)
(F1 − F2).(3.12)

To prove the convexity of g we apply (3.11), which itself is a consequence of the
Andrews–Ball condition (for a proof see, e.g., [11]). By the convexity of g we get
g(F1)− g(F2) ≤ ∇g(F1)(F1 − F2), and this gives (3.12).

We apply this lemma twice: once with F1 := ∇uj+1, F2 := ∇uj , A := ∇uj ,
and ω(X) := φ(X, cj) and once with F1 := ∇cj+1, F2 := ∇cj , A := ∇cj , and
ω(X) := ψ(X,uj). Furthermore we use the global Lipschitz continuity of S and K in
the second variable (with Lipschitz constant L) to derive

∆Ej ≤
∫

Ω

(
∇1φ(∇uj+1, cj) +

2δ

h
(∇uj+1 −∇uj)

)
(∇uj+1 −∇uj)

− δ

h
|∇uj+1 −∇uj |2 + L|cj − cj−1|2

+ η

(
∇1ψ(∇cj+1, uj) +

2δ

h
(∇cj+1 −∇cj)

)
(∇cj+1 −∇cj)

− δη

h
|∇cj+1 −∇cj |2 + Lη|uj − uj−1|2

+
1

2

(|vj+1|2 − |vj |2) dx.
By rearranging the terms we get

∆Ej ≤
∫

Ω

(
∇1φ(∇uj+1, cj) +

ε

h
(∇uj+1 −∇uj)

)
(∇uj+1 −∇uj)

− ε− δ

h
|∇uj+1 −∇uj |2 + L|cj − cj−1|2

+ η
(
∇1ψ(∇cj+1, uj) +

ε

h
(∇cj+1 −∇cj)

)
(∇cj+1 −∇cj)

− η
ε− δ

h
|∇cj+1 −∇cj |2 + Lη|uj − uj−1|2

+
1

2

(|vj+1|2 − |vj |2) dx.(3.13)

Before we continue with our estimate we now consider (3.9) with ζ := uj+1 − uj (or
to be precise a smooth sequence ζk converging to uj+1 − uj and considering the limit
k →∞), which gives us the following expression:∫

Ω

S(∇uj+1, cj)(∇uj+1 −∇uj) dx

=

∫
Ω

−(vj+1 − vj)vj+1 − ε

h
|∇uj+1 −∇uj |2 dx.

Using the same ideas for (3.10) we get∫
Ω

K(∇cj+1, uj)(∇cj+1 −∇cj) dx

=

∫
Ω

− 1

h
|cj+1 − cj |2 − ε

h
|∇cj+1 −∇cj |2 dx.
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We insert these equations into (3.13) and use the Poincaré inequality for uj+1 − uj ,
i.e.,

−
∫

Ω

ε− δ

2h
|∇uj+1 −∇uj |2 ≤ −MP

∫
Ω

ε− δ

2h
|uj+1 − uj |2,

to get the following estimate:

Ej+1 − Ej ≤
∫

Ω

−(vj+1 − vj)vj+1 +
1

2

(|vj+1|2 − |vj |2)
−ε− δ

h
|∇uj+1 −∇uj |2 − ε

h
|∇uj+1 −∇uj |2 +

ε

h
|∇uj+1 −∇uj |2

−ε− δ

h
|∇cj+1 −∇cj |2 − εη

h
|∇cj+1 −∇cj |2 +

εη

h
|∇cj+1 −∇cj |2

+Lη|uj − uj−1|2 − η

h
|cj+1 − cj |2 + L|cj − cj−1|2 dx

≤
∫

Ω

−1

2
|vj+1 + vj |2 − ε− δ

2h
|∇uj+1 −∇uj |2 − η

ε− δ

h
|∇cj+1 −∇cj |2

−
(
ε− δ

2h
MP − Lη

)
|uj+1 − uj |2 + Lη

(|uj − uj−1|2 − |uj+1 − uj |2)
−η

h
|cj+1 − cj |2 + L|cj − cj−1|2 dx.

If we choose η ≤ ε−δ
2
MP

L , h < min
(
η
L , 1

)
and sum over all j ≥ 1, then we get

Ej − E0 ≤ −
j∑
i=1

(ε− δ)
h

2
||∇vi||2 −

j∑
i=1

(ε− δ)
h

2

∣∣∣∣∣∣∣∣∇ci −∇ci−1

h

∣∣∣∣∣∣∣∣2 + M(c0, z0).

This gives the statement of the lemma.
The following inequality is an easy corollary of Lemma 3.3.
Corollary 3.5. For every T = kh > 0 and h ≤ h0(ε) there exists a constant

M > 0 such that

sup
j

(||∇uh,j ||2 + ||∇ch,j ||2 + ||vh,j ||2)+ ε

T
h∑
j=1

h||∇vh,j ||2 + ε

T
h∑
j=1

h

∣∣∣∣∣∣∣∣∇ci −∇ci−1

h

∣∣∣∣∣∣∣∣2
≤M <∞.

To obtain the proof one simply applies the growth conditions for φ and ψ and
Lemma 3.3.

We are now able to prove the existence of solutions (uh,j , ch,j) of our time-
discretized system.

We first solve the time-step problem with the help of a variational ansatz; i.e., we
consider for u ∈ H1

0 (Ω), c ∈ H1(Ω) the functional

Wh,j(u, c) :=

∫
Ω

φ(∇u, ch,j−1) + ψ(∇c, uh,j−1)

+
ε

2h
|∇u−∇uh,j−1|2 +

1

2h2
|u− 2uh,j−1 + uh,j−2|2

+
ε

2h
|∇c−∇ch,j−1|2 +

1

2h
|c− ch,j−1|2 dx.
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The functional Wh,j is weakly lower semicontinuous since its integrand is convex
in (∇u,∇c), which is true since the “critical” terms φ(∇u, ch,j−1) + 1

2h |∇u|2 and
ψ(∇c, uh,j−1) + 1

2h |∇c|2 are convex for sufficiently small h > 0.
Since Wh,j is also bounded from below by zero, there exists a (not necessarily

unique) minimizer (u, c). By a standard calculation one can show that (u, c) solves the
time-step problem. We define (uh,j , ch,j) := (u, c). By induction we get the existence
of a time-discretized solution to the discrete problem.

In the next step we interpolate this discrete approximation (uh,j , ch,j) in time.
Here it is convenient to use two different approximation schemes, i.e., the piecewise
constant and the piecewise affine interpolation.

We define for h > 0, 0 ≤ j < T
h , and the characteristic function χh,j :=

χ[hj,h(j+1)]:

• wh(t) :=
∑
j χ
h,j(t)v

h,j+1−vh,j

h (step function appr. of utt),

ṽh(t) :=
∑
j χ
h,j(t)

(
vh,j + vh,j+1−vh,j

h (t− hj)
)

(its primitive),

• vh(t) :=
∑
j χ
h,j(t)vh,j+1 (step function appr. of ut),

ũh(t) :=
∑
j χ
h,j(t)

(
uh,j + vh,j+1(t− hj)

)
(its primitive),

• uh(t) :=
∑
j χ
h,j(t)uh,j+1 (step function appr. of u),

• dh(t) :=
∑
j χ
h,j(t) c

h,j+1−ch,j

h (step function appr. of ct),

c̃h(t) :=
∑
j χ
h,j(t)

(
ch,j + ch,j+1−ch,j

h (t− hj)
)

(its primitive),

• ch(t) :=
∑
j χ
h,j(t)ch,j+1 (step function appr. of c).

We have chosen the notation in such a way that the step functions are each
labeled with different characters (w, v, u, resp., d and c) depending on the order of
derivative they are approximating. Their primitives are denoted by the character of
the corresponding lower order terms with a tilde; e.g., the primitive of wh is denoted as
ṽh. Later we will show that the interpolations of the same character with or without
a tilde (i.e., terms of the same order) coincide in the limit h→ 0 and converge to our
solution or its derivatives.

To prove convergence for these sequences we use Corollary 3.5, and we use the
growth conditions (in the cases where the H−1-norm is involved we also use the
discretized partial differential equations) to prove the following bounds (uniformly in
h) for fixed T > 0:

sup
0≤t≤T

||uh(t)||2H1
0
≤M(u0, z0, c0),

sup
0≤t≤T

||ũh(t)||2H1
0
≤M(u0, z0, c0),

sup
0≤t≤T

||vh(t)||2 ≤M(u0, z0, c0),

ε

∫ T
0

||vh(t)||2H1
0
dt ≤M(u0, z0, c0),

sup
0≤t≤T

||ṽh(t)||2 ≤M(u0, z0, c0),
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ε

∫ T
0

||ṽh(t)||2H1
0
dt ≤M(u0, z0, c0),

sup
0≤t≤T

||wh(t)||2H−1 ≤M(u0, z0, c0),

sup
0≤t≤T

||ch(t)||2H1 ≤M(u0, z0, c0),

sup
0≤t≤T

(||c̃h(t)||2 + ||dh(t)||2H−1

) ≤M(u0, z0, c0),

ε

∫ T
0

||dh(t)||2H1 dt ≤M(u0, z0, c0).

From these bounds we get the following weak convergence results (again choosing
subsequences) for h→ 0:

uh


⇀ u in L∞

(
(0, T ), H1(Ω)

)
,

ũh


⇀ ũ in L∞

(
(0, T ), H1(Ω)

) ∩W 1,∞ ((0, T ), L2(Ω)
) ∩W 1,2

(
(0, T ), H1(Ω)

)
,

vh


⇀ v in L∞

(
(0, T ), L2(Ω)

) ∩ L2
(
(0, T ), H1(Ω)

)
,

ṽh


⇀ ṽ in L∞

(
(0, T ), L2(Ω)

) ∩ L2
(
(0, T ), H1(Ω)

) ∩W 1,∞ ((0, T ), H−1(Ω)
)
,

wh


⇀ w in L2

(
(0, T ), H−1(Ω)

)
,

ch


⇀ c in L∞

(
(0, T ), H1(Ω)

)
,

c̃h


⇀ c̃ in W 1,∞ ((0, T ), H−1(Ω)

)
,

dh


⇀ d in L2

(
(0, T ), H1(Ω)

)
.

Additionally we deduce by applying Corollary 3.5 and the growth conditions on S
and K that there exists S̃ and K̃ such that for ĉ ∈ L∞((0, T ), L2(Ω, R

d)), û ∈
L∞((0, T ), L2(Ω, R

m)),

sup
0≤t≤T

∫
Ω

|S(∇uh, ĉ)|2 ≤M sup
0≤t≤T

(||∇uh||2 + ||ĉ||2 + 1) ≤ M(ĉ),

sup
0≤t≤T

∫
Ω

|K(∇ch, û)|2 ≤M sup
0≤t≤T

(||∇ch||2 + ||û||2 + 1) ≤ M(û),

and hence (for subsequences)

S(∇uh, ĉ) 

⇀ S̃c in L∞

(
(0, T ), L2(Ω)

)
,

K(∇ch, û)


⇀ K̃u in L∞

(
(0, T ), L2(Ω)

)
.

We now have to make sure that the different interpolations we have chosen converge
to the same limit. For this we use a standard lemma (see, e.g., [12]).

Lemma 3.6. Suppose that (fh,j)h,j is bounded in L2(Ω), that fh(t) is its step
function interpolation, and that gh(t) is its continuous and piecewise affine interpola-
tion. Assume furthermore that fh ⇀ f and gh ⇀ g in L2

loc(Ω × R
+). Then we have

f = g.
Sketch of the proof. We show the equivalence after testing with a smooth function.

Therefore we need only consider test functions of the “separated” form w(x)z(t). Let
ξh(t) be the step function approximation of z(t) and let ζh(t) be the piecewise affine
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approximation of z(t). Then w(x)ξh(t) and w(x)ζh(t) converge strongly to w(x)z(t).
If we now test fh(t) with w(x)ξh(t) and gh(t) with w(x)ζh(t), we get the same result,
and this equation holds also for h→ 0. (See [12] for the complete proof.)

We can apply this lemma to deduce u = ũ, v = ṽ, and c = c̃. This is nearly
enough to consider the limit h → 0 in our equation, but the nonlinearities S and K
cannot be handled in this way, since weak convergence of ∇uh to ∇u is not enough to
get weak convergence of S(∇uh, c) to S(∇u, c). (And the analogous statement holds
for K.) Fortunately we can prove strong convergence of ∇uh, ∇ũh, ∇ch, and ∇c̃h in
L2
(
(0, T ), L2(Ω)

)
as h→ 0.

We first need some lemmas, where we state only simplified counterparts of the
corresponding lemmas in [11]. The proofs can also be found there.

Lemma 3.7 (Aubin-type result). Let Xs := W 1,2(Ω), X := L2(Ω), and Xw :=
W−1,2(Ω). Then the imbedding of L2 ((0, T ), Xs) ∩ W 1,2 ((0, T ), Xw) equipped with
the natural norm || · ||L2(Xs) + ||∂t · ||L2(Xw) into L2 ((0, T ), X) is compact.

The next lemma gives a closer connection between the two kinds of interpolations
we have used.

Lemma 3.8. Let X be a Banach space and {fh,j}j≥1,h>0 a collection of elements

in X. Let fh be the piecewise constant and let f̃h be the piecewise linear interpolation
of {fh,j} defined (as usual) by

fh(t) :=
∑
j

χj(t)f
h,j ,

f̃h(t) :=
∑
j

χj(t)

((
j − t

h

)
fh,j−1 +

(
t

h
− (j − 1)

)
fh,j

)
,

where χj is the characteristic function of (jh, (j + 1)h).
Assume that supj ||fh,j ||2 ≤M1 and for some α > 0,

T
h∑
j=1

h

∣∣∣∣∣∣∣∣fh,j − fh,j−1

hα

∣∣∣∣∣∣∣∣2 ≤M2.

Then for all f ∈ L2 ((0, T ), X) with supt ||f(t)||2 ≤M1 we have the following estimate:∫ T
0

||fh − f ||2 dt ≤ 2

∫ T
0

||f̃h − f ||2 dt + 4hM1 +
2

3
h2αM2.

We also use the following fact following from the definition of weak convergence
and compactness.

Lemma 3.9. Let G ⊂ R
N be open, let {fh}h ⊂ L2(Ω), let fh ⇀ 0 in L2(Ω) as

h→ 0, and let K be a compact subset of L2(Ω); then

sup
ξ∈K

∣∣∣∣∫
G

fhξ dx

∣∣∣∣→ 0 as h→ 0.

Now we have collected all ingredients for the proof of the strong convergence of
∇uh, ∇ũh, ∇ch, and ∇c̃h. First we consider ∇uh and ∇ũh, and later we will apply
the methods introduced there to prove the strong convergence of ∇ch and ∇c̃h.

We start with the following time-integrated version of our elasticity equation,
which does not require that the test function ζ be differentiable in time; i.e., for
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ζ ∈ L2((0, T ), H1
0 (Ω)),∫ T

0

∫
Ω

(
S(∇uh, ch(· − h)) + ε∇vh)∇ζ − vh

ζ(·+ h)− ζ

h
dx dt

+
1

h

∫ T
T−h

∫
Ω

vhζ(·+ h) dx dt− 1

h

∫ 0

−h

∫
Ω

v0ζ(·+ h) dx dt = 0.(3.14)

We consider the limit h → 0 in equation (3.14), where we use that ch(· − h) → c in
L∞((0, T ), L2(Ω)). Using the definition of S̃c we get∫ T

0

∫
Ω

S̃c∇ζ + ε∇ut∇ζ − utζt dx dt

+

∫
Ω

v(T )ζ(T ) + v0ζ(0)︸ ︷︷ ︸
=0

dx = 0.(3.15)

We insert ζ := uh − u in (3.14) and ζ := ũh − u in (3.15) and substract the resulting
equations. (To be exact we have to approximate uh−uh(·−h) and ũh−u by sequences
of smooth functions.) This gives, for t ∈ (0, T ),

0 =

∫ t
0

∫
Ω

S(∇uh, ch(· − h))(∇uh −∇u)− S̃c(∇ũh −∇u) dx dt︸ ︷︷ ︸
=:T1

+ ε

∫ t
0

∫
Ω

∇vh(∇uh −∇u)−∇ut(∇ũh −∇u) dx dt︸ ︷︷ ︸
=:T2

−
∫ t

0

∫
Ω

vh
(
vh(·+ h)− ũ(·+ h)− u

h

)
− ut

(
(ũh)t − ut

)
dx dt︸ ︷︷ ︸

=:T3

+

∫
Ω

∫ t
t−h

vh(uh(·+ h)− u(·+ h))− ut
(
ũh − u

)
dt dx︸ ︷︷ ︸

=:T4

−
∫

Ω

v0
1

h

∫ 0

−h
uh(·+ h)− u(·+ h) dt dx︸ ︷︷ ︸

=:T5

,

where we have defined the terms T1, . . . , T5, which we will estimate in the following
calculation. To simplify notation we denote all terms converging to zero as h → 0
(uniformly in t) by α(h).

We start by estimating T1, where we use the global Lipschitz continuity of S,
giving us for a certain M > 0 and every F1, F2 ∈ R

m×n and ĉ ∈ R
d the inequality

(S(F1, ĉ)− S(F2, ĉ)(F1 − F2)) ≥ −M |F1 − F2|2.
(This corresponds to condition (2.4) in the last section.)

T1 =

∫ t

0

∫
Ω

(
S(∇uh, ch(· − h)) − S(∇u, ch(· − h))

)
(∇uh −∇u)
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+ S(∇u, ch(· − h))(∇uh −∇u) − S̃c(∇ũh −∇u) dx dt

≥ −M

∫ t

0

∫
Ω

|∇uh −∇u|2 dx dt− sup
t∈(0,T )

∣∣∣∣∫ T

0

∫
Ω

(
χΩ×(0,t)S̃c

)
(∇ũh −∇u) dx dt

∣∣∣∣2 .
Applying Lemma 3.9 we can show that the last three terms converge to zero for h→ 0,
i.e.,

T1 ≥ −M
∫ t

0

∫
Ω

|∇uh −∇u|2 + α(h).

Applying Lemma 3.8 we finally get

T1 ≥ −2M

∫ t
0

∫
Ω

|∇ũh −∇u|2 + α(h).

We can use the same calculations as in the purely viscoelastic case (see [11]1) to derive

−T2 = −1

2

∫
Ω

|∇ũh(t)−∇u(t)|2 dx +
1

2

∫
Ω

|∇ũh(0)−∇u(0)|2︸ ︷︷ ︸
=0

dx + α(h),

where the discrete energy estimate proved above is used. This (together with the
estimate for T1) is the key step to the desired strong convergence result, since at the
end we want to apply the Gronwall lemma to the inequality we get by estimating
these terms. Therefore we need the terms T3–T5 to be “well behaved,” i.e., that they
are simply α(h).

In fact by applying Lemma 3.7 combined with Lemma 3.8 we can prove this:

T3 = α(h), T4 = α(h), T5 = α(h).

Taking everything together we have the inequality

∂t

∫ t
0

∫
Ω

|∇ũh −∇u|2 dx dt ≤ 4M

ε

∫ t
0

∫
Ω

|∇ũh −∇u|2 dx dt + α(h).

Now we can apply the Gronwall lemma to get∫ T
0

∫
Ω

|∇ũh −∇u|2 dx dt ≤ α(h)
ε

4M
e

4MT
ε ,

and this converges to zero for h→ 0. Hence

∇ũh → ∇u in L2
(
(0, T ), L2(Ω)

)
.

Due to Lemma 3.8 the same convergence result holds for ∇uh. This ensures that
S̃ĉ = S(∇u, ĉ).

Now we are ready to apply the same methods to prove K̃û = K(∇c, û). First we
consider the following weak formulation of (3.10):∫ T

0

∫
Ω

K(∇ch, uh(· − h))∇ζ + ε
∇ch −∇ch(· − h)

h
∇ζ +

ch − ch(· − h)

h
ζ dx dt = 0.(3.16)

1Recall the slightly different notation in their article.
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Then we consider the limit h→ 0 in (3.16) to get∫ T
0

∫
Ω

K̃u∇ζ + ε∇ct∇ζ + ctζ dx dt = 0.(3.17)

We insert ζ := ch − c in (3.16) and ζ := c̃h − c in (3.17) and substract the resulting
equations. (To be exact we have to approximate ch−ch(·−h) and c̃h−c by sequences
of smooth functions.) This gives

0 =

∫ T
0

∫
Ω

K(∇ch, uh(· − h))∇(ch − c)− K̃u∇(c̃h − c)

+ ε
∇ch −∇ch(· − h)

h
∇(ch − c)− ε∇ct∇(c̃h − c)

+
ch − ch(· − h)

h
(ch − c)− ct(c̃

h − c) dx dt.(3.18)

Now we consider the three terms in (3.18). We start with the third one. We want to
prove that ∫ T

0

∫
Ω

ch − ch(· − h)

h
(ch − c)− ct(c̃

h − c) dx dt→ 0 as h→ 0.

But this is true for the first part, since
(
c̃h
)
t

is bounded in L∞((0, T ), H−1(Ω))

and ch


⇀ c in L∞((0, T ), H1(Ω)), and it is true for the second part, since ct ∈

L2((0, T ), H1(Ω)) and c̃h


⇀ c in W 1,∞(H−1(Ω)).

We now rewrite the first term in (3.18), denote it by T6, and estimate it as follows:

T6 :=

∫ t
0

∫
Ω

(
K(∇ch, uh(· − h))−K(∇c, uh(· − h))

)∇(ch − c)

+ K(∇c, uh(· − h))∇(ch − c)

− K̃uh(·−h)∇(c̃h − c) +
(
K̃uh(·−h) − K̃u

)
∇(c̃h − c) dx dt

≥ −M
∫ t

0

∫
Ω

|∇c̃h −∇c|2 dx dt + α(h).

So we get

T6 ≥ −M
∫ t

0

∫
Ω

|∇c̃h −∇c|2 dx dt + α(h).(3.19)

It remains to estimate the second term in (3.18). Here we apply the methods we had
used to estimate T2. This gives the following inequality:

−ε
∫ T

0

∫
Ω

∇ch −∇ch(· − h)

h
(∇ch −∇c)−∇ct(∇c̃h −∇c)

≥ −ε

2

∫ T
0

∫
Ω

|∇c̃h(t)−∇u(t)|2 dx dt + α(h).(3.20)

If we insert (3.19) and (3.20) into (3.18) and apply the Gronwall lemma in the same
way as before, we derive∫ T

0

∫
Ω

|∇c̃h −∇c|2 dx dt ≤ α(h)
ε

4M
e

4MT
ε ,
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and this is converging to zero for h→ 0. Therefore ∇c̃h is converging to ∇c strongly
in L2((0, T ), L2(Ω)). And due to Lemma 3.8 this also holds for ∇ch. Hence for h→ 0
the nonlinear term K(∇ch, uh) converges to K(∇c, u).

Taking everything together we have proved that the solutions of the time-discre-
tized equations converge to solutions of the hyperbolic-parabolic system (3.5).

To prove Theorem 3.2 it remains only to prove the energy inequality,

E(t) ≤M(u0, v0, c0)− ε

∫ t
0

∫
Ω

|∇ut|2 + |∇ct|2 dx dt,

where E(t) :=
∫
Ω
φ(∇u(t), c(t)) + ψ(∇c(t), u(t)) + 1

2 |ut(t)|2 dx and M(u0, v0, c0) is a
constant depending only on the initial values u0, v0, c0.

To prove this we start from the discrete energy inequality (Lemma 3.3), telling us
that for η > 0 sufficiently small, h < min

(
1, ηL

)
, and δ ∈ (0, 1) the following inequality

holds for every t ∈ (0, T ):∫
Ω

φ(∇uh, ch(· − h)) dx + η

∫
Ω

ψ(∇ch, uh(· − h)) dx

+
1

2

∫
Ω

|vh|2 dx + (ε− δ)

∫ t
0

∫
Ω

|∇vh|2 + |∇dh|2 dx dt ≤M(u0, v0, c0).

Now we notice that we can apply these convergence results:

vh(t)→ ut(t) in L2(Ω) for almost every t ∈ (0, T ),

∇vh ⇀ ∇ut in L2((0, T )× Ω),

∇dh ⇀ ∇ct in L2((0, T )× Ω).

By the weakly lower semicontinuity of the L2((0, T )×Ω)-norm we get for almost every
t ∈ (0, T )

lim sup
h→0

∫
Ω

φ(∇uh, ch(· − h)) dx + η lim sup
h→0

∫
Ω

ψ(∇ch, uh(· − h)) dx

+
1

2

∫
Ω

|ut|2 dx + (ε− δ)

∫ t
0

∫
Ω

|∇ut|2 + |∇ct|2 dx dt ≤M(u0, v0, c0).(3.21)

Now we apply the strong convergence of ∇uh(t) to estimate∫
Ω

φ(∇u, c) dx =

∫
Ω

(
φ(∇u, c) +

M

2
|∇u|2

)
dx−

∫
Ω

M

2
|∇u|2 dx

≤ lim sup
h→0

∫
Ω

(
φ(∇uh, ch(· − h)) +

M

2
|∇uh|2

)
dx

−
∫

Ω

M

2
|∇u|2 dx

≤ lim sup
h→0

∫
Ω

φ(∇uh, ch(· − h)) dx + lim sup
h→0

∫
Ω

M

2
|∇uh|2 dx

−
∫

Ω

M

2
|∇u|2 dx

= lim sup
h→0

∫
Ω

φ(∇uh, ch(· − h)) dx.
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Similarly, applying the strong convergence of ∇ch(t) we get∫
Ω

ψ(∇c, u) dx = lim sup
h→0

∫
Ω

ψ(∇ch, uh(· − h)) dx.

If we insert these estimates into (3.21) and take the limit δ → 0, then we get∫
Ω

φ(∇u, c) dx + η

∫
Ω

ψ(∇c, u) dx +
1

2

∫
Ω

|ut|2 dx

+ ε

∫ t
0

∫
Ω

|∇ut|2 + |∇ct|2 dx dt ≤M(u0, v0, c0)

for almost every t ∈ (0, T ).
By adjusting the constant M we get the desired estimate (3.8). This completes

the proof of Theorem 3.2.
Now we apply this to prove Theorem 3.1 by considering ε→ 0 in the same spirit

as in the previous section: First the energy inequality (3.8) gives the following weak
convergence results (for subsequences) as ε→ 0:

uε


⇀ u in L∞((0, T ), H1

0 (Ω)),

cε


⇀ c in L∞((0, T ), H1

0 (Ω)),

uε


⇀ u in W 1,∞((0, T ), L2(Ω)).

Furthermore for almost every t ∈ (0, T ) the sequence∇uε(t) generates the Young mea-
sure ν·,t and ∇cε(t) generates the Young measure µ·,t, since ||∇uε(t)|| and ||∇cε(t)||
are bounded (uniformly in t).

In particular we get that for any ζ ∈ H1
0 (Ω)∫

Ω

S(∇uε(·, t), cε(·, t))∇ζ →
∫

Ω

〈ν·,t, S(·, c(·, t))〉∇ζ.

For a subsequence we can consider the limit of the viscoelastic equations for ε → 0
by using the growth conditions on S and K and the strong convergence of uε and cε

in L2: Since for all ε > 0

||S(∇uε, cε)||L∞((0,T ),L2(Ω)) ≤M,

we obtain the existence of a function S̃ ∈ L∞((0, T ), L2(Ω)) with∫ T
0

∫
Ω

S(∇uε, cε)∇ζ →
∫ T

0

∫
Ω

S̃∇ζ.

Taking both together and repeating the calculations from section 2 to estimate the
other terms, we obtain (3.3) and (3.4). The Neumann boundary condition on cε is
converging to the Neumann boundary condition on c. This calculation concludes the
proof of existence for Theorem 3.1.

An easy consequence of this theorem is the following corollary.
Corollary 3.10 (vector-valued parabolic equations). Under the assumptions

on ψ, K, and c0 stated above there exists a YM-solution, defined in an analogous way
to YM-solutions for hyperbolic-parabolic systems, for the parabolic system

ct(x, t)− div K(∇c(x, t)) = 0,

c(·, 0) = c0,

 nK(∇c, u) = 0 on ∂Ω,

where c: Ω→ R
m.
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Proof. To prove this we only have to study the uncoupled case in Theorem 3.1,
which is not excluded by the growth conditions.

This result is an extension of a scalar version that can be found in [6].

4. Concluding remarks. The regularity of the YM-solutions as constructed in
the last sections is still a widely open problem. Although there are easy examples
for YM-solutions which are no weak solutions even in the one-dimensional parabolic
case (see, e.g., [18]), to the author’s knowledge, there is no example where every YM-
solution to a given data fails to be a weak solution. It would be very interesting to
find an example where a smooth initial data develops a microstructure in finite time.
For some related results, see [22], [23].

Acknowledgments. I am grateful to Stefan Müller for his steady and valuable
help, and to Sophia Demoulini and Johannes Zimmer for very stimulating discussions.
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ON THE OORT–HULST–SAFRONOV COAGULATION EQUATION
AND ITS RELATION TO THE SMOLUCHOWSKI EQUATION∗
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Abstract. A connection is established between the classical Smoluchowski continuous coagula-
tion equation and the Oort–Hulst–Safronov coagulation equation via generalized coagulation equa-
tions. Existence of solutions to the Oort–Hulst–Safronov coagulation equation is shown, and the large
time behavior and the occurrence of gelation are studied as well. It is also shown that a compactly
supported initial distribution propagates with finite speed.

Key words. coagulation, Smoluchowski equation, Oort–Hulst–Safronov equation, existence,
gelation, finite speed of propagation

AMS subject classifications. 45K05, 45M05, 45G10, 82C21

PII. S0036141002414470

1. Introduction. Coagulation processes are found in a wide variety of physical
situations where clusters (or particles, droplets, etc.) merge by coalescence to form
larger ones. Such a phenomenon takes place in, e.g., colloidal chemistry [18, 19],
aerosol science (evolution of a system of solid or liquid particles suspended in a gas
[6]), astrophysics [3], or hematology (red blood cell formation [16]). Assuming that
each cluster is fully identified by its size (or volume), mean-field models have been
developed and used to predict the time evolution of the size distribution function
of the clusters. Various levels of description are also available within these models
according to the range of the size parameter, which is either N\{0} (discrete models) or
R+ = (0,+∞) (continuous models). Among these models, the most widely used is the
classical coagulation equation introduced by Smoluchowski (in its discrete version) to
describe the aggregation of colloidal particles moving according to Brownian motion
[18]. Since then, the Smoluchowski coagulation equation has been the subject of
several physical and mathematical studies. In a different context, another coagulation
model was proposed by Oort and van de Hulst thirty years later to describe the process
of aggregation of protoplanetary bodies in astrophysics [15]. It was then written under
a more tractable form by Safronov [17], to which we refer for a more detailed account
on coagulation processes in astrophysics. Though the Smoluchowski and Oort–Hulst–
Safronov (OHS) coagulation models were derived in different ways, it is natural to
wonder whether there is some relationship between them. The main purpose of this
work is actually to establish a connection between these two different coagulation
equations. As a byproduct, we also obtain the existence of a solution to the OHS
equation and study qualitative properties of this model.

Let us now state both models more precisely. If f(u, t) denotes the density of
clusters of size u ∈ R+ at time t ≥ 0, then the classical continuous coagulation
equation reads [6]

∂tf = Q1(f) , (u, t) ∈ R
2
+ ,(1.1)
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f(0) = f0 , u ∈ R+ ,(1.2)

where

Q1(f)(u) =
1

2

∫ u

0

a(u− v, v) f(u− v) f(v) dv(1.3)

− f(u)
∫ ∞

0

a(u, v) f(v) dv , u ∈ R+ ,

and ∂t denotes the partial derivative with respect to time. The reaction rate a in
Q1(f) is a nonnegative function usually called the coagulation kernel and satisfies the
following symmetry property:

0 ≤ a(u, v) = a(v, u) , (u , v) ∈ R
2
+ .(1.4)

The first term in Q1(f) is a gain term which describes the rate of formation of clusters
of size u due to the merging of smaller clusters as a result of binary collisions. The
second term in Q1(f) is a loss term accounting for the depletion of clusters of size u
resulting from their coalescence with other clusters.

With the same notation, we may formulate the OHS model as follows [17]:

∂tf = Q0(f) , (u, t) ∈ R
2
+ ,(1.5)

along with the initial condition (1.2), where

Q0(f)(u) = −∂u
(
f(u)

∫ u

0

v a(u, v) f(v) dv

)
(1.6)

− f(u)
∫ ∞
u

a(u, v) f(v) dv , u ∈ R+ .

Here ∂u denotes the partial derivative with respect to u. Notice that if we omit the
second term of Q0(f) in (1.5), the remaining part is a continuity equation which
describes the increase of clusters of size u with velocity

du

dt
=

∫ u

0

v a(u, v) f(v, t) dv

depending on the density of smaller clusters. Thus, in this model, the rate of for-
mation of clusters of size u from smaller clusters does not depend on the sizes of the
clusters involved in the coagulation event but on some averaged quantity, and this is
a fundamental difference with (1.1). The second term of Q0(f) corresponds to the
depletion of clusters of size u, which is here possible only as a result of their “sedi-
mentation” on larger clusters. Another qualitative difference between both models is
related to the speed with which an initial perturbation propagates. It is well known
that the Smoluchowski equation (1.1) enjoys the property of infinite speed of prop-
agation. (That is, if f0 is compactly supported, the solution f(t) to (1.1), (1.2) is
not compactly supported for any positive time t > 0. We refer to [2] for a proof in
the case of the discrete Smoluchowski equations.) This is in contrast with the OHS
equation, where the propagation velocity is finite, as already observed in [7, 8] (see
also section 5 below).

Nevertheless, our main goal is to show rigorously that it is possible to connect (1.1)
to (1.5). Let us first mention that a relationship between these models has already



THE OORT–HULST–SAFRONOV COAGULATION EQUATION 1401

been observed by Dubovski [7] at a formal level. More precisely, Dubovski introduces
a family of generalized discrete coagulation equations which includes the discrete
Smoluchowski equations on the one hand and a discrete version of the OHS equation
on the other hand. The connection is then completed by showing formally that the
discrete version of the OHS equation leads to the OHS equation after a suitable
rescaling, since it follows from [13] that (1.1) can be obtained as a limit of suitably
rescaled discrete Smoluchowski equations. Our approach is completely different and
directly connects (1.1) to (1.5) without using discrete models. We actually introduce
an ε-dependent family of generalized coagulation equations for ε ∈ (0 , 1]. While
ε = 1 corresponds to the Smoluchowski equation (1.1), letting ε → 0 leads us to the
OHS equation (1.5). Heuristically our approach is based on the following observation.
Given a test function φ ∈ D([0,+∞)), it follows from (1.3) and the Fubini theorem
that ∫ ∞

0

Q1(f) φ du =

∫ ∞
0

∫ v

0

[φ(v + w)− φ(w)− φ(v)] a(v, w)f(v)f(w) dwdv .(1.7)

Similarly, (1.6) yields∫ ∞
0

Q0(f) φ du =

∫ ∞
0

∫ v

0

[w φ′(v)− φ(w)] a(v, w) f(v) f(w) dwdv .(1.8)

Observe now that for v � w, we have

[φ(v + w)− φ(w)− φ(v)] ∼ [w φ′(v)− φ(w)] ,(1.9)

so that we expect to recover (1.5) from (1.1) when the dominating reactions are the
coalescence of clusters with very different sizes. Providing the rigorous justification
of this observation is the first aim of our work and will be achieved with the help of
the so-called generalized Boltzmann equations [1]. In order to see both equations in
a common frame, we introduce the following generalized coagulation equation:

∂tf = QGC(f) , (u, t) ∈ R
2
+ ,(1.10)

where

QGC(f)(u) =
1

2

∫ ∞
0

∫ ∞
0

A(u; v, w) a(v, w) f(v) f(w) dwdv(1.11)

− f(u)
∫ ∞

0

a(u, v) f(v) dv .

Here, A is the weighted probability that the collision of a cluster of size v and a cluster
of size w generates a cluster of size u and is a nonnegative function satisfying

A(u; v, w) = A(u;w, v) , (u, v, w) ∈ R
3
+ ,(1.12) ∫ ∞

0

A(u; v, w) u du = v + w , (v, w) ∈ R
2
+ .(1.13)

It is worth mentioning here that many bilinear equations and systems in applied
mathematics fit into this general structure after specifying appropriately A and a
(cf. [11]). Observe also that the condition (1.13) ensures that the total volume is
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preserved during the coagulation reactions. Indeed, we have∫ ∞
0

QGC(f) φ du(1.14)

=

∫ ∞
0

∫ v

0

{(∫ ∞
0

A(u; v, w) φ(u) du

)
− φ(v)− φ(w)

}
a(v, w) f(v) f(w) dwdv

for any test function φ ∈ D([0,+∞)). Setting now φ(u) = u in (1.14) and using
(1.13), we obtain (at least formally)∫ ∞

0

QGC(f) u du = 0 .

We thus formally deduce from (1.10) that, for t > 0,∫ ∞
0

u f(u, t) du =

∫ ∞
0

u f0(u) du ,(1.15)

which is nothing but the conservation of the total mass throughout time evolution.
We are now in a position to introduce a family of generalized coagulation equations

connecting the Smoluchowski and the OHS equations. For ε ∈ (0 , 1) and (v, w) ∈ R
2
+,

we define

Aε(u; v, w) = δ (u−max {v, w} − ε min {v, w})(1.16)

+ (1− ε) δ(u−min {v, w}) ,

aε(v, w) =
a(v, w)

ε
,(1.17)

where δ(u) is the Dirac mass. We next put Aε instead of A and aε instead of a in
(1.14) and set QGC = Qε. With this notation, (1.14) yields∫ ∞

0

Qε(f) φ du(1.18)

=

∫ ∞
0

∫ v

0

{
φ(v + εw)− φ(v)

ε
− φ(w)

}
a(v, w) f(v) f(w) dwdv

for any test function φ ∈ D([0,+∞)). It is then straightforward to see that the choice
ε = 1 in (1.18) yields (1.7), while letting ε→ 0 in (1.18) leads to (1.8). We have thus
obtained the announced connection between (1.1) and (1.5). In fact, Qε(f) may be
written in a more explicit form, namely,

Qε(f)(u) =
1

ε

∫ u/(1+ε)

0

a(u− εv, v) f(u− εv) f(v) dv(1.19)

− f(u)

[(
1

ε
− 1

) ∫ u

0

a(u, v) f(v) dv +

∫ ∞
0

a(u, v) f(v) dv

]
for u ∈ R+. We will actually prove the convergence of the solution fε to

∂tfε = Qε(fε) , (u, t) ∈ R
2
+ ,(1.20)

with fε(0) = f0 toward a solution to (1.5), (1.2) as ε→ 0.
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Another issue we consider in this paper is the validity of the total mass conserva-
tion (1.15) which is derived formally from (1.14). It is well known that it is not always
true for the classical Smoluchowski coagulation equation (1.1) and that the total mass
may decrease after some time, a phenomenon known as gelation (see [5, 9, 10] and the
references therein). The occurrence of gelation depends heavily on the growth of the
coagulation kernel a, and the situation is quite clear for (1.1). We obtain here a simi-
lar result for the OHS equation by the arguments of [9] and investigate the connection
between gelation and the propagation of the support for compactly supported initial
data. We thereby extend results from [7, section 5] to a wider class of coagulation
kernels.

We now describe the contents of this paper: The next section is devoted to a
precise statement of our results, including convergence of solutions to (1.20) toward
a solution to (1.5), occurrence of gelation, and behavior of the support for compactly
supported initial data. The convergence proof is performed in section 3, and the
occurrence of gelation is studied in section 4. Compactly supported initial data are
the subject of the final section.

2. Main results. We first introduce the basic assumptions on the data a and f0

that we shall use in what follows. Besides the nonnegativity and symmetry condition
(1.4), we assume that the coagulation kernel a satisfies

a ∈W 1,∞
loc ([0,+∞)2) and ∂ua(u, v) ≥ −α , (u, v) ∈ R

2
+ ,(2.1)

for some constant α ≥ 0. We also need to prescribe the behavior of a for large values
of u and v. A natural growth condition is to say that the rate of cluster interactions
is limited by the product of their sizes or volumes, that is,

a(u, v) ≤ K (1 + u) (1 + v) , (u, v) ∈ R
2
+ ,(2.2)

which includes most of the cases considered in the physical literature. However, under
the sole growth condition (2.2), the existence of a solution is still an open problem
even for (1.1), so that additional growth conditions have to be specified. Two different
sets of growth assumptions will actually be used in what follows. Namely, in addition
to (2.2), we will require that either a is strictly subquadratic, that is,

ωR(v) = sup
u∈[0,R]

a(u, v)

v
−→ 0 as v → +∞(2.3)

for each R ≥ 1, or a is subadditive, that is, there is K1 > 0 such that

a(u, v) ≤ K1 (1 + u+ v) , (u, v) ∈ R
2
+ .(2.4)

We turn next to the initial datum f0 and notice that physically relevant require-
ments on f0 are nonnegativity and finite total mass. We thus assume that the initial
datum f0 satisfies

f0 ∈ X+ ,(2.5)

where X+ denotes the positive cone of the Banach space

X = L1(0,+∞; (1 + u)du) ,
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endowed with the norm

‖f‖X =

∫ ∞
0

|f(u)| (1 + u) du .

Notice that the last term in the norm ‖.‖X corresponds to the total mass of clusters.
We now give the definition of a weak solution we use in this paper.
Definition 2.1. Let T ∈ (0 ,+∞] and f0 ∈ X+. A weak solution to (1.5), (1.2)

on [0, T ) is a nonnegative function

f ∈ C([0 , T );weak − L1(R+)) ∩ L∞(0, T ;X+),(2.6)

which satisfies∫ ∞
0

f(u, t) φ(u) du =

∫ ∞
0

f0(u) φ(u) du(2.7)

+

∫ t

0

∫ ∞
0

∫ v

0

[w φ′(v)− φ(w)] a(v, w) f(v, s) f(w, s) dwdvds

for any φ ∈W 1,∞(R+) with compactly supported first derivative and t ∈ [0, T ).
Similarly, for ε ∈ (0 , 1], a weak solution to (1.20), (1.2) on [0, T ) is a nonnegative

function

fε ∈ C([0 , T );weak − L1(R+)) ∩ L∞(0, T ;X+)

satisfying∫ ∞
0

fε(u, t) φ(u) du =

∫ ∞
0

f0(u) φ(u) du(2.8)

+

∫ t

0

∫ ∞
0

∫ v

0

{
φ(v + εw)− φ(v)

ε
− φ(w)

}
a(v, w)fε(v, s)fε(w, s) dwdvds

for any φ ∈ L∞(R+) and t ∈ [0, T ).
Our first result then reads as follows.
Theorem 2.2. Assume that the coagulation kernel a satisfies (1.4), (2.1), and

either (2.3) or (2.4). Then, for ε ∈ (0, 1] and f0 ∈ X+, there exists at least one weak
solution fε to (1.20), (1.2) on [0,+∞) which satisfies∫ ∞

0

u fε(u, t) du ≤
∫ ∞

0

u f0(u) du , t ≥ 0 ,(2.9)

if (2.3) holds and ∫ ∞
0

u fε(u, t) du =

∫ ∞
0

u f0(u) du , t ≥ 0 ,(2.10)

if (2.4) holds.
Furthermore, there is a subsequence εk → 0 and a weak solution f to (1.5), (1.2)

on [0,+∞) such that

fεk −→ f in C([0 , T ];weak − L1(R+))(2.11)

for each T > 0 and f satisfies (2.9) if (2.3) holds and (2.10) if (2.4) holds.
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Here and below, if B is a Banach space and T ∈ (0,+∞), C([0 , T ];weak − B)
denotes the space of weakly continuous functions from [0, T ] in B.

For the classical Smoluchowski coagulation equation (1.1) (ε = 1), the existence
results stated in Theorem 2.2 are already known; see [20, 13] and the references
therein.

Remark 2.3. Under the assumption (2.4), the convergence (2.11) can actually be
improved to

fεk −→ f in C([0 , T ];weak −X).(2.12)

If f0 is bounded, the solution constructed in Theorem 2.2 is also bounded, as we
state now.

Proposition 2.4. Assume that the assumptions of Theorem 2.2 are fulfilled and
also that f0 ∈ L∞(R+). Then the solution fε to (1.20), (1.2) for ε ∈ (0, 1] and the
solution f to (1.5), (1.2) constructed in Theorem 2.2 satisfy

‖fε(t)‖L∞ , ‖f(t)‖L∞ ≤ ‖f0‖L∞ exp

(
α t

∫ ∞
0

u f0(u) du

)
(2.13)

for t ≥ 0.
Next we turn to the occurrence of gelation and define the gelation time Tgel ∈

[0,+∞] of a solution f to the OHS equation (1.5), (1.2) by

Tgel = inf

{
t ≥ 0 ,

∫ ∞
0

u f(u, t) du <

∫ ∞
0

u f0(u) du

}
.(2.14)

The occurrence of gelation then corresponds to Tgel < +∞. Clearly, Theorem 2.2
ensures that there are mass-conserving solutions to the OHS equation (1.5) for sub-
additive coagulation kernels, the same result being true for the classical Smoluchowski
coagulation equation. We now show that gelation takes place for (1.5) for the same
class of coagulation kernels as for (1.1).

Theorem 2.5. Assume that a satisfies (1.4), (2.2) and

a(u, v) ≥ K0 (uv)λ/2 , (u, v) ∈ R
2
+,(2.15)

for some λ ∈ (1, 2] and K0 > 0. Consider f0 ∈ X+, f0 �≡ 0, and denote by f a weak
solution to (1.5), (1.2). Then Tgel < +∞.

The proof of Theorem 2.5 is similar to that of [9, Theorem 1.1] for (1.1). It
is worth mentioning that the method developed in [9] provides actually much more
information on (1.1) than the mere occurrence of gelation (temporal decay estimates,
behavior of higher moments near the gelation time, etc.). It is likely that similar
results are valid for (1.5) with the same proofs, and we refer to [9] for a more detailed
description of available results.

We finally consider compactly supported initial data. As already mentioned, a
striking difference between (1.1) and (1.5) is that solutions to the latter enjoy the
property of finite speed of propagation. More precisely, we have the following result.

Theorem 2.6. Assume that a satisfies (1.4), (2.2) and is continuous on [0,+∞)2.
We consider f0 ∈ X+ ∩ L∞(R+) such that

supp f0 ⊂ [0, R0](2.16)

for some R0 > 0 and denote by f a weak solution to (1.5), (1.2) such that f ∈
L∞((0, T ) × R+) for each T ≥ 0. Then there are T� ∈ (0,+∞] and R ∈ C1([0, T�))
such that
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(a) R(0) = R0 and R satisfies

R′(t) =
∫ R(t)

0

u a(R(t), u) f(u, t) du , t ∈ [0, T�) .(2.17)

In addition, R is a nondecreasing function on [0, T�) and either T� = +∞ or

T� < +∞ and lim
t→T�

R(t) = +∞ .(2.18)

(b) supp f(t) ⊂ [0, R(t)] for t ∈ [0, T�).
In particular, when f0 ∈ L∞(R+), Theorem 2.6 applies to the solution f to (1.5),

(1.2) constructed in Theorem 2.2 by Proposition 2.4. Next, some information on the
time behavior of the total mass readily follows from Theorem 2.6 and is gathered
below.

Corollary 2.7. Under the assumptions and notation of Theorem 2.6, we have∫ ∞
0

u f(u, t) du =

∫ ∞
0

u f0(u) du for t ∈ [0, T�) ,(2.19)

and thus T� ≤ Tgel.
Since we already know that gelation takes place for coagulation kernels satisfying

(2.15), we conclude that T� < +∞ in that case, thereby extending [7, section 5]. Let
us also mention that a natural conjecture is of course that T� = Tgel, but we have not
been able to prove it.

3. Existence of weak solutions. The existence proof relies on the construction
of an approximating sequence of solutions to some regularized problems combined with
weak compactness arguments in L1(R+). Such an approach was introduced in [20] for
the classical coagulation equation (1.1) and further developed in [13]. We will adapt
arguments from both papers to prove Theorem 2.2.

We first derive the following a priori estimates.
Lemma 3.1. Let f0 ∈ X+ and ε ∈ (0, 1]. Assume that there is a nonnegative and

convex piecewise C2-function Φ ∈ C1([0 ,+∞)) such that Φ(0) = 0, Φ′(0) = 1, Φ′ is
concave, and

C0 =

∫ ∞
0

Φ(f0)(u) du <∞ .(3.1)

Let T > 0 and fε ∈ C1([0, T );L1(R+)) be a weak solution to (1.20), (1.2) on [0, T ).
There is a positive constant C1 depending only on C0, T , α in (2.1) and ‖fε‖L∞(0,T ;X)

such that

sup
t∈[0 ,T )

∫ ∞
0

Φ(fε(u, t)) du ≤ C1 .(3.2)

Proof. We first recall (cf. [12, Lemma A.1]) that the properties of Φ imply

x Φ′(x) ≤ 2 Φ(x) for x ≥ 0 .(3.3)

Next we introduce

ΦR(x) =


Φ(x) if x ∈ [0 , R] ,

Φ′(R)(x−R) + Φ(R) if x ∈ [R ,+∞)
(3.4)
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for R ≥ 2 and notice that ΦR has a bounded first derivative, ΦR ≤ Φ, and also ΦR

enjoys the same properties as Φ and in particular (3.3).
We multiply (1.20) by Φ′R(fε), integrate on R+, and use (1.18) with φ = Φ′R(fε)

to obtain

d

dt

∫ ∞
0

ΦR(fε) du

≤
∫ ∞

0

∫ v

0

{
Φ′R(fε(v + εw))− Φ′R(fε(v))

ε

}
a(v, w) fε(v) fε(w) dwdv ,

since the monotonicity of ΦR ensures that the last term of the right-hand side of (1.18)
gives a nonpositive contribution. The convexity of ΦR next entails that for x, y ≥ 0,

x (Φ′R(y)− Φ′R(x)) ≤ y Φ′R(y) + ΦR(x)− ΦR(y)− x Φ′R(x) = ΨR(y)−ΨR(x) ,

where ΨR(x) = x Φ′R(x)−ΦR(x), x ≥ 0, is a nonnegative function since ΦR is convex
with ΦR(0) = 0. Consequently,

d

dt

∫ ∞
0

ΦR(fε) du

≤ 1

ε

∫ ∞
0

∫ v

0

(ΨR(fε(v + εw))−ΨR(fε(v))) a(v, w) fε(w) dwdv

≤ 1

ε

∫ ∞
0

fε(w)

∫ ∞
w

(ΨR(fε(v + εw))−ΨR(f
ε(v))) a(v, w) dvdw

≤ 1

ε

∫ ∞
0

∫ ∞
(1+ε)w

a(v − εw,w) ΨR(fε(v)) fε(w) dvdw

− 1

ε

∫ ∞
0

∫ ∞
w

a(v, w) ΨR(fε(v)) fε(w) dvdw

≤
∫ ∞

0

∫ ∞
w

{
a(v − εw,w)− a(v, w)

ε

}
ΨR(fε(v)) fε(w) dvdw .

Next we use (2.1) and (3.3) to deduce that

d

dt

∫ ∞
0

ΦR(fε) du ≤ α

∫ ∞
0

∫ ∞
0

w ΨR(fε(v)) fε(w) dwdv

≤ α ‖fε‖L∞(0,T ;X)

∫ ∞
0

ΦR(fε(v)) dv .

We now apply the Gronwall lemma and let R→ +∞ with the help of (3.1) to complete
the proof.

We next prove that for subadditive coagulation kernels, moments propagate
throughout time evolution.

Lemma 3.2. Let f0 ∈ X+ and ε ∈ (0, 1]. Assume that there is a nonnegative and
convex piecewise C2-function ϕ ∈ C1([0 ,+∞)) such that ϕ(0) = 0, ϕ′(0) = 1, ϕ′ is
concave, and

C2 =

∫ ∞
0

ϕ(u) f0(u) du <∞ .(3.5)

Assume further that the coagulation kernel a satisfies (2.4), and let T > 0 and fε ∈
C1([0, T );L1(R+)) be a weak solution to (1.20), (1.2) on [0, T ). There is a positive
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constant C3 depending only on C2, T , K1 in (2.4), ‖ϕ‖L∞(0,2), and ‖fε‖L∞(0,T ;X)

such that

sup
t∈[0 ,T )

∫ ∞
0

ϕ(u) fε(u, t) du ≤ C3 .(3.6)

Proof. We first recall (cf. [12, Lemma A.2]) that the properties of ϕ imply

(x+ y) (ϕ(x+ y)− ϕ(x)− ϕ(y)) ≤ 2 (x ϕ(y) + y ϕ(x)) , x, y ≥ 0 .(3.7)

Owing to the convexity of ϕ, we have

ϕ(v + εw)− ϕ(v) ≤ ε ϕ(v + w) + (1− ε) ϕ(v)− ϕ(v)

≤ ε (ϕ(v + w)− ϕ(v))

for (v, w) ∈ R
2
+, and it follows from (1.18) with φ = ϕ, (2.4), and (3.7) that

d

dt

∫ ∞
0

ϕ(u) fε du

≤
∫ ∞

0

∫ v

0

(ϕ(v + w)− ϕ(v)− ϕ(w)) a(v, w) fε(v) fε(w) dwdv

≤ 3 K1 ‖ϕ‖L∞(0,2)

∫ 1

0

∫ v

0

fε(v) fε(w) dwdv

+ 2 K1

∫ ∞
1

∫ v

0

(v + w) (ϕ(v + w)− ϕ(v)− ϕ(w)) fε(v) fε(w) dwdv

≤ C3 ‖fε‖2L∞(0,T ;X) + 4 K1

∫ ∞
0

∫ ∞
0

(v ϕ(w) + w ϕ(v)) fε(v) fε(w) dwdv

≤ C3 + 8 K1 ‖fε‖L∞(0,T ;X)

∫ ∞
0

ϕ(v) fε(v) dv .

Recalling (3.5), we conclude by the Gronwall lemma that (3.6) holds true. The above
computation is actually mostly formal as fε might not be integrable against the weight
ϕ. A rigorous justification can be performed by approximating ϕ by Lipschitz con-
tinuous functions, as in the proof of Lemma 3.1.

Before turning to the proof of Theorem 2.2, let us recall the following lemma.
Lemma 3.3. Let p > 0, (ψn)n≥1, ψ ∈ L∞((0 , p) × (0 , p)), and (gn)n≥1, g ∈

L1(0 , p). Suppose that

sup
n≥1
‖ψn‖L∞((0 ,p)×(0 ,p)) < +∞

and

ψn −→ ψ a.e. in (0 , p)× (0 , p) ,

gn ⇀ g weakly in L1(0 , p) .

Then

lim
n→+∞

∫ p

0

∫ p

0

ψn(x, y) gn(x) gn(y) dxdy =

∫ p

0

∫ p

0

ψ(x, y) g(x) g(y) dxdy .
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The proof of Lemma 3.3 relies on the Dunford–Pettis and Egorov theorems and
is contained implicitly in [20, Lemma 4.1], to which we refer.

Proof of Theorem 2.2. Throughout the proof, we denote by C any positive con-
stant which depends only on α in (2.1), K in (2.2), and f0. The dependence of C
upon additional parameters will be indicated explicitly.

We fix ε ∈ (0 , 1] and ' ≥ 1. We first consider a regularized problem obtained by
substituting a in (1.19) for a� defined by

a�(v, w) = min {a(v, w), '} , (v, w) ∈ R
2
+ ,(3.8)

denoting by Qε,� the coagulation operator thus obtained. Introducing

Q1
ε,�(f)(u) =

1

ε

∫ u/(1+ε)

0

a�(u− εv, v) f(u− εv) f(v) dv , u ∈ R+ ,

and Q2
ε,�(f) = Qε,�(f)−Q1

ε,�(f), it is easy to check that the boundedness of a� ensures

that Qi
ε,�, i = 1, 2, are locally Lipschitz continuous functions from L1(R+) in L1(R+).

Using the Banach fixed point theorem, one proves that there exist Tε,� ∈ (0,+∞] and
a unique solution fε,� ∈ C1([0, Tε,�);L1(R+)) to

∂tfε,� =
(
Q1

ε,�(fε,�)
)
+
+Q2

ε,�(fε,�) , (u, t) ∈ R+ × [0, Tε,�) ,(3.9)

with fε,�(0) = f0. Here and below, we denote by x+ = max {x, 0} the positive part
of the real number x. Since f0 and the first term of the right-hand side of (3.9) are
nonnegative, we deduce from (3.9) that

fε,�(t) ≥ 0 a.e. in R+

for every t ∈ [0, Tε,�). Consequently,
(
Q1

ε,�(fε,�)
)
+
= Q1

ε,�(fε,�) and fε,� solves

∂tfε,� = Qε,�(fε,�) , (u, t) ∈ R+ × [0, Tε,�) ,(3.10)

with fε,�(0) = f0. In addition, it follows at once from (1.18) with φ(v) = 1 and (3.10)
that ∫ ∞

0

fε,�(u, t) du ≤
∫ ∞

0

f0(u) du , t ∈ [0 , Tε,�) ,(3.11)

whence Tε,� = +∞. Next, let t > 0 and R ≥ 1. It follows from (3.10) that∫ ∞
0

min {u,R} fε,�(u, t) du =

∫ ∞
0

min {u,R} f0(u) du(3.12)

+

∫ t

0

∫ ∞
0

Qε,�(fε,�(u, s)) min {u,R} duds .

Since

min {v + εw,R} −min {v,R}
ε

−min {w,R} ≤ 0 , 0 ≤ w ≤ v ,

we infer from (1.18) with φ(v) = min {v,R}, v ∈ R+, that the last term on the
right-hand side of (3.12) is nonpositive, and we conclude that∫ ∞

0

min {u,R} fε,�(u, t) du ≤
∫ ∞

0

min {u,R} f0(u) du ≤
∫ ∞

0

u f0(u) du .
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Consequently, fε,� ∈ L∞(0,+∞;X) by the Fatou lemma, which, together with the
boundedness of a�, entails that

lim
R→+∞

∫ t

0

∫ ∞
0

Qε,�(fε,�(u, s)) min {u,R} duds = 0 .

We may then let R→ +∞ in (3.12) and obtain∫ ∞
0

u fε,�(u, t) du =

∫ ∞
0

u f0(u) du , t ≥ 0 .(3.13)

Gathering (3.11) and (3.13), we thus have shown that

sup
t≥0
‖fε,�(t)‖X ≤ ‖f0‖X , ' ≥ 1 .(3.14)

Step 1. Compactness in C([0, T ];weak − L1(R+)).
In this part of the proof, we require only the coagulation kernel a to fulfill (1.4),

(2.1), and (2.2). Recall that, since f0 ∈ L1(R+), it follows from a refined version of
the de la Vallée–Poussin theorem [4, 14] that there exists a function Φ fulfilling the
assumptions of Lemma 3.1 and such that

Φ(x)

x
→ +∞ as x→ +∞ and

∫ ∞
0

Φ(f0(u)) du < +∞ .(3.15)

Also, we infer from (2.1) that

∂ua�(u, v) =

(
1− sign (a(u, v)− ')

2

)
∂ua(u, v) ≥ −α , (u, v) ∈ R

2
+ .(3.16)

Owing to (3.14), (3.15), and (3.16), we are in a position to apply Lemma 3.1 and
conclude that for each T > 0,

sup
t∈[0 ,T ]

∫ ∞
0

Φ(fε,�(u, t)) du ≤ C(T ) ,(3.17)

uniformly with respect to ε ∈ (0 , 1] and ' ≥ 1. Thanks to (3.14), the superlinearity
(3.15) of Φ, and (3.17), we infer from the Dunford–Pettis theorem that for each T > 0,
there is a weakly compact subset KT of L1(R+) such that

fε,�(t) ∈ KT , (t, ε, ') ∈ [0, T ]× (0, 1]× [1,+∞) .(3.18)

We next show the time equicontinuity of the sequence (fε,�) in the weak topology
of L1(R+). We first consider φ ∈ D(R+) and let r0 > 0 be such that supp φ ⊂ [0, r0].
For h > 0 and t ∈ [0 , T − h], it follows from (1.18), (2.2), and (3.14) that∣∣∣∣∫ (fε,�(t+ h)− fε,�(t)) φ du

∣∣∣∣
≤
∫ t+h

t

∫ r0

0

∫ v

0

a(v, w)

∣∣∣∣φ(v + ε w)− φ(v)

ε

∣∣∣∣ fε,�(v) fε,�(w) dwdvds
+

∫ t+h

t

∫ ∞
0

∫ ∞
0

a(v, w) |φ(w)| fε,�(v) fε,�(w) dvdwds
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≤ ‖∂vφ‖L∞

∫ t+h

t

∫ r0

0

∫ v

0

a(v, w) w fε,�(v) fε,�(w) dwdvds

+ ‖φ‖L∞

∫ t+h

t

∫ ∞
0

∫ ∞
0

a(v, w) fε,�(v) fε,�(w) dvdwds

≤ K (1 + r0) ‖φ‖W 1,∞

∫ t+h

t

∫ ∞
0

∫ ∞
0

(1 + v) (1 + w) fε,�(v) fε,�(w) dvdwds

≤ K (1 + r0) ‖φ‖W 1,∞ ‖fε,�‖2L∞(0,T ;X) |h|
≤ C(φ) |h| .

This proves the time equicontinuity for test functions φ in D(R+). For a general
function in L∞(R+), we use the following approximation argument: for a given φ ∈
L∞(0,+∞), there is a sequence of functions (φk) in D(R+) such that ‖φk‖L∞ ≤
2 ‖φ‖L∞ and

φk −→ φ a.e. in R+.

It then follows from the Egorov theorem that for each R > 0 and δ ∈ (0, 1), there is
a measurable subset Zδ,R of (0, R) with |Zδ,R| ≤ δ and such that

lim
k→+∞

sup
v∈(0,R)\Zδ,R

|φk(v)− φ(v)| = 0.

Now, we have∣∣∣∣∫ ∞
0

(fε,�(t+ h)− fε,�(t)) φ du

∣∣∣∣
≤
∣∣∣∣∫ ∞

0

(fε,�(t+ h)− fε,�(t)) φk du

∣∣∣∣+ ∣∣∣∣∫ ∞
0

(fε,�(t+ h)− fε,�(t)) (φ− φk) du

∣∣∣∣
≤ C(φk) |h|+

∫
(0,R)\Zδ,R

(fε,�(t+ h) + fε,�(t)) |φk − φ| du

+ 3 ‖φ‖L∞ sup
t∈[0,T ]

∫ ∞
R

fε,�(t) du+ 3 ‖φ‖L∞ sup
t∈[0,T ]

∫
Zδ,R

fε,�(t) du

≤ C(φk) |h|+ 2 ‖fε,�‖L∞(0,T ;X) sup
v∈(0,R)\Zδ,R

|φk(v)− φ(v)|

+ 3 ‖φ‖L∞ sup
t∈[0,T ]

∫ ∞
R

fε,�(t) du+ 3 ‖φ‖L∞ sup
t∈[0,T ]

∫
Zδ,R

fε,�(t) du .

We first let h→ 0 and use (3.14) to obtain

lim sup
h→0

∣∣∣∣∫ ∞
0

(fε,�(t+ h)− fε,�(t)) φ du

∣∣∣∣ ≤ 2 ‖f0‖X sup
v∈(0,R)\Zδ,R

|φk(v)− φ(v)|

+
3

R
‖φ‖L∞ ‖f0‖X

+ 3 ‖φ‖L∞ sup
t∈[0,T ]

∫
Zδ,R

fε,�(t) du

for every k, R, and δ. We then let k → +∞, and next δ → 0 and R → +∞, to
conclude that

lim
h→0

∣∣∣∣∫ ∞
0

(fε,�(t+ h)− fε,�(t)) φ du

∣∣∣∣ = 0 ,
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this limit being uniform with respect to ε ∈ (0 , 1], ' > 1, and t ∈ [0 , T ]. Notice that
in order to pass to the limit as δ → 0 in the last term of the above inequality, we used
(3.18) and the Dunford–Pettis theorem.

We are now in a position to apply a variant of the Ascoli theorem (see, e.g.,
[21, Theorem 1.3.2]) to deduce that (fε,�) lies in a relatively compact subset of
C([0 , T ];weak − L1(R+)). There are thus sequences ' → +∞ and ε → 0 (not re-
labeled) and nonnegative functions fε, f ∈ C([0 , T ];weak − L1(R+)) such that

fε,� −→ fε in C([0 , T ];weak − L1(R+))(3.19)

for each T > 0 and ε ∈ (0, 1], and

fε −→ f in C([0 , T ];weak − L1(R+))(3.20)

for each T > 0. As a first consequence of (3.19) and (3.20), it follows from (3.14) and
the weak lower semicontinuity of ‖.‖X that

sup
t≥0
‖fε(t)‖X ≤ ‖f0‖X and sup

t≥0
‖f(t)‖X ≤ ‖f0‖X(3.21)

for ε ∈ (0 , 1].
We next identify the equations satisfied by fε for ε ∈ (0 , 1] and f . We recall that

for ε ∈ (0 , 1] and ' > 1, the function (fε,�) satisfies the weak form (2.8) of (3.10),
that is, ∫ ∞

0

fε,�(u, t) φ(u) du =

∫
f0(u) φ(u) du+R1

ε,�(φ, t)−R2
ε,�(φ, t)(3.22)

for every φ ∈ D([0 ,+∞)) and t ≥ 0, where

R1
ε,�(φ, t) =

∫ t

0

∫ ∞
0

∫ v

0

(
φ(v + εw)− φ(v)

ε

)
a�(v, w) fε,�(v, s) fε,�(w, s) dwdvds ,

R2
ε,�(φ, t) =

∫ t

0

∫ ∞
0

∫ v

0

φ(w) a�(v, w) fε,�(v, s) fε,�(w, s) dwdvds .

We now fix φ ∈ D([0 ,+∞)) and t > 0 in the above formulae and pass to the limit in
(3.22) first as '→ +∞ and then as ε→ 0. Let R0 be such that suppφ ⊂ [0, R0]. On
the one hand, notice that (3.19) and (3.20) readily imply that

lim
�→+∞

∫ ∞
0

fε,�(u, t) φ(u) du =

∫ ∞
0

fε(u, t) φ(u) du(3.23)

for ε ∈ (0, 1] and

lim
ε→0

∫ ∞
0

fε(u, t) φ(u) du =

∫ ∞
0

f(u, t) φ(u) du .(3.24)

On the other hand,

φ(v + εw)− φ(v) = 0 if (v, w) �∈ (0, R0)
2 and 0 ≤ w ≤ v ,

so that R1
ε,�(φ, t) reduces to an integral over (0, t)× (0, R0)

2. Owing to (2.2), (3.19),
and the definition of a�, we are in a position to apply Lemma 3.3 and conclude that

lim
�→+∞R

1
ε,�(φ, t) = R1

ε(φ, t) ,(3.25)



THE OORT–HULST–SAFRONOV COAGULATION EQUATION 1413

where

R1
ε(φ, t) =

∫ t

0

∫ ∞
0

∫ v

0

(
φ(v + εw)− φ(v)

ε

)
a(v, w) fε(v, s) fε(w, s) dwdvds .

Similarly, we deduce from (2.2), (3.20), and Lemma 3.3 that

lim
ε→0
R1

ε(φ, t) =

∫ t

0

∫ ∞
0

∫ v

0

w φ′(v) a(v, w) f(v, s) f(w, s) dwdvds .(3.26)

It remains to pass to the limit inR2
ε,�(φ, t). Observe that this term involves values

of fε,�(v, s) for large values of v so that more precise information on the behavior of a
for large values of v is needed. We thus now split the proof according to the assumed
growth of a.

Step 2. Convergence for strictly subquadratic kernels.
In this step, we complete the proof of Theorem 2.2 when the coagulation kernel a

satisfies (2.3) in addition to (2.1) and (2.2). On the one hand, we observe that, given
R > 1, it follows as above from (2.2), (3.19), and Lemma 3.3 that

lim
�→+∞

∫ t

0

∫ R

0

∫ v

0

φ(w) a�(v, w) fε,�(v, s) fε,�(w, s) dwdvds

=

∫ t

0

∫ R

0

∫ v

0

φ(w) a(v, w) fε(v, s) fε(w, s) dwdvds .

On the other hand, we infer from (2.3) and (3.14) that∫ t

0

∫ ∞
R

∫ v

0

φ(w) a�(v, w) fε,�(v, s) fε,�(w, s) dwdvds

≤ ‖φ‖L∞

∫ t

0

∫ ∞
R

∫ R0

0

a(w, v) fε,�(v, s) fε,�(w, s) dwdvds

≤ ‖φ‖L∞

∫ t

0

∫ ∞
R

∫ R0

0

v ωR0(v) fε,�(v, s) fε,�(w, s) dwdvds

≤ C(φ) ‖ωR0‖L∞(R,+∞) ,

whence

lim
R→+∞

∫ t

0

∫ ∞
R

∫ v

0

φ(w) a�(v, w) fε,�(v, s) fε,�(w, s) dwdvds = 0

by (2.3), uniformly with respect to ε ∈ (0, 1] and ' ≥ 1. Similarly, we deduce from
(2.3) and (3.21) that

lim
R→+∞

∫ t

0

∫ ∞
R

∫ v

0

φ(w) a(v, w) fε(v, s) fε(w, s) dwdvds = 0 .

The above analysis then yields that

lim
�→+∞R

2
ε,�(φ, t) = R2

ε(φ, t) ,(3.27)

where

R2
ε(φ, t) =

∫ t

0

∫ ∞
0

∫ v

0

φ(w) a(v, w) fε(v, s) fε(w, s) dwdvds .
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Proceeding analogously, we next obtain that

lim
ε→0
R2

ε(φ, t) =

∫ t

0

∫ ∞
0

∫ v

0

φ(w) a(v, w) f(v, s) f(w, s) dwdvds .(3.28)

Gathering (3.23), (3.25), and (3.27) ensures that fε satisfies (2.8) for any φ ∈
D([0 ,+∞)), and (3.21) together with classical approximation arguments entails that
fε actually satisfies (2.8) for any φ ∈ L∞(0 ,+∞). Also, (3.13) and (3.19) warrant
that (2.9) holds true. Next, gathering (3.24), (3.26), and (3.28) implies that f satisfies
(2.7) for any φ ∈ D([0 ,+∞)). Using again classical approximation arguments along
with (3.21) then yields that f satisfies (2.7) for any φ ∈W 1,∞(0 ,+∞) with compactly
supported first derivative. Finally, the inequality (2.9) for fε and (3.20) yield (2.9)
for f . Recalling the convergence (3.20), we have proved Theorem 2.2 for strictly
subquadratic coagulation kernels a.

Step 3. Convergence for subadditive kernels.
This final step is devoted to the proof of Theorem 2.2 for a subadditive coagulation

kernel a satisfying (2.4) besides (2.1) and (2.2). As in the previous step, the main
issue is to pass to the limit in R2

ε,�(φ, t). For that purpose, we will employ Lemma 3.2
and use once more a refined version of the de la Vallée–Poussin theorem [4, 14] to find
a function ϕ enjoying the requirements of Lemma 3.2 and

ϕ(x)

x
→ +∞ as x→ +∞ and

∫ ∞
0

ϕ(u) f0(u) du < +∞ .(3.29)

Since a� fulfills (2.4) with the same constant K1 as a, we infer from Lemma 3.2 that

sup
t∈[0,T ]

∫ ∞
0

ϕ(u) fε,�(u, t) du ≤ C(T )

for every T > 0, ε ∈ (0, 1], and ' ≥ 1. As a straightforward consequence of the
superlinearity (3.29) of ϕ and the above inequality, we realize that

lim
R→+∞

sup
t∈[0,T ]

∫ ∞
R

u fε,�(u, t) du = 0(3.30)

for every T > 0, uniformly with respect to ε ∈ (0, 1] and ' ≥ 1. One then employs
(3.30) to proceed as in Step 2 and conclude that (3.27) and (3.28) hold true. We
next argue as in Step 2 to show that f and fε satisfy (2.7) and (2.8), respectively.
In addition, it readily follows from (3.13), (3.19), (3.20), and (3.30) that fε and f
satisfy (2.10) and that the convergence (3.20) can be improved to the one claimed in
(2.12).

Proof of Proposition 2.4. We proceed along the same lines as those of Lemma 3.1.
We put P (x) = x+ for x ∈ R and

σ(t) = ‖f0‖L∞ exp

(
α t

∫ ∞
0

u f0(u) du

)
for t ≥ 0. For ε ∈ (0, 1] and ' ≥ 1, it follows from (1.18) and (3.10) that

d

dt

∫ ∞
0

P (fε,� − σ) du

≤
∫ ∞

0

∫ v

0

{
P ′(fε,�(v + εw)− σ)− P ′(fε,�(v)− σ)

ε

}
a�(v, w) fε,�(v) fε,�(w) dwdv

−
∫ ∞

0

P ′(fε,� − σ) σ′ du .



THE OORT–HULST–SAFRONOV COAGULATION EQUATION 1415

Owing to the convexity of P , we have for x, y ≥ 0,

x (P ′(y − σ)− P ′(x− σ)) ≤ y P ′(y − σ) + P (x− σ)− P (y − σ)− x P ′(x− σ)

≤ σ (P ′(y − σ)− P ′(x− σ)) .

Consequently, since P ′ ≥ 0,∫ ∞
0

∫ v

0

{
P ′(fε,�(v + εw)− σ)− P ′(fε,�(v)− σ)

ε

}
a�(v, w) fε,�(v) fε,�(w) dwdv

≤ σ

∫ ∞
0

∫ v

0

{
P ′(fε,�(v + εw)− σ)− P ′(fε,�(v)− σ)

ε

}
a�(v, w) fε,�(w) dwdv

≤ σ

∫ ∞
0

∫ ∞
w

{
a�(v − εw,w)− a�(v, w)

ε

}
P ′(fε,�(v)− σ) fε,�(w) dvdw

≤ α σ

∫ ∞
0

u f0(u) du

∫ ∞
0

P ′(fε,�(v)− σ) dv ,

where we have used (2.1) and (3.13) to obtain the last inequality. Thanks to the
choice of σ, combining the previous two inequalities yields that

d

dt

∫ ∞
0

P (fε,� − σ) du ≤ 0 ,

whence

‖fε,�(t)‖L∞ ≤ σ(t) , t ≥ 0 .

Proposition 2.4 then follows from the above inequality by (3.19) and (3.20).

4. Large time behavior and gelation. Throughout this section, we consider
f0 ∈ X+, f0 �≡ 0 and denote by f a weak solution to (1.5), (1.2) on [0,+∞). We also
denote the total mass of f at time t by M1(t), that is,

M1(t) =

∫ ∞
0

u f(u, t) du .(4.1)

Since the OHS equation (1.5) accounts for only coagulation reactions, the total
number of particles (which is nothing but the L1-norm of f) is expected to decrease
to zero as time increases to infinity. More precisely, we have the following result.

Proposition 4.1. For k ∈ [0, 1] and t2 ≥ t1 ≥ 0, we have∫ ∞
0

uk f(u, t2) du ≤
∫ ∞

0

uk f(u, t1) du .(4.2)

Assume further that for each η > 0, there is δη > 0 such that

a(u, v) ≥ δη for (u, v) ∈ (η,+∞)× (η,+∞) .(4.3)

Then

lim
t→+∞

∫ ∞
0

f(u, t) du = 0 .
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Proof. Let R ≥ 1 and take φ(v) = min {vk, Rk}, v ∈ R+, in (2.7) with t = t1 and
t = t2. Substracting the resulting identities yields∫ ∞

0

f(u, t2) φ(u) du =

∫ ∞
0

f(u, t1) φ(u) du

+

∫ t2

t1

∫ ∞
0

∫ v

0

[w φ′(v)− φ(w)] a(v, w) f(v, s) f(w, s) dwdvds .

Since k ∈ [0, 1], we have [w φ′(v)− φ(w)] ≤ 0 for 0 ≤ w ≤ v, from which we conclude
that ∫ ∞

0

f(u, t2) min {uk, Rk} du ≤
∫ ∞

0

f(u, t1) min {uk, Rk} du

for every R ≥ 1. Owing to Definition 2.1, we may let R→ +∞ and deduce (4.2).
We next prove the second assertion of Proposition 4.1. For U > 0 and t ≥ 0, we

put

L(U, t) =

∫ U

0

f(u, t) du .

We fix U > 0 and put φν(v) = min {1, (U + ν − v)+/ν} for v ∈ R+ and ν ∈ (0, 1).
Then φν ∈ W 1,∞(R+) and φ′ν ≤ 0. We then infer from (2.7) with φ = φν that for
t2 ≥ t1 ≥ 0, ∫ ∞

0

(f(u, t2)− f(u, t1)) φν(u) du

≤ −
∫ t2

t1

∫ ∞
0

∫ v

0

φν(w) a(v, w) f(v, s) f(w, s) dwdvds

≤ −1

2

∫ t2

t1

∫ U

0

∫ U

0

a(v, w) f(v, s) f(w, s) dwdvds .

We may then let ν → 0 and deduce that

L(U, t2)− L(U, t1) ≤ −1

2

∫ t2

t1

∫ U

0

∫ U

0

a(v, w) f(v, s) f(w, s) dwdvds .(4.4)

A first consequence of (4.4) is that L(U, .) is a nondecreasing and nonnegative function
of time, and there exists L(U) ≥ 0 such that

lim
t→+∞L(U, t) = L(U) .(4.5)

As a second consequence of (4.4), we realize that (4.3) yields, for η ∈ (0, U), that∫ t

0

(∫ U

η

f(v, s) dv

)2

ds ≤ 1

δη

∫ t

0

∫ U

0

∫ U

0

a(v, w) f(v, s) f(w, s) dwdvds

≤ 2

δη
L(U, 0) ,

and thus

t �→ L(U, t)− L(η, t) ∈ L2(0,+∞) .(4.6)
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It then readily follows from (4.5), (4.6), and the time monotonicity of L(η, .) that

0 ≤ L(U) = L(η) ≤ L(η, 0) , η ∈ (0, U) .

Since f0 ∈ L1(R+), we pass to the limit as η → 0 in the above identity to conclude
that L(U) = 0 for each U > 0. We next observe that (4.2) entails that

‖f(t)‖L1 ≤ L(U, t) +
1

U

∫ ∞
U

u f(u, t) du ≤ L(U, t) +
1

U

∫ ∞
0

u f0(u) du ,

from which the second assertion of Proposition 4.1 readily follows by first letting
t→ +∞ and then U → +∞.

We now turn to the proof of Theorem 2.5, beginning with the following lemma.
Lemma 4.2. For t2 ≥ t1 ≥ 0, we have∫ t2

t1

∫ ∞
0

∫ ∞
0

a(v, w) f(v, s) f(w, s) dvdwds ≤ 2

∫ ∞
0

f(v, t1) dv(4.7)

and ∫ t2

t1

∫ ∞
R

∫ ∞
R

a(v, w) f(v, s) f(w, s) dvdwds ≤ 2

R

∫ ∞
0

v f(v, t1) dv(4.8)

for R > 0.
Proof. We first take φ = 1 in (2.7) to obtain (4.7). We next take φ(v) = min {v,R}

in (2.7) and notice that

w φ′(v)− φ(w) = −R if v ≥ w ≥ R ,

w φ′(v)− φ(w) ≤ 0 if v ≥ w ≥ 0 and w ≤ R

to conclude that (4.8) holds true.
We now argue as in [9, Theorem 1.1] to complete the proof of Theorem 2.5.
Proof of Theorem 2.5. Assume first that λ ∈ (1, 2). We put ζ(v) =

(
v1−λ/2 − 1

)
+
,

v ∈ R+, and notice that

J =

∫ ∞
0

ζ ′(v) v−1/2 dv < +∞ ,

since λ+ 1 > 2 and ζ vanishes in a neighborhood of v = 0. For t2 ≥ t1 ≥ 0, it follows
from the Hölder inequality, (2.15), and (4.8) that∫ t2

t1

(∫ ∞
0

ζ ′(R)
∫ ∞
R

uλ/2 f(u, s) dudR

)2

ds

≤ J
∫ t2

t1

∫ ∞
0

ζ ′(R) R1/2

(∫ ∞
R

uλ/2 f(u, s) du

)2

dRds

≤ J
K0

∫ ∞
0

ζ ′(R) R1/2

∫ t2

t1

∫ ∞
R

∫ ∞
R

a(u, v) f(u, s) f(v, s) dvdudsdR

≤ 2 J 2

K0
M1(t1) .
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However, ∫ ∞
0

ζ ′(R)
∫ ∞
R

uλ/2 f(u, s) dudR =

∫ ∞
0

uλ/2 ζ(u) f(u, s) du

≥ C(λ)

∫ ∞
2

u f(u, s) du .

Combining the previous inequalities yields∫ t2

t1

(∫ ∞
2

u f(u, s) du

)2

ds ≤ C M1(t1)(4.9)

for some constant C depending only on λ and K0. Next it follows from (2.15) and
(4.7) that ∫ t2

t1

(∫ 2

0

u f(u, s) du

)2

ds ≤ C

∫ ∞
0

f(v, t1) dv .(4.10)

We then infer from (4.2), (4.9), (4.10), and the Young inequality that∫ ∞
0

M1(s)
2 ds ≤ C ‖f0‖X .(4.11)

Recalling (4.2), we realize that the total mass M1 is a nondecreasing and nonnegative
function which also belongs to L2(0,+∞). Therefore,

lim
t→+∞M1(t) = 0 ,

which readily implies that Tgel < +∞ since M1(0) > 0.
We next consider the case λ = 2. It then readily follows from (2.15) and (4.7)

that (4.11) holds true, and we argue as above to complete the proof.

5. Compactly supported initial data. Throughout this section, we consider
f0 ∈ X+ and denote by f a weak solution to (1.5), (1.2) on [0,+∞). As in the
previous section, we denote the total mass of f at time t by M1(t); see (4.1).

Proof of Theorem 2.6. Since

(u, t) �→
∫ u

0

v a(u, v) f(v, t) dv

belongs to C([0,+∞) × [0,+∞)), the first assertion of Theorem 2.6 follows at once
from the Cauchy–Péano theorem. The monotonicity of R is then a consequence of
the nonnegativity of f and a. We next put

F (u, t) =

∫ ∞
u

f(v, t) dv , F0(u) = F (u, 0) ,

λ(u, t) =

∫ u

0

v a(u, v) f(v, t) dv , µ(u, t) =

∫ ∞
u

a(u, v) f(v, t) dv

for (u, t) ∈ R
2
+. Then (2.2) and (4.2) ensure that F ∈ L∞(0,+∞;W 1,1(R+)) and

λ and µ belong to L∞loc([0,+∞)2). Moreover, the boundedness of f , (2.1), and (4.2)
imply that

∂uλ(u, t) = u a(u, u) f(u, t) +

∫ u

0

v ∂ua(u, v) f(v, t) dv ∈ L∞loc([0,+∞)2) ,
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and we infer from (2.7) that F satisfies

∂tF (u, t) + ∂u (λ(u, t) F (u, t)) = ∂uλ(u, t) F (u, t)−
∫ ∞
u

µ(v, t) f(v, t) dv

a.e. in R+ for each t ≥ 0 with F (0) = F0. The regularity of f and a then implies that
F ∈W 1,∞

loc ([0,+∞)×R+). Since µ and f are nonnegative, it follows from (2.17) and
the above equation that for t0 ∈ (0, T�) and t ∈ [0, t0], we have

d

dt

∫ R(t0)

R(t)

F (u, t) du =

∫ R(t0)

R(t)

∂tF (u, t) du− F (R(t), t) R′(t)

≤ −λ(R(t0), t) F (R(t0), t) + λ(R(t), t) F (R(t), t)

+

∫ R(t0)

R(t)

F (u, t) ∂uλ(u, t) du− F (R(t), t) R′(t)

≤ ‖∂uλ‖L∞((0,R(t0))×(0,t0))

∫ R(t0)

R(t)

F (u, t) du .

We now apply the Gronwall lemma and use (2.16) to conclude that∫ R(t0)

R(t)

F (u, t) du ≤
∫ R(t0)

R0

F0(u) du exp
(
t0 ‖∂uλ‖L∞((0,R(t0))×(0,t0))

)
= 0

for each t ∈ [0, t0]. Consequently,

F (R(t), t) =

∫ ∞
R(t)

f(u, t) du = 0

for each t ∈ [0, t0], whence the second assertion of Theorem 2.6 since t0 is arbitrary
in [0, T�).

Proof of Corollary 2.7. Let t ∈ (0, T�). Since f(t) is compactly supported, (2.19)
follows at once from (2.7) with φ(u) = u, u ∈ R+.

We next show that T� = +∞ for subadditive coagulation kernels.
Lemma 5.1. Assume that a ∈ C([0,+∞)2) satisfies (2.4). Then T� = +∞.
Proof. The subadditivity (2.4) of the coagulation kernel, (2.17), and (4.2) entail

that for t ∈ [0, T�),

R′(t) ≤ K1

∫ R(t)

0

u (1 +R(t) + u) f(u, t) du

≤ K1 (1 + 2 R(t))

∫ ∞
0

u f(u, t) du

≤ K1 (1 + 2 R(t))

∫ ∞
0

u f0(u) du ,

and the Gronwall lemma ensures that (2.18) cannot occur, whence T� = +∞.
We next give some bounds from above and below for R for additive and product

coagulation kernels. We first consider additive coagulation kernels.
Lemma 5.2. Assume that

a(u, v) = uλ + vλ , (u, v) ∈ R
2
+ ,

with λ ∈ [0, 1]. Then T� = +∞ and, for t ≥ 0,(
R(0)1−λ + (1− λ) M1(0) t

)1/(1−λ) ≤ R(t) ≤ (R(0)1−λ + 2 (1− λ) M1(0) t
)1/(1−λ)
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if λ ∈ [0, 1) and

R(0) eM1(0)t ≤ R(t) ≤ R(0) e2M1(0)t

if λ = 1.
Proof. By Lemma 5.1, we have T� = +∞, and we infer from (2.17) that

R′(t) =
∫ R(t)

0

u
(
R(t)λ + uλ

)
f(u, t) du .

Owing to (2.19), the above identity yields that

R′(t) ≤ 2 R(t)λ
∫ ∞

0

u f(u, t) du ≤ 2 M1(0) R(t)
λ ,

whence the upper bound by the Gronwall lemma. Similarly,

R′(t) ≥ R(t)λ
∫ ∞

0

u f(u, t) du ≥M1(0) R(t)
λ ,

and the expected lower bound follows again from the Gronwall lemma.
Remark 5.3. Of course, similar upper or lower bounds are also available for

coagulation kernels being bounded from below or above by an additive coagulation
kernel.

We next turn to product kernels, that is, a(u, v) = (u v)λ/2, (u, v) ∈ R
2
+, for some

λ ∈ [0, 2]. Observe that by Lemma 5.1, T� = +∞ if λ ∈ [0, 1], while Theorem 2.5
entails that T� < +∞ if λ ∈ (1, 2]. The estimates we obtain for product kernels will
therefore be of a different nature according to whether λ ∈ [0, 1] or λ ∈ (1, 2].

Lemma 5.4. Assume that

a(u, v) = (u v)λ/2 , (u, v) ∈ R
2
+ ,

with λ ∈ [0, 2].
1. If λ ∈ [0, 1], then T� = +∞ and

R(t) ≤ (R(0)1−λ + (1− λ) M1(0) t
)1/(1−λ)

if λ ∈ [0, 1) and

R(t) ≤ R(0) eM1(0)t

if λ = 1.
2. If λ ∈ (1, 2], then T� < +∞ and

T� ≥ 1

(λ− 1) M1(0) R(0)λ−1
.

Proof. By (2.17) and (4.2), we have

R′(t) = R(t)λ/2
∫ R(t)

0

u1+λ/2 f(u, t) du ≤M1(0) R(t)
λ

for t ∈ [0, T�). Lemma 5.4 then readily follows by direct integration of the previous
inequality.

An interesting question is whether it is possible to obtain similar estimates from
below for R when λ ∈ [0, 1] and from above for T� when λ ∈ (1, 2], but this seems to
be less obvious.
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Abstract. This paper establishes a precise sufficient condition for the regularity of a boundary
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1. Introduction. Let Ω ⊂ R
N+1 (N ≥ 2) denote any bounded open subset and

∂Ω its topological boundary. We write a typical point as z = (x, t) = (x1, x, t), x =
(x1, x) ∈ R

N , x = (x2, . . . , xN ) ∈ R
N−1, t ∈ R. For a given point z0 = (x0, t0) and a

positive number ε define the cylinder

Q(z0, ε) = {z : |x− x0| < ε, t0 − ε < t < t0}.

We split ∂Ω as ∂Ω = PΩ
⋃DΩ, where PΩ is the set of all points z0 ∈ ∂Ω such that

for any ε > 0, the cylinder Q(z0, ε) contains points not in Ω. The set PΩ is called the
parabolic boundary of Ω. The set DΩ is naturally called the top boundary of Ω. We
split also PΩ as PΩ = SΩ

⋃BΩ, where BΩ is the set of all points z0 ∈ PΩ such that
for some ε > 0, the cylinder Q(z0, ε) lies outside Ω. The set BΩ is naturally called
the bottom boundary of Ω, while SΩ will be called the lateral boundary of Ω.

For u ∈ C2,1
x,t (Ω), we define the diffusion (or heat) operator

Du = ut −∆u = ut −
N∑
i=1

uxixi , z ∈ Ω.

A function u ∈ C2,1
x,t (Ω) is called parabolic in Ω if Du = 0 for z ∈ Ω. Let f : PΩ→ R

be a bounded function. The first boundary value problem (FBVP) may be formulated
as follows:

Find a function u which is parabolic in Ω and satisfies the conditions

f∗ ≤ u∗ ≤ u∗ ≤ f∗ for z ∈ PΩ,(1.1)

where f∗, u∗ (or f∗, u∗) are lower (or upper) limit functions of f and u, respectively.
In particular, if f ∈ C(PΩ; R), from (1.1) it follows that u takes continuously the

given values of f on PΩ. The strategy for solving the FBVP may be well expressed
by the citation from the classical paper [W] on the Dirichlet problem (DP) for the
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Laplace equation. As pointed out by Lebesgue and independently by Wiener [W],
“the DP divides itself into two parts, the first of which is the determination of a
harmonic function corresponding to certain boundary conditions, while the second
is the investigation of the behaviour of this function in the neighbourhood of the
boundary.” The same strategy, obviously replacing harmonic function with parabolic
function and boundary with the parabolic boundary, is applicable to the FBVP for
the diffusion equation. As in the case of the Laplace equation, a generalized solution
to the FBVP for the diffusion equation may be constructed by Perron’s super- or
subsolutions method (see section 2). However, in general the generalized solution
doesn’t satisfy (1.1).

We say that a point z0 ∈ PΩ is regular if for any bounded function f : PΩ→ R,
the generalized solution of the FBVP constructed by Perron’s method satisfies (1.1)
at the point z0. It is well known that the boundary points z0 ∈ BΩ are always regular.

The principal result of this paper is the characterization of the regularity of the
boundary points z0 ∈ SΩ via local geometry of the lateral boundary near this point.

Consider the following domains:

G1
ρ = {z : x2

1 < 4ξ log ρ(ξ), (x, t) ∈ P (δ)},

G2
ρ = {z : −2(ξ log ρ(ξ))

1
2 < x1 < 2(−δ log ρ(−δ))

1
2 , (x, t) ∈ P (δ)},

P (δ) = {(x, t) : −δ < ξ < 0,−δ < αt < 0},

where δ > 0 is a sufficiently small positive number, ξ = αt − β|x|2, and α and β are
given positive numbers. Throughout this paper we assume that ρ = ρ(ξ),−δ ≤ ξ < 0
is a positive and continuously differentiable function satisfying the following condition:

ρ(ξ) ↓ 0, ξρ−1(ξ)ρ′(ξ)→ 0 as ξ ↑ 0.(1.2)

Applying l’Hôpital’s rule to (1.2), it follows that ξ log ρ(ξ)→ 0 as ξ ↑ 0. In Figures 1
and 2 the domains G1

ρ and G2
ρ are described when N = 2. The parabolic boundary

PG1
ρ consists of two manifolds

L± = {z ∈ G1
ρ : x1 = ±2(ξ log ρ(ξ))

1
2 , t > −δα−1}

and the cylindrical hypersurface

{z ∈ G1
ρ : ξ = −δ, t > −δα−1}.

The bottom boundary BG1
ρ consists of a line segment {z : x2

1 < −4δ log ρ(−δ), |x| =
0, t = −δα−1}. The parabolic boundary PG2

ρ differs from PG1
ρ by replacing the man-

ifold L+ with

{z ∈ G2
ρ : x1 = 2(−δ log ρ(−δ))

1
2 , (x, t) ∈ P (δ)}.

Our main theorem reads as follows.
Theorem 1.1. Let α + 2(N − 1)β ≤ 1 and

lim
ε↑0

∫ ε

−δ

ρ(η)

η
dη = −∞.(1.3)
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Fig. 1. The domain G1ρ when N = 2.

Fig. 2. The domain G2ρ when N = 2.

Then the origin (O) is a regular point for G1
ρ (or G2

ρ) and the FBVP is solvable in G1
ρ

(or G2
ρ).

Some examples of functions ρ that satisfy (1.2), (1.3) are

ρ(ξ) = |log|ξ||−1, ρ(ξ) =

{
|log|ξ||

n∏
k=2

logk|ξ|
}−1

, n = 2, 3, . . . ,(1.4)

where we use the following notation:

log2|ξ| = log|log|ξ||, logn|ξ| = loglogn−1|ξ|, n ≥ 3.

Theorem 1.1 provides a general sufficient condition for the regularity of the boundary
points z0 ∈ SΩ and for the solvability of the FBVP in Ω.
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Fig. 3. The domain Aρ when N = 2.

Let Aρ = G\G2
ρ , where

G = {z : x2
1 < −4δ log ρ(−δ), (x, t) ∈ P (δ)}.

In Figure 3 the domain Aρ is described when N = 2. We call the origin the vertex of
Aρ. Consider the rigid body displacements of Aρ composed of translations and (or)
rotations in x-space and shift along the t-axis.

Definition 1.2. We shall say that Ω satisfies the exterior Aρ-condition at the
point z0 ∈ SΩ if after the above-mentioned displacement the vertex of Aρ coincides
with z0 and for all sufficiently small δ, Aρ lies in the exterior of Ω.

Theorem 1.1 implies the following more general result.
Theorem 1.3. The boundary point z0 ∈ SΩ is regular if Ω satisfies the exterior

Aρ-condition at this point. The FBVP is solvable in a region Ω which satisfies the
exterior Aρ-condition at every point z0 ∈ SΩ.

In the case when the lateral boundary is locally a continuous graph, the exterior
Aρ-condition may be expressed in terms of modulus of lower semicontinuity of the
lateral boundary manifold. To make this precise, assume that for z0 = (x0, t0) ∈ SΩ
there exists ε > 0 and a continuous function φ such that, after a suitable rotation of
x-axes, we have

SΩ ∩Q(z0, ε) = {z ∈ Q(z0, ε) : x1 = φ(x, t)},(1.5)

sign (x1 − φ(x, t)) = 1 for z ∈ Q(z0, ε) ∩ Ω.(1.6)

The exterior Aρ-condition is equivalent to the following one-side inequality for the
function φ:

φ(x0, t0)− φ(x, t) ≤ 2(ξ′ log ρ(ξ′))
1
2 for (x, t) ∈ P ′(δ),(1.7)

where δ > 0 is a sufficiently small number, ξ′ = α(t−t0)−β|x−x0|2; the domain P ′(δ)
coincides with P (δ) by replacing ξ with ξ′ and t with t− t0; the numbers α > 0, β > 0
and the function ρ satisfy the conditions of Theorem 1.1. The equivalence easily fol-
lows from the fact that after the displacement according to the exterior Aρ-condition,
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Fig. 4. Hyperbolic paraboloid x21 =M(−t+ x22).

Fig. 5. The domain Mδ.

the boundary manifold which is a common boundary of the translated domains Aρ
and G1

ρ has a representation x1 = φ(x, t), (x, t) ∈ P ′(δ), where φ satisfies (1.7) with
“=” instead of “≤”. Inequality (1.7) means that at the point z0 = (x0, t0) ∈ SΩ, the
lateral boundary manifold is allowed to be “slightly worse” than lower Lipschitz in
the x-direction and “slightly worse” than lower 1

2 -Hölder in −t-direction. “Slightly
worse” means that the related Lipschitz (or, respectively, Hölder) coefficient may con-

verge to infinity as (x, t)→ (x0, t0) but not faster than 2(−β log ρ(−β|x−x0|2))
1
2 (or,

respectively, 2(−α log ρ(α(t − t0)))
1
2 ). In the particular case when both coefficients

are constant, we get the parabolic analogue of the well-known exterior cone condition
for the Laplace equation. Let us formulate this condition geometrically in the spirit
of our exterior Aρ-condition. For simplicity take N = 2 and consider the hyperbolic
paraboloid (Figure 4)

x2
1 = M(−t + x2

2), M > 0.

Let δ > 0 be given and consider the subsurface of the hyperbolic paraboloid which
is situated in the half space {t ≤ 0} between two planes {x1 = 0} and {x1 = −δ 1

2 }
(Figure 5). Consider the open domain Mδ which is bounded by this subsurface and

by the planes {t = 0} and {x1 = −δ 1
2 } (Figure 5). We call the origin the vertex
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of Mδ. Consider the rigid body displacements of Mδ composed of translations and
(or) rotations in x-space and shift along the t-axis. If after such a displacement the
vertex of Mδ coincides with the point z0 ∈ SΩ, and for all sufficiently small δ, Mδ

lies in the exterior of Ω, then z0 is a regular point. This fact is an easy consequence
of Theorem 1.3. A similar condition is obviously true when N > 2 just by replacing
x2

2 with |x|2. This is exactly the parabolic analogue of the exterior cone condition for
the Laplace equation, and it is natural to call it an “exterior hyperbolic paraboloid
condition.”

It should be mentioned that the boundary regularity result of Theorem 1.1 has a
probabilistic meaning in the context of the short-time behavior of the Brownian mo-
tion trajectories for the high-dimensional diffusion processes. Without going into de-
tails, let us just formulate the probabilistic analogue of this result taking the simplest
example ρ(ξ) = |log|ξ||−1. Consider the standard N -dimensional Brownian motion
in which the coordinates of the sample path are standard one-dimensional Brownian
motions. The intuitive meaning of Theorem 1.1 is that the Brownian path that starts
at the origin (assuming that the process goes in the −t-direction) with probability 1
will reach the exterior of G1

ρ within arbitrarily short time. From the classical iterated
logarithm law it easily follows that with probability 1 the same trajectory will remain
in the domain G1

ρ within some positive time if α > 1, β > 0. We explain this fact
below in section 4 (see five lines after (4.1)). An important open problem is whether
the same is true if 0 < α ≤ 1 but α + 2(N − 1)β > 1. The related open problem in
the context of the FBVP consists in the derivation of the precise sufficient condition
for the irregularity of the boundary points. We address this issue in the next paper.

We prove the main theorems in section 3, after some preliminaries in section 2.
Section 4 contains some final remarks.

Historical comments. In 1935, Petrovsky [P] presented complete results on
the FBVP for the one-dimensional diffusion equation ut = uxx in a plane domain
whose lateral boundary is given by two continuous curves x = φ1(t) and x = φ2(t).
Petrovsky’s paper was motivated by the proof of the so-called Kolmogorov test for the
distinction between the upper and the lower functions of the one-dimensional space-
time Brownian motion trajectories (see [IM]). If we take N = 1, then our Theorem 1.1
coincides with the regularity result from [P, section 2]. Moreover, the analogue of
our domain G1

ρ is a plane domain between the curve x2
1 = 4t log ρ(t) and the line

t = −δ < 0. We get a similar domain intersecting G1
ρ with the hyperplane {x = 0}.

As was proved in [P, section 3], even for the particular example ρ(t) = |log|t||−1 the
result is close to being an optimal in the sense that the origin is an irregular point if
we replace the boundary curve with x2

1 = −4αt log2|t|, α > 1. In the context of the
one-dimensional Brownian motion this result repeats Khinchin’s iterated logarithm
law. As a direct implication of the one-dimensional results, in [P, section 4] the case
N = 2 was also briefly considered. It was shown that the origin is an irregular point
for the bounded domain lying beneath the plane {t = 0} and bounded on its sides by
the surface of revolution

x2 + y2 = −4(1 + ε)t log2|t|,
where ε > 0 is an arbitrary small number. From another side, from the regularity
condition formulated in [P, section 4], it follows that the origin is a regular point for
the same domain if we replace the surface of revolution with the following one:

x2 + y2 = 4t log ρ(t),
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where ρ(t) satisfies the conditions of [P, section 4] (or our Theorem 1.1). Both results
are true for the case N ≥ 3 as well. The meaning of these results is that the conditions
for the regularity or irregularity of the boundary point on the top of the radially
symmetric domain formed with the rotation of the plane curve x2

1 = 4t log ρ(t) around
the t-axis are the same as in the one-dimensional case. Probabilistic interpretation of
this fact may be given in the context of the multidimensional Brownian motion.

Starting from 1954–1955, Wiener’s ideas [W] concerning the regularity of the
boundary points for the Laplace equation were adapted to the case of the diffusion
equation. In [L], Wiener-type necessary and sufficient conditions for the regularity
of the boundary points in the FBVP for the diffusion equation were published. The
analogue of Wiener’s condition, namely, a necessary and sufficient condition which
is a quasi-geometric characterization for a boundary point of an arbitrary bounded
open subset of R

N+1 to be regular for the diffusion equation, was established in [EG].
However, it should be mentioned that Wiener’s criterion does not resolve the natural
geometric and analytic question which we impose in this paper. Despite its generality,
it seems impossible to derive even Petrovsky’s one-dimensional results from Wiener’s
condition.

Another sufficient condition for the regularity of the boundary points in the FBVP
for the diffusion equation, the so-called exterior tusk condition which is an analogue
of the exterior cone condition for the Laplace equation, was established in [EK]. It
should be pointed out that the origin does not satisfy the exterior tusk condition
from [EK] as a boundary point of G1

ρ (or G2
ρ). The exterior tusk condition is satisfied

for the singularities in the −t-direction which are not “more flat” than a branch
of parabola near its vertex. Otherwise speaking, the lower Hölder condition with
Hölder exponent 1

2 should be satisfied, provided that (1.5), (1.6) are valid. Similarly,
under the assumptions (1.5), (1.6), the exterior tusk condition may be satisfied for
the singularities in the x-direction which satisfy the exterior cone condition (or lower
Lipschitz condition). For example, the exterior tusk condition is not satisfied for
the origin as a boundary point of the cylindrical domain whose projection to the
hyperplane t = 0 coincides with G2

ρ ∩ {t = 0}. Hence, the exterior tusk condition is
similar to the exterior hyperbolic paraboloid condition.

2. Preliminary results. In this section we present some facts about Perron’s
solution of the FBVP. Lemma 2.1 is standard and demonstrates the role of barriers
for the regularity of the origin for G1

ρ or G2
ρ . Lemma 2.2 proves the equivalence of

the regularity (or irregularity) of the origin for G1
ρ and G2

ρ , which allows us to prove
Theorem 1.1 only for G1

ρ .
It should be mentioned that the results of this section are general, and we do not

need to assume that the conditions of Theorem 1.1 and the second condition from
(1.2) are satisfied. However, we need to assume that ξ log ρ(ξ)→ 0 as ξ ↑ 0.

A bounded open subset U ∈ R
N+1 is called regular if for each continuous function

φ ∈ C(∂U ; R) there exists one (and only one) function HU
φ , which is parabolic in U ,

and

lim
z→z0,z∈U

HU
φ = φ(z0) for all z0 ∈ ∂U.

A function u ∈ C(Ω) is called superparabolic in Ω if the following conditions are
satisfied:

(a) u is lower semicontinuous; −∞ < u ≤ +∞, u < +∞ on a dense subset of Ω;
(b) if U ⊂ U ⊂ Ω is a regular open set, φ ∈ C(∂U ; R), and φ ≤ u on ∂U , then

HU
φ ≤ u in U .
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A function v is called a subparabolic if −v is a superparabolic. For example, any
function u ∈ C2,1

x,t (Ω) satisfying Du ≥ 0 (or Du ≤ 0) for z ∈ Ω is superparabolic (or
subparabolic). The classical theory defines Perron’s solution of the FBVP to be, for
each z ∈ Ω,

HΩ
f = inf{u(z)},

where the infimum is taken over all superparabolic functions u in Ω such that

u∗(z0) ≥ f∗(z0) for all z0 ∈ PΩ.

According to the classical theory (see, for example, [D, B] for the most general frame-
work) HΩ

f is parabolic in Ω. However, in general it does not satisfy (1.1). A boundary

point z0 ∈ PΩ is called regular if for arbitrary bounded boundary function f , HΩ
f

satisfies (1.1) at this point. It is well known that bottom boundary points z0 ∈ BΩ
are always regular (see, for example, [P]). It is a standard fact in the classical theory
that the boundary point z0 ∈ SΩ is regular if there exists a so-called regularity barrier
u with the following properties:

(a) u is superparabolic in U = Q(z0, ε) ∩ Ω for some ε > 0;
(b) u is continuous and nonnegative in U , vanishing only at z0.

In particular, concerning the regularity of the origin for G1
ρ or G2

ρ we have the following.
Lemma 2.1. The origin (O) is regular for G1

ρ (or G2
ρ) if and only if there exists a

regularity barrier u for O regarded as a boundary point of G1
ρ (or G2

ρ) for sufficiently
small δ.

Proof. The proof of the “if” part is standard. To prove the “only if” part, take

f = −t + |x|2 and let u = H
G1
ρ

f be Perron’s solution. Since ρ(ξ) is C1 for ξ < 0, from

the classical theory it follows that all the boundary points z0 ∈ PG1
ρ , z0 �= O, are

regular points. But O is regular by our assumption. Therefore, u ∈ C(G1
ρ). From the

strong maximum principle it follows that u is nonnegative in G1
ρ and vanishes only at

O. Thus u is a regularity barrier for O. The proof for the domain G2
ρ is similar. The

lemma is proved.
The next lemma is the high-dimensional analogue of Theorem III from [P, p. 389].
Lemma 2.2. The origin is simultaneously regular or irregular for G1

ρ and G2
ρ .

Proof. Assume that O is regular for G2
ρ . Then by Lemma 2.1 there exists a

regularity barrier for O regarded as a boundary point of G2
ρ . Obviously, it will also

be a regularity barrier for O regarded as a boundary point of G1
ρ . From Lemma 2.1 it

follows that O is regular for G1
ρ .

Conversely, assume now that O is regular for G1
ρ . Let u = H

G2
ρ

f , where f =

−t + |x|2. Since ρ(ξ) is C1 for ξ < 0, all the boundary points z0 ∈ PG2
ρ , z0 �= O, are

regular points. Accordingly, u ∈ C(G2
ρ\{O}). Denote

L = lim sup
z→O,x1=φ(x,t)

u,

where φ(x, t) = 4ξ log ρ(ξ). Obviously, we have 0 ≤ L < +∞. Let f1 be an arbitrary
function which is defined and continuous in PG1

ρ\{O}, satisfying

f1(x1, x, t) = −f1(−x1, x, t)(2.1)

and

lim
z→O,x1=φ(x,t)

f1 =
L

2
, lim

z→O,x1=−φ(x,t)
f1 = −L

2
.
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Choose a function f2 in such a way that

f1 + f2 = u for z ∈ PG1
ρ ∩ G2

ρ ,

f1 + f2 = f on the rest of PG1
ρ .

Since all the points z0 ∈ PG1
ρ are regular points, Perron’s solutions u1 = H

G1
ρ

f1
,

u2 = H
G1
ρ

f2
, and H

G1
ρ

f1+f2
are continuous functions in G1

ρ\{O}. Applying the maxi-

mum principle in G1
ρ ∩ {z : t ≤ −ε} for arbitrary sufficiently small ε > 0 and passing

to the limit as ε ↓ 0, we easily derive that

u = H
G1
ρ

f1+f2
= H

G1
ρ

f1
+ H

G1
ρ

f2
= u1 + u2.(2.2)

Applying the same arguments, from (2.1) we deduce that

u1(x1, x, t) = −u1(−x1, x, t),

and hence

u1(0, x, t) = 0.(2.3)

We have

lim sup
z→O,x1=±φ(x,t)

f2 ≤ L

2
.

Since O is a regular point for G1
ρ , it follows that

lim sup
ξ→0

u2(0, x, t) ≤ L

2
.(2.4)

From (2.2)–(2.4) we have

lim sup
ξ→0

u(0, x, t) ≤ L

2
.

Since O is a regular point regarded as a boundary point of G3 = {z ∈ G2
ρ : x1 > 0},

we have L ≤ L/2, which implies that L = 0. Thus u is continuous in G2
ρ and by the

strong maximum principle vanishes only at O. Hence, u is a regularity barrier for O
regarded as a boundary point of G2

ρ . From Lemma 2.1 it follows that O is a regular
point for G2

ρ as well. The lemma is proved.

Corollary 2.3. Let G0 be a given open set in R
N+1 and O ∈ ∂G0, G−0 �= ∅,

where G−0 = {z ∈ G0 : t < 0}. If G−0 ⊂ G2
ρ , then from the regularity of O for G1

ρ or G2
ρ

it follows that O is regular for G0. Otherwise speaking, from the irregularity of O for
G0 or G−0 it follows that O is irregular for G1

ρ and G2
ρ .

Since bottom boundary points are always regular, the assertion of Corollary 2.3
easily follow from Lemmas 2.1 and 2.2 and from the fact that the regularity barrier
for O regarded as a boundary point of G2

ρ is at the same time a regularity barrier for

O regarded as a boundary point of G−0 .
Obviously, the assertion of Corollary 2.3 is true if we take an arbitrary boundary

point z0 = (x0, t0) ∈ ∂G0, assuming that G−0 = {z ∈ G0 : t < t0} �= ∅. In this case
we need to replace G1

ρ and G2
ρ with their translations after rigid body displacement

composed of a translation in x-space and shift along the t-axis, in such a way that O
coincides with z0 after this displacement.
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3. Proofs of the main results.
Proof of Theorem 1.1. The proof is based on the construction of the regularity

barrier for O regarded as a boundary point of G1
ρ . We construct the regularity barrier

assuming that δ > 0 is sufficiently small. This produces no loss of generality, since
boundary regularity is a local property. Without loss of generality we also assume
that the positive numbers α and β satisfy

α + 2(N − 1)β = 1.(3.1)

Indeed, if α + 2(N − 1)β < 1, then we can take β̃ > β such that α + 2(N − 1)β̃ = 1
and consider the domain G̃1

ρ by replacing β with β̃ in G1
ρ . It may be easily seen

that G̃1
ρ contains G1

ρ if we replace δ in G1
ρ with ββ̃−1δ. Therefore, if we construct a

regularity barrier for G̃1
ρ for all δ ≤ δ1, the latter will be a regularity barrier for G1

ρ for

all δ ≤ ββ̃−1δ1.
Without loss of generality we may also assume that ρ(ξ) is twice continuously

differentiable for ξ < 0 and satisfies

ξ2ρ−1(ξ)ρ′′(ξ)→ 0 as ξ ↑ 0.(3.2)

Indeed, otherwise we can choose a monotonically decreasing and twice continuously
differentiable function ρ1(ξ),−δ ≤ ξ < 0, which satisfies the following conditions:

1

2
ρ(ξ) < ρ1(ξ) < ρ(ξ),(3.3)

min(ρ′(ξ);−ρ(ξ)) < ρ′1(ξ) <
1

2
ρ′(ξ).(3.4)

From (3.4) and (1.2) it follows that

0 < ξρ−1
1 (ξ)ρ′1(ξ) < 2 max(ξρ−1(ξ)ρ′(ξ);−ξ)→ 0 as ξ ↑ 0.(3.5)

Hence, from (3.3)–(3.5) it follows that ρ1 satisfies (1.2) and (1.3). Applying l’Hôpital’s
rule from (3.5) and (3.4), we have

ξρ′′1(ξ)

ρ′1(ξ)
→ −1 as ξ ↑ 0.(3.6)

From (3.4)–(3.6) it easily follows that ρ1 satisfies (3.2). Hence, ρ1 satisfies all the
required conditions, and in view of (3.3) we have G1

ρ ⊂ G1
ρ1 . Accordingly, the regularity

barrier for O regarded as a boundary point of G1
ρ1 will be a regularity barrier for O

regarded as a boundary point of G1
ρ .

Thus it is enough to construct a regularity barrier for O regarded as a boundary
point of G1

ρ , assuming additionally that ρ is C2 for ξ < 0 and satisfies (3.2). By the
way, all the examples of ρ from (1.4) satisfy these conditions as well.

We prove that the following function is the required regularity barrier:

u(x, t) = g(ξ) exp
(
− x2

1

4ξ

)
+ φ(ξ),

where φ is defined via

9 log φ =

∫ ξ

ξ0

ρ(η)

η
dη, ξ0 < ξ < 0,
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with ξ0 being a fixed negative number with sufficiently small |ξ0|, and

g(ξ) = −1

2
ρ(ξ)φ(ξ).

From (1.2) and (1.3) it follows that

φ(ξ) > 0, 9φ′(ξ) = ξ−1ρ(ξ)φ(ξ) < 0; φ(ξ) ↓ 0 as ξ ↑ 0,(3.7)

g(ξ) < 0, g′(ξ) > 0; g(ξ) ↑ 0 as ξ ↑ 0.(3.8)

The equation of the level hypersurface u(x, t) = 0 is given by

x2
1 = 4ξ[log ρ(ξ)− log 2].

Moreover, we have

u > 0 in G′ = {z : x2
1 < 4ξ[log ρ(ξ)− log 2], (x, t) ∈ P (2δ)}.

Since G1
ρ ⊂ G′, we derive that u is positive and continuous in G1

ρ\{O}. The func-
tion u is symmetric with respect to the x1-variable, and for arbitrary fixed (x, t) ∈
P (δ), (x, t) �= (0, 0), u attains its maximum at x1 = 0. Hence, we have

0 < u(x1, x, t) ≤ u(0, x, t) = φ(ξ)
(

1− 1

2
ρ(ξ)

)
→ 0 as ξ ↑ 0.

Thus u has a removable singularity at the point O, and prescribing u = 0 at O, we
have u ∈ C(G1

ρ). To complete the proof, we need to show that u is superparabolic in
G1
ρ . Taking into account (3.1), we derive

Du = exp
(
− x2

1

4ξ

)
S,(3.9)

where

S =
g(ξ)

ξ

[1

2
+ 2β2|x|2x2

1ξ
−2 − 1

4
β2|x|2x4

1ξ
−3
]

+ g′(ξ)
[
1− 2β2|x|2x2

1ξ
−2
]

+ φ′(ξ) exp
(x2

1

4ξ

)
− 4β2|x|2

[
g′′(ξ) + φ′′(ξ) exp

(x2
1

4ξ

)]
.(3.10)

Assuming that |ξ| is sufficiently small, from (1.2) and (3.7) it follows that

g(ξ)

ξ
− g′(ξ) >

1

2
φ(ξ)

[
ρ′(ξ)− 1

2

ρ(ξ)

ξ

]
> 0.(3.11)

Therefore, from (3.8), (3.10), and (3.11) we derive that

S >
1

4

g(ξ)

ξ
+ φ′(ξ) exp

(x2
1

4ξ

)
+

1

4

g(ξ)

ξ
− 4β2|x|2

[
g′′(ξ) + φ′′(ξ) exp

(x2
1

4ξ

)]
.(3.12)

Using (3.7), we estimate the first two terms on the right-hand side of (3.12) as follows:

1

4

g(ξ)

ξ
+ φ′(ξ) exp

(x2
1

4ξ

)
≥ 1

4

g(ξ)

ξ
+ φ′(ξ) = −ρ(ξ)φ(ξ)

72ξ
> 0.
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Therefore, from (3.12) it follows that

S >
1

4

g(ξ)

ξ
− 4β2|x|2

[
g′′(ξ) + φ′′(ξ) exp

(x2
1

4ξ

)]
.(3.13)

Using (3.7) and (3.11) we easily derive that

9φ′′ =
2

ξ

[g(ξ)

ξ
− g′(ξ)

]
< 0.(3.14)

Since G1
ρ ⊂ G′, from (3.13), (3.14), and (3.7) we have

S >
1

4

g(ξ)

ξ
− 4β2|x|2

[
g′′(ξ) +

1

2
ρ(ξ)φ′′(ξ)

]
=

1

4

g(ξ)

ξ

+ 4β2|x|2
[1

2
φ(ξ)ρ′′(ξ) + ρ′(ξ)φ′(ξ)

]
>

1

4

g(ξ)

ξ
+ 2β2|x|2φ(ξ)ρ′′(ξ).(3.15)

If |x| = 0, then from (3.15) and (3.8) it follows that S > 0. Otherwise, from (3.15)
we derive that

S > 2β2|x|2φ(ξ)
[ 1

16β

ρ(ξ)

ξ2
+ ρ′′(ξ)

]
.(3.16)

Assuming that |ξ| is sufficiently small, from (3.2) and (3.16) we have S > 0. Hence,
from (3.9) it follows that u is superparabolic in G1

ρ with sufficiently small δ. Accord-
ingly, u is a required regularity barrier. The regularity of O for G2

ρ is a consequence
of Lemma 2.2. The theorem is proved.

The first assertion of Theorem 1.3 easily follows from Theorem 1.1 and Lemma 2.1.
Indeed, since the space-time transformations due to rigid body displacements in the
exterior Aρ-condition preserve the diffusion equation, the regularity barrier for G2

ρ af-
ter the transformations according to exterior Aρ-condition will be a regularity barrier
for z0 ∈ SΩ. The second assertion of Theorem 1.3 is a consequence of the classical
theory (see section 2).

4. Conclusions. The following natural question arises for each example of ρ
from (1.4):

How sharp is the condition α + 2(N − 1)β ≤ 1 for the regularity of O for G1
ρ or

G2
ρ?

Let

ρ(ξ) = |log|ξ||−1.(4.1)

In [P] it was proved that O is an irregular point for the bounded domain G0 lying in
the strip {z : −δ1 < t < 0} and bounded on its sides by the hypersurface of revolution

|x|2 = −4α1t log2 |t|, α1 > 1.

It is easy to see that for sufficiently small δ1, G0 ⊂ G1
ρ if 1 < α1 < α. Therefore, from

Corollary 2.3 it follows that O is irregular for G1
ρ and G2

ρ if α > 1, β > 0. Obviously,
the same result is true if we take any other particular example of ρ from (1.4).
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Hence, the following natural question arises:
Is O regular or irregular for G1

ρ and G2
ρ if ρ(ξ) = |log|ξ||−1, 0 < α ≤ 1, β > 0, and

α + 2(N − 1)β > 1?
The probabilistic analogue of this question was formulated at the end of section 1.

This issue is addressed in a subsequent paper.
Another important conclusion says that O may be regular for

ut = ∆u(4.2)

and at the same time irregular for

ut = a∆u, 0 < a < 1,(4.3)

regarded as a boundary point of G1
ρ or G2

ρ . Let us check this fact by considering again
the simplest case (4.1). Consider G1

ρ and G2
ρ with α = 1− ε

2 , β = ε
4(N−1) , where ε is

an arbitrary number satisfying 0 < ε ≤ 1− a. From Theorem 1.1 it follows that O is
regular for (4.2) regarded as a boundary point of G1

ρ or G2
ρ . If u(x, t) solves (4.3) in

G1
ρ , then after the transformation x = x, τ = at, the function ũ(x, τ) = u(x, t) satisfies

ũτ = ∆ũ,(4.4)

while the domain G1
ρ is transformed to the domain

G̃1
ρ = {z = (x, τ) : x2

1 < 4ξ1 log ρ(ξ1), −δ < ξ1 < 0, −δ < αa−1τ < 0},

where ξ1 = αa−1τ − β|x|2. We have

αa−1 > (1− ε)a−1 ≥ 1.

Hence, O is irregular for (4.4) regarded as a boundary point of G̃1
ρ . Accordingly, O is

irregular for (4.3) regarded as a boundary point of G1
ρ or G2

ρ .
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Abstract. In the Ginzburg–Landau model for superconductivity a large Ginzburg–Landau
parameter κ corresponds to the formation of tight, stable vortices. These vortices are located where
an applied magnetic field pierces the superconducting bulk, and each vortex induces a quantized
supercurrent about the vortex. The energy of large-κ solutions blows up near each vortex, which
brings about difficulties in analysis. Rigorous asymptotic static theory has previously established
the existence of a finite number of the vortices, and these vortices are located precisely at the critical
points of a renormalized energy. We consider the motion of such vortices in a dynamic model for
superconductivity that couples a U(1) gauge-invariant Schrödinger-type Ginzburg–Landau equation
to a Maxwell-type equation under the limit of large Ginzburg–Landau parameter κ. It is shown
that under an almost-energy-minimizing condition each vortex moves in the direction of the net
supercurrent located at the vortex position, and these vortices behave like point vortices in the
classical two-dimensional Euler equations.
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1. Introduction: Concentration phenomena and the Ginzburg–Landau
equations. Superconductivity has two important regimes, the Meissner state, where
a superconductor completely repels a magnetic field, and the mixed-vortex, Shubnikov
state, where the bulk is pierced by a magnetic field in small tubular regions called
vortices or filaments. These normal-electron filaments are surrounded by large regions
of superconducting Cooper-pairs, and each filament contains a quantized magnetic
field inducing a circle of superconducting current around the filament. Both states of
superconductivity can be effectively modeled with phase transition equations, called
Ginzburg–Landau (GL) equations; see [15, 35].

Static GL equations were first proposed by V. L. Ginzburg and L. D. Landau [15]
for a complex ordering parameter u and a magnetic field potential A. These equations
allow for macroscopic deviations of the density |u|2 of superconducting Cooper-pairs in
the bulk, and the equations are derived from a free energy. Two length scales naturally
arise out of the GL equations. The first is the penetration depth λ, which describes
how far a magnetic field can penetrate the skin of the superconductor, and the second
is the coherence length ξ, which measures the characteristic variation of the phase in
the bulk. The important length scale is the GL parameter κ = λ/ξ. Although λ and
ξ are temperature dependent, κ is mostly temperature independent and accurately
describes the bifurcation between the Meissner state and the mixed-vortex state. After
a suitable nondimensionalization the GL energy functional becomes

G(u,A) =
1

2

∫
Ω

|∇u− iAu|2 + |curlA−H0|2 + κ2

2

(
1− |u|2)2 dx(1.1)
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and the corresponding GL equations are

0 = (∇− iA)
2
u+ κ2u

(
1− |u|2

)
,

0 = − curlB + (iu, (∇− iA)u) ,

where B = curlA is the induced magnetic field. Here (a, b) = 1
2

(
ab+ ab

)
denotes the

complex inner product. When κ < 1/
√
2 then the superconductor is in the Meissner

state, and when κ > 1/
√
2 the superconductor is in the mixed-vortex state. To

capture coarse behavior of the GL equations with moderately large κ, as found in
high TC superconductors, it is important to understand the κ → ∞ limit, and large
κ solutions have tight, particle-like vortices as shown numerically in [23, 25].

1.1. Dynamic GL equations. We now introduce two separate dynamic mod-
els of superconductivity, each with a natural energy of the form (1.1). We will be
interested in the first model.

Our model for a dynamic theory of superconductivity uses Schrödinger-type dy-
namics for the order parameter coupled to a Maxwell-type equation for the mag-
netic field potential. This Schrödinger–Ginzburg–Landau (SGL) model was first
proposed in [29] based on arguments of Feynman [14]. The SGL equations retain
gauge-invariance and can be viewed as a model for charged superfluids and other
Bose–Einstein condensates which are coupled to Maxwell-type equations, such as in
neutron stars. In addition to u and A there is an electric field potential Φ such that
E = ∂tA+∇Φ for the induced electric field E. The SGL system consists of [29]

1

i
(�∂tu+ ieΦu) = D (�∇− ieA)

2
u+ u

(
β|u|2 + α

)
,

β2∂t (∂tA+∇Φ) + δ (∂tA+∇Φ) = −ν curlB + 2τ

(
iu,

(
�

2e
∇− iA

))
,

(1.2)

where τ and D are microscopic parameters and ν−1 measures the conductivity of
normal electrons. δ measures the normal conductivity of the medium, and supercon-
ducting alloys have δ of the order 10−3, and β2 measures relativistic effects and is of
the order 10−9 ∼ 10−11; see [29]. Since it would take an extremely long time to feel
the effects of the β2 term (far beyond the time frame of the asymptotics that follow),
we set β2 = 0. Suitably nondimensionalizing the SGL equations, we have

1

i
(∂tu+ iΦu) = (∇− iA)

2
u+ κ2u

(
1− |u|2) ,

δ (∂tA+∇Φ) = − curlB + (iu, (∇− iA)u)
(1.3)

for δ small. The unusual coupling of a nonlinear Schrödinger equation to a parabolic
equation for the magnetic field potential results in rather nontrivial behavior. When
the electromagnetic field is not present, the equations become a nonlinear Schrödinger
equation

1

i
∂tu = ∆u+ κ2u

(
1− |u|2) ,

sometimes referred to as the Gross–Pitaevskii equation, especially in the context of
the theory of superfluids.
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A more widely studied dynamic model of superconductivity, called the time-
dependent Ginzburg–Landau (TDGL) equations, can be formally derived from micro-
scopic quantum theory [4, 5] and is sometimes referred to as the Gorkov–Eliashburg
equations. The TDGL equations [29, 35] are

�∂tu+ ieΦu = D (�∇− ieA)
2
u+ u

(
β|u|2 + α

)
,

∂tA+∇Φ = −ν curlB + 2τ

(
iu,

(
�

2e
∇− iA

)
u

)
,

where τ and D are microscopic parameters and ν−1 measures the conductivity of
normal electrons. The TDGL equations are essentially a gradient flow of the GL
functional (1.1) that preserves a gauge symmetry. After a suitable nondimensional-
ization we have the equations

∂tu+ iΦu = (∇− iA)
2
u+ κ2u

(
1− |u|2) ,

∂tA+∇Φ = − curlB + (iu, (∇− iA)u) .

We will use results on the asymptotic analysis of the TDGL equations [33] in section 3.

1.2. Vortices and quantization. We are interested in two-dimensional solu-
tions to the SGL equations. A fundamental feature of GL model equations is the
formation of vortices, which are locations where superconducting Cooper-pairs are
locally absent, i.e., |u|2 = 0. These normal-electron regions allow for quantized mag-
netic fields to penetrate through, and the quantized magnetic field induces a quantized
supercurrent about it. Quantization phenomena have been observed experimentally;
see [10, 11, 36]. Mathematically, a quantized supercurrent can be induced by defining
the order parameter u over C and introducing a topological obstruction such that
|u| = 1 and ∮

∂Br(x0)

(iu, ∂τu) dω = deg (u, ∂Br(x0)) = d

with d ∈ Z, d 	= 0. By a simple application of the Brouwer fixed point theorem there
exists an x ∈ Br(x0) such that |u|2(x) = 0. Scaling arguments show that the radius
of a vortex depends inversely on κ, and as κ becomes very large, a vortex can be
described by the limiting point location and its winding number with an energy of
order log κ. We will be interested in understanding how these vortices move in the
SGL equations, and we will look for simple equations of motion that describe the
limiting point vortices as κ→∞. Such point vortex equations have been extensively
studied in the context of the Euler equations; see [7].

1.3. Renormalized energy. As we will see, our vortex motion law relies on a
quantity that depends on the vortex configuration and not the energy associated with
an actual vortex. This free energy quantity W (x1, . . . , xd) is called the renormalized
energy and is the total free energy minus the vortex self-induction energy. For the
situation where there is no magnetic field potential A (see [1, 21]), we define the class

H1(xj , ρ) =

 u ∈ H1
(
Ω\⋃d

j=1 Bρ(xj) : S
1
)
,

u =
x−xj

|x−xj | on ∂Bρ(xj) and ∂νu = 0 on ∂Ω,
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then

W ({xj}) = lim
ρ→0

{
min

u∈H1(xj ,ρ)

1

2

∫
Ω\⋃d

j=1 Bρ(xj)

|∇u|2 dx− πd log
1

ρ

}
+ γd,

where γ is a universal constant described in [1]. This quantity depends solely on
the location of the xj ’s and Ω. A quick analysis of the renormalized energy shows
that W (xj) → ∞ as |xk − xl| → 0. A detailed analysis of the renormalized energy
is performed in the appendix for the full GL energy functional (1.1) with Neumann
boundary conditions.

1.4. Asymptotics and vortex motion laws. In the mathematical literature
we replace κ2 with 1

ε2 and study the ε → 0 limit. It should be expected that the
SGL equations would exhibit simple dynamic behavior in the ε → 0 limit. Formal
asymptotics [13, 28, 29] have reduced the equations to simple ODEs of the form

d

dt
aj = −J∇ajW̃ (a1, . . . , ad),(1.4)

where aj is the location of the jth vortex and W̃ (a1, . . . , ad) is a renormalized energy
that depends on the precise asymptotic limit. Here

J =

(
0 −1
1 0

)
.

So far, most efforts to make the ε→ 0 asymptotic limit of the SGL equations rigorous
have revolved around the Gross–Pitaevskii equation of the form

1

i
∂tuε = ∆uε +

1

ε2
uε
(
1− |uε|2

)
.(1.5)

Equation (1.5) has been studied rigorously in the ε → 0 limit in a series of papers
[8, 24], where the vortex motion law (1.4) was rigorously derived for the limit of the
simplified model equation (1.5) with both Neumann and Dirichlet boundary condi-
tions.

Our aim is to study the ε→ 0 limit of the SGL equations with physically realistic
boundary conditions and rigorously derive a vortex motion law. A crucial piece of
information that strongly affects whether or not vortices follow this vortex motion law
pertains to the precise amount of initial energy of the system. The SGL equations re-
quire a rigid bound, as excess energy will destroy the sensitive comparison arguments.
This precise bound differs greatly from the TDGL equations, which require a much
less stringent control on the initial data; see [33].

Theorem 1.1. Let {uε, Aε} solve the SGL equations
1

i
(∂t + iΦε)uε = (∇− iAε)

2
uε +

1

ε2
uε
(
1− |uε|2

)
,

δε (∂tAε +∇Φε) = − curlBε + (iuε, (∇− iAε)uε)

under the Coulomb gauge in Ω such that ∂νuε = 0, ν ·Aε = 0, and Bε = H0 on ∂Ω.
Let δε → 0 and

ε2| log ε|
δε

→ 0



VORTEX MOTION LAW FOR SGL EQUATIONS 1439

as ε→ 0. If the initial data {uε(0), Aε(0)} is chosen so that d vortices concentrate at
{ak(0)} as ε→ 0 and satisfy the almost-energy-minimizing condition

Gε(uε, Aε)(0) ≤ πd| log ε|+W ({ak(0)}) + oε(1),

then there will be d vortices at {ak(t)} such that
d

dt
aj = −J∇ajW ({ak(t)}),

where

J =

(
0 −1
1 0

)
,

and the renormalized energy W ({ak}) is defined by (A.1).

1.5. Outline of paper. The following three sections of this paper can be loosely
organized as variational theory, dynamic theory, and the proof of the vortex motion
law.

In section 2 we review and generalize a few results on the GL energy functional.
The SGL equations satisfy a set of conservation laws, shown in section 3, for the mass
|uε|2, the supercurrent or momentum jε, and the energy density gε. Since energy is
slowly dissipative (and is conserved in the ε → 0 limit), we are naturally led to use
variational techniques for the GL energy functional (2.1). These techniques have been
applied with great success to various dynamic GL equations; see [8, 19, 20, 24, 33].
We define structures, called essential zeros, where energy will concentrate. Outside of
these essential zeros there is a uniform energy bound, and the scaled energy density
will converge in measure to a sum of delta functions.

In section 3 we turn to the SGL equations and begin to study the dynamics.
We start by showing that essential zeros move continuously in the O(1) time scale.
Outside of the essential zeros our uniform bound, along with the asymptotic scaling,
yields the limiting expression for both the order parameter and the magnetic field
potential. Next we establish a Γ-convergence result similar to results derived for the
Gross–Pitaevskii equation; see [8, 24]. This convergence result controls the error of
strong convergence by the amount of excess initial energy. At this point we have
identified the asymptotic limit, modulo vortex position.

In section 4 we complete the vortex motion law proof by examining the conser-
vation of momentum equation (3.11) in detail. We show that in the ε→ 0 limit

d

dt
aj(t) = −J∇ajW ({ak(t)}) + ν,

where the defect measure ν results from the failure of strong convergence. We compare
this limiting ODE to a solution of our desired ODE

d

dt
bj(t) = −J∇bjW ({bk(t)})

with bj(0) = aj(0). If η =
∑d

j=1 |aj − bj | ≡ 0, then our task would be finished. To do
so, we need to control the size of the defect measure, and this is accomplished with
the Γ-convergence result, a careful restriction δε of (1.3), and a Gronwall inequality.

In the appendix we derive the representations of the renormalized energy and
its gradient. These proofs closely follow the methods of [2] for the renormalized
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energy and [1] for the gradient of the renormalized energy. Finally, we compute the
renormalized energy for a disk domain with d vortices.

Remark 1.2. A vortex motion law can also be rigorously derived for the Maxwell–
Higgs equations, which are comprised of a gauge-invariant wave equation coupled to
Maxwell’s equations. It has the form

(∂t + iΦε)
2
uε = (∇− iAε)

2
uε +

1

ε2
uε
(
1− |uε|2

)
,

∂t (∂tAε +∇Φε) = − curlBε + (iuε, (∇− iAε)uε) .

When time is rescaled t �→√| log ε|t, a motion law of the form

d2

dt2
aj = −∇ajW ({ak(t)})

can be derived, and this result is communicated in [16].

2. Energy bounds and local regularity. We are interested in two-dimensional
asymptotics; therefore u : R

2 → C, Φ : R
2 → R, and A : R

2 → R
2. We use inter-

changeably for a ∈ R, curl a = (∂2a,−∂1a) and for A ∈ R
2, curlA = ∂1A2 − ∂2A1.

Furthermore, we will take our domain Ω ⊂ R
2 to be a compact, simply connected set

with smooth boundary. We define the covariant derivatives

∇A = ∇− iA,

∂Φ= ∂t + iΦ

for connections {A,Φ}. These definitions will simplify notation and calculation. We
will try to show as much as possible without fixing the gauge in an effort to increase
the generality of our discussion.

2.1. U(1) gauge. A solution {u,A,Φ} to a GL model equation is U(1) gauge
invariant if

uχ = ueiχ,

Aχ = A+∇χ,
Φχ = Φ− ∂tχ

is a solution to the same GL model equation. Although there is freedom to choose
the gauge, physically relevant quantities are U(1) gauge invariant. They are defined
as follows.

Definition 2.1. We define the mass |u|2, the electric field E = ∂tA +∇Φ, the
magnetic field B = curlA, the supercurrent or momentum j = j(u,A) = (iu,∇Au),
the charge q = (iu, ∂tu+ iuΦ), and the energy density

gε(u,A) =
1

2

[
|∇Au|2 + |curlA−H0|2 + 1

2ε2
(
1− |u|2)] .

H0 is a positive, finite constant.
We are given freedom to fix the gauge χ, and the various dynamic GL model

equations are ill-posed if the gauge is not fixed; see [12]. In the dynamic setting of
section 3 we will fix the Coulomb gauge, which makes divA = 0 in Ω and ν ·A = 0 on
∂Ω.
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Proposition 2.2. There exists a gauge choice such that divAε = 0 for all ε with
ν ·Aε = 0 on ∂Ω. Furthermore, ∂νuε = ∂νΦε = 0 on ∂Ω.

Proof. Let χ be the U(1) gauge, and let χ solve

∆χ = −divAε in Ω,

∂νχ = −ν ·Aε on ∂Ω.

Such a χ exists; see [2].
Unlike other gauges such as the temporal gauge (Φ ≡ 0) or the Lorentz gauge

(both ∂tΦ + divA = 0 and Φ + divA = 0), the Coulomb gauge requires us to study
and control the electric field potential Φ. However, the Coulomb gauge simplifies
both the equation for the magnetic field potential and the representations ofW ({ak})
and ∇ajW ({ak}), both of which can be explicitly calculated for disk domains; see
subsection A.3. See [12] for a more detailed discussion of the effect of gauge fixing on
GL equations.

2.2. GL energy functional. In this subsection we examine the GL energy
functional and establish various upper and lower bounds. Since we will be using
energy comparison techniques, it is crucial to have estimates on energy minimizers.
Energy minimizers {uε, Aε} of the GL energy functional

Gε(u,A) =
1

2

∫
Ω

|∇Au|2 + |curlA−H0|2 + 1

2ε2

(
1− |u|2

)2

dx(2.1)

satisfy the static GL equations

0 = ∇2
Aε
uε +

1

ε2
uε
(
1− |uε|2

)2
,

0 = − curlBε + jε,

which are the Euler–Lagrange equations of the energy functional. A rigorous treat-
ment of the minimizing sequence with no electromagnetic field subject to Dirichlet
boundary conditions was studied in [1], where the singular limit was completely char-
acterized. The minimizing sequence with an applied magnetic field subject to Dirichlet
boundary conditions was studied in [2], subject to Neumann boundary conditions with
finite H0 in [23] and with an asymptotically large Hε in a series of papers [30, 31, 32].
We recall two important results on the full GL energy functional (2.1).

Theorem 2.3 (Bethuel and Riviere [2]). Let {uε, Aε} be a sequence of minimizers
of the GL energy functional (2.1) on Bρ(x0) such that |uε| = 1 on ∂Bρ(x0) and

deg (uε, ∂Bρ(x0)) = ±1;

then

π| log ε| − C(g, ρ) ≤
∫
Bρ(x0)

gε(uε, Aε)dx ≤ π| log ε|+ C(g, ρ).

Aside from this energy bound, [2] also characterized the limiting order parameter
u� and limiting magnetic field potential A�. u� satisfies a harmonic map equation
with a finite number of unit-valued positive vortices at {aj}dj=1 equal to the winding
number on the boundary, i.e., d = deg(uε, ∂Ω). A� satisfies a forced London equation

0 = ∆B�−B�+2π
∑d

j=1 δaj , and the vortex positions minimize a renormalized energy;
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see the appendix. A generalization of this result for any topologically constrained
functions was established in [17].

Theorem 2.4 (Jerrard). Suppose uε ∈ H1
g (Bρ,C) and Aε ∈ H1(Bρ,R

2) such
that uε = g on ∂Bρ. If |g| = 1, deg(g, ∂Bρ) 	= 0, and∫

Bρ

gε(uε, Aε)dx ≤ π| log ε|+ C,

then ∫
Bρ

gε(uε, Aε)dx ≥ π| log ε| − C

and ∫
Bρ

B2
εdx ≤ C.

In order to study concentrations in dynamic GL equations, it is necessary to
identify where a vortex will concentrate in the ε→ 0 limit, and to that end we define
a structure that will ensure the formation of vortices.

Definition 2.5. A point aj ∈ Ω is an essential zero for {uε, Aε} if there exists
ε0, αj such that αj ∈ [α0, 2α0] for 2α0 < 1 and for all ε < ε0

deg

(
uε
|uε| , ∂Bεαj (aj)

)
= ±1,(Es 1)

εαj

∫
∂B

ε
αj (aj)

gε(uε, Aε)dω ≤
π
(
d+ 1

2

)
α0

.(Es 2)

Essential zeros were introduced in [34] and used in the context of TDGL equations
in [20, 33] and the Gross–Pitaevskii equations in [24]. An essential zero is a natural
tool, as it ensures the formation of a unit-valence vortex in the ε → 0 limit and
establishes the position of the vortex up to an εα error, in agreement with energy-
minimizing sequences; see [9]. Furthermore, the structure theorem of [20] allows us
to identify essential zeros with only energy bounds and control of |∇uε|. Note (Es 2)
implies that on ∂Bεαj (aj) the degree is well-defined and 2 ≥ |uε| ≥ 1

2 for all ε small
enough.

We now establish a global energy lower bound away from the essential zeros. Our
aim is to identify the location of energy concentration with the location of the essential
zeros. Set Ωε = Ω\⋃d

j=1 Bεαj (aj).

Lemma 2.6. Let {uε, Aε}, where uε = ρεe
iΘa+iψε , have essential zeros at aj ∈ Ω

with

min (dist(aj , ak),dist(aj , ∂Ω)) ≥ σ > 0.

Let Gε(uε, Aε) ≤ πd| log ε|+ C1; then∫
Ωε

gε(uε, Aε)dx ≥ π| log ε|
d∑

j=1

αj − C12,(2.2) ∫
Ωε

|∇ρε|2 + ρ2
ε |∇ψε −Aε|2 + |Bε −H0|2 + 1

2ε2
(
1− |uε|2

)2
dx ≤ C13,(2.3)
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where C12 and C13 are functions of σ,Ω, and d.
Proof. Lemma 2.6 has been established in various forms, including [23, 16], and

it is proved here. We prove the lower bound (2.2) by finding a lower bound for a
minimizer, and to prove the lower bound for the minimizer, we first determine an
upper bound for an energy minimizer {u,A} on Ωε subject to the constraint that
{u,A} = {uε, Aε} on each ∂Bεαj (aj).

1. Define the domains Ω2ε = Ω\⋃d
j=1 B2εαj (aj) and Ω3ε = Ω\⋃d

j=1 B3εαj (aj)
and the comparison functions {ucom, Acom}, where

ucom =


u1
com in Ωε\Ω2ε,

u2
com in Ω2ε\Ω3ε,

u3
com in Ω3ε,

Acom =


A1
com in Ωε\Ω2ε,

A2
com in Ω2ε\Ω3ε,

A3
com in Ω3ε.

First set

u3
com =

d∏
j=1

x− aj
|x− aj |e

iψ
j
ε = eiΘa

d∏
j=1

eiψ
j
ε ,

A3
com = Ã = − curl ξ̃

on Ω3ε. Here ψ
j

ε is a constant to be set later, and ξ̃ solves

−∆2ξ̃ +∆ξ̃ = 0

on Ω and ξ̃ = 0 and ∆ξ̃ = H0 on ∂Ω. Direct calculation yields

∫
Ω3ε

gε(u
3
com, A

3
com)dx ≤ π| log ε|

d∑
j=1

αj + C2(Ω, σ, d).(2.4)

2. We now want to show that
∫
Ω3ε\Ωε

gε(ucom, Acom)dx ≤ C. Without loss of

generality we can compute the energy about one annulus centered at the origin. Start
by defining {u1

com, A
1
com} as

A1
com(r, θ) = Aε(ε

αj , θ),

u1
com(r, θ) = ρinte

iΘa+iψε(ε
αj ,θ),

where

ρ2
int(r, θ) =

(
2εαj − r

εαj

)
ρ2
ε(ε

αj , θ) +

(
r − εαj

εαj

)
.

It follows that

1

ε2
(
1− ρ2

int

)2
=

1

ε2
(
1− ρ2

ε

)2(2εαj − r

εαj

)2

≤ 1

ε2
(
1− ρ2

ε

)2
(2.5)
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for r ∈ [εαj , 2εαj ]. Since (Es 2) implies 2 ≥ ρε ≥ 1
2 for ε small enough, then

|∇ρint|2 = 1

4

∣∣∇ρ2
int

∣∣2
ρ2
int

≤ 1

4

4ρ2
ε |∇ρε|2 + ε2−2αj

(1−ρ2
ε)

2

ε2

ρ2
ε

(
2εαj−r
εαj

)
+
(
r−εαj

εαj

)
≤ 4

[
|∇ρε|2 + ε2−2αj

(
1− ρ2

ε

)2
ε2

]
.

(2.6)

Finally, since 1 ≤ 4ρ2
ε then

ρ2
int |∇Θa +∇ψε −Aε|2 ≤ 4ρ2

ε |∇Θa +∇ψε −Aε|2 .(2.7)

Combining (2.5)–(2.7) yields∫
B

2ε
αj \Bε

αj

gε(u
1
com, A

1
com)dx

≤
∫ 2εαj

εαj

∫
∂Br

4

[
|∇ρε|2 + ε2−2αj

(
1− ρ2

ε

)2
ε2

]
+ 4ρ2

ε |∇Θa +∇ψε −Aε|2

+ |Bε −H0|2 + 1

2ε2
(
1− ρ2

ε

)2
dwdr

≤ 4

∫ 2εαj

εαj

∫
∂Br

gε(uε, Aε)dωdr

≤ C3(Ω, σ, d).

(2.8)

3. We now bound our comparison function in the next annulus. Define {u2
com, A

2
com}

in B3εαj \B2εαj to be

A2
com(r, θ) = Aint =

(
3εαj − r

εαj

)
Aε(ε

αj , θ) +

(
r − 2εαj

εαj

)
Ã(3εαj , θ),

u2
com(r, θ) = eiΘa+iψint ,

where

ψint =

(
3εαj − r

εαj

)
ψε +

(
r − 2εαj

εαj

)
ψ
j

ε

and ψ
j

ε =
∫
∂B

ε
αj

− ψεds. Then

|∇Θa +∇ψint −Aint|2 ≤
∣∣∣∣(3εαj − r

εαj

)
(∇Θa +∇ψε −Aε) +

(
r − 2εαj

εαj

)
∇Θa

+∇
( r

εαj

)(
ψε − ψ

j

ε

)
−
(
r − 2εαj

εαj

)
Ã

∣∣∣∣2
≤ |∇Θa +∇ψε −Aε|2 + |∇Θa|2 + ε−2αj

∣∣∣ψε − ψ
j

ε

∣∣∣2 + ∣∣∣Ã∣∣∣2
≤ 4 |∇Aεuε|2 + |∇Θa|2 + ε−2αj

∣∣∣ψε − ψ
j

ε

∣∣∣2 + ∣∣∣Ã∣∣∣2
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and

|curlAint −H0|2 =
∣∣∣∣(Bε −H0)

(
3εαj − r

εαj

)
+

(
3εαj − r

εαj

)
H0

+
(
Ã−Aε

)
×∇

( r

εαj

)
+ curl Ã

(
r − 2εαj

εαj

)∣∣∣∣2
≤ |Bε −H0|2 +H2

0 + ε−2αj |Aε|2 + ε−2αj

∣∣∣Ã∣∣∣2 + ∣∣∣curl Ã∣∣∣2
for r ∈ [2εαj , 3εαj ]. By Poincaré’s inequality

ε−2αj

∫
∂B

ε
αj

|ψε − ψ
j

ε|2dω ≤ C

∫
∂B

ε
αj

|∇ψε|2dω

≤ C

∫
∂B

ε
αj

|∇Θa +∇ψε −Aε|2 + |∇Θa|+ |Aε|2dω.

Then ∫
B

3ε
αj \B2ε

αj

gε(u
2
com, A

2
com)dx

=
1

2

∫
B

3ε
αj \B2ε

αj

|∇Θa +∇ψint −Aint|2 + |curlAint −H0|2 dx

≤ C

∫ 2εαj

εαj

∫
∂Br

|∇Aεuε|2 + |Bε −H0|2 + |∇Θa|2

+ ε−2αj

[
A2
ε + Ã2

]
+
∣∣∣curl Ã∣∣∣2 +H2

0 dωdr

≤ C4(Ω, σ, d),

(2.9)

where we use the smoothness of Ã and Sobolev embedding for Aε. Thus (2.4), (2.8),
and (2.9) yield the upper bound∫

Ωε

gε(u,A)dx ≤
∫

Ωε

gε(ucom, Acom)dx ≤ π| log ε|
d∑

j=1

αj + C5(Ω, σ, d)(2.10)

for our minimizer {u,A}. Note that our minimizer {u,A} satisfies Neumann boundary
conditions ν ·∇Au = 0 and curlA = H0 on ∂Ω.

4. Next we show that a minimizer {u,A} on Ωε satisfies |u| ≥ 1
2 . To do so

we follow an argument in Lemma 2.2 of [21]. Suppose there exists x0 ∈ Ωε such
that |u| < 1

2 ; then there are two cases. Suppose first that dist(x0, ∂Ω) ≥ ε2α0 ; then

(Bε2α0 (x0) ∩ Ωε) ∩ ∂Ω = ∅. We choose Bεβ (x0), where β ∈ [2α0, 4α0] such that

εβ
∫
∂(Bεβ

(x0)∩Ωε)
gε(u,A)dω ≤ C

and such that Bεβ (x0)∩Ωε does not intersect ∂Ω. However, since {u,A} is a minimizer
with deg(u/|u|, ∂Bεβ (x0)) = 0, then if there is a point x0 such that |u(x0)| < 1/2,
then ∫

B
εβ

(x0)

gε(u,A)dx ≥ (1− β)π| log ε| − C
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for ε small enough; see [20, 21]. This contradicts (2.10) when α0 is small.
If dist(x0, ∂Ω) ≤ ε2α0 , then choose x�0 such that |x0 − x�0| = dist(x0, ∂Ω); then

choose β ∈ (α0, 2α0) such that εβ
∫
∂B

εβ
(x�

0)
gε(u,A)dx ≤ C. Let y = Ψ(x) =

(Ψ1(x),Ψ2(x)) be a conformal change of variables that maps Bεβ (x0)∩Ω to B+
1 such

that ∂ (Bεβ (x
�
0) ∩ Ω)∩Bεβ (x

�
0) is mapped to {y2 = 0}. Then u(x) = u′(Ψ(x)) = u′(y)

and Ak(x) = (∂xk
Ψj(x))A

′
j(Ψ(x)) = (∂xk

Ψj(x))A
′
j(y) satisfies

0 = (∇− iA′)2 u′ +
c(y)

ε2(1−β)
u′(1− |u′|2),

0 = − curlB′ + c(y) (iu′,∇u′ − iA′u′)

on B+
1 , where

c(y)−1 =
(
(∂x1Ψ1)

2
+ (∂x1Ψ2)

2
)

and ∂νu
′(y) = 0 on {y2 = 0}. Our conformal map Ψ maps x0 to a point y0 in the

interior of B+
1 . By constructing a suitable energy flow, we can show that |u′| → 0 as

ε→ 0 uniformly in B+
1 by following [6], contradicting |u′| < 1/2 for all ε.

5. We can now complete the lower bound estimate for the minimizer {u,A}. Set
u = ρei(Θa+ψ); then by (2.10)

π| log ε|
d∑

j=1

αj+ C5 ≥ 1

2

∫
Ωε

|∇ρ|2+ρ2 |∇Θa +∇ψ −A|2+|B −H0|2+ 1

2ε2
(
1− ρ2

)2
dx.

We have the following crude estimates:

1

2

∫
Ωε

ρ2 |∇Θa|2 dx =
1

2

∫
Ωε

(
ρ2 − 1

)2 |∇Θa|2 dx+ 1

2

∫
Ωε

|∇Θa|2 dx

≤
[
|Ω|
4
ε

(
ε−2α0 +

d− 1

σ2

)(∫
Ωε

(
1− ρ2

)2
dx

)1/2
]

+

π| log ε| d∑
j=1

αj + C6(Ω, σ, d)


≤ π| log ε|

d∑
j=1

αj + C7(Ω, σ, d)

(2.11)

and ∫
Ωε

∣∣1− ρ2
∣∣ |∇Θa| |∇ψ −A| dx

≤ 1

8

∫
Ωε

|∇ψ −A|2 dx+ 2

∫
Ωε

(
1− ρ2

)2 |∇Θa|2 dx

≤ 1

8

∫
Ωε

|∇ψ −A|2 dx+ 2C7(Ω, σ, d).

(2.12)

Combining (2.11)–(2.12) yields

C7 ≥
∫

Ωε

|∇ρ|2 + ρ2 |∇ψ−A|2 + 2∇Θa ·(∇ψ−A) dx
(2.13)

+

∫
Ωε

|B −H0|2 + 1

2ε2
(
1−ρ2

)2
dx.
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To complete the lower bound it is necessary to control the term∫
Ωε

∇Θa ·(∇ψ −A) dx.

We fix the Coulomb gauge for the minimizer so that divA = 0 in Ω and ν ·A = 0 on
∂Ω. Therefore, there exists a scalar function ξ such that A = − curl ξ in Ω and ξ = 0
on ∂Ω. If eiΘa =

∏d
j=1 e

iθaj =
∏d

j=1
x−aj

|x−aj | is the canonical harmonic map, then∫
∂Br(aj)

∂νΘadω =

∫
∂Br(aj)

∂νθajdω = 0

and ∫
∂Ω

∂νΘadω = −
d∑

j=1

∫
∂Br(aj)

∂νθaj
dω = 0,

which, by the boundary conditions, implies∫
∂Ω

∂νψ dω = 0.

Therefore, ∫
Ωε

∇Θa ·(∇ψ + curl ξ) dx =

∫
∂Ω

∂νΘa

(
ψ − ψ̄

)
dω

+
d∑

j=1

∫
∂B

ε
αj (aj)

∂νΘa

(
ψ − ψ̄j

)
dω

(2.14)

+

d∑
j=1

∫
∂B

ε
αj (aj)

ξ ∂τΘadω

≤ 1

8

∫
Ωε

|∇ψ|2 + C9 + C10,

where

ψ̄j = −
∫
B

ε
αj (aj)

ψ dω

and

ψ̄ = −
∫
∂Ω

ψ dω,

which follows by using (Es 1) and (Es 2). Since ρ > 1/2 for the minimizer, then using
(2.13) and (2.14) we find∫

Ωε

|∇ψ + curl ξ|2 + |∆ξ −H0|2 dx ≤ C11(Ω, σ, d),
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which implies∫
Ωε

gε(uε, Aε)dx ≥
∫

Ωε

gε(u,A)dx

≥ 1

2

∫
Ωε

ρ2 |∇Θa|2 dx− 1

2

∫
Ωε

ρ2 |∇ψ + curl ξ|2 dx

≥ π| log ε|
d∑

j=1

αj − C7 − C11,

which proves (2.2).
6. To prove (2.3) we use an argument in the proof of Lemma 4.3 of [23], along

with (2.2), (Es 1), and (Es 2), to show∫
B

ε
αj (aj)

gε(uε, Aε)dx ≥ π| log ε| (1− αj) + C

for each essential zero. Equation (2.3) follows directly.
Lemma 2.7. Let {uε, Aε} have d essential zeros at aj such that

min (dist(aj , ak),dist(aj , ∂Ω)) ≥ σ > 0

and let Gε(uε, Aε) ≤ πd| log ε|+ C1; then for any ε
αj < r < σ

4

π log
r

ε
− C14 ≤

∫
Br(aj)

gε(uε, Aε)dx ≤ π log
r

ε
+ C14,

where C14 depends on Ω, σ, and d.
Proof.∫

Br(aj)

gε(uε, Aε)dx

=

∫
Br\Bε

αj (aj)

gε(uε, Aε)dx+

∫
B

ε
αj (aj)

gε(uε, Aε)dx

≥ 1

2

∫
Br\Bε

αj (aj)

ρ2
ε |∇Θa|2 dx− 1

2

∫
Br\Bε

αj (aj)

ρ2
ε |∇ψε −Aε|2 dx

+

∫
B

ε
αj (aj)

gε(uε, Aε)dx

≥ 1

2

∫
Br\Bε

αj (aj)

|∇Θa|2 dx− C7 − C13 + π| log ε| (1− αj)− C1

= π| log ε| − C14,

where we used (2.11), Lemma 2.6, and Lemma 4.3 of [23]. The upper bound can be
derived in the same way.

If the essential zeros are well spaced, Lemma 2.7 yields a uniform global bound
on the energy. ∫

Ω\⋃d
j=1 Br(aj)

gε(uε, Aε)dx ≤ C14(Ω, σ, d, r).(2.15)
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Therefore, establishing the location of essential zeros affords global energy bounds
away from vortex concentrations. We also find by a simple calculation that∫

Ω\⋃d
j=1 Br(aj)

|∇ψ� −A�|2 + |B� −H0|2 dx ≤ C15(Ω, σ, d, r),(2.16)

where ψ�, A�, and B� are the weak limits of ψε, Aε, and Bε, respectively.

3. Asymptotic behavior of the SGL equations. We are interested in the
vortex dynamics of the SGL equations under the Coulomb gauge. Many of the tech-
niques in this section are based on the methods found in [8, 24]; however, there are
a few difficulties with the SGL equations that do not appear in the Gross–Pitaevskii
equation (1.5). The SGL equations are defined as

1

i
∂Φεuε = ∇2

Aε
uε +

1

ε2
uε
(
1− |uε|2

)
,

δεEε = − curlBε + jε,

where Eε = ∂tAε +∇Φε. We take δε → 0 such that

ε2| log ε|
δε

→ 0.(3.1)

We have natural boundary conditions

ν ·∇Aεuε = 0,

Bε = H0,

ν ·Eε = 0.

Fixing the Coulomb gauge, the SGL equations become

1

i
∂Φεuε = ∇2

Aε
uε +

1

ε2
uε
(
1− |uε|2

)
,(3.2)

δεEε = ∆Aε + jε(3.3)

with new boundary conditions

∂νuε = 0,(3.4)

Bε = H0,(3.5)

ν ·Aε = 0,(3.6)

∂νΦε = 0.(3.7)

The Coulomb gauge simplifies our analysis of the magnetic field potential equation
(3.3). We should note that global-in-time existence of C(R+, H2⊗H3)∩C1(R+, L2⊗
H1) solutions to (3.2)–(3.7) for a fixed ε can be shown by a long, but straightforward,
modification of the proofs found in [3].

Since we are dealing extensively with covariant derivatives it is helpful to calculate
the following commutator relationships.

Proposition 3.1. Covariant derivatives satisfy

(∂Φ∇A −∇A∂Φ) = −iE,(3.8) (∇Au,∇2
A u

)
= div (∇Au⊗∇Au)− 1

2
∇ |∇Au|2 −B (j×e3) ,(3.9)
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where ⊗ is the usual fluid tensor

div (v ⊗ v) =
∑
j=1

∂xj
(vi, vj)

for vk ∈ C.
Proof. The proof of (3.8) is a direct calculation. We now turn to (3.9).(∇Au,∇2

A u
)
= (∇Au,∇·∇Au)− (∇Au, iA·∇Au)

= div (∇Au⊗∇Au)− (∇Au, iA·∇Au)

−
2∑

j=1

(∂j∂ku− i∂jAku− iAk∂ju, ∂ju− iAju)

= div (∇Au⊗∇Au)− 1

2
∇ |∇Au|2

−
2∑

j=1

(∂kAj − ∂jAk) (iu, ∂ju− iAju)

−
2∑

j=1

(iAj∂ku− iAk∂ju, ∂ju− iAju)

−
2∑

j=1

(
∂ku− iAku, iAj∂ju+A2

ju
)

= div (∇Au⊗∇Au)− 1

2
∇ |∇Au|2 − curlA (j×e3) .

3.1. Conservation laws. The SGL equations can be transformed into a series
of conservation laws by using a variation of the Madelung transformation [26], used
extensively in the study of the nonlinear Schrödinger equation. Recall the mass |u|2,
the momentum j = (iu,∇Au), and the energy density

gε(u,A) =
1

2

[
|∇Au|2 + |curlA−H0|2 + 1

2ε2

(
1− |u|2

)2
]
.

Then we have the following proposition.
Proposition 3.2. A solution {uε, Aε,Φε} to the SGL equations satisfies the

conservation laws

1

2
∂t |uε|2 = −div jε = −δε divEε,(3.10)

1

2
∂tjε = −div (∇Aε

uε ⊗∇Aε
uε) +∇Pε + δεBε (Eε × e3)− 1

2
|uε|2 Eε,(3.11)

∂tgε = −δεE2
ε + div (∇Aε

uε, ∂Φε
uε) + curl (Eε (Bε −H0)) ,(3.12)

where

div (∇Au⊗∇Au) = ∂j (∂ku− iAku, ∂ju− iAju)

is the usual fluid tensor product and

Pε =
1

2

[
|∇Aεuε|2 −B2

ε +
(
uε,∇2

Aε
uε
)
+

1

2ε2
(
1− |uε|4

)]
(3.13)
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is the pressure.
Proof. Mass conservation (3.10) and energy conservation (3.12) are direct calcu-

lations. We prove momentum conservation (3.11). By direct calculation we find

∂tjε = 2 (i∂Φεuε,∇Aεuε) +∇qε − Eε |uε|2 .(3.14)

Plugging the SGL equations into (3.14) yields

∂tjε = −2
(∇Aε

uε,∇2
Aε
uε
)
+

1

2ε2
∇
(
1− |uε|2

)2

+∇
[(
uε,∇2

Aε
uε
)
+

1

ε2
|uε|2

(
1− |uε|2

)]
− Eε |uε|2

= −2
[
div (∇Aε

uε ⊗∇Aε
uε)− 1

2
∇ |∇Aε

uε|2 −Bε (jε×e3)
]

+∇
(

1

2ε2

(
1− |uε|4

)
+
(
uε,∇2

Aε
uε
))− Eε |uε|2 ,

where we used (3.9) in the first term. Finally we use

Bε (jε × e3) = Bε (δεEε + curlBε)× e3

to complete the proof.
Let Gε(u,A) =

∫
Ω
gε(u,A)dx; then (3.12) implies

Gε(uε, Aε)(t) + δε

∫ t

0

∫
Ω

E2
ε dxdt = Gε(uε, Aε)(0)

for all times. We require the initial data to satisfy the initial conditions

{|uε(0)| ≤ 1/2} ⊆
d⋃

j=1

Bδ0(aj(0)) ⊆ {dist(x, ∂Ω) ≥ δ0} ,(3.15)

Gε(uε, Aε)(0) ≤ πd| log ε|+W ({aj(0)}) + oε(1),(3.16)

{uε(0), Aε(0)} has d essential zeros at {aj(0)}(3.17)

so that

uε(0) ⇀

d∏
j=1

(
x− aj(0)

|x− aj(0)|
)dj

eiψ0(x), where dj = ±1

weakly in H1
loc(Ω\{a1(0), . . . , ad(0)}) and ψ0 ∈ H1(Ω). These initial conditions are

chosen to ensure the convergence of the initial data to the form (3.17) with vortices
well spaced away from the boundary. The initial conditions (3.15)–(3.17) imply, for
all t > 0,

Gε(uε, Aε)(t) ≤ Gε(uε, Aε)(0) ≤ πd| log ε|+W ({aj(0)}) + oε(1).(3.18)



1452 DANIEL SPIRN

3.2. Energy concentration and weak compactness. We now wish to iden-
tify the weak limits of uε and Aε, modulo vortex position, for any t ∈ [0, T ]. To do
so, we need to show that essential zeros move continuously in time. Then we use the
asymptotic scaling, along with our uniform energy bounds, to identify the limiting
functions.

Lemma 3.3. Suppose {uε, Aε} is a sequence of H1 ⊗H1 maps from Ω ⊂ R
2 into

C⊗ R
2. Suppose

Gε(uε, Aε) ≤ πd| log ε|+ C

and suppose there are d essential zeros located at {aj}d1 that satisfy
min {dist(ai, aj),dist(ai, ∂Ω)} ≥ σ > 0.

Then

gε(uε, Aε)

π| log ε| ⇀
d∑

j=1

δaj

in a Radon measure. Furthermore,

uε ⇀ eiΘa+iψ� =

d∏
j=1

x− aj
|x− aj |e

iψ�

weakly in H1
loc(Ωa).

Proof. The proof follows from Lemma 2.7.
We first establish the vortex motion law for the almost-energy-minimizing as-

sumption. To do so, it will be necessary to trace the location of vortices as time
progresses. Let Ωa = Ω\{aj}; then we have the following.

Proposition 3.4. Under the assumptions, the linear momentum jε is uniformly
bounded in L1

loc(Ω) and up to subsequence

jε ⇀ v = ∇Θa +∇ψ� −A�

in L1
loc(Ωa), where div v = 0 and Θa =

∑d
j=1 Arg

x−aj

|x−aj | .
Proof. This follows directly from Lemma 3.3 and the gauge choice.
Lemma 3.5. The linear momentum jε ∈ L1(Ω) uniformly in ε. Let ϕ ∈ C∞0 (Ω),

ϕ = x1 for x ∈ BR/2(aj), and ϕ = 0 for x /∈ BR(aj), where R ∈ (0, δ0). Then for
aj = (axj , a

y
j ), ∫

BR(aj)

∇⊥ϕ·jεdx→ 2πaxj .

Proof. We first note that |uε| ∈ H1(Ω) uniformly in ε. Therefore, |uε| ∈ Lp(Ω)
uniformly in ε for all 1 ≤ p < ∞. We wish to establish that ∇Aεuε ∈ Lq(Ω) for
1 ≤ q < 2. Then jε ∈ Lr(Ω) for all 1 ≤ r < 2. Therefore, for φ ∈ C∞0 (Ω)∫

BR

∇⊥φ · jε dx→
∫
BR

∇⊥φ · (∇Θa +∇ψ� −A�) dx

=

∫
BR

∇⊥φ · (∇θj +A�) dx

=

∫
Bε(aj)

∇⊥φ · ∇θjdx+
∫
∂BR

x1∂τθjdx−
∫
BR

∇⊥φ·A�dx.
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To show Lp control of jε, we need to establish an energy bound. In order to do
so we assume there is an essential zero at some point x0. Then using arguments in
Lemma 2.6 we can establish∫

Br(x0)

gε(uε, Aε)dx ≥ π log
r

ε
− C.

Furthermore, a simple energy upper bound gives∫
Br′ (x0)

gε(uε, Aε)dx ≤ π log
r′

ε
− C.

Therefore, for r > 2εα ∫
B2r(x0)\Br(x0)

gε(uε, Aε)dx ≤ C.

Then for p ∈ [1, 2) we have∫
B1(x0)

|∇Aεuε|p dx ≤
∫
B2εα

|∇Aεuε|p dx+
d∑

j=1

∫
B2j+1εα\B2jεα

|∇Aεuε|p dx

≤
(
2

∫
B2εα

gε(uε, Aε)dx

)p/2

ε(2−p)/2

+

d∑
j=1

|B2j+1εα\B2jεα |(2−p)/2

= oε(1) + C

d∑
j=1

(
2jεα

)2−p ≤ C.

We now wish to show the continuous motion of essential zeros in the SGL equa-
tions on the order 1 time scale.

Lemma 3.6. The essential zeros do not move on any slower time scale t ∼ o(1) as
ε→ 0. On the time scale t ∼ O(1), the vortex locations aεj(t) are uniformly continuous
in t as ε→ 0.

Proof. We know

uε ⇀

d∏
j=1

x− aj
|x− aj |e

iψ0(x)

in H1
loc(Ωa0) with ‖ψ0‖H1(Ω) ≤ C0. Let R > 0 be a small number, R < σ

4 , where

σ = min{|al − aj |,dist (al, ∂Ω) , l, j = 1, . . . , n, l 	= k}.
If the essential zeros move continuously, then there exists t� > 0 such that for a fixed
R > 0 small (R < σ

4 ) there exists an essential zero in each BR/2(ak(0)). Suppose
the essential zeros are not continuous in time; then let λε be the maximum time such
that all essential zeros still lie in BR/2(aj(0)). Therefore, for some essential zero,
ak(λε)∈\BR/2(ak(0)). Our aim is to show

lim inf
ε→0+

λε > 0.
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Rescale the time t �→ λεt and set

ũε(t) = uε(λεt),

Ãε(t) = Aε(λεt),

Φ̃ε(t) = Φε(λεt).

Then for all t ∈ [0, 1) the essential zeros lie within BR/4(aj(0)), so the SGL equations
become

1

i

(
∂tũε + iλεΦ̃εũε

)
= λε∇2

Ãε
ũε +

λε
ε2
ũε
(
1− |ũε|2

)
,

δε

(
∂tÃε + λε∇Φ̃ε

)
= λε∆Ãε + λεj̃ε.

Let Ẽε = ∂tÃε+λε∇Φ̃ε and ∂Φ̃ε̃
uε = ∂tũε+iλεΦ̃εũε The momentum equation becomes

1

2

d

dt
j̃ε = −λε div

(
∇Ãε̃

uε ⊗∇Ãε̃
uε

)
−∇

(
λεP̃ε

)
+ λεδεB̃ε

(
Ẽε × e3

)
− λε

2
|ũε|2 Ẽε

(3.19)

and the energy equation becomes

d

dt
gε(ũε, Ãε) = − δε

λε
Ẽ2
ε + div

(
∇Ãε̃

uε, ∂Φ̃ε̃
uε

)
+ curl

(
Ẽε

(
B̃ε −H0

))
.(3.20)

Choose φ ∈ C∞0 (BR(ak(0))) such that

φ2 =

{
1 in BR

2 −δ(ak(0)),
0 in BR\B 3R

4
(ak(0)),

and linear in between, where δ is chosen so that each essential zero aεj ∈ BR
2 −δ(aj(0))

for all j 	= k for all t ∈ [0, 1]. Multiplying equation (3.19) by ∇⊥φ and integrating
over BR

2
(ak(0))× [0, 1] yields∫

BR
2

(ak(0))

∇⊥φ · j̃ε
∣∣∣1
0
dx = 2λε

∫ 1

0

∫
BR

2
(ak(0))

(
∇Ãε̃

uε ⊗∇Ãε̃
uε

)
: ∇∇⊥φdxdt

+ 2λε

∫ 1

0

∫
BR

2
(ak(0))

δεB̃ε

(
Ẽε×e3

)
− |ũε|

2

2
Ẽε dxdt.

The left side converges to axk(1) − axk(0) and the right side converges to 0. Likewise

ayk(1) − ayk(0) = 0 implies ak(1) = ak(0), and deg
( ũε(1)
|ũε(1)| , ∂BR

2
(ak(0))

)
= 1. From

(3.20) we get ∫
BR

2
(ak(0))

gε(uε, Aε)dx ≤ π| log ε|+ C14.

By Proposition 3.7 below, we find a single essential zero within the ball BR
2
(ak(0)),

which contradicts our assumption. Therefore, lim infε→0 λε > 0 implies that the
essential zeros move continuously.
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To complete the proof of Lemma 3.6, we need to establish an essential zero with
only an energy bound and control on the degree. There are a few results in this
direction, and we point out [21], which establishes essential zeros for the simplified
GL functional, and [17], which computes precise lower bounds for simplified and full
GL functionals. We will follow the spirit of the former, which has less precise bounds
but allows for identification of vortices up to order εα diameter.

Proposition 3.7. Set BR = BR(x0); then if {ũ, Ã} satisfies
∫
BR

gε(ũ, Ã)dx ≤
π| log ε|+ C and deg( ũ

|ũ| , ∂BR) = 1, there exists exactly one essential zero in BR.

Proof. In order to isolate the essential zero in BR, we would like to use the
structure theorem of [20]. A sufficient condition to use this theorem is the bound
|∇Ãũ|L∞(BR) ≤ C

ε , which we lack. To compensate we employ a short-time gradient
flow, i.e., the TDGL equations

∂Φu = ∇2
A u+

1

ε2
u
(
1− |u|2) ,

E = − curlB + (iu,∇Au)
in BR with initial data u(x, 0) = ũ if |ũ| ≤ 1 and u(x, 0) = ũ

|ũ| if |ũ| > 1 and

A(x, 0) = Ã, subject to boundary conditions

(iu,∇Au) (x, t) =
(
iũ,∇Ãũ

)
,

curlA(x, t) = B̃

on ∂BR for all t ≥ 0. These boundary conditions are reasonable given the assumption∫
∂BR

gε(u,A)dω ≤ C. For a more detailed account of asymptotics of the TDGL

equations, see [33]. The TDGL equations use a modified potential energy

g̃ε(u,A) =
1

2

[
|∇Au|2 +

∣∣∣curlA− B̃
∣∣∣2 + 1

2ε2
(
1− |u|2)2] .

Since the gradient flow regularizes data sufficiently to use the structure theorem, we
can find an essential zero at a short ε2 time later. Furthermore, the TDGL equations
pin essential zeros to their initial location for any time scale o(| log ε|) (see [20, 33]),
which allows us to identify the essential zero at time t = 0. This method was used in
Proposition 1.1 of [22] to study concentrations in the nonlinear wave equation. Let
t = ε2; then parabolic estimates imply |∇Au|L∞(BR)(ε

2) ≤ C
ε (see Proposition 2.8 of

[33]), and we can find an essential zero aε ∈ BR for
{
u(ε2), A(ε2)

}
(see Claim 4.3 of

[33]).
Next we show that at t = 0 an essential zero is located at the same point. From

our parabolic energy bound
∫
BR

g̃ε(u,A)(t)dx ≤ π| log ε|+ C, we find∫
BR

[
g̃ε(u,A)(0) + g̃ε(u,A)(ε

2) +

∫ ε2

0

|∂Φu|2 + E2dt+
1

ε2

∫ ε2

0

g̃ε(u,A)dt

]
dx

≤ 3π| log ε|+ C.

Then at aε

εα
∫
∂Bεα (aε)

[
g̃ε(u,A)(0) + g̃ε(u,A)(ε

2) +

∫ ε2

0

|∂Φu|2 + E2dt+
1

ε2

∫ ε2

0

g̃ε(u,A)dt

]
dω

≤ C.
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We now rescale {
û, Â, Φ̂

}
(x, t) =

{
u, εαA, ε2Φ

}
(εαx+ aε, ε2t).

Then ∫ 1

0

∫
∂B1(0)

g̃ε̃(û, Â) + ε2(α−1)
∣∣∂Φ̂û

∣∣2 + ε−2Ê2dωdt ≤ C,(3.21)

where ε̃ = ε1−α. Inequality (3.21) implies the degree is well-defined. Next, we get∫
∂B1(0)

g̃ε̃(û, Â)(0) + g̃ε̃(û, Â)(1)dω ≤ C,

which implies

deg

(
ũ

|ũ| , ∂Bεα(a
ε)

)
= deg

(
û(0)

|û(0)| , ∂B1(0)

)
= deg

(
û(1)

|û(1)| , ∂B1(0)

)
.

Therefore, there is an essential zero.
This implies, for all t ∈ (0, tδ) such that tδ = tδ(σ, d,Ω),

gε(uε, Aε)(t)

π| log ε| ⇀
d∑

j=1

δaj(t).

Since there are uniform bounds on the energy outside of the concentrations, we can
identify the limiting u� and A�.

Proposition 3.8. The function ψ�(x, t) satisfies in the weak limit of Proposi-
tion 3.4

∆ψ� = 0

in Ω and ∂νψ� = −∂νΘa on ∂Ω.
Proof. First, we let φ(x) ∈ C∞0 (Ω) and ϕ(t) ∈ C∞0 (0, T ); then

lim
ε→0

∫ T

0

ϕ(t)dt

∫
Ωa

jε φ(x)dx =

∫ T

0

ϕ(t)dt

∫
Ωa

(∇Θa +∇ψ� −A�)φdx,(3.22)

and using (3.10)∫ T

0

ϕ(t)dt

∫
Ωa

jε · ∇φ(x)dx =

∫ T

0

∂tϕ(t)dt

∫
Ωa

|uε|2
2

dx

→ 0.

Therefore, jε’s weak limit is divergence free for a.e. t ∈ [0, T ]. Combining with (3.22)
implies

∆ψ� = 0

in Ωa since divAε = 0 for all ε. From Lemma 2.6 we find that ψ� has removable
singularities at the vortices. Therefore, ψ� is harmonic throughout Ω.
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To establish the Neumann boundary conditions we rely on a method of [24]. Near
the boundary ∂Ω there are no essential zeros by Lemma 3.6. Choose φ ∈ C∞(Br(x))
such that Br(x) ∩ ∂Ω 	= ∅ and r ≤ σ

4 . Since uε = ρεe
i(Θa+ψε), then the boundary

conditions under the Coulomb gauge reduce to ν·(∇ρε+ iρε∇(Θa+ψε))e
i(Θa+ψε) = 0,

ν ·Aε = 0, and Bε = H0. This implies, for each ε > 0,

∂νρε = ∂ν(Θa + ψε)) = 0

for x ∈ ∂Ω. Now using div jε = 0 on x ∈ ∂Ω, then∫
∂Ω

φ ν ·v dω =

∫
Ω

v ·∇φdx = lim
ε→0

∫
Ω

jε ·∇φdx

= lim
ε→0

∫
∂Ω

φ ν ·jε dω + lim
ε→0

∫
Ω

φ∂t
|uε|2
2

dx,

where v = ∇Θa +∇ψ� −A�. Integrating over [0, t] yields∫ t

0

∫
∂Ω

φ ν ·v dx = lim
ε→0

1

2

∫ t

0

∫
Ωa

|uε|2∂tφdx = 0.

Then we get v ·ν = 0 on ∂Ω.
Proposition 3.9. Let {uε, Aε} be a solution to the SGL equations with scaling

δε → 0; then A� = − curl ξ� satisfies in the weak limit of Proposition 3.4

∆2ξ� −∆ξ� + 2π

d∑
j=1

δaj(t) = 0(3.23)

in Ω and ξ = 0 and ∆ξ = H0 on ∂Ω.
Proof. From the lower bound Lemma 2.6 and the initial condition, (3.18) implies

δε

∫ T

0

∫
Ω

E2
ε dxdt ≤ C.(3.24)

Therefore, we find that ∫ T

0

∫
Ω

|− curlBε + jε|2 dxdt→ 0

in L2(Ω). Multiply (3.3) by ∇⊥φ, where φ ∈ C∞0 (Ωa); then

∆B� −B� = 0

in distribution. Next, let φ ∈ C∞0 (Bδ(aj)) for some aj , and

0 =

∫
Bδ(aj)

∇⊥φ · Eε +

∫
Bδ(aj)

∇⊥φ (− curlBε + jε) dx

→
∫
Bδ(aj)

φ (∆B� −B�) dx+ 2πφ(aj),

and so

∆B� −B� + 2πδaj(t) = 0
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in distribution. Therefore, Bε ⇀ B� in H1
loc(Ωa) and B� satisfies

∆B� −B� + 2π

d∑
j=1

δaj(t) = 0

in distribution.
We now establish the boundary value of B�. Let φ = (φ1, φ2), where φj ∈

C∞(Br(x)), where Br ∩ ∂Ω 	= ∅ and r ≤ σ
4 . Therefore, φ intersects part of the

boundary and is supported away from any essential zero. Therefore,∫
∂Ω

(B� −H0)φ · τds =
∫
∂Ω

(B� −H0)φ · dl

=

∫
Ω

curl (φ (B� −H0)) dx

=

∫
Ω

(B� −H0) curlφdx+

∫
Ω

φ · curlB�dx

=

∫
Ω

(B� −H0) curlφdx+

∫
Ω

φ · j�dx

= lim
ε→0

∫
Ω

(Bε −H0) curlφ+ φ · jεdx

= lim
ε→0

∫
Ω

curl (φ (Bε −H0)) + δε φ · Eεdx

= lim
ε→0

∫
∂Ω

(Bε −H0)φ · dl + lim
ε→0

δε

∫
Ω

φ · Eεdx

= 0

for a.e. t ∈ [0, T ].

3.3. Γ-convergence. Unlike the TDGL equations, to establish strong conver-
gence of the SGL equations we need a Γ-convergence-type result in the spirit of [8]
and [24]. This result will help us twofold. First, the Γ-convergence will ensure strong
convergence along the chosen subsequence, away from essential zeros, to the canonical
harmonic map. Second, the Γ-convergence will be used to close a Gronwall inequality,
critical in the proof of the vortex motion law.

Lemma 3.10. Let {uε, Aε} have essential zeros at vortex locations {a1, . . . , ad}.
If, for some µ > 0,

lim sup
ε→0

[Gε(uε, Aε)− πd| log ε|] ≤ πW ({aj}) + µ,

then for any r > 0, there is a constant C independent of ε and r such that for any
t > 0

lim sup
ε→0

∥∥∥∥ jε
|uε| − v

∥∥∥∥2

L2(Ωr)

≤ Cµ,(3.25)

lim sup
ε→0

‖Bε −Ba‖2L2(Ωr) ≤ Cµ,(3.26)

lim sup
ε→0

‖∇|uε|‖2L2(Ωr) ≤ Cµ,(3.27)
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where Ωr = Ω\⋃d
j=1 Br(aj). Here v = ∇Θa + ∇ψa − Aa such that ∆ψa = 0 in

Ω, ∂νψa = −∂νΘa on ∂Ω. Furthermore, Ba = ∆ξa and Aa = − curl ξa such that
∆2ξa −∆ξa + 2π

∑d
j=1 δaj = 0 in Ω, ξa = 0, ∆ξa = H0 on ∂Ω.

Proof. The idea is to cut out small balls of radius ρ that contain d essential
zeros. Inside of each of these balls, we replace {uε, Aε} with a minimizer on a slightly
smaller ball subject to canonical boundary conditions on the boundary of the smaller
ball and a simple interpolation in the annulus between the two balls. We can then use
knowledge of energy minimizers from [2] and the renormalized energy of the appendix
to control the strong convergence error.

1. By Lemma 2.6 we have that uε ⇀ ei(Θa+ψ�) =
∏d

j=1
x−aj

|x−aj |e
iψ� weakly in

H1(Ωa) for some ∇ψ� ∈ L2
loc(Ωa), Aε ⇀ A� weakly in H1(Ω), and Bε ⇀ B� weakly

in L2(Ω). Therefore,

jε
|uε| ⇀ ∇Θa +∇ψ� −A�

weakly in L2(Ωa), and for any ρ > 0 and all ε ≤ ε0(ρ) small enough

∫
Ωρ

gε(uε, Aε)dx =
1

2

∫
Ωρ

[
|∇|uε||2 +

∣∣∣∣ jε|uε|
∣∣∣∣2 + |Bε −H0|2 + 1

2ε2
(
1− |uε|2

)2]
dx

≥ 1

2

∫
Ωρ

|∇|uε||2 +
∣∣∣∣ jε|uε| − (∇Θa +∇ψ� −A�)

∣∣∣∣2 + |Bε −B�|2 dx

+
1

2

∫
Ωρ

|∇Θa +∇ψ� −A�|2 dx+ |B� −H0|2 + oε(1),

(3.28)

where Ωρ = Ω\⋃d
j=1 Bρ(aj).

2. We now choose ρ ∈ ( r2 , r) such that
∫
∂Bρ

gε(uε, Aε)dω ≤ C; then

uε ⇀ eiΘa+iψ� ,

Aε ⇀ A�

weakly in H1(∂Bρ(aj)). We want to show that the {uε, Aε} is close to a canonical
harmonic map inside of Bρ(aj). In particular we want to define a comparison map
{uρε , Aρ

ε} that satisfies∫
Bρ(aj)

gε(uε, Aε)dx ≥
∫
Bρ(aj)

gε(u
ρ
ε , A

ρ
ε)dx+ o(ρ, ε),(3.29) ∫

Bρ(aj)

gε(u
ρ
ε , A

ρ
ε)dx ≥ log

ρ

ε
+ γ + o(ρ, ε).(3.30)

We let

{uρε , Aρ
ε} =

 {uε, Aε} on Ωρ = Ω\⋃d
j=1 Bρ(aj),

{uint, Aint} on each Bρ\Bρ̃,
{umin, Amin} on each Bρ̃

such that

{umin, Amin} = min
{
(u,A) ∈ H1

ψj
(Bρ̃(aj))⊗H1

Bj
(Bρ̃(aj))

}
,
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where

H1
ψj

(Bρ̃(aj)) =

{
u ∈ H1 : Bρ̃ → C such that u =

x− aj
|x− aj |e

iψj on ∂Bρ̃(aj)

}
,

H1
Bj

(Bρ̃(aj)) =
{
A ∈ H1 : Bρ̃ → R

2 such that curlA = Bj on ∂Bρ̃(aj)
}

for constants ψj and Bj . Minimizers {umin, Amin} have been treated in [2] and [23].
We choose ρ̃ = ρ−Cεα0 , and the interpolation functions {uint, Aint} can be chosen as
in the proof of Lemma 2.6. A long but straightforward calculation shows both (3.29)
and (3.30).

3. By the definition of the renormalized energy and (3.28),

πW ({aj}) + oε(1)

≤ Gε(u
ρ
ε , A

ρ
ε)− πd| log ε|

≤ Gε(uε, Aε)− πd| log ε|+ oε(1)

− 1

2

∫
Ωρ

|∇|uε||2 +
∣∣∣∣ jε|uε| − (∇Θa +∇ψ� −A�)

∣∣∣∣2 + |Bε −B�|2 dx.

(3.31)

Our assumption Gε(uε, Aε)− πd| log ε| ≤ πW ({aj}) + µ and (3.31) yield

lim
ε→0

∫
Ωρ

|∇|uε||2 dx ≤ 2µ+ o(ε, ρ),(3.32)

lim
ε→0

∫
Ωρ

∣∣∣∣ jε|uε| − (∇Θa +∇ψ� −A�)

∣∣∣∣2 dx ≤ 2µ+ o(ε, ρ),(3.33)

lim
ε→0

∫
Ωρ

|Bε −B�|2 dx ≤ 2µ+ o(ε, ρ).(3.34)

So (3.33) and (3.34) imply

lim sup
ε→0

∫
Ωρ

∣∣∣∣ jε|uε| − v

∣∣∣∣2 dx ≤ 4µ+ 2

∫
Ωρ

|∇ψ� −∇ψa +A� −Aa|2 dx+ o(ε, ρ),

lim sup
ε→0

∫
Ωρ

|Bε −Ba|2 dx ≤ 4µ+ 2

∫
Ωρ

|B� −Ba|2 dx+ o(ε, ρ).

Adding these two together yields

lim sup
ε→0

∫
Ωρ

∣∣∣∣ jε|uε| − v

∣∣∣∣2 + |Bε −Ba|2 dx

≤ 8µ+ 2

∫
Ωρ

|∇ψ� −∇ψa +A� −Aa|2 + |B� −Ba|2 dx+ o(ε, ρ).

4. We now show that∫
Ωρ

|∇ψ� −∇ψa +A� −Aa|2 + |B� −Ba|2 dx ≤ µ+ o(ε, ρ).

By the definition of the renormalized energy in the appendix,

1

2

∫
Ωρ

|∇Θa +∇ψa −Aa|2 + |Ba −H0|2 dx = πd log
1

ρ
+ πW ({aj})− γd+ o(ρ).

(3.35)
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Using our initial energy bound, along with an energy bound inside each Bρ(aj), we
find that our comparison function satisfies∫

Ωρ

gε(uε, Aε)dx =

∫
Ωρ

gε(u
ρ
ε , A

ρ
ε)dx

≤ πW ({aj})− γd+ µ+ o(ρ, ε) + πd log
1

ρ
,

(3.36)

where we used (3.30). Finally,∫
Ωρ

|∇Θa +∇ψ� −A�|2 =
∫

Ωρ

|∇Θa|2 + |ψ� −A�|2 dx− 2

∫
∂Ω

ψ�∂νΘadω

+ 2

d∑
j=1

∫
∂Bρ(aj)

(
ψ� − ψ

j

�

)
∂νΘa + ξ�∂τΘadω.

(3.37)

The second line of (3.37) is o(ρ, ε). Combining (3.35)–(3.37) we get∫
Ω

|∇ψ� −A�|2 + |B� −H0|2 dx ≤
∫

Ω

|∇ψa −Aa|2 + |Ba −H0|2 dx+ µ+ o(ε, ρ).

Since ψa is harmonic and ∂νψa = ∂νψ� on ∂Ω along with ∆2ξa−∆ξa+2π
∑d

j=1 δaj = 0
and ξa = ξ� = 0, ∆ξa = ∆ξ� = H0 on ∂Ω, then∫

Ω

|∇ψ� −∇ψa +A� −Aa|2 + |B� −Ba|2 dx

≤ 2

∫
Ω

|∇ψa −Aa|2 + |Ba −H0|2 + µ+ o(ε, ρ)

≤ µ+ o(ε, ρ).

4. Vortex motion law for almost-energy-minimizing bounds. We are now
in the position to prove the vortex motion law for almost-energy-minimizing bounds.
In particular we prove the following.

Theorem 4.1. If {uε, Aε} satisfies the SGL equations (3.2)–(3.7) and initial
conditions (3.15)–(3.17), then

d

dt
aj(t) = (∇ψj −A�) (aj(t)) = −J∇ajW ({ak(t)}),(4.1)

where

J =

(
0 −1
1 0

)
and W ({aj}) is defined by (A.1). A� = − curl ξ� satisfies the London equation (3.23)

and eiΘa+iψ� =
∏d

j=1
x−aj

|x−aj |e
iψ� =

x−aj

|x−aj |e
iψj such that ∆ψ� = 0 in Ω and ∂νψ� =

−∂νΘa on ∂Ω.
We use the momentum equation (3.11) to establish (4.1). Let m = 1, 2; then

1

2
∂tjεm = − (uεxm

− iAεmuε, uεxj
− iAεjuε

)
xj

+ Pεxm

− |uε|
2

2
Eε + δεBε (Eε × e3) .



1462 DANIEL SPIRN

Then if |uε| > 0,

uεxm
− iAεm =

jεm
|uε|

iuε
|uε| + |uε|xm

uε
|uε|

and (∇Aεm
uε,∇Aεj

uε
)
=

(
jεm, jεj

)
|uε|2 + |uε|xm

|uε|xj

= vm
jεj
|uε| + vj

jεm
|uε| − vmvj

+

(
jεm
|uε| − vm

)(
jεj
|uε| − vj

)
+ |uε|xm |uε|xj

.

Since ‖ jε
|uε|‖L2

loc(Ωa) ≤ C, then there is a weak limit in L2[0, T ;L2(Ωa)], which we

denote v. Since |uε| → 1 in L2(Ωa) for a.e. t, then jε ⇀ v = ∇Θa +∇ψ� −A� and

vj
jεm
|uε| ⇀ vjvm.

Therefore,

(∇Aεuε ⊗∇Aεuε) ⇀ (v ⊗ v) + νj ,(4.2)

where (
jεj
|uε| − vj

)(
jεm
|uε| − vm

)
+ |uε|j |uε|m ⇀ νj

for a finite, symmetric defect measure, νj ∈ M+(Ωa). The failure of strong conver-
gence of | jε|uε| − v|L2 and |∇|uε||L2 accounts for this defect measure. ν is finite on Ω

due to Lemma 3.10.
We set φ ∈ C∞0 (BR0/2) such that φ = x in BR. Then the conservation of mo-

mentum equation (3.11) yields∫
BR0/2

∇⊥φ · jε
∣∣t+k

t
dx

= 2

∫ t+k

t

ds

∫
BR0/2\BR

(∇Aε
uε ⊗∇Aε

uε) : ∇∇⊥φdx

+ 2

∫ t+k

t

ds

∫
BR0/2

(
|uε|2
2

Eε − δεBε (Eε×e3)
)
· ∇⊥φdx,

(4.3)

and using (4.2) we get

2

∫ t+k

t

ds

∫
BR0/2\BR

(∇Aεuε ⊗∇Aεuε) : ∇∇⊥φdx

→ 2

∫ t+k

t

ds

∫
BR0/2\BR

(µ+ v ⊗ v) : ∇∇⊥φdx,
(4.4)
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where µ ∈M+(Ω) and v⊗ v /∈ L1(Ω). We can then examine the second term of (4.4)
following [24], ∫ t+k

t

ds

∫
BR0/2(aj(s))\BR(aj(s))

(v ⊗ v) : ∇∇⊥φdx

=

∫ t+k

t

ds

∫
BR0/2(aj(s))\BR(aj(s))

−v ·∇v ·∇⊥φdx

+

∫ t+k

t

ds

∫
∂BR(aj(s))

(v ⊗ v) :
(
v ⊗ n⊥

)
dω

=

∫ t+k

t

ds

∫
∂BR(aj(s))

− (v · ∇v · ν⊥) (n·x) dω
+

∫ t+k

t

ds

∫
∂BR(aj(s))

(v ⊗ v) :
(
ν ⊗ n⊥

)
dω,

where n = (1, 0) and ν is the normal direction at ∂BR(aj(s)). Let (I, II) = (∇ψj −A�);
then the first integral of the right side becomes∫ 2π

0

(
axj (t)R+R2 cos θ

)
[v ·∇v1(− sin θ) + v ·∇v2 cos θ] dθ

=

∫ 2π

0

(
axj (t)R+R2 cos θ

) [
(I −R−1 sin θ)(Ix + 2R−2 sin θ cos θ)(− sin θ)

+(II +R−1 cos θ)(Iy −R−2 cos 2θ)(− sin θ)
]
dθ

+

∫ 2π

0

(
axj (t)R+R2 cos θ

) [
(I −R−1 sin θ)(IIx −R−2 cos 2θ) cos θ

+(II +R−1 cos θ)(IIy − 2R−2 sin θ cos θ)(cos θ)
]
dθ

= −I
∫ 2π

0

2 (sin θ cos θ)
2
dθ − I

∫ 2π

0

cos2 θ cos 2θdθ +O(R)

= −I
∫ 2π

0

cos2 θ = −πI.

If we let n = (0, 1), then the integral yields −πII. Therefore,
d

dt
aj = 2 (∇ψj −A�(aj)) + fj(ν),

and by (A.10)

d

dt
aj = −J∇aj

W ({ak(t)}) + fj(ν),(4.5)

where

J =

(
0 −1
1 0

)
.

Unfortunately, we have little control over how the defect measure affects the vor-
tex motion. In fact the interaction of vortices with any excess energy can be very
nontrivial [18].
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To finish the proof of Theorem 4.1, we compare the true vortex motion aj(t) with
a solution of the ODE

d

dt
bj(t) = −J∇bjW ({bk(t)})

such that bj(0) = aj(0). Set

ζ(t) =

d∑
j=1

|aj(t)− bj(t)| ;

hence ζ(0) = 0. We wish to show ζ(t) ≡ 0 for all t ∈ [0, T ]. Take a small time interval
so that ζ(t) ≤ tδ. Then

d

dt
ζ(t) ≤

d∑
j=1

∣∣∣∣ ddtaj(t)− d

dt
bj(t)

∣∣∣∣
=

d∑
j=1

∣∣∣∣ ddtaj(t) + J∇aj
W ({ak})− J∇aj

W ({ak}) + J∇bjW ({bk})
∣∣∣∣

≤
d∑

j=1

∣∣∣∣ ddtaj(t) + J∇aj
W ({ak})

∣∣∣∣+ d∑
j=1

∣∣J∇bjW ({bk})− J∇aj
W ({ak})

∣∣
≤

d∑
j=1

∣∣∣∣ ddtaj(t) + J∇ajW ({ak})
∣∣∣∣+ Cζ(t).

(4.6)

As before, consider the time interval [t, t + k], with k small, and the ball BR =
BR(aj(t)) inside BR0/2. Then set φ ∈ C∞0 (BR0/2) such that φ = x in BR:∫

BR0/2

∇⊥φ · jε
∣∣t+k

t
dx

= 2

∫ t+k

t

ds

∫
BR0/2\BR

(∇Aεuε ⊗∇Aεuε) : ∇∇⊥φdx

+ 2

∫ t+k

t

ds

∫
BR0/2

( |uε|2
2

Eε −Bε (Eε×e3)
)
· ∇⊥φdx

= 2

∫ t+k

t

ds

∫
BR0/2\BR

[(
v ⊗ jε
|uε| +

jε
|uε| ⊗ v − v ⊗ v

)
: ∇∇⊥φ

]
dx

+ 2

∫ t+k

t

ds

∫
BR0/2\BR

[(
jε
|uε| − v

)
⊗
(

jε
|uε| − v

)
: ∇∇⊥φ

]
dx

+ 2

∫ t+k

t

ds

∫
BR0/2\BR

[∇|uε| ⊗ ∇|uε| : ∇∇⊥φ] dx
+ 2

∫ t+k

t

ds

∫
BR0/2

( |uε|2
2

Eε − δεBε (Eε×e3)
)
· ∇⊥φdx

= (A) + (B) + (C) + (D).

(4.7)
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We showed that as ε → 0, (A) will yield −2πJ∇ax
j (t)W ({ak(t)}). We will control

terms (B) and (C) with the Γ-convergence result of section 2. We first show that
(D) ≤ Cζ(t)+oε(1)+oR0

(1). If we start with an almost-energy-minimizing sequence,
then

Gε(uε, Aε)(0) ≤ πd| log ε|+W ({aj(0)}) + oε(1)

= πd| log ε|+W ({bj(t)}) + oε(1)

≤ πd| log ε|+W ({aj(t)}) + Cζ(t) + oε(1)

(4.8)

by the Lipschitz continuity of W (x), |W (a)−W (b)| ≤ C|a− b| = Cζ. Therefore,

δε

∫ t

0

∫
Ω

E2
ε dxdt ≤ Gε(uε, Aε)(0)−Gε(uε, Aε)(t)

≤W ({aj(0)})−W ({aj(t)}) + oε(1)

≤W ({bj(t)})−W ({aj(t)}) + oε(1)

≤ Cζ(t) + oε(1).

(4.9)

Noting that |∇φ| ≤ R−1
0 , then

−
∫ t+k

t

∫
BR0

|uε|2 Eε · ∇⊥φdxds

=

∫ t+k

t

∫
BR0

(
1− |uε|2

)
Eε · ∇⊥φdxds+

∫ t+k

t

∫
BR0

Eε · ∇⊥φdxds

=
1

R2
0

∫ t+k

t

∫
BR0

1

δε

(
1− |uε|2

)2

dxds+ δε

∫ t+k

t

∫
BR0

E2
ε dxds

+

∫ t+k

t

∫
BR0

φ curlEε dxds

≤ ε2| log ε|
δε

C

R2
0

+ Cζ(t) +

∫ t+k

t

∫
BR0

∂t (φBε) dxds,

(4.10)

where we control the second term of (4.10) by (4.9). To control the third term, note
that ‖Bε‖W 1,r ≤ C uniformly for all r ∈ [1, 2) and t ∈ [0, tδ]. Then∫ t+k

t

∫
BR0

∂t (φBε) dxds

=

∫
BR0

φBε|t+k
t dx

≤ C|φ|C0(Ω)

(
‖Bε(t+ k)‖1/pW 1,r + ‖Bε(t)‖1/pW 1,r

)
R

2/q
0 .

(4.11)

Combining (4.10) and (4.11) along with (3.1) yields∫ t+k

t

∫
BR0

|uε|2 Eε · ∇⊥φdxds = Cζ(t) + oε(1) + oR0(1),(4.12)

which controls the first term of (D). It should be noted that we first let ε → 0 and
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then let R→ 0. The second term of (D) is much simpler:∫ t+k

t

∫
BR0

δεBε (Eε×e3) · ∇⊥φdxds

= δε

∫ t+k

t

∫
BR0

E2
ε dxds+ δε

∫ t+k

t

∫
BR0

B2
ε dxds

≤ Cζ(t) + oε(1),

(4.13)

which finishes control of (D).
Next, we bound terms (B) and (C). From (4.8) and Lemma 3.10

lim sup
ε→0

[Gε(uε, Aε)− πd| log ε|] ≤ πW ({aj}) + Cζ(t) + o(ε, ρ)

for ζ(t) > 0; then for any r > 0, there is a constant C independent of ε and R such
that

lim sup
ε→0

∥∥∥∥ jε
|uε| − v

∥∥∥∥2

L2(Ω\⋃d
j=1 BR(aj))

≤ Cζ(t),

lim sup
ε→0

‖Bε −B�‖2L2(Ω\⋃d
j=1 BR(aj)) ≤ Cζ(t),

lim sup
ε→0

‖∇|uε|‖2L2(Ω\⋃d
j=1 BR(aj)) ≤ Cζ(t).

Choosing tδC ≤ ζ(t) ∈ (0, 1), then for all t ∈ (0, tδ)

lim sup
ε→0

∥∥∥∥ jε
|uε| − v

∥∥∥∥
L2(BR0/2\BR)

≤ C1ζ(t),

lim sup
ε→0

‖Bε −B�‖L2(BR0/2\BR) ≤ C1ζ(t),

lim sup
ε→0

‖∇|uε|‖L2(BR0/2\BR) ≤ C1ζ(t).

This controls (B) + (C). Then sending ε→ 0 yields, for a = (ax, ay),

LHS → 2π
d

dt
axj (t)

and

(I)→ −2πJ∇ax
j
W ({ak(t)}).

Therefore, we find ∣∣∣∣ ddtaxj (t) + J∇ax
j
W ({ak})

∣∣∣∣ ≤ Cζ(t),

and performing a similar estimate for ayj (t), we get∣∣∣∣ ddtaj(t) + J∇ajW ({ak})
∣∣∣∣ ≤ Cζ(t)
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and the inequality

d

dt
ζ(t) ≤ Cζ(t)

with ζ(0) = 0, which implies ζ ≡ 0 and the vortex motion law. This finishes Theo-
rem 4.1.

Remark 4.2. Although the SGL equations are dissipative for fixed ε, in the ε→ 0
limit, energy is conserved. This asymptotic behavior strongly depends on the choice
of δε in (3.3). For a different rate of δε → 0, the system will not conserve energy, as
dissipation will dominate.

4.1. Incompressible Euler equations. In [24] the authors were able to show
the convergence of the supercurrent to a set of incompressible Euler equations for
the Gross–Pitaevskii equation (1.5). To do so they found that the defect measure ν,
arising from the limit of the convective term

(∇uε ⊗∇uε) ⇀ (v ⊗ v + ν) ,

is curl-free, and that allowed div ν to be written as the gradient of a distribution, and
hence pushed into the pressure term. It is reasonable to ask whether the supercurrent
equation (3.11) converges weakly to a set of Euler equations. Although jε ⇀ v is
divergence-free, there are a number of difficulties controlling (3.11), including the
lack of a curl-free supercurrent (curl v = −B� 	= 0) and the loss of control over the

term 1
2 |uε|2Eε in Ω\⋃d

j=1 Br(aj). In the end it may be possible to study only the
vorticity equation

1

2
curl

(
∂tjε + |uε|2Eε

)
= − curl div (∇Aεuε ⊗∇Aεuε)− (δε divEε)Bε,

which has better control on both sides of the equation.

Appendix. Renormalized energy. For completeness we include a discussion
of the renormalized energy for the full GL energy functional, which we need to verify
the dynamic law SGL equations. We note the analysis is similar to [1, 2, 23]. We
aim to prove two theorems that characterize both the renormalized energy and the
gradient of the renormalized energy.

A.1. Renormalized energy.
Theorem A.1. The renormalized energy W

({aj}d1) obeys the system
W (a1, . . . , ad) = −π

∑
i =j

log |ai − aj | − π

d∑
j=1

R(aj) + π

d∑
j=1

ξ(aj)

+
H2

0

2
|Ω| − 1

2
H0

∫
∂Ω

∂νξ dω.

(A.1)

Here ξ satisfies A = − curl ξ and

−∆2ξ +∆ξ = 2π

d∑
j=1

δaj
in Ω,

ξ = 0 on ∂Ω,

∆ξ = H0 on ∂Ω,

(A.2)
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and

R(x) = P (x)−
d∑

j=1

log |x− aj |,(A.3)

where

∆P = 2π
d∑

j=1

δaj in Ω,

P = 0 on ∂Ω.

(A.4)

We will first prove Theorem A.1 by using a combination of arguments found in [1,

2, 23]. We first note that u� ∈ S
1 can be written as u� = eiΘa+iψ� =

∏d
j=1

x−aj

|x−aj |e
iψ�

for harmonic function ψ�. ψ� is difficult to study, as it is a multivalued function.
Since ∂νu = 0 on ∂Ω, we can find the conjugate harmonic function P such that

u� ×∇u� =
(−∂2P
∂1P

)
= − curlP.

Then the boundary condition implies 0 = ν ·∇⊥P = ∂τP or P is constant on ∂Ω.
We choose P = 0 to simplify the discussion below. Therefore, the equation for the
congugate harmonic equation becomes

∆Pa = 2πδa in Ω,

Pa = 0 on ∂Ω.
(A.5)

In two dimensions the singularity at a is O (log) so we can define

Pa(x) = log |x− a|+ Sa(x),(A.6)

which is no longer a multivalued function (unlike Θa). Furthermore, Sa(x) is harmonic
and defined everywhere in Ω. We now outline the proof of the theorem by first
defining the class on which we define the renormalized energy. To calculate W ({aj})
we subtract the self-induction energy from a canonical harmonic map, and what is
left is a function of the d vortex locations. We set Ωρ = Ω\⋃d

j=1 Bρ(aj) and

H1(aj , ρ) =


u ∈ H1

(
Ωρ,S

1
)
, A ∈ H1

(
Ω,R2

)
such that

u =
x− aj
|x− aj | on ∂Bρ(aj) and ∂νu = 0 on ∂Ω,

divA = 0 in Ω and ν ·A = 0 and curlA = H0 on ∂Ω.

We set

Eδ(u,A) =
1

2

∫
Ωδ

|∇Au|2 dx+ 1

2

∫
Ω

|curlA−H0|2 dx(A.7)

and

µδ = inf
(u,A)∈H1(aj ,ρ)

Eδ(u,A).(A.8)

Claim A.2. We have that µδ is achieved, and for δ < δ0 we have µδ ≤ πd log 1
δ +

C, where C = C({aj}, δ0).
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Proof. This is proved by creating suitable comparison functions (vε, Bε), following
[2], such that Gε(vε, Bε) ≤ πd| log ε| + C. We fix d distinct points a1, . . . , ad and R
small enough such that BR(aj) ⊂ Ω and BR(ai) ∩ BR(aj) = ∅. To construct our
comparison functions we start with

w0 = vε = eiθa =
x− aj
|x− aj | on ∂BR(aj),

B0 = Bε = (iw0,∇w0)

outside the BR(aj)’s. We define a mollifier ζ such that ζ = 1 for r ≥ 1 and ζ = 0 for
ζ ≤ 1/2. We can now define the comparison functions inside the BR(aj)’s.

vε =
x− aj
|x− aj |ζ

(
x− aj
ε

)
,

Bε = Bε

(
x− aj
|x− aj |R

)
ζ

(
x− aj
R

)
.

A simple computation shows that
∫
BR

gε(vε, Bε)dx ≤ C and∫
BR(aj)

gε(vε, Bε)dx ≤ π| log ε|+ C.

Then we can use the direct method of calculus of variations to establish the existence
of µδ.

Claim A.3. We have for δ < δ0 and for a minimizer (vδ, Bδ) of (A.7)∫
Ω

|curlBδ −H0|2 dx ≤ C

and ∫
Ωδ

|∇Bδ
vδ|2 dx ≥ πd log

1

δ
− C

for C = C({aj}, δ0).
Proof. We again look to [2] for guidance. Let (vδ, Bδ) be a minimizer of (A.7) such

that divBδ = 0 with ν ·Bδ = 0 on ∂Ω. Then there exists a ξδ such that Bδ = curl ξδ,
where ∆ξδ = hδ = curlBδ, where ξδ = 0 on ∂Ω. Then∫

Ωδ

|∇Bδ
vδ|2 dx =

∫
Ωδ

|∇vδ|2 + |∇ξδ|2 + 2 [ξδ, vδ] dx,

where we have [ξδ, vδ] = (ivδ,∇vδ)×∇ξδ. Then∫
Ωδ

(ivδ,∇vδ)×∇ξδ dx =

∫
Ωδ

ξδ curl(ivδ,∇vδ)dx+
d∑

j=1

∫
∂Bδ(bj)

ξδ(ivδ, ∂τvδ)dω

=

d∑
j=1

∫
∂Bδ(bj)

ξδ(ivδ, ∂τvδ)dω,

where τ is tangential vector to ∂Bδ(bj) since vδ ∈ S
1. We show that∫

Ωδ

|∇Bδ
vδ|2 dx ≥ πd log

1

δ
− C.
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Then the top follows.
Claim A.4. Let ξ be a solution to

−∆2ξ +∆ξ = 2π

d∑
j=1

δaj
in Ω,

ξ = 0 on ∂Ω,

∆ξ = H0 on ∂Ω.

Then ξδ → ξ in W 2,2(Ω) as δ → 0, where Bδ = − curl ξδ = −∇⊥ξδ.
Proof. By the minimality in the class,

−∆2ξδ +∆ξδ = 0 in Ω,

∆ξ = 0 on ∂Ω.

Following an argument similar to [2] we establish the above.
Claim A.5. Let

µδ = min

{
1

2

∫
Ωδ

|∇u|2dx, u ∈ H1(Ωδ,S
1),deg(u, ∂Bδ(ai)) = 1, ∂νu = 0 on ∂Ω

}
.

Then ∣∣∣∣12
∫

Ωδ

|∇vδ|2 dx− µδ

∣∣∣∣2 → 0(A.9)

as δ → 0.
Proof. By standard elliptic estimates we find

1

2

∫
Ωδ

|∇vδ|2 dx ≥ µδ + o(δ),

and using R(δ)→ 0 we decouple the phase terms from the magnetic field such that

Eδ(vδ, Bδ) =
1

2

∫
Ωδ

|∇vδ|2dx+ 1

2

∫
Ω

|∇ξ|2 + |∆ξ −H0|2dx+ 2π

d∑
j=1

ξ(aj) + o(1);

see [2].
We can now use the analysis in [1] to characterize the form of the phase terms.
Claim A.6. Let 1 < p < 2; then the map vδ remains bounded in W

1,p and vδ → v
in W 1,p to v = eiΘa+ik =

∏d
j=1

x−aj

|x−aj |e
iψ� , where ψ� is harmonic and

∂νψ� = −
 d∏

j=1

x− aj
|x− aj | , ∂ν

d∏
j=1

x− aj
|x− aj |

 on ∂Ω.

Proof. Note that vδ takes values in S
1, and therefore

curl (ivδ,∇vδ) = 0 ∈ Ωδ.
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Let P be a solution to

∆P = 2π

d∑
j=1

δaj
in Ωδ,

P = 0 in ∂Ωδ.

Then

curl ((ivδ,∇vδ) +∇P ) = 0.

Therefore, there exists Hδ such that

(ivδ,∇vδ) +∇P = curlHδ.

Following the analysis in [1] we get the claim.
Proof of Theorem A.1. We show, for any configuration {aj} = {a1, . . . , ad},

µδ(aj) = W ({aj}) + πd log
1

δ
+ o(1),

where W ({aj}) is defined by (A.1)–(A.4).
From (A.9)

µδ(bj) =
1

2

∫
Ωδ

|∇vδ|2dx+ 1

2

∫
Ω

|∇ξ|2 + |∆ξ −H0|2dx+ 2π

d∑
j=1

ξ(aj) + o(1).

But (A.2) gives

1

2

∫
Ω

|∇ξ|2 + |∆ξ|2dx = −π
d∑

j=1

ξ(aj) +
H0

2

∫
∂Ω

∂νξ dω.

Then

µδ(aj) =
1

2

∫
Ωδ

|∇vδ|2dx+ π

d∑
j=1

ξ(aj)− H0

2

∫
∂Ω

∂νξdω +
H2

0

2
|Ω|+O(δ) + o(1),

but from [1, 2]

1

2

∫
Ωδ

|∇vδ|2dx = πd log
1

δ
+ ω({aj}, d,H0) +O(δ).

Then

W ({aj}) = ω({aj}, d,H0) + π

d∑
j=1

ξ(aj)− H0

2

∫
∂Ω

∂νξ dω +
H2

0

2
|Ω|.

We now use the canonical form of the phase, (A.6).

ω({aj}, d,H0) = −π
d∑

j=1

log |ai − aj | − π

d∑
j=1

R(aj) +
1

2

∫
∂Ω

P∂νP dω,

where R(x) = P (x) −∑d
j=1 log |x − aj |, and by previous discussion we know that

P = 0 on ∂Ω. Therefore, we get (A.1).
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A.2. Renormalized energy gradient. We now establish the form of the gradi-
ent of the renormalized energy. In this subsection we derive two forms of the gradient.
Theorem A.7 is used in section 4.

Theorem A.7. Let u� = eiΘa+iψ� =
∑d

j=1
x−aj

|x−aj |e
iψ� satisfy ∆ψ� = 0 in Ω

and ∂νψ� = −∂νΘa; then eiΘa+iψ� =
x−aj

|x−aj |e
iψj defines ψj. Let ξ satisfy ∆2ξ −

∆ξ + 2π
∑d

j=1 δaj
in Ω and ξ = 0, ∆ξ = H0 on ∂Ω. If W ({aj}) is as defined by

(A.1)–(A.4), then

DW ({aj}) = 2π

[(
−∂ψ1

∂x2
(a1) +

∂ξ

∂x1
(a1),

∂ψ1

∂x1
(a1) +

∂ξ

∂x2
(a1)

)
, . . . ,(

−∂ψd
∂x2

(ad) +
∂ξ

∂x1
(ad),

∂ψd
∂x1

(ad) +
∂ξ

∂x2
(ad)

)]
= 2π

[(
−∂ψ1

∂x2
(a1) +A2(a1),

∂ψ1

∂x1
(a1)−A1(a1)

)
, . . . ,(

−∂ψd
∂x2

(ad) +A2(ad),
∂ψd
∂x1

(ad)−A1(ad)

)]
.

(A.10)

Proof. We will use [1] for inspiration. Fix all vortices except vortex aj , which we
call y. Therefore, we have

∆P = 2π
∑
i =j

δai + 2πδy in Ω,

P = 0 on ∂Ω,

and

−∆2ξ +∆ξ = 2π
∑
i =j

δai
+ 2πδy in Ω,

∆ξ = H0 on ∂Ω,

ξ = 0 on ∂Ω.

(A.11)

Set

Ψ(x, y) = P (x, y)−
∑
i =j

log |x− ai|,

R(x, y) = Ψ(x, y)− log |x− y|.
Then the following equations hold:

∆Ψ = 2πδy in Ω,

Ψ = −
∑
i =j

log |x− ai| = h(x) on ∂Ω.

Then for a, ã ∈ Ω

2π (Ψ(a, ã)−Ψ(ã, a)) =

∫
∂Ω

Ψ(σ, ã)∂νΨ(σ, a)−Ψ(σ, a)∂νΨ(σ, ã)dσ

=

∫
∂Ω

h(σ) (∂νΨ(σ, a)− ∂νΨ(σ, ã)) dσ.
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Therefore, by the symmetry of the log |x− y|

2π (R(a, ã)−R(ã, a)) =

∫
∂Ω

h(σ) (∂νP (σ, a)− ∂νP (σ, ã)) dσ.

Now set

ζ(x) = P (x, ã)− P (x, a) = R(x, ã)−R(x, a) + log
|x− ã|
|x− a| .

Then

∆ζ = 2π (δã − δa) in Ω,

ζ = 0 on ∂Ω.

Multiplying by
∑

i =j log |x− ai| and integrating yields

2π
∑
i =j

ζ(ai) +

∫
∂Ω

∂νζ(σ)
∑
i =j

log |σ − ai| dσ = 2π
∑
i =j

log
|ã− ai|
|a− ai| ,

which gives

2π (R(a, ã)−R(ã, a)) = −
∫
∂Ω

∑
i =j

log |σ − ai|
 ∂νζ(σ)dσ

= 2π
∑
i =j

ζ(ai) + 2π
∑
i =j

log
|ã− ai|
|a− ai| .

Thus for ã fixed and varying a we get 2π (Rx(a, ã)−Ry(ã, a)) = 2π
∑

i =j Ry(ai, a) or

2π (Rx(a, a)−Ry(a, a)) = 2π
∑
i =j

Ry(ai, a).(A.12)

We now concern ourselves with (A.11). If we let y = ã, then multiplying by ξ(σ, a)
and integrating over Ω yields

2πξ(a, ã) + 2π
∑
i =j

ξ(ai, a)

= H0

∫
∂Ω

∂νξ(σ, a)dσ −
∫

Ω

∆ξ(σ, a)∆ξ(σ, ã) +∇ξ(σ, a)∇ξ(σ, ã)dσ,

which implies

2π (ξ(a, ã)− ξ(ã, a)) + 2π
∑
i =j

(ξ(ai, a)− ξ(ai, ã))

= H0

∫
∂Ω

(∂νξ(σ, a)− ∂νξ(σ, ã)) dσ.

Then for ã fixed and varying a we get

2π (ξx(a, a)− ξy(a, a)) + 2π
∑
i =j

ξy(ai, a) = H0

∫
∂Ω

∂νξy(σ, a)dσ.(A.13)
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Therefore, noting that we can write the renormalized energy as

W (a) =− π
∑
i =j

log |a− ai| − π
∑

k =l =j

log |ak − al| − π
∑
i =j

R(ai, a)− πR(a, a)

+ π
∑
i =j

ξ(ai, a) + πξ(a, a) +
H2

0

2
|Ω| − H0

2

∫
∂Ω

∂νξ(σ, a)dσ,

then

Wa(a) =− π
∑
i =j

a− ai
|a− ai|2 − π

∑
i =j

Ry(ai, a)− πRx(a, a)− πRy(a, a)

+ π
∑
i =j

ξy(ai, a) + ξx(a, a) + ξy(a, a)− H0

2

∫
∂Ω

∂νξy(σ, a)dσ.

(A.14)

Using (A.12) and (A.13) in (A.14) gives

Wa(a) = −π
∑
i =j

a− ai
|a− ai|2 − 2πRx(a, a) + 2πξx(a, a).(A.15)

So if

−Sj(x) + ξ(x, a) = −P (x, a) + log |x− a|+ ξ(x, a)

= −R(x, a)− π
∑
i =j

log |x− ai|+ ξ(x, a),

and since ∇ψj = −∇⊥Sj , then (A.15) becomes

Wa(a) = −2π∇Sj(a) + 2π∇ξ(aj) =
(−∂2ψj(a) +A2(a)
∂1ψj(a)−A1(a)

)
.

Since ψj is the harmonic conjugate to R(x, a), we establish Theorem A.7.

A.3. Solution in the disk BR(0). We start with a configuration of d vortices
at aj(0). Let us redefine ξ as our ξ �−→ ξ + χ such that

−∆2ξ +∆ξ = 2π

d∑
j=1

δaj(t)

in BR(0), ∆ξ = ξ = 0 on ∂BR(0),

−∆2χ+∆χ = 0

in BR(0), ∆χ = H0 and χ = 0 on ∂BR(0),

∆P = 2π

d∑
j=1

δaj(t)

in BR(0), and P = 0 on ∂BR(0). For the solid disk, BR(0), we can solve ξ, χ, and P .
Let aj = ρje

iψj ; then, if we use a general method for calculating Green’s functions
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[27], the associated Green’s functions are

ξ(r, φ) = −
d∑

j=1

log

√√√√R2 − 2rρj cos(φ− ψj) +
( rρj

R

)2
r2 − 2rρj cos(φ− ψj) + ρ2

j

+

d∑
j=1

K0

(√
r2 − 2rρj cos(φ− ψj) + ρ2

j

)
− I0(ρj)I0(r)K0(R)

I0(R)

− 2
d∑

j=1

∞∑
n=1

In(ρj)In(r)Kn(R)

In(R)
cos(n(φ− ψj)),

χ(r, φ) = H0

(
I0(r)

I0(R)
− 1

)
,

Φ(r, φ) =
d∑

j=1

log

√√√√ r2 − 2rρj cos(φ− ψj) + ρ2
j

R2 − 2rρj cos(φ− ψj) +
( rρj

R

)2 ,
where In(r) and Kn(r) are the modified Bessel functions of the first and second kinds.
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Abstract. This paper considers the behavior of pulse-like solutions of length ε � 1 to semi-
linear systems of hyperbolic partial differential equations on the time scale t = O(1/ε) of diffractive
geometric optics. The amplitude is chosen so that nonlinear effects influence the leading term in the
asymptotics.

For pulses of larger amplitude so that the nonlinear effects are pertinent for times t = O(1),
accurate asymptotic solutions lead to transport equations similar to those valid in the case of wave
trains (see [D. Alterman and J. Rauch, J. Differential Equations, 178 (2002), pp. 437–465]). The
opposite is true here. The profile equation for pulses for t = O(1/ε) is different from the corresponding
equation for wave trains.

Formal asymptotics leads to equations for a leading term in the expansion and for correctors.
The equations for the correctors are in general not solvable, being plagued by small divisor problems
in the continuous spectrum. This makes the construction of accurate approximations subtle. We use
low-frequency cutoffs depending on ε to avoid the small divisors.

Key words. pulses, diffraction, geometric optics, short wavelength asymptotics, hyperbolic
partial differential equations
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1. Introduction. The simplest pulse-like solutions arise as plane wave solutions
of constant coefficient homogeneous hyperbolic equations.

1.1. Linear plane waves.
Assumption 1.1 (symmetric hyperbolicity).

L(∂y) = ∂t +

d∑
j=1

Aj∂xj ,(1.1)

where the coefficients Aj are constant N ×N hermitian symmetric matrices.
The space-time variable is

y = (t, x) ∈ R
1+d with dual variables (τ, ξ).

If f : R→ C
N is smooth and β = (τ, ξ), then the chain rule yields

Lf(y.β) = L(β)f ′(y.β).

Thus L(f(y.β)) = 0 when f ′ takes values in the nullspace of L(β).
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t=0

t=1

Wave locations in x space

Three phase velocities indicated

Fig. 1.1. Planar fronts and phase velocities.

Recall that the characteristic variety, Char L, is the set of (τ, ξ) ∈ R
1+d \ 0

satisfying the dispersion relation det L(τ, ξ) = 0 . The characteristic variety is a real
conic algebraic variety. For β ∈ Char L one has the orthogonal decomposition

C
N = kerL(β) ⊕⊥ rangeL(β).

Definition 1.2. For β ∈ Char L, π = π(β) is the orthogonal projection of C
N

onto kerL(β). Define the partial inverse Q(β) by

Qπ = 0, QL(β) = (I − π).

Then u = f(y.β) is a plane wave solution of Lu = 0 when β ∈ Char L and f
satisfies the polarization π(β) f = f.

1.2. Plane pulses and group velocity. If, in addition,

f(s)→ 0 as s→ ±∞,

then the family of plane wave solutions

uε := f
(y.β

ε

)
describes pulses with planar wave fronts. If f has compact support, then the pulse
uε is supported in an O(ε) neighborhood of the hyperplane y.β = 0. The pulse cross
section is given by the function fε(s) := f(s/ε). The function f is called the profile
of this pulse family. For profiles which tend to zero as s → ±∞, the conditions
π(β)f = f and π(β)f ′ = f ′ are equivalent.

At t = 0 (resp., t = 1) the pulse is supported near the planes x.ξ = 0 (resp.,
x.ξ = −τ). This is indicated in Figure 1.1.

The phase is given by

y.β = tτ + x.ξ = (x− vt).ξ

for any velocity vector v satisfying

v.ξ = −τ.
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For any such v, the pulse family is given by

hε(x− vt), where hε(x) := fε(x.ξ) = f(x.ξ/ε).

The pulse family can be viewed as moving with any one of these phase velocities.
Three such velocities are sketched in Figure 1.1. In dimension d > 1, the phase
velocity is not uniquely determined.

In contrast Definition 1.4 below shows that the group velocity is well defined at
smooth points β of the characteristic variety.

For ξ 	= 0 the points (τ, ξ) ∈ Char L which project to ξ are those points such
that −τ is a real eigenvalue of

∑
ξjAj . Thanks to the hyperbolicity assumption this

is a finite and nonempty set of points for each ξ, and so the variety has codimension
1. As such its singular points form a variety of codimension at least 2 so that most
points of the variety are smooth in the sense of the next assumption.
Assumption 1.3 (smooth point of the characteristic variety). β = (τ0, ξ0) belongs

to the characteristic variety, and there is a conic neighborhood of ξ0 and a real analytic
function τ(ξ) on that neighborhood so that on a conic neighborhood of β the variety
is given by the equation τ = τ(ξ).

Definition 1.4. For β a smooth point of the characteristic variety, the group
velocity is defined by

group velocity := v := −∇ξτ(ξ0).
Since τ is homogeneous of degree 1 in ξ, the Euler homogeneity relation implies

that

ξ.∇ξτ(ξ) = τ(ξ).

This implies that the group velocity satisfies v.ξ = −τ , the equation defining phase
velocities. The group velocity is the correct choice from among the possible phase
velocities.

1.3. Wave trains versus pulses. The geometric optics approximations which
are most familiar concern the short wavelength limit of wave trains (see [24]). Wave
trains and pulses are contrasted in Figure 1.2. Standard geometric optics yields
equations for the envelope of wave trains. The methods go under the name of the
slowly varying envelope approximation (SVEA) in science journals. A rule of thumb is
that to use the SVEA the amplitude should not change more than 10% per wavelength.
The wave train in Figure 1.2 is a borderline case for this rule. The rule of thumb
suggests that one must have about ten to twenty wavelengths per pulse length before
the SVEA is a reliable approximation.

For much shorter pulses like the one on the right in Figure 1.2 the SVEA is clearly
inappropriate. Interest in short-pulse phenomena, which violate this slowly varying
envelope assumption, has increased with the development of ultrafast lasers which
produce few-cycle pulses. Rothenberg [25] clearly described the problems arising
from treating short pulses as wave trains. Short-pulse solutions have been studied via
full numerical simulation as in [28], [15], [16], [17], and [14]. A variety of asymptotic
attacks are proposed and pursued in [13], [10], [21], [20], and [22]. In this paper the
equation defining the leading order asymptotics is simple, and the approximation is
proved to be accurate in the limit of small wavelength. Thus, from the above list
only those which are consistent with our approximation can also be accurate. Only
those whose equations are as simple can be competitive. It is our evaluation that with
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wavetrain short pulse

Fig. 1.2. Example of a wave train and a short pulse.

these two criteria in mind, a strong case can be made for our approach, but out of
politeness we leave detailed comparison to the interested reader.

A difficulty in the study of pulses and wave trains is that the terms in the hy-
perbolic equation are of radically different magnitudes. Simply dropping the smaller
ones and keeping the large ones usually leads to completely incorrect results. This is
apparent in the simplest families of short pulses in R

1+1,

uε := e−tf((x− t)/ε), ∂tu
ε + ∂xu

ε + uε = 0.

The three terms of the equation are of sizes O(1/ε), O(1/ε), and O(1). Dropping
the relatively small O(1) term yields the approximate solution f((x− t)/ε), which is
completely inaccurate.

A second difficulty in short-pulse asymptotics is that formally imitating the ex-
pansions of geometric optics generates equations for a leading term and correctors
in an asymptotic expansion. Generically, the equations for the correctors cannot be
solved. For the time scale t = O(1), before the onset of diffractive effects, Yoshikawa
[26], [27] showed that if one imposes physically unnatural assumptions guaranteeing
that the corrector equations can be solved, then one does get an accurate description.
In [5] we showed that the leading term is accurate without the unnatural assumption
and extended the construction to the case of curved wavefronts. In a sequence of
articles Carles and Rauch [7], [8], [9] studied the passage of spherical pulse solutions
of semilinear wave equations across focal points.

For pulses on the scale of diffractive geometric optics, [1] includes some of the
results of the present paper but notably does not prove a rate of convergence of the
error as ε → 0. There is also a study of pulses from Lannes’ perspective of waves of
broad spectrum (spectre large) in Barrailh and Lannes [6]. It is likely that the present
analysis can be extended to nearly planar wavefronts as in the work of Dumas [12]
for the diffractive wave train case. The present article contains the proofs of results
described and used in [2] and [3].

Typical analytic expressions for the wave forms in Figure 1.2 are

wave train : a(x) eix1/ε with Fourier transform â(ξ − (1/ε), 0);

pulse : a(x1/ε)b(x
′) with Fourier transform εâ(εξ1) b̂(ξ

′).

The Fourier transform of the wave train is localized near (1/ε, 0), which is called the
carrier frequency in applications.

The Fourier transform of the pulse is spread over a box of dimensions 1/ε × 1 in
(ξ1, ξ

′) space. There is no carrier frequency. There is no exponential prefactor which
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renders the quotient slowly varying. Some of the asymptotic approaches cited above
are flawed because they insist on identifying a carrier frequency.

The approximations take the form

wave train : U(y , y.β/ε) with U(y , θ) periodic in θ;

pulse : U(y , y.β/ε) with U(y , z)→ 0 as z →∞.

In both cases β ∈ Char L.
In the latter case the function U(y, ·) represents the profile of the pulse. In the

former case it gives the envelope of the wave train. The pulse approximation can
be called the slowly varying profile approximation since the profiles vary on the scale
O(1), which is much longer than the pulse length O(ε).

1.4. The basic problem. Consider the behavior for t ∼ 1/ε of solutions to a
system of equations

L(∂y)u
ε +Φ(uε) = 0, uε(0, x) = εpf

(
x,

x.ξ0
ε

)
,(1.2)

where β = (τ0, ξ0) is a smooth point of the characteristic variety.
Assumption 1.5 (short pulse initial data). The function f(x, z) satisfies

∀N, 〈ξ, ζ〉N f̂(ξ, ζ) ∈ L∞(Rd+1).(1.3)

This assumption is slightly stronger than the assumption f(x, z) ∈ Hs(Rd+1
x,z ) for

all s > 0, used in [1] and [2], but is weaker than the Schwartz class. We will see that
if one starts with f in the Schwartz class, then generically the pulse profile will not
be Schwartz class for t > 0.
Assumption 1.6 (order J nonlinearity). The nonlinear function Φ(u) is of order

J ≥ 2 in the sense that for all |α| ≤ J − 1, ∂αΦ(0) = 0. Denote by ΦJ(u) the
homogeneous Taylor polynomial of degree J approximating Φ(u) near u = 0.
Assumption 1.7 (magnitude of the solution). The exponent p is chosen so that

p = 1/(J−1). This insures that nonlinear effects become important on the time scale
t = O(1/ε).

To see that for waves of this amplitude it is reasonable that the nonlinear term is
pertinent for times t = O(1/ε) and not before, make the following back-of-an-envelope
estimate. The nonlinear term is of size εpJ = εp+1. The accumulated effect of the
nonlinear term for times t = O(1/ε) is crudely estimated as

1

ε
εp+1 = εp.

Since εp is the size of our solution it is reasonable to expect the accumulated nonlinear
effects to be important on these time scales.
Assumption 1.8 (polarization). The initial data f satisfy the polarization condi-

tion π(β)f(x, z) = f(x, z).
Definition 1.9. Define the scalar real second order homogeneous differential

operator P (∂x) by

P (∂x) := −
1

2

d∑
l,m=1

∂2τ

∂ξl∂ξm

∣∣∣∣
ξ=ξ0

∂2

∂xl∂xm
.(1.4)
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With these assumptions and definitions, the approximate pulse-like solutions have
the form

uεapprox = εpU0

(
εt, t, x,

τ0t+ ξ0.x

ε

)
, lim

|z|→∞
U0(T, t, x, z) = 0.(1.5)

The slowly varying profile U0 is polarized as usual, π(β)U0 = U0, and is deter-
mined from its initial data by the pair of evolution equations

(∂t + v.∂x)U0 = 0, ∂TzU0 + P (∂x)U0 + π(β)∂zΦJ(U0) = 0.

The second equation, for which T = 0 is characteristic, is the pulse version of the
nonlinear Schrödinger equation.

As these are the key equations that need to be solved in order to understand the
behavior of solutions to (1.2), we pause briefly to discuss them. The first equation is
handled by writing

U0(T, t, x, z) = U0(T, x− vt, z).(1.6)

The second equation is then equivalent to

∂TzU0 + P (∂x)U0 + π(β)∂zΦJ(U0) = 0.(1.7)

On the face of it, this is a differential equation in the d + 2 variables T, x, z. In
Proposition 4.1, it is shown that τ ′′ has rank ≤ d− 1, so the differential operator has
derivatives in at most d+ 1 independent directions.

To see that (1.7) gives rise to a well-defined evolution, write it formally as

∂TU0 + ∂−1
z P (∂x)U0 + π(β)ΦJ(U0) = 0.

The operator ∂−1
z P (∂x) is antisymmetric on the Hs, which for s large are invariant

under ΦJ . Corollary 4.12 implies that for f as above, there is a T∗ ∈ ]0,∞] and a
unique

U0 ∈ C
(
[0, T∗[ ; ∩sHs(Rd+1

x,z )
)

satisfying (1.7) and the initial condition U0|T=0 = f . If T∗ < ∞, then for all s >
(d+ 1)/2,

lim
T→T∗

∥∥U0(T )
∥∥
Hs(Rd+1

x,z )
= ∞.

Having constructed U0, define an approximate solution by (1.6) and (1.5). Our
main theorem asserts that the error in this approximation tends to zero as ε→ 0. To
motivate a class of natural norms to measure this error, note that uεapprox = O(εp).
Differentiating uε costs a power of 1/ε but no worse, so one has(

ε∂
)α

uεapprox = O(εp).(1.8)

Denote by V the (d + 1)-dimensional space of constant coefficient vector fields.
Choose a basis V1, . . . , Vd of the d-dimensional subspace of fields which are tangent
to the hyperplane {y.β = 0}. Choose the basis so that V1, . . . , Vd−1 are tangent to
{t = 0}. Then these d− 1 vectors are a basis for the constant fields on R

d
x which are
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tangent to {x.ξ0 = 0}. Differentiating in the d directions V1, . . . , Vd does not bring
out a factor of 1/ε, and one has(

V1, . . . , Vd
)α

uεapprox = O(εp).(1.9)

Choose a (d+1)st field W , which completes the V1, . . . , Vd to a basis of V. Since
ξ 	= 0, this vector field can be chosen tangent to {t = 0}. Define

Vd+1 = arctan(y.β)W.(1.10)

This vector field vanishes on {y.β = 0} and so is tangent to that hyperplane. Any
smooth vector field tangent to this hyperplane is a linear combination of the Vj
with smooth coefficients. Any smooth vector field on R

d
x tangent to {x.ξ0 = 0}

is a combination of V1, . . . , Vd−1, Vd+1|{t=0} with smooth coefficients. One also has

Vd+1u
ε
approx = O(εp). Summarizing, one has for all α ∈ N

2(d+1)(
ε∂y, V1, . . . , Vd, Vd+1

)α
uεapprox = O(εp) .(1.11)

The next result is a straightforward consequence of our main result, Theorem 8.1.
Note the technical point that the derivation Vd is not permitted in the error estimate.

Theorem 1.10. With the notation of the previous paragraphs, for any T < T∗
there is an ε0 > 0 so that for 0 < ε < ε0 problem (1.2) has a smooth solution
uε ∈ C∞

({0 ≤ T ≤ T/ε} × R
d
)
. The solution is well approximated by uεapprox in the

sense that for all α ∈ N
2(d+1) there is a C = C(α) so that∥∥(ε∂y, V1, . . . , Vd−1, Vd+1

)α(
uε − uεapprox

)∥∥
L∞([0,T/ε]×Rd)

≤ Cεp+min(1/5,p).(1.12)

Remark. Using the techniques of [5], one can show that there is a different family
of exact solutions uεex with error estimate including Vd, that is,∥∥(ε∂y, V1, . . . , Vd−1, Vd, Vd+1

)α(
uεex − uεapprox

)∥∥
L∞([0,T/ε]×Rd)

≤ Cεp+min(1/5,p).(1.13)

The initial data of the new family are small perturbations of the initial data for the
family uε.

2. Formal asymptotics. Seek approximate solutions to the initial value prob-
lems with short-pulse initial data,

Luε +Φ(uε) = 0, uε(0, x) = εp f

(
x,

x.ξ0
ε

)
, p =

1

J − 1
.(2.1)

The initial function f is assumed to satisfy Assumptions 1.5 and 1.8 for a β satisfying
Assumption 1.3. J is the order of the nonlinearity as in Assumption 1.6.

Motivated by its success in the analogous situation of wave train solutions for
which f is periodic in z, a first attempt is to try to find a profile

U(ε, T, y, z) ∼
∞∑
j=0

εj Uj(T, y, z) =

∞∑
j=0

εj Uj(T, t, x, z),(2.2)

where Uj → 0 as |z| → ∞, and

uε ∼ εpU

(
ε, εt, y,

y.β

ε

)
.(2.3)
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The chain rule implies that a sufficient condition guaranteeing that uε defined by
uε = U(ε, εt, y, y.β/ε) satisfies the differential equation Luε + Φ(uε) = 0 is that U
satisfy

L
(
(ε∂T , 0) + ∂y +

β

ε
∂z

)
εpU(ε, T, y, z) + Φ(εpU(ε, T, y, z)) = 0.(2.4)

We pursue the less ambitious strategy, which is to satisfy

L
(
(ε∂T , 0) + ∂y +

β

ε
∂z

)
εpU(ε, T, y, z) + Φ(εpU(ε, T, y, z)) ∼ 0 as ε→ 0,(2.5)

in which case

Luε +Φ(uε) ∼ 0 as ε→ 0.(2.6)

We take U to be a sum of only three terms, in which case the equivalence in (2.5)
can be no smaller than O(ε2p+1). Two crucial facts affect our implementation of this
strategy:

1. A trio of equations, derived in section 3, determine U0 from its initial data at
t = T = 0, namely,

π(β)U0 = U0,

∂tU0 + v.∂xU0 = 0,(2.7)

∂T∂zU0 + P (∂x)U0 + π(β) ∂zΦJ(U0) = 0.

The middle transport equation of (2.7) is solved by defining U0(T, x, z) as in (1.6)
so that

U0(T, x− vt, z) = U0(T, t, x, z).(2.8)

2. The equations that one finds for the correctors U1, U2, . . . are not in general
solvable. These equations involve the operator ∂−1

z , which does not act well on a
function whose Fourier transform with respect to z does not vanish at the origin, or
equivalently, whose integral with respect to z is nonzero. For most choices of initial
data, including those for which the transform vanishes on a neighborhood of zero at
time t = 0,

∫
U0 dz does not vanish at later times, and hence the equations for the

correctors are not solvable.
The second fact is the main difficulty this paper overcomes. In our study [5] of

geometric optics before the onset of diffractive effects, a similar problem was encoun-
tered. In that case we were able to construct correctors which had a different form
than the leading term. In the present case of diffractive geometric optics, we do not
know how to find such modified correctors.

A crucial ingredient in the analysis is the representation of the exact solution uε

in terms of an “exact profile” V(ε, t, x, φ) as in [18] and [19] by setting

uε = εp V
(
ε, t, x,

x.ξ0
ε

)
.(2.9)

A key difference between V and U is that in the phase variable slot x.ξ0/ε replaces
β.y/ε for U . To maintain this distinction, the profile variable for which one inserts
x.ξ0/ε is called φ and the profile variable associated with β.y/ε is z. The chain rule
shows that uε defined by (2.9) satisfies Luε +Φ(uε) = 0 when

L
(
∂t, ∂x +

ξ0
ε
∂φ

)
εpV +Φ(εpV) = 0.(2.10)
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The exact profile V(ε, t, x, φ) is then determined from (2.10) and the initial condition

V(ε, 0, x, φ) = f(x, φ).(2.11)

The existence and uniqueness of solutions to the initial value problem formed by (2.10)
and (2.11) are examined in section 4. Our error estimates proceed by proving that

U0

(
ε, εt, t, x,

tτ0
ε

+ φ
)
− V(ε, t, x, φ)→ 0 as ε→ 0.(2.12)

To establish (2.12), first note that the chain rule implies that if (2.5) holds, then
as ε→ 0,

L
(
∂t, ∂x +

ξ0
ε
∂φ

)
εpU

(
ε, εt, t, x,

tτ0
ε

+ φ
)
+Φ

(
εpU

(
ε, εt, t, x,

tτ0
ε

+ φ
))
∼ 0.(2.13)

Thus, if one has correctors U1, U2, . . . to the leading profile, then U(ε, εt, t, x, tτ0ε + φ)
defines an accurate approximate solution of the equation for V, and (2.12) would
follow.

The difficulty is the absence of correctors—equivalently, the fact that we do not
get (2.5). To circumvent this problem, we solve nearby problems with low-frequency
cutoffs applied to the nonlinear term and the initial data. The cutoff problems prop-
agate the property of having a Fourier transform with respect to z, which vanishes on
a neighborhood of the origin.

Choose a cutoff function χ(ζ) ∈ C∞(R) which vanishes for |ζ| < 1 and is identi-
cally equal to 1 for |ζ| ≥ 3/2. Define

χδ := χδ(Dz) = F−1
z χ(ζ/δ)Fz,

where Fz denotes the Fourier transform in z. Seek

Uδ(ε, T, y, z) = Uδ0 (T, y, z) + εU δ1 (T, y, z) + ε2Uδ2 (T, y, z)(2.14)

as an approximate solution of the cutoff equation

L
(
(ε∂T , 0) + ∂y +

β

ε
∂z

)
εpUδ(ε, T, y, z) + χδ(Dz) Φ(ε

pUδ(ε, T, y, z))

= O(ε2p+1)(2.15)

with initial data

Uδ(0, 0, x, z) = χδ(Dz)f(x, z).(2.16)

Then the main result is proved by showing that

Uδ0 (T, t, x, z)− U0(T, t, x, z) = O(δ),(2.17)

and that for δ = ε0.4,

Uδ
(
ε, εt, t, x,

tτ0
ε

+ φ
)
− V(ε, t, x, φ) = O

(
εmin{p , 1/5}).(2.18)

The proof has three main steps. First the approximate solution Uδ satisfying
(2.15) and (2.16) is constructed in Proposition 4.3 and Corollary 4.12. Proposition
5.1 proves the convergence of Uδ0 to U0 as in (2.17). Then Proposition 7.1 proves the
error estimate (2.18). Propositions 5.1 and 7.1 combine to yield (2.12).
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3. Derivation of the profile equations for Uδ
j . In this section we analyze

(2.15). The construction of the correctors Uδ1 and Uδ2 works for δ > 0. For δ = 0 the
analysis shows that the construction of such an approximate solution is in general not
possible.

Define Uδ by (2.14). By convention set Uδ−1 = Uδ−2 = Uδ3 = Uδ4 = 0. Then
computing the left-hand side of (2.15) yields

εp
(1
ε
L(β)∂z + L(∂y) + ε∂T

)
(Uδ0 + εU δ1 + ε2Uδ2 ) + χδ(Dz)Φ(ε

pUδ).

Grouping by powers of ε yields

j=3∑
j=−1

εp+j
{
∂TU

δ
j−1 + L(∂y)U

δ
j + L(β) ∂zU

δ
j+1

}
+ εp+1χδΦJ(U

δ
0 )

+χδ
{
Φ(εpUδ)− ΦJ(ε

pUδ0 )
}
.(3.1)

We use formula (2.14) for times t = O(1/ε). Thus if Uδ1 (T, t, x, z) grew linearly
as t→∞, the term εU1 would become as large as the U0 term and would no longer
be a small corrector. In order to represent a small correction it is necessary that Uδ1
grow sublinearly as t→∞. In fact, the correctors will be uniformly bounded in t, x.
Sublinearity will play a crucial role in the derivation of the equations satisfied by the
Uj .

3.1. Annihilating the εp−1 term. This term is equal to

εp−1 L(β)∂zU
δ
0 .(3.2)

It is annihilated by imposing the polarization

Uδ0 = π(β)Uδ0(3.3)

from Definition 1.2. This is consistent with the polarization imposed on the initial
data f(x, z) in Assumption 1.8.

3.2. Annihilating the εp term. This term is equal to

εp
{
L(∂y)U

δ
0 + L(β) ∂zU

δ
1

}
.(3.4)

To annihilate (3.4), one annihilates in turn its image under π(β) and then its image
under Q(β).

Multiplying (3.4) by π(β) eliminates the Uδ1 term since π(β)L(β) = 0. Using the
polarization of Uδ0 from (3.3), one finds

π(β)L(∂y)π(β)U
δ
0 = 0.

As shown in [11], whenever β is a smooth point of the characteristic variety,

π(β)L(∂y)π(β) =
(
∂t + v.∂x

)
π(β).

This identity yields the transport equation

∂tU
δ
0 + v.∂xU

δ
0 = 0.(3.5)
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Setting Q(β) times the εp term equal to zero yields

(I − π(β)) ∂zU
δ
1 = −Q(β)L(∂y)Uδ0 .(3.6)

This is the key troublesome equation for the correctors. In order for the equation to
be solvable in Hs(Rd+1

x,z ), one needs

1

ζ
Fz
(
Q(β)L(∂y)U

δ
0

)
to be square integrable near ζ = 0. There is no reason to expect that this condition
will be satisfied when δ = 0.

However, (3.11) below defining Uδ0 for δ > 0 implies that the Fourier transform
of Uδ0 with respect to z vanishes on a neighborhood of ζ = 0 as soon as it does so at
T = 0. Thus we can solve (3.6) to find

(I − π(β))Uδ1 = −(∂z)−1Q(β)L(∂y)U
δ
0 when δ > 0.(3.7)

3.3. Annihilating the εp+1 term. This term is equal to

εp+1
(
∂TU

δ
0 + L(∂y)U

δ
1 + L(β) ∂zU

δ
2 + χδΦJ(U

δ
0 )
)
.(3.8)

When δ > 0, use (3.7) to write

Uδ1 = π(β)Uδ1 + (I − π(β))Uδ1 = π(β)Uδ1 − (∂z)
−1Q(β)L(∂y)U

δ
0 .

Then setting π(β) times (3.8) equal to zero yields(
∂t + v.∂x

)
π(β)Uδ1 = π L(∂y)πU

δ
1

= −
(
∂TU

δ
0 − ∂−1

z πL(∂y)QL(∂y)U
δ
0 + π χδΦJ(U

δ
0 )
)
.(3.9)

Thanks to (3.5) and (3.7), the right-hand side is constant along the integral curves
of ∂t + v.∂x. Therefore (3.9) implies that U

δ
1 grows linearly along these straight lines

unless the constant value is zero. As pointed out in the paragraph before section 3.1,
such growth is unacceptable. Thus we must have

(∂t + v.∂x)π(β)U
δ
1 = 0(3.10)

and

∂T∂zU
δ
0 − πL(∂y)QL(∂y)U

δ
0 + π χδ∂zΦJ(U

δ
0 ) = 0.(3.11)

As shown in [11], at smooth points of the characteristic variety of L(∂y),

π(β)L(∂y)Q (β)L(∂y)π(β) = −P (∂x)π(β),(3.12)

where the second order differential operator P (∂x) is defined in (1.4). Using (3.12) in
(3.11), one gets the fundamental equation

∂T∂zU
δ
0 + P (∂x)U

δ
0 + π χδ∂zΦJ(U

δ
0 ) = 0.(3.13)

Note in passing that formulas (3.5), (3.7), and (3.10) imply that Uδ1 satisfies the
transport equation

∂tU
δ
1 + v.∂xU

δ
1 = 0.(3.14)
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It remains to annihilate the product of Q(β) with the εp+1 term. This yields

(I − π(β))∂z U
δ
2 = −Q(β)

(
∂TU

δ
0 + L(∂y)U

δ
1 + χδΦJ(U

δ
0 )
)
.(3.15)

Thanks to the polarization (3.3), Q(β)∂TU
δ
0 = 0. When δ > 0, (3.15) is solvable and

yields

(I − π(β))Uδ2 = −Q(β) ∂−1
z

(
L(∂y)U

δ
1 + χδΦJ(U

δ
0 )
)
.(3.16)

The above calculations pose no constraints on π(β)Uδ2 and π(β)Uδ1 |t=0. For simplicity
we set them equal to zero, and using (3.14) we find that

π(β)Uδ1 = π(β)Uδ2 = 0.(3.17)

With these choices, (3.16) implies that

(∂t + v.∂x) Uδj = 0 for j = 0, 1, 2.(3.18)

Corrector summary. Once U δ0 is known with the Fourier transform vanishing on
a neighborhood of ζ = 0, the correctors are defined by

Uδ1 = −∂−1
z Q(β)L(∂y)U

δ
0 ,(3.19)

Uδ2 = −∂−1
z Q(β)

(
L(∂y)U

δ
1 + χδΦJ(U

δ
0 )
)
.(3.20)

Residual summary. With the profiles defined in this way,

L
(
(ε∂T , 0) + ∂y +

β

ε
∂z

)
εpUδ + χδ(Dz) Φ(ε

pUδ)(3.21)

= εp+2
(
ε∂TU

δ
2 + L(∂y)U

δ
2 + ∂TU

δ
1

)
+ χδ(Dz)

[
Φ(εpUδ)− ΦJ(ε

pUδ0 )
]
.

4. Solvability of the profile equations for U0(T, x, z). Uδ0 must be con-
structed satisfying the equations

π(β)Uδ0 = Uδ0 ,

∂tU
δ
0 + v.∂xU

δ
0 = 0,(4.1)

∂T∂zU
δ
0 + P (∂x)U

δ
0 + π(β)χδ(Dz) ∂zΦJ(U

δ
0 ) = 0.

Equations (2.7) satisfied by U0 are obtained by setting δ = 0. Taking advantage of
the middle equations of (2.7) and (4.1), define U0(T, x, z) and Uδj(T, x, z) by

U0(T, t, x, z) := U0(T, x− vt, z), Uδj (T, t, x, z) := Uδj(T, x− vt, z).

The last equation in (2.7) is then equivalent to

∂T ∂zU0 + P (∂x)U0 + π(β) ∂zΦJ(U0) = 0.(4.2)

The nonlinear diffractive pulse equation (4.2) has T = 0 as a characteristic surface. In
the wave train case one would have found an equation of nonlinear Schrödinger type
at this stage. It too has T = 0 characteristic. In both cases the equation gives rise to
a well-defined time evolution, at least locally in T .
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Before proving this, we first prove that while the diffractive pulse equation appears
to have d+ 2 independent variables (t, x, z), it actually involves one less direction of
differentiation.

Proposition 4.1. The matrix ∂2τ/∂ξj∂ξk has rank at most d − 1. In fact
ξ0 ∈ ker ∂2τ(ξ0)/∂ξj∂ξk.
Proof. Since τ(ξ) is homogeneous of degree 1, it follows that for all j, ∂τ(ξ)/∂ξj

is homogeneous of degree zero. Therefore

d

dλ

∂τ(λξ)

∂ξj
= 0.

Expanding the left-hand side using the chain rule yields∑
i

ξi
∂2τ(λξ)

∂ξi∂ξj
= 0.

Setting λ = 1 yields the desired result.
In coordinates so that ξ0 = (1, 0, . . . , 0) this implies that τ1,j = τj,1 = 0 so that

P (∂x) = −1
2

d∑
j,k=2

∂2τ(1, 0, . . . , 0)

∂ξj∂ξk

∂2

∂xj∂xk
.

This decrease in the number of spatial dimensions decreases the complexity of the
numerical implementation of the results of this paper.

The local solvability of the nonlinear diffractive pulse equation can be proved in
the Sobolev spaces Hs(R1+d) with s > (d + 1)/2 by standard methods. The results
would apply for general nonlinearities. A weakness is that for the Fourier transform
of U0(T, x, z) with respect to the x, z variables one has only L2 control locally.

The nonlinear term in the profile equation is always a polynomial. Because of
this, we have the luxury of working in spaces related to the Wiener algebra which give
us L1 control of the Fourier transform. That in turn permits us to get L∞ control
of FzU0 by estimates entirely on the Fourier side. These L∞ estimates imply that
(I − χδ)U0 = O(δ) as δ → 0. The usual strategy to obtain sup norm estimates for
Fourier transforms is to prove decay rates as x, z →∞. The argument completely on
the Fourier side circumvents that avenue. We do not prove any decay rates beyond
those implied by being in ∩sHs(Rd+1

x,z ).

Definition 4.2. The Wiener algebra A(RM ) is the Banach space of tempered
distributions on R

M with the property that their Fourier transform belongs to L1(RM ).
The norm is the L1 norm of the Fourier transform.

Recall that for any 1 ≤ p ≤ ∞ the map

L1 × Lp � f, g → f ∗ g ∈ Lp

is a continuous bilinear map from L1 × Lp to Lp and

‖f ∗ g‖Lp ≤ ‖f‖L1 ‖g‖Lp .(4.3)

The inequality (4.3) with p = 1 shows that the map U → ΦJ(U) maps bounded
sets of A to bounded sets of A. To study the continuity of the map note that the
difference ΦJ(U)− ΦJ(V) can be expressed as

ΦJ(U)− ΦJ(V) =

d∑
i

Pi(U,V)
(
Ui −Vi

)
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with polynomials Pi of degree less than J . Then inequality (4.3) shows that the map
U→ ΦJ(U) is uniformly Lipschitzian on bounded subsets of A to A.

The initial value problem for the profile equation (4.2) with initial value

U|T=0 = G(x, z)

is equivalent to the integral identities

Û(T ) = e−iP (ξ)T/ζ Ĝ+

∫ T

0

e−iP (ξ)(T−σ)/ζ π(β)F(ΦJ(U(σ))) dσ(4.4)

for 0 ≤ T ≤ T .
The multipliers eiP (ξ)t/ζ have modulus one so they define isometries on A(Rd+1

x,z ).
This, together with the uniform Lipschitzian property, is enough to make Picard’s
classical existence proof work, yielding the following result.

Proposition 4.3. For each G ∈ A there is a T∗ = T∗(G) ∈ ]0,∞] and a unique
maximal solution U ∈ C

(
[0, T∗[ ; A

)
to the profile equation (4.2), which in addition

satisfies the initial condition U|T=0 = G. The time T∗ is uniformly strictly positive
on bounded subsets of A, and if T∗ <∞, then

lim
T→T∗

‖U(T )‖A = ∞.(4.5)

The next result is a regularity theorem which asserts that if the initial data lies
in a smaller Banach space B, then the maximal solution is a continuous function with
values in B.

Definition 4.4. A Banach space B ⊂ A is admissible if it has the following
three properties:

1. The inclusion map B→ A is continuous.
2. The map U→ ΦJ(U) maps B to itself and is uniformly Lipschitzian on subsets
of B which are bounded in A.

3. For T 	= 0, the Fourier multipliers eiTP (ξ)/ζ are isometries from B to itself.
The following are examples of admissible Banach spaces.
Example 4.5. If 1 < p ≤ ∞, then B := {U ∈ A : Û ∈ Lp} is admissible.
Example 4.6. If s > (d+ 1)/2, then Hs(Rd+1) is admissible.
Example 4.7. If B1 and B2 are admissible, then so is the intersection B1 ∩ B2.
Proof for Example 4.5. Only property 2 in the definition is not immediate. One

needs to prove that for every R > 0 there is a constant C so that if ‖U‖A ≤ R and
‖V‖A ≤ R, then ∥∥ΦJ(U)− ΦJ(V)

∥∥
B
≤ C

∥∥U−V
∥∥

B
.(4.6)

Taylor’s theorem implies that

ΦJ(U)− ΦJ(V) = Ψ(U,V)(U−V),

where Ψ is a matrix-valued homogeneous polynomial of degree J − 1.
To estimate the Lp norm of the Fourier transform use Young’s inequality∥∥F(ΦJ(U)− ΦJ(V)

)∥∥
Lp ≤

∥∥F(Ψ(U,V)
)∥∥

L1

∥∥F(U−V)
∥∥
Lp

≤ C(R) ‖U−V‖B.
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Proposition 4.8. If B is admissible and G ∈ B, then the maximal solution found
in Proposition 4.3 satisfies

U ∈ C([0, T∗[ ; B).(4.7)

Proof. From the admissibility properties one easily demonstrates using Picard’s
method that the integral equation (4.4) has a maximal solution

U ∈ C([0, T ∗(G)[ ; B),

and if T ∗ <∞, then

lim
T→T∗

‖U(T )‖B = ∞.(4.8)

Since this solution is continuous with values in A it follows that T ∗(G) ≤ T∗(G). The
result of the proposition follows from establishing the inequality T ∗(G) ≥ T∗(G).

The proof is indirect. We suppose on the contrary that T ∗(G) < T∗(G) and derive
a contradiction.

If T ∗(G) < T∗(G), then U is continuous on [0, T ∗] with values in A, and so there
is an R <∞ so that

‖U(T )‖A ≤ R for 0 ≤ T ≤ T ∗.

Taking the B norm of (4.4) and using the last two properties from the definition of
admissibility yields

‖U(T )‖B ≤ ‖G‖B +

∫ T

0

C ‖U(σ)‖B dσ for 0 ≤ T < T ∗.

Gronwall’s inequality implies that

‖U(T )‖B ≤ ‖G‖B eCT for 0 ≤ T < T ∗.

In particular, (4.8) is violated. This contradiction proves the proposition.
Our main existence result is a corollary of Propositions 4.9 and 4.10 below.
Proposition 4.9. Define B to be the closed subspace of A(Rd+1

x,z ) consisting of

functions U such that (i) Û ∈ L∞(Rd+1
ξ,ζ ), and (ii) for all µ > 0, Û is uniformly

continuous on {|ζ| ≥ µ}. Then B is admissible.
Proof. B is a closed subspace of Example 4.5 with p = ∞. Thus to prove that

B is admissible it suffices to show that ΦJ maps B to itself. In fact, more is true. If
Û ∈ L1 ∩ L∞ (which is true if U ∈ B), then Fx,z

(
ΦJ(U)

)
is bounded and uniformly

continuous, which implies that ΦJ(U) ∈ B.
To prove the stronger assertion of the last sentence, write ΦJ as a sum of terms

each of which is a product of a monomial of order J−1 and a monomial of order 1. The
Fourier transform of the first factor belongs to L1 and the Fourier transform of the
second belongs to L∞. The desired result follows from the fact that the convolution
of an element of L1 with an element of L∞ is uniformly continuous.

Proposition 4.10. If 0 ≤ m ∈ Z and 1 ≤ p ≤ ∞, then the subspace

B
m,p :=

{
U ∈ A : 〈η〉m Û(η) ∈ Lp(RNη )

}
is admissible.
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Proof. This proof follows [23]. The only sticky point is estimate (4.6). Toward
that end one must show that for K-fold products one has∥∥∥Uj∥∥∥

A

≤ R ⇒
∥∥∥〈η〉m Û1 ∗ Û2 ∗ · · · ∗ ÛK

∥∥∥
Lp
≤ C(K,R)

∑
j

∥∥∥〈η〉m Ûj

∥∥∥
Lp

.(4.9)

Written out, this becomes∥∥∥∫ 〈η〉m Û1(η − η1) Û2(η1 − η2) · · · ÛK(ηK) dη1 dη2 · · · dηK−1 dηK

∥∥∥
Lp

≤ C(K,R)
∑
j

∥∥∥〈η〉mÛj∥∥∥
Lp

.(4.10)

Note that

η = (η − η1) + (η1 − η2) + · · ·+ (ηK−1 − ηK) + ηK ,

so

|η| ≤ |η − η1|+ |η1 − η2|+ · · ·+ |ηK−1 − ηK |+ |ηK |.

Define η0 := η, ηK+1 := 0, so the summands on the right are equal to |ηj−1 − ηj | for
1 ≤ j ≤ K+1. The integral in (4.10) is split into K+1 pieces, the integrals over sets

E(j) :=
{
(η, η1, . . . , ηK) : |ηj−1 − ηj | = max

1≤k≤K
{|ηk−1 − ηk|

}}
.

The sets Ej overlap in measure zero sets, so it suffices to show that∥∥∥∫
E(j)

〈η〉m Û1(η − η1) Û2(η1 − η2) · · · ÛK(ηK) dη1 dη2 · · · dηK−1 dηK

∥∥∥
LP

≤ C(K,R)
∑
j

∥∥∥〈η〉mÛj∥∥∥
Lp

.

On E(j), |η| ≤ K|ηj−1 − ηj | so∫
E(j)

〈η〉m |Û1(η − η1)| · |Û2(η1 − η2)| · · · |ÛK(ηK)| dη1dη2 · · · dηK−1dηK

≤ C(K)

∫
E(j)

〈ηj−1 − ηj〉m |Û1(η − η1)| · |Û2(η1 − η2)|

· · · |ÛK(ηK)| dη1dη2 · · · dηK−1dηK .

Young’s inequality bounds the Lp norm of the integral on the right by∥∥〈η〉mÛj∥∥Lp

∏
k =j

∥∥Ûk∥∥L1 = C(R)
∥∥〈η〉mÛj∥∥Lp .

This completes the proof.
Definition 4.11. B is the Fréchet space of tempered distributions V(x, z) so that
1. V̂(ξ, ζ) ∈ L∞(Rd+1) and for every µ > 0 is uniformly continuous on the set

{(ξ, ζ) : |ζ| ≥ µ}.



DIFFRACTIVE NONLINEAR SHORT PULSES 1493

2. For every nonnegative integer m

〈ξ, ζ〉m V̂(ξ, ζ) ∈ L∞(Rd+1).

Combining Propositions 4.9 and 4.10 shows that B is the intersection of admissible
spaces. By Example 4.7, this implies the following corollary.

Corollary 4.12. Suppose that U ∈ C
(
[0, T∗[ ; A)

)
is a maximal solution of the

profile equation (4.2) and that U
∣∣
T=0
∈ B. Then

U ∈ C
(
[0, T∗[ ; B

)
.(4.11)

This corollary gives us more than enough control on the leading profile to carry
out our analysis. The most interesting aspect is the sup norm control near ζ = 0
without continuity.

5. Construction of Uδ
0. A perturbation argument is the key to solving the

δ > 0 equations (4.1). The third equation in (4.1) is equivalent to

∂T∂zU
δ
0 + P (∂x)U

δ
0 + π(β)χδ(Dz) ∂zΦJ(U

δ
0) = 0.(5.1)

Multiplying (4.2) by χδ(Dz) yields

∂T ∂zχ
δ(Dz)U0 + P (∂x)χ

δ(Dz)U0 + π(β)χδ(Dz) ∂zΦJ(U0) = 0.(5.2)

This equation resembles (5.1), as demonstrated in the next proposition, which shows
that the solution of (5.1) can be obtained as a small perturbation of χδ(Dz)U0.

Proposition 5.1. Suppose that U0 = π(β)U0 ∈ C
(
[0, T ] ; ∩mB

m,∞) satisfies
(4.2). Then there is a δ0 > 0 so that for 0 < δ < δ0 the initial value problem defined
by (5.2) with initial condition

Uδ0
∣∣
T=0

= χδ(Dz)U0

∣∣
T=0

(5.3)

has a unique solution Uδ0 ∈ C([0, T ] ; ∩mB
m,∞), and for all 1 ≤ q <∞ and 0 ≤ m <

∞,

sup
0≤T≤T

∥∥Uδ0(T )− χδ U0(T )
∥∥

Bm,q(Rd+1
x,z )

= O(δ1/q).

Furthermore the Fourier transform Fz
(
Uδ0
)
vanishes identically on |ζ| ≤ δ.

Proof of Proposition 5.1. Begin with the proof that Uδ0 has a Fourier transform
with respect to z vanishing on |ζ| ≤ δ. For any γ(ζ) ∈ C∞0 (R) supported on |ζ| ≤ 1
define γδ(ζ) := γ(ζ/δ). It suffices to show that Fzγδ(Dz)Uδ0(T ) = 0.

The choice of γ implies that γδχδ = 0. Thus multiplying (5.1) by γδ(Dz) annihi-
lates the nonlinear term. This implies that γδ(Dz)U

δ
0 ∈ C

(
[0, T∗[ ; ∩sHs

)
satisfies(

∂T∂z + P (∂x)
)
γδ(Dz)U

δ
0 = 0.(5.4)

In addition γδ(Dz)U
δ
0 vanishes when T = 0.

It follows from the basic Hs conservation law for the linear diffractive pulse equa-
tion [4] that for all s and all T ∈ [0, T∗[ ,

‖γδ(Dz)Uδ0(T )‖Hs(Rd+1
x,z ) = ‖γδ(Dz)Uδ0(0)‖Hs(Rd+1

x,z ) = 0.(5.5)
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Identity (5.5) implies the second assertion of the proposition.
The strategy for proving the O(δ1/q) estimate in the proposition is to construct

Uδ0 as a perturbation of χδ(Dz)U0. Define the perturbation Wδ by

Wδ := Uδ0 − χδ(Dz)U0 .(5.6)

Subtract (5.1) from (5.2) to show that Uδ0 is a solution if and only if Wδ satisfies the
initial value problem

∂T ∂zW
δ + P (∂x)W

δ + π(β)χδ(Dz) ∂z
(
ΦJ(U

δ
0)− ΦJ(U0)

)
= 0,

Wδ
∣∣
T=0

= 0.(5.7)

Note that

ΦJ(U
δ
0)− ΦJ(U0) = ΦJ(χ

δU0 +Wδ)− ΦJ(χ
δU0 + (I − χδ)U0).

Since χδU0(T ) is bounded in the admissible subspace B
m,∞ uniformly for all

0 < δ ≤ 1 and 0 ≤ t ≤ T , the second condition in the definition of admissibility
implies that as long as ‖Wδ‖Bm,∞ ≤ 1,∥∥ΦJ(Uδ0)− ΦJ(U0)

∥∥
Bm,q(Rd+1)

≤ C(m, q)
(∥∥Wδ(T )

∥∥
Bm,q(Rd+1)

+
∥∥(I − χδ)U0(T )

∥∥
Bm,q(Rd+1)

)
.(5.8)

Fix m ≥ 0 and 1 ≤ q ≤ ∞. If ‖Wδ(T )‖Bm,q ≤ 1 for 0 ≤ T ≤ T , define
T∗ = T∗(m, q, δ) = T . Otherwise define

T∗(m, q, δ) := inf{T ∈ [0, T ] : ‖Wδ(T )‖Bm,q = 1}.
The homogeneous linear diffractive pulse equation generates a unitary group on each
B
m,q. The inhomogeneous version of this estimate implies that for T ∈ [0, T∗],

‖Wδ(T )‖Bm,q ≤
∫ T

0

C(m)
(∥∥Wδ(σ)

∥∥
Bm,q(Rd+1)

+
∥∥(I − χδ)U0(σ)

∥∥
Bm,q(Rd+1)

)
dσ.(5.9)

Gronwall’s inequality then shows that

‖Wδ(T )‖Bm,q ≤ C(m)

∫ T

0

∥∥(I − χδ)U0(T )
∥∥

Bm,q(Rd+1)
dt eC(m)T .(5.10)

To proceed we need the following lemma.
Lemma 5.2. For any m ≥ 0, 1 ≤ q < ∞, and M > q + (d + 1)/q there is a

constant C = C(m, q,M) so that for all δ > 0 and all W ∈ B
M,∞,∥∥(I − χδ)W

∥∥
Bm,q(Rd+1)

≤ C δ1/q ‖W‖BM,∞ .

Remark. In contrast note that for W ∈ ∩sHs, ||(I − χδ)W‖Hs = o(1) as δ → 0,
but there is no rate of convergence.
Proof of Lemma. By definition∥∥(I − χδ)W

∥∥q
Bm,q(Rd+1)

=

∫ ∣∣1− χ(ζ/δ)
∣∣q ∣∣Ŵ (ξ, ζ)

∣∣q 〈ξ, ζ〉mq dξ dζ.
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Use the estimate

|Ŵ (ξ, ζ)| ≤ 〈ξ, ζ〉−M ‖Ŵ‖BM,∞

to find∥∥(I − χδ)W
∥∥q

Bm,q ≤ ‖Ŵ‖qBM,∞

∫ ∣∣1− χ(ζ/δ)
∣∣q 〈ξ, ζ〉−Mq 〈ξ, ζ〉mq dξ dζ.

The integral on the right is over |ζ| ≤ δ, so for Mq > mq+ d+1, the integral is O(δ),
which proves the lemma.

This lemma implies that∫ T

0

∥∥(I − χδ)U0(T )
∥∥

Bm,q(Rd+1)
dt = O(δ1/q).

Thus, one can choose δ0(m, q) so that for 0 < δ < δ0,

C(m)

∫ T

0

∥∥(I − χδ)U0(T )
∥∥

Bm,q(Rd+1)
dt eC(m)T <

1

2
.

Then (5.10) shows that if T∗ < T , then

‖Wδ(T )‖Bm,q ≤ 1

2

for 0 < t < T∗. Since this contradicts the definition of T∗ we conclude that T∗ = T
and that (5.10) holds for 0 < T < T . In particular, the evolution equation for Uδ0 is
solvable up to T .

In addition, estimate (5.10) implies the O(δ1/q) convergence rate for the value
m, q fixed at the start. Since m, q is arbitrary, the proof of Proposition 5.1 is com-
plete.

Combining the convergence results of Proposition 5.1 and Lemma 5.2 yields

sup
0≤t≤T

‖U0(T )−Uδ0(T )‖Bm,q(Rd+1
x,z ) = O(δ1/q).(5.11)

Note that the smallest upper bound occurs for the case q = 1 corresponding to the
Wiener algebra.

6. Estimate for the residual. Suppose that T is smaller than the maxi-
mal existence time for U0 in the sense that a solution of (4.2) is known in the
space C

(
[0, T ] ; ∩mB

m,∞(Rd+1
x,z )

)
. Then Proposition 5.1 shows that for 0 < δ < δ0,

Uδ0 (T, t, x, z) = Uδ0(T, x−vt, z) exists on [0, T ] and FzUδ0 vanishes on a neighborhood
of ζ = 0. For δ > 0, the equations for the correctors Uδ1 , U

δ
2 are solvable, so

Uδ(ε, T, t, x, z) := Uδ0 + εU δ1 + ε2Uδ2

is well defined for 0 ≤ t ≤ T/ε. The residual equation (3.21) is then

Rδ(ε, T, t, x, z) := L
(
(ε∂T , 0) + ∂y +

β

ε
∂z

)
εpUδ + χδ(Dz) Φ(ε

pUδ)

= εp+1
(
ε2∂TU

δ
2 + εL(∂y)U

δ
2 + ε∂TU

δ
1

)
+ χδ(Dz)

[
Φ(εpUδ)− ΦJ(ε

pUδ0 )
]
.(6.1)
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This section is devoted to estimates for the right-hand side of (6.1). There are at
least two subtle points. The first is that though the residual is formally O(ε2p+1) it
involves correctors which blow up as δ → 0. Care must be taken about small values
of δ. The second point is that the residual involves the smooth function Φ, which
need not be polynomial. Therefore, the Wiener algebra need not be invariant. The
estimates are therefore done in the scale of Sobolev spaces.

Proposition 6.1. Suppose that Uδ and T are as above, δ0 is as in Proposition
5.1, and s > (d+ 1)/2. Then there is a constant C = C(s) so that for all

0 ≤ t <∞ ∩ 0 ≤ T ≤ T ∩ 0 < δ ≤ δ0 ∩ 0 ≤ ε ≤ δ,(6.2)

one has

‖Rδ(ε, T, t, x, z)‖Hs(Rd+1
x,z ) ≤ C εp+1

( ε

δ2
+ εp

)
.(6.3)

Proof. The first step is to estimate the size of the correctors Uδ1 , U
δ
2 . The formulas

for these functions involve Uδ0 and, most importantly, the operator ∂−1
z . The formula

for Uδ1 involves ∂−1
z , while the formula for Uδ2 involves ∂−2

z since it has a term with
∂−1
z applied to Uδ1 . The application of the operator ∂−1

z introduces a factor 1/δ in
estimates since the support of Uδj is in |ζ| > δ. The boundedness of the family Uδ0 in
B
m,∞ yields the following estimates for the correctors for 0 < δ ≤ δ0:

∀m,∀ 0 ≤ t <∞, sup
0≤T≤T

∥∥Uδj (T, t, x, z)∥∥Bm,∞(Rd+1
x,z )
≤ C(m)

δj
.(6.4)

Inserted in the definition of Uδ, this estimate proves that for t ∈ R and 0 ≤ T ≤ T ,∥∥Uδ(T, t)∥∥
Bm,∞(Rd+1

x,z )
≤ C(m)

(
1 +

ε

δ
+

ε2

δ2

)
.

Thus Uδ(T, t) is uniformly bounded in B
m,∞ for the parameter range (6.2). This is a

key element in the estimate of the second term on the right-hand side of (6.1).
For the right-hand side of (6.1) we also need an estimate for ε∂TU

δ
1 and ε2∂TU

δ
2 .

Start with an estimate for the T derivative of Uδ0 . The evolution equation (5.1) yields

∂TU
δ
0 = −∂−1

z P (∂x)U
δ
0 − π(β)χδ(Dz) ΦJ(U

δ
0).

Together with the uniform boundedness of Uδ0 this yields

‖∂TUδ0‖Bm,∞ ≤ C(m)

δ
.(6.5)

The factor 1/δ comes from the norm of ∂−1
z acting on functions with spectrum in

|ζ| ≥ δ. Differentiating (3.19) and (3.20) with respect to T yields

∂TU
δ
1 = −∂−1

z Q(β)L(∂y)∂TU
δ
0

and

∂TU
δ
2 = −∂−1

z Q(β)
(
L(∂y)∂TU

δ
1 + χδ(Dz)π(β)Φ

′
J(U

δ
0 )∂TU

δ
0

)
.

Using estimate (6.5) in the equations above yields in turn

‖∂TUδ1‖Bm,∞ ≤ C(m)

δ2
and ‖∂TUδ2‖Bm,∞ ≤ C(m)

δ3
.
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Inserting these estimates into the first term on the right-hand side of (6.1) and
using ε ≤ δ yields∥∥∥ε2∂TU

δ
2 + εL(∂y)U

δ
2 + ε∂TU

δ
1

∥∥∥
Bm,∞

≤ C(m)
(ε2

δ3
+

ε

δ2
+

ε

δ2

)
≤ C(m) ε

δ2
.(6.6)

Next turn to the second term on the right of (6.1). Taylor’s theorem with remain-
der implies that there are smooth functions Gα so that

Φ(u) =
∑
|α|=J

uαGα(u).(6.7)

It follows that

Φ(λu) = λJΨ(λ, u),(6.8)

with smooth Ψ satisfying Ψ(λ, 0) = 0. An entirely analogous argument shows that
there is a Ξ(λ, u) vanishing when u = 0 so that

Φ(λu)− ΦJ(λu) = λJ+1 Ξ(λ, u).(6.9)

Split the nonlinearity on the right-hand side of (6.1),

Φ(εpUδ)− ΦJ(ε
pUδ0 ) =

[
Φ(εpUδ)− Φ(εpUδ0 )

]
+
[
Φ(εpUδ0 )− ΦJ(ε

pUδ0 )
]
.

Using (6.8), (6.9), and the fact that εpJ = εp+1 yields

Φ(εpUδ)− ΦJ(ε
pUδ0 ) = εp+1

[
Ψ(εp, Uδ)−Ψ(εp, Uδ0 )

]
+ ε2p+1 Ξ(εp, Uδ0 ).(6.10)

Since both Uδ and Uδ0 are Hs uniformly bounded, (6.10) and Schauder’s lemma imply
that for s > (d+ 1)/2,∥∥Φ(εpUδ)− ΦJ(ε

pUδ0 )
∥∥
Hs(Rd+1

x,z )
≤ C(s) εp+1

(
‖Uδ − Uδ0‖Hs(Rd+1

x,z ) + εp
)
.(6.11)

Using (6.4) and ε ≤ δ yields

‖Uδ − Uδ0‖Hs(Rd+1
x,z ) ≤ C(s)

(ε
δ
+

ε2

δ2

)
≤ C(s) ε

δ
.(6.12)

Combining (6.6), (6.11), and (6.12) yields the estimate (6.3).

7. Proof of (2.12). In the next proposition we prove the third and last conver-
gence result needed to establish our main result.

Proposition 7.1. Suppose that T is smaller than the maximal existence time
for U0 and that U

δ, Uδ are as in the first paragraph of section 6, and hence in the
space satisfying (1.3). Then there is a positive ε1 so that for 0 < ε < ε1, the differ-
ential equation (2.10) has a unique solution V(ε, t, x, φ) ∈ C

(
[0, T/ε] ; ∩sHs(Rd+1)

)
satisfying the initial condition

V(ε, 0, x, φ) = U0(0, 0, x, φ).

In addition, for all s, for δ = ε2/5, and for 0 < ε < ε1,

sup
0≤t≤T/ε

∥∥∥Uδ(ε, εt, t, x, tτ0
ε

+ φ
)
− V(ε, t, x, φ)

∥∥∥
Hs(Rd

x×Rφ)
≤ C(s)εmax{1/5 , p}.(7.1)
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Proof. The construction of Uδ guarantees that Uδ(ε, εt, t, x, tτ0ε + φ) satisfies

L
(
∂t, ∂x +

ξ0
ε
∂φ

)
εpUδ +Φ(εpUδ)(7.2)

= Rδ
(
ε, εt, x,

tτ0
ε

+ φ
)
+
(
I − χδ(Dz)

)
Φ(εpUδ).

The strategy is to construct V as a perturbation, Eδ, of Uδ. Define

Eδ(ε, t, x, φ) := V(ε, t, x, φ)− Uδ
(
ε, εt, t, x,

tτ0
ε

+ φ
)
.(7.3)

The equation for V is rewritten as an equation for Eδ. The equation for Eδ is then
analyzed to show that the perturbation remains small for 0 ≤ t ≤ T/ε.

Subtracting (2.10) from (7.2) yields

L
(
∂t, ∂x +

ξ0
ε
∂φ

)
εpEδ = −Rδ

(
ε, εt, t, x,

tτ0
ε

+ φ
)

(7.4)

− (I − χδ(Dz)
)
Φ
(
εpUδ

(
ε, εt, t, x,

tτ0
ε

+ φ
))

+
[
Φ
(
εpUδ

(
ε, εt, t, x,

tτ0
ε

+ φ
))
− Φ(εpV)

]
.

The operator L is a symmetric hyperbolic operator with constant coefficients and
coefficient of ∂t equal to I. It follows that L generates a unitary evolution on the
spaces Hs(Rd+1

x,φ ). Thus for all s and for all t smaller than the maximal time of
existence, ∥∥εpEδ(t)∥∥

Hs(Rd+1
x,φ

)
≤ ∥∥εpEδ(0)∥∥

Hs(Rd+1
x,φ

)

+

∫ t

0

∥∥∥L(∂t, ∂x + ξ0
ε
∂φ

)
εpEδ(σ)

∥∥∥
Hs(Rd+1

x,φ
)
dσ.(7.5)

The key is to estimate the integral on the right-hand side of (7.5) using the
expression (7.4).

7.1. Estimate for the Rδ term in (7.4). Estimate (6.3) implies that∥∥∥∥Rδ(ε, εt, t, x, tτ0ε + φ
)∥∥∥∥

Hs(Rd+1
x,φ

)

=
∥∥Rδ(ε, εt, x, z)∥∥

Hs(Rd+1
x,z )

≤ C εp+1
( ε

δ2
+ εp

)
.(7.6)

7.2. Estimate for the (I − χδ(Dz)) Φ(εpUδ(εt, t, x, tτ0

ε
+ φ)) term in

(7.4). As in the derivation of (7.6), the translation invariance of the Hs norm yields∥∥∥(I − χδ(Dz)
)
Φ
(
εpUδ

(
εt, t, x,

tτ0
ε

+ φ
))∥∥∥

Hs(Rd+1
x,φ

)

=
∥∥(I − χδ(Dz)

)
Φ(εpUδ(εt, x, z))

∥∥
Hs(Rd+1

x,z )
.

Express Φ(εpUδ) as the sum of two terms,

Φ(εpUδ) = ΦJ(ε
pUδ) +

(
Φ− ΦJ)(ε

pUδ) = εp+1ΦJ(U
δ) + ε2p+1Ξ(εp,Uδ),(7.7)
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where we have used (6.9) to derive the second equality.
Since Ξ(εp,Uδ(εt, x, z) is uniformly bounded in Hs(Rd+1

x,z ) it follows that∥∥(I − χδ(Dz))ε
2p+1Ξ(εp,Uδ)

∥∥
Hs(Rd+1

x,z )
≤ C ε2p+1.(7.8)

Since ΦJ(U
δ(εt, t, x, tτε +φ)) are uniformly bounded in B

m,∞, Lemma 5.2 implies
that ∥∥(I − χδ(Dz))ε

p+1ΦJ(U
δ)
∥∥
Hs(Rd+1

x,z )
≤ C

√
δ εp+1.(7.9)

Adding (7.8) and (7.9) shows that∥∥∥(I − χδ(Dz)
)
Φ
(
εpUδ

(
εt, t, x,

tτ0
ε

+ φ
))∥∥∥

Hs(Rd+1
x,φ

)
≤ C εp+1(

√
δ + εp).(7.10)

7.3. Estimate for the Φ(εpUδ)−Φ(εpV) term in (7.4). Using (6.8) yields

Φ(εpUδ)−Φ(εpV) = εp+1
[
Ψ(εp, Uδ)−Ψ(εp,V)] = εp+1

[
Ψ(εp, Uδ)−Ψ(εp, Uδ + Eδ)].

The proof of Proposition 5.1 shows that

sup
0≤t≤T/ε, 0<ε<δ≤δ0

∥∥∥Uδ(ε, εt, t, x, tτ0
ε

+ φ
)∥∥∥

Hs(Rd+1
x,φ

)
<∞.

Schauder’s lemma then implies that as long as ‖Eδ‖Hs ≤ 1,

εp+1
∥∥Ψ(εp, Uδ + Eδ)−Ψ(εp, Uδ)

∥∥
Hs(Rd+1

x,φ
)
≤ C εp+1 ‖Eδ(t)‖Hs(Rd+1

x,φ
).(7.11)

Combining estimates (7.6), (7.10), and (7.11) yields the following estimate, valid
as long as ‖Eδ‖Hs ≤ 1:∥∥∥L(∂t, ∂x+ ξ0

ε
∂φ

)
εpEδ

∥∥∥
Hs(Rd+1

x,φ
)
≤ C εp+1

( ε

δ2
+εp+

√
δ+‖Eδ(t)‖Hs(Rd+1

x,φ
)

)
.(7.12)

7.4. Estimate for Eδ(0). The initial value of Eδ(0) comes from the correctors
in Uδ,

Eδ(0) = f(x, φ)−Uδ(0, x, φ) = εUδ1(0, x, φ) + ε2Uδ2(0, x, φ).

Using (6.4) and the fact that ε ≤ δ yields

‖Eδ(0)‖Hs(Rd+1) ≤ C
(ε
δ
+

ε2

δ2

)
≤ Cε

δ
.(7.13)

8. End of proof. We now use the previous results to bound the error Eδ between
the exact solution V and the approximate solution defined in terms of Uδ.

Fix s > (d + 1)/2. Then as long as ‖Eδ‖Hs ≤ 1, inserting (7.12) and (7.13) into
(7.5) yields

∥∥ εp Eδ(t)∥∥
Hs(Rd+1

x,φ
)
≤ Cεp+1

δ
+ C

∫ t

0

εp+1
( ε

δ2
+ εp +

√
δ + ‖Eδ(σ)‖Hs(Rd+1

x,φ
)

)
dσ.
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Estimate the integral of the constant term using t ≤ T/ε to find∫ t

0

εp+1
( ε

δ2
+ εp +

√
δ
)
dσ ≤ T εp+1

ε

( ε

δ2
+ εp +

√
δ
)
≤ C εp

( ε

δ2
+ εp +

√
δ
)
.

Combine the last two estimates using ε
δ2 ≥ ε

δ and divide by εp to find

∥∥ Eδ(t)∥∥
Hs(Rd+1

x,φ
)
≤ C

( ε

δ2
+ εp +

√
δ
)
+ C ε

∫ t

0

‖Eδ(σ)‖Hs(Rd+1
x,φ

) dσ.(8.1)

We need to show that Eδ exists for 0 ≤ T ≤ T/ε and that supt∈[0,T/ε] ‖Eδ(t)‖Hs

converges to zero as δ → 0. The integral inequality (8.1) leads to both of these goals
by the “as long as” argument.

For any 0 < ε < δ < δ0, define T∗ = T∗(ε, s, δ) by T∗ = T/ε if Uδ(ε, T, t, x, z)
exists for 0 ≤ t ≤ T/ε and sup0≤t≤T/ε ‖Eδ(t)‖Hs < 1. Otherwise define

T∗ := inf
{
t : ‖Eδ(t)‖Hs = 1

}
.

Gronwall’s inequality applied to (8.1) implies that for 0 ≤ t ≤ T∗,

‖Eδ(t)‖Hs(Rd+1
x,φ

) ≤ C(s)
( ε

δ2
+ εp +

√
δ
)
eC(s)εt ≤ C(s)

( ε

δ2
+ εp +

√
δ
)
.(8.2)

Now we can chose δ as a function of ε. Balancing the ε/δ2 and
√
δ terms in (8.2)

yields

δ = ε0.4 and
ε

δ2
=
√
δ = ε1/5.

Then (8.2) yields for δ = ε0.4

‖Eδ(t)‖Hs(Rd+1
x,φ

) ≤ C(s) εmin{p , 1/5}.(8.3)

Choose ε(s) > 0 so that

C(s) ε(s)min{p , 1/5} <
1

2
.(8.4)

Combining (8.3) and (8.4) shows that for 0 ≤ t ≤ T∗, 0 < ε < ε(s), and δ = ε0.4

‖Eδ(t)‖Hs(Rd+1
x,φ

) <
1

2
.(8.5)

If T∗ < T , setting t = T∗ violates the definition of T∗. It follows that for 0 < ε < ε(s),

Ee0.4(t) has Hs norm less than 1/2 for 0 ≤ t ≤ T/ε.
This proves the solvability for 0 ≤ t ≤ T/ε of the initial value problem defining

V ∈ C([0, T ] ; Hs). That the solution belongs to C([0, T/ε] ; ∩sHs) is then a conse-
quence of standard semilinear hyperbolic theory and the regularity of the initial data
for V.

In addition, since (8.5) holds, the “as long as” argument works, and it follows that
inequality (8.3) is valid for 0 ≤ t ≤ T/ε, provided that ε < ε(s). Since s is arbitrary
this proves the convergence asserted in Proposition 7.1.
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8.1. The main theorems. Combining Propositions 4.3, 5.1, and 7.1 and Corol-
lary 4.12 proves the following result.

Theorem 8.1 (main theorem). Assume that the initial data in (2.1) satisfy
Assumptions 1.5 and 1.8. Let U0 = π(β)U0 ∈ C([0, T∗[ ; A(R1+d) be the maximal
solution of the principal profile equation (4.2) with initial value f . Let V(ε, t, x, φ) ∈
∩s C([0, T ′∗[ ; Hs(Rd+1)) denote the maximal solution of the initial value problem (2.10),
(2.11) defining the exact profile.
Then, for any T < T∗ there is an ε(T ) > 0 so that for 0 < ε < ε(T ) the solution

uε of the initial value problem (2.1) exists for 0 ≤ t ≤ T/ε, T ′∗ ≥ T/ε, and uε is given
by

uε = εpV
(
ε, t, x,

x.ξ0
ε

)
.

In addition the asymptotic behavior as ε→ 0 is given by

uε ∼ εpU0

(
ε, εt, x− vt,

tτ0 + x.ξ0
ε

)
in the sense that for all s, as ε→ 0

sup
0≤t≤T/ε

∥∥∥V(ε, t, x, φ)−U0

(
εt, x− vt,

tτ0
ε

+ φ
)∥∥∥

Hs(R1+d
x,φ

)
≤ C(s) εmin{p,1/5}.(8.6)

Proof of Theorem 1.10. Theorem 1.10 is an immediate consequence of this result.
Simply write

uε − uεapprox = εpV
(
ε, t, x,

x.ξ0
ε

)
− εpU0

(
εt, x− vt,

tτ0 + x.ξ0
ε

)
.

Then the estimate (1.12) follows from (8.6).
Note that the constant field Vd has a nonzero ∂t component. It acts differently

on the two terms in the expression for the error. That is why we have a reduced set
of derivatives in the error estimate of Theorem 1.10.
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R1+3, C. R. Acad. Sci. Paris Sér. I Math., 332 (2001), pp. 985–990.

[9] R. Carles and J. Rauch, Diffusion d’impulsions non-linéaires radiales focalisantes dans
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